The research topic of atmospheric aerosols involves the modelling in climate models and optical properties, with more detail given to mineral dust aerosols and absorbing aerosols. Currently there is not an specific project about this topic, but the researcher Ramiro Checa-Garcia is collaborating in several projects as a former researcher of LSCE-IPSL (Laboratory for Sciences of Climate and Environment - Institut Pierre Simon Laplace), below are listed several of these projects.
(Creative Commons from Wikipedia)
Collaboration in external projects
- CRESCENDO: The participation in the Natural Aerosols studies is covering two parts:
- (1) Provide a full set of simulations using the IPSL climate model with INCA.
- (2) A detailed analysis of mineral dust described by the 5 Earth System Models that participated in this initiative Checa-Garcia et al. (2021).
- AeroCOM: The collaboration relies on specific simulations using INCA module with IPSL climate model, that we used for different kind of experiments designed for specific analysis of: optical properties, transport, anthropogenic aerosols or validation with observations. As part as AEROCOM Phase III there are several papers in progress:
- AerChemMIP: As member of CRESCENDO project I participated in Work-Package 9 that provide simulations and analyses results of AerChemMIP models. At this moment, we have prepared two publications: Thornhill et al. (2021) and Thornhill et al. (2021).
- Collaboration with Jasper Kok from UCLA: The research involved better assessments on global mineral dust cycle, including also a new dataset as described in the references Kok et al. (2021) and Kok et al. (2021).
References:
R. Checa-Garcia, Y. Balkanski, S. Albani, T. Bergman, K. Carslaw, A. Cozic, C. Dearden, B. Marticorena, M. Michou, T. van Noije, P. Nabat, F. O'Connor, D. Olivié, J. M. Prospero, P. Le Sager, M. Schulz, and C. Scott.
Evaluation of natural aerosols in crescendo-esms: mineral dust.
Atmospheric Chemistry and Physics, 21:10295–10335, 2021.
URL: https://acp.copernicus.org/articles/21/10295/2021/acp-21-10295-2021.html, doi:10.5194/acp-21-10295-2021. ↩
J. Gliß, A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, S. E. Bauer, A. M. K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, P. Ginoux, J. J. Griesfeller, A. Heckel, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Laj, P. Le Sager, M. T. Lund, C. Lund Myhre, H. Matsui, G. Myhre, D. Neubauer, T. van Noije, P. North, D. J. L. Olivié, S. Rémy, L. Sogacheva, T. Takemura, K. Tsigaridis, and S. G. Tsyro.
Aerocom phase iii multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations.
Atmospheric Chemistry and Physics, 21(1):87–128, 2021.
URL: https://acp.copernicus.org/articles/21/87/2021/, doi:10.5194/acp-21-87-2021. ↩
J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P. R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, D. M. Leung, L. Li, N. M. Mahowald, R. L. Miller, V. Obiso, C. Pérez Garc\'ıa-Pando, A. Rocha-Lima, J. S. Wan, and C. A. Whicker.
Improved representation of the global dust cycle using observational constraints on dust properties and abundance.
Atmospheric Chemistry and Physics, 21(10):8127–8167, 2021.
URL: https://acp.copernicus.org/articles/21/8127/2021/, doi:10.5194/acp-21-8127-2021. ↩
J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P. R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, L. Li, N. M. Mahowald, R. L. Miller, V. Obiso, C. Pérez Garc\'ıa-Pando, A. Rocha-Lima, and J. S. Wan.
Contribution of the world's main dust source regions to the global cycle of desert dust.
Atmospheric Chemistry and Physics, 21(10):8169–8193, 2021.
URL: https://acp.copernicus.org/articles/21/8169/2021/, doi:10.5194/acp-21-8169-2021. ↩
M. Sand, B. H. Samset, G. Myhre, J. Gliß, S. E. Bauer, H. Bian, M. Chin, R. Checa-Garcia, P. Ginoux, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Le Sager, M. T. Lund, H. Matsui, T. van Noije, S. Remy, M. Schulz, P. Stier, C. W. Stjern, T. Takemura, K. Tsigaridis, S. G. Tsyro, and D. Watson-Parris.
Aerosol absorption in global models from aerocom phase iii.
Atmospheric Chemistry and Physics Discussions, 2021:1–36, 2021.
URL: https://acp.copernicus.org/preprints/acp-2021-51/, doi:10.5194/acp-2021-51. ↩
Wenying Su, Lusheng Liang, Gunnar Myhre, Tyler J. Thorsen, Norman G. Loeb, Gregory L. Schuster, Paul Ginoux, Fabien Paulot, David Neubauer, R. Checa-Garcia, Hitoshi Matsui, Kostas Tsigaridis, Ragnhild B. Skeie, Toshihiko Takemura, Susanne E. Bauer, and Michael Schulz.
Understanding top-of-atmosphere flux bias in the aerocom phase iii models: a clear-sky perspective.
Journal of Advances in Modeling Earth Systems, n/a(n/a):e2021MS002584, 2021.
e2021MS002584 2021MS002584.
URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002584, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002584, doi:https://doi.org/10.1029/2021MS002584. ↩
G. Thornhill, W. Collins, D. Olivié, R. B. Skeie, A. Archibald, S. Bauer, R. Checa-Garcia, S. Fiedler, G. Folberth, A. Gjermundsen, L. Horowitz, J.-F. Lamarque, M. Michou, J. Mulcahy, P. Nabat, V. Naik, F. M. O'Connor, F. Paulot, M. Schulz, C. E. Scott, R. Séférian, C. Smith, T. Takemura, S. Tilmes, K. Tsigaridis, and J. Weber.
Climate-driven chemistry and aerosol feedbacks in cmip6 earth system models.
Atmospheric Chemistry and Physics, 21(2):1105–1126, 2021.
URL: https://acp.copernicus.org/articles/21/1105/2021/, doi:10.5194/acp-21-1105-2021. ↩
G. D. Thornhill, W. J. Collins, R. J. Kramer, D. Olivié, R. B. Skeie, F. M. O'Connor, N. L. Abraham, R. Checa-Garcia, S. E. Bauer, M. Deushi, L. K. Emmons, P. M. Forster, L. W. Horowitz, B. Johnson, J. Keeble, J.-F. Lamarque, M. Michou, M. J. Mills, J. P. Mulcahy, G. Myhre, P. Nabat, V. Naik, N. Oshima, M. Schulz, C. J. Smith, T. Takemura, S. Tilmes, T. Wu, G. Zeng, and J. Zhang.
Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison.
Atmospheric Chemistry and Physics, 21(2):853–874, 2021.
URL: https://acp.copernicus.org/articles/21/853/2021/, doi:10.5194/acp-21-853-2021. ↩