

Team

Branislava Lalić, PI Professor PFNS

Milena Marčić, P1 PIS manager PIS

Ana
Firanj Sremac, P2
Research Associate
PFNS

PFNS University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia

PIS – Plant Protection and Warning Service in Republic of Serbia

The Problem

Changing Climate

It is expected that CC will affect pest appearance and development.

Current pest varieties will adopt to CC; changed one will appear.

Environmental observations

PIS micrometeorological and biological observational network is representative one.
Pest appereance assessment on country level can provide only simulation models.

Environmental Impact

Pest response on changing environmental conditions requires intensification of protection measures which can have negative impact on the environment.

Industrial Impact

In Serbia, **codling moth** is the most important pest in intensive apple production.

The Solution

through project PFNS involvement in WPs and objectives

WP1 — Data Base establishment WP2 —Pest models evaluation and validation

WP3 –Simulating/analysing pest trends under climate/crop scenarios

WP4 —Dissemination and exploitation of results

Observe and collect

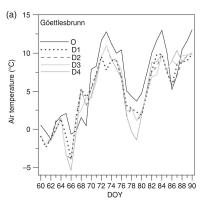
To collect available data
(COMBIRISK,AGROFORECA
ST) (observed biological
and measured
meteorological data),
structure them and
prepare proper datasets

Plan and develop

Existing models will be adapted, improved and re-validated, and new established

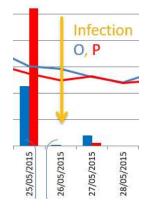
Test and forecast

Performance test for all models, and simulation of pest trends under climate and crop scenarios.

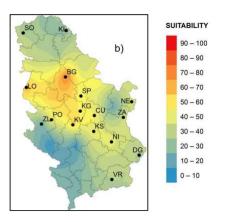

Hotspots, climate driven pest risk, change of spatial pest occurrence

Open Science

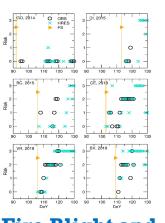
Results for stakeholder training, teaching materials, general public



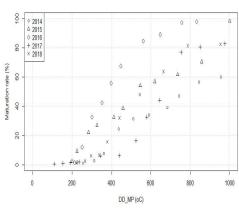
Previous experience


Apple scab, 2015

Effectiveness of shortterm numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance


Downy mildew, 2016

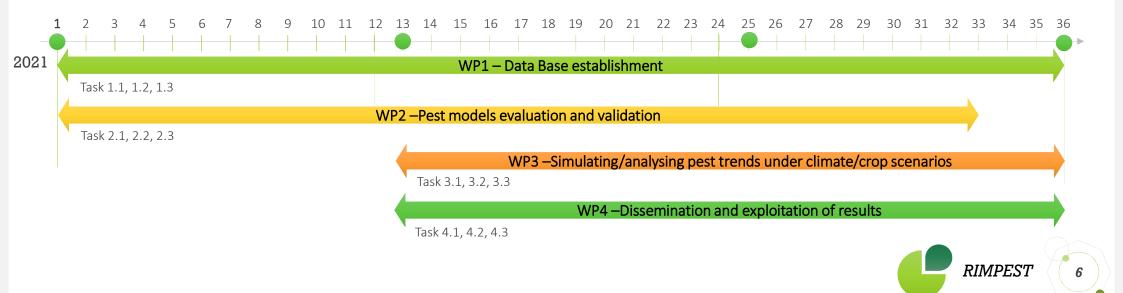
The WRF-ARW application in predicting meteorological conditions for **Downy mildew** (Plasmopara viticola) appearance of wine grape


Asian tiger mosquito, 2017

Modelling the regional impact of climate change on the suitability of the establishment of the **Asian tiger mosquito** (Aedes albopictus) in Serbia.

Fire Blight and Downy Mildew, 2018

Toward a Weather-Based Forecasting System for Fire Blight and Downy Mildew


Apple scab, 2020

A decade of harmful organism and micrometeorological conditions operational monitoring in Serbia: *Venturia inaequalis* case study

Timeline

Our three-year action plan

Partner no.	Specific field/discipline	Main task in the project
PFNS	Pest monitoring, pest modeling	Contribute to WP1-WP3 Model application and validation for codling moth (C. pomonela) in Serbia and Austria and trend assessment under climate scenarios.

