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ABSTRACT. We develop a method of complex characteristics for boundary
value problems for second order elliptic operators with constant coefficients
in angles. The method was proposed in 1973 for strongly elliptic second or-
der operators and solutions from the Sobolev space H® with s > 3/2. In
the present paper we extend the method to arbitrary elliptic second order irre-
ducible operators and to all solutions from the space of tempered distributions.
Main ingredient of the extension is a development of the theory of “smooth”
pseudodifferential operators of Vishik and Eskin. The method uses complex
Fourier transform, Paley-Wiener theory and Malyshev’s automorphic function
method on a Riemann surface of complex characteristics of elliptic operators.
Various applications of the method are described.

1. Introduction. Exact solutions of boundary value problems in angles

Exact solutions of boundary value problems (b.v.p.) in angles for partial dif-
ferential equations with constant coefficients are of great importance while dealing
with various problems of mathematical physics. For example, such problems ap-
pear in the study of diffraction by wedges, guided water waves on a sloping beach,
elasticity problems in wedge-shaped domains, etc. In [17, 18] a new method of
complex characteristics was proposed for explicit solution of general b.v.p. of the
following type

(1.1) Au(z) = Z ag0yu(z) =0, x € Q,
|l <2

(1.2) Bu(z) = Z binO5u(z) = fi(x), z €Ty, 1=1,2.
oo <y

Here Q C R? is an open angle of magnitude ® € (0, 7) with the sides T';, | = 1,2,
and f;(z) are tempered distributions on I';. All the coefficients a,, b;,, are complex,
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my > 0, and the operator A in [17, 18] is strongly elliptic, i.e.
(1.3) A(2)] > OO+ |22, = €

where the symbol A(z) = Plal<2 @al—12)%, 2 € R2. Boundary conditions satisfy
the strong Shapiro-Lopatinskii condition

(1.4) 1Bi(2)| > C1+|z)™, z€C, 1=1,2,
where By(z) = 2ol <m Dia(—i2)%, 2 € C? and (; is the contour {z € C? : A(z) =
0, Sz < 0}

The method of [17, 18] uses the complex Fourier transformation in two vari-
ables and the Paley-Wiener theory [19], the theorem on division [18] of Bogoliubov-
Vladimirov type [3], and Malyshev’s method of automorphic functions on the Rie-
mann surface V' of the complex characteristics of the operator A:

DEFINITION 1.1. V = V(A) is the set {z € C? : A(z) = 0}.

Note that in (1.4) the contour C; lies on the Riemann surface V.

The general strategy of the method is the following:

I. We derive an algebraic relation on the Riemann surface V' between the Fourier
transforms of the four Cauchy data of the solution u(z): two at the side I'y and
two at the side I's.

IT. We couple this relation to the boundary conditions (1.2) which allows us
to reduce the relation to one algebraic equation on V' with two unknown Cauchy
data.

ITI. We eliminate one unknown function using Malyshev’s method of automor-
phic functions [30] and get a functional equation with a shift.

IV. We reduce the functional equation to a Riemann-Hilbert problem which is
solved explicitly. Thus, we reconstruct all the Cauchy data, hence the solution.

The complex Fourier transformation in both variables is suggested by the
Wiener-Hopf method. However, our method does not use a factorization and so
it is not an extension of the Wiener-Hopf technique (which does not provide the
solution to (1.1), (1.2)).

The idea to consider the whole Riemann surface comes from the standard ap-
proach based on the analysis of the “stable” and “unstable” complex roots of the
symbol A(z) with z; € R and Sz, < 0, Sz, > 0, respectively, and also with z, € R
and Sz, < 0, Sz1 > 0.

The algebraic relation between the Cauchy data on V is a natural generalization
of the well-known compatibility conditions on real characteristics for hyperbolic
PDE.

In [34, 35] Merzon extended the method of complex characteristics [17, 18]
from strongly elliptic operators A to arbitrary second order elliptic operators with
an irreducible symbol.

DEFINITION 1.2. A second order operator A =}, <5 aa07 is irreducible if its
symbol A(z) is an irreducible polynomial of two variables over C.

After a suitable (complex) affine transformation (z1,22) = C(z1, 22) + B such
a symbol becomes 22 + 22 + a with a # 0. Therefore, the (completed) Riemann
surface V' is isomorphic to C\ 0 which is important for the method [17, 18, 35].

ExaMPLES 1.3. i) Strongly elliptic operators are irreducible.
ii) The Helmholtz operator A = A + w? is irreducible for any complex w # 0.
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In [34] and [35] Merzon obtained a suitable generalization of the division theo-
rem of [18] and the solution to the stationary diffraction problem for the Helmholtz
operator

(1.5) A=A+w?

with w € R, which is not strongly elliptic. The method of [17, 18, 34, 35] is
applicable to the Helmholtz operator (1.5) with complex w which is necessary for
diffraction problems.

Finally, in [20] the method of complex characteristics was extended to arbitrary
angles ® € (7, 27). In this case the straightforward application of the Paley-Wiener
theory is impossible, and the extension uses an additional duality arguments for
the analytic continuation on the Riemann surface V.

In the present paper we extend the method of complex characteristics to all
solutions from the space of tempered distributions and arbitrary elliptic irreducible
second order operators A. For this purpose we develop a suitable variant of the
famous “smoothness property” (or “transmission property”) of elliptic pseudodif-
ferential operators with rational symbols discovered initially by Vishik and Eskin
[53] (see also [8]). Note that in [17, 18] the solutions from the Sobolev class H*(Q)
were considered with s > 1/2, and in [17, 18, 34, 35] arbitrary solutions from the
space of tempered distributions were considered for the Helmholtz operator (1.5).

Our paper is organized as follows. In Section 2 we expose the extension of
the method of complex characteristics to all solutions from the space of tempered
distributions and arbitrary elliptic irreducible second order operators A. We de-
scribe concisely all steps: the complex Fourier transform, functional equation on
the Riemann surface, Malyshev’s automorphic function method and the reduction
to the Riemann-Hilbert problem. We use the results of [17, 18] whenever it is
possible. We describe the method and do not formulate its final result as a general
theorem: our aim is to derive the equations and notations for concrete applications
in the next sections. In Sections 3 and 4 we explain the applications of the method
to the solution of the Ursell problem and to the solution of the Neumann problem
in angles in Sobolev classes. These results were obtained originally in [22] and
[38]. For the first time we give the derivation of basic equations of [22, 38] by the
method of complex characteristics.

Let us describe briefly some applications of the method of complex character-
istics.

I. In [17, 18] the method was used for the analysis of the Fredholm property of
boundary value problems on manifolds with edges. The method provides a criterion
for the problem to be of Fredholm type.

II. In [35] the method was used for the proof of the limiting absorption principle
for general b.v.p. for the Helmholtz operator in angles.

III. In [36, 22] the authors solved the problem of completeness of Ursell’s
trapped modes, i.e., it was proved that there are no edge waves apart from those
found by Ursell (see below).

IV. In [38] Zhevandrov and Merzon analyzed the following natural question:
what happens to the Ursell modes if one assumes that the fluid is situated under
another liquid layer whose density is much smaller than that of the lower layer,
e.g., under a layer of oil or air. In that paper they were confronted with the
following mathematical problem: does the solution of the Neumann problem for
the Helmholtz equation in an angle with b.c. from H~1/2(T'; UT), which is given
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by the Sommerfeld integral, belong to H'(Q)? The answer in the framework of these
integrals apparently turns out to present serious difficulties due to slow convergence
of the Sommerfeld integrals, and the solutions obtained by Roseau show that this
is not always the case. On the other hand, the solution obtained by means of
the method of complex characteristics has the form of a two-dimensional Fourier
transform. It is tractable by means of the standard integral operator technique
and can be shown to coincide with the Sommerfeld integral with a specific kernel
[21, 22, 57].

V. Recently the method has been applied to the proof of the limiting amplitude
principle in Sommerfeld diffraction by wedges [37] (see below).

In closing this very brief overview, we would like to emphasize that exact solu-
tions of b.v.p. in angles are also extremely important for b.v.p. in angular domains
with curved faces, because the latter, by means of a perturbation technique, can
be reduced to recurrent systems of nonhomogeneous problems of type (1.1), (1.2).
For example, acoustic and electromagnetic diffraction problems for wedges with
curved faces were treated in [7, 2]; high-frequency asymptotics of edge waves on
a beach of nonconstant slope (whose existence was proved in [4]) were established
in [39]. Note that in those papers the method was not used directly. However, its
ideology proved out to be of great use when investigating the analytical properties
of solutions to the corresponding functional equations.

Let us comment on previous general approaches to exact solutions of boundary
value problems in angles.

In 1895 Macdonald [28] gave an integral representation of the Green function for
the Dirichlet and Neumann b.v.p. for the Poisson equation in angles of magnitude
® € (0,27] [28].

In 1896 Sommerfeld [49] obtained the two Green functions for the Helmholtz
equation in angles of magnitude ® € (0,2n] with rational #/®. He used integral
representations of Macdonald’s type and invented a method of multivalued solu-
tions, which is a generalization of the method of images by means of Riemann
surfaces.

Later Macdonald, Carlslaw, Bromwich, Herglotz and others have extended
Sommerfeld’s results to arbitrary ® € (0, 2n] by some generalizations of Sommer-
feld’s approach (see the survey [41]). Their methods extend the known method of
images from integer m/® to arbitrary ® by means of an integral representation of
the Hankel functions [41]. For the method of images, a fundamental solution to
the Helmholtz equation is selected satisfying Sommerfeld’s radiation condition at
infinity, so the corresponding solution of the b.v.p. satisfies the radiation condi-
tion. However, the limiting amplitude principle is not proved for the constructed
solution. In other words, the relation of the stationary diffraction theory to the
nonstationary one is not established for wedges up to now.

In 1958 Malyuzhinets extended Sommerfeld’s results to diffraction by wedges
with impedance b.c. [29]: he constructed solutions to the Helmholtz equation in an
angle with the Robin b.c. Malyuzhinets’ approach assumes the Sommerfeld type
representations for solutions. Hence this method gives some particular solutions
and does not give all solutions from the appropriate functional class.

In 1969 Shilov [47] applied the complex Fourier transformation in one variable
to the mixed problem in angles with the Cauchy boundary condition on one side.
For the first time, Shilov had established the algebraic relations on some lines on
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the Riemann surface of complex characteristics. However, he did not solve this
equation. A similar analysis has been done by Sobolev [48].

In 1970 Malyshev invented a new powerful method of automorphic functions for
solving boundary value problems for difference equations on a lattice in a quadrant
[30]. This method uses complex Fourier transformation in two variables on the
lattice and Galois theory in the ring of analytic functions on a Riemann surface. It
reduces the boundary value problem to a functional equation with a shift.

Similar equations with a shift were derived previously in some diffraction prob-
lems by Malyuzhinets in [29]. These equations have been solved in some particular
cases (for rational angles etc.) in [1, 51].

In 1971 Maz’ya and Plamenevskii [31] found an explicit solution to a model
problem for the Laplace equation with oblique derivative b.c. in wedges of arbitrary
magnitude ® € (0,27). Their method uses the real Fourier transformation and
reduces the problem to a Riemann-Hilbert problem with discontinuous b.c., which is
solved explicitly. In [32] these authors extended the method of [31] to general b.v.p.
(1.1), (1.2) with real coefficients ay, bj, and the angle of magnitude ® € (0, 2n).

REMARK 1.4. The method of [31, 32] uses essentially the fact that the operator
A is strongly elliptic and all coefficients aq, b, are real. Therefore, that method
cannot be applied to diffraction problems for the Helmholtz operator 4 = A + w?
with w # 0.

In 1992 Eskin [12] solved general boundary value problems for the wave equa-
tion in an angle. His approach contains the following steps: i) derivation of an
algebraic equation with two unknown functions on the Riemann surface, ii) elimi-
nation of one unknown function by means of the conformal automorphisms of the
Riemann surface which gives an equation with a shift for one function, iii) reduction
to a Riemann-Hilbert problem, etc.

In 1998 Meister, Penzel, Speck and Teixeira [33] obtained some delicate results
for boundary value problems for the Helmholtz equation in a quadrant using the
Wiener-Hopf factorization method.

We mention also different methods of qualitative analysis of problems in angles
developed by Kondratiev [23], Kozlov, Maz’ya and Rossmann [25], Nazarov and
Plamenevskij [40]. Kondratiev’s method uses the classical Mellin transform. For
the operators A, By, Bz with homogeneous symbols this transform reduces the two-
dimensional problem in an angle to a one-dimensional problem with a parameter
which can be solved explicitly. Note a very efficient application of the method
[23] to perfectly conducting waveguides [5, 6]. Costabel and Dauge [9] consider
elliptic systems in the sense of Agmon-Douglis-Nirenberg in plane domains with
corners; they decompose the solution into the regular and singular parts which
depend smoothly on parameters. Kozlov [24] analyzes singularities of the solution
to the Dirichlet problem in neighborhoods of corner points in weighted Sobolev and
Holder spaces.

In closing, let us comment on different previous approaches to the Ursell and
diffraction problems. Apparently, the first trapped mode in an angle had been
found by Stokes [50] in 1846. This solution describes the so-called “edge wave”
(guided water wave) on a beach of constant slope. In this case the domain is an
angle of magnitude ® € (0,7/2) and the edge wave is an eigenfunction of a b.v.p.
for the Helmholtz equation with mixed boundary conditions (b.c.): the Neumann
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b.c. on one side of the angle and a Robin b.c. on the other side; the latter contains
the spectral parameter.

In 1952 Ursell [52] found a family of trapped modes on a sloping beach with
arbitrary angle magnitude ® € (0,7/2); this family includes the Stokes mode.
In 1952 Peters [43] obtained solutions describing waves on a sloping beach which
correspond to the continuous spectrum of the problem. He looked for the solution
in a prescribed form of a line integral and reduced the problem to a linear algebraic
equation.

In 1958 Roseau [46] constructed a new family of solutions to Ursell’s problem
which are singular at the vertex of the angle. The method of Roseau is very similar
to Peters’ method. Whitham [54] showed that it is possible to obtain the Ursell
modes using the same ideas that were used by Peters and Roseau. In 1989 Evans
[13] developed Whitham’s method and extended Ursell’s result to Robin b.c. on
both sides of the angle. Packham [42] obtained similar results using Sommerfeld-
type representation which was already used by Williams in 1959 [55] in the context
of electromagnetic waves. Williams’ method is very close to the one used previously
by Malyuzhinets. The strongest known results on the completeness of Ursell’s
trapped modes were established by Lehman and Lewy [27].

Note that any methods based on integral representations cannot imply a com-
plete solution to the problem as they do not describe all solutions a priori. Note
that the paths of integration in all these integral representations lie on the Riemann
surface of complex characteristics. A generalization of Sommerfeld’s representation
was established for all solutions in [21].

The complete solution to the Ursell problem has been established in [36] and
[22] by the method of complex characteristics. The method gives all solutions in
the class of tempered distributions and does not assume in advance any integral
representation of the solution. A priori, there are infinitely many solutions with
arbitrary order of singularity and the method allows one to select the solution
needed by its functional properties without any assumptions about its explicit form.

Sommerfeld’s famous solution to the diffraction problem in wedges historically
initiated an intensive development of the analysis of problems in angles. The limit-
ing amplitudes for Dirichlet or Neumann b.c. were given in [49] in 1896. However,
the limiting amplitude principle has not been proved for about 100 years. In the
paper [45] the limiting amplitude principle has been considered for a particular
explicit solution to the nonstationary diffraction problem. However, the existence
and uniqueness of the solution from a functional class has not been discussed.

In [37] the limiting amplitude principle for a wedge is stated for a sufficiently
general class of incident plane waves of sinusoidal type with Dirichlet or Neumann
b.c. For the first time the solution is considered in an exact functional class, and
the existence and uniqueness of the Cauchy problem is proved. The proofs use the
method of complex characteristics [17]-[20]. This method allows one to analyze
the limiting amplitudes of solutions for diffraction by wedges with arbitrary linear
b.c. (1.2) with constant coefficients.

Acknowledgments. A. K. thanks M. I. Vishik for the statement of the prob-
lem, for his support and patience.
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2. Method of complex characteristics

In this section we describe briefly the method of complex characteristics. The
method reduces general b.v.p. in a plane angle for second order elliptic equation
to some equations on the boundary and solves them explicitly. The main steps of
the method are the following:

I. Extension to the plane

II. Existence of boundary values

II1. Reformulation via the Cauchy data

IV. Boundary conditions via the Cauchy data

V. Boundary densities via the Cauchy data

VI. Relation between the Cauchy data on complex characteristics

VII. Undetermined algebraic equation on the Riemann surface

VIII. Malyshev’s automorphic functions method

IX. Reduction to the Riemann-Hilbert problem

We consider a b.v.p. of type (1.1), (1.2) for an elliptic operator A, i.e., its
principal part Ao satisfies

(2.1) Ay(2) = Z aa(iz)* #0, z € R? \ 0,

la|=2

for the case ® < 7 for simplicity. Then by a (real) linear change of variables, we
can transform the angle Q to the first quadrant K = {z € R? : 21 > 0,22 > 0}.

I. Extension to the plane. First, we have to justify the statement of
b.v.p. (1.1), (1.2) for the solution of “arbitrary singularity”. More precisely, we
consider equation (1.1) in the sense of distributions. Namely, our goal is to consider
all solutions of the Schwartz class S'(K): u(z) € S'(K) means that u(z) is the
restriction of a distribution U (z) € S’(R?) to the open region K. It is easy to prove
that we can assume U(z) € S'(K), i.e. U(z) € S'(R?) and supp U(x) C K. Then
equation (1.1) implies

(2.2) AU(z) = y(z), =€ R?,

where the “boundary density” v € S'(90K), i.e. v € S'(R?) and suppy C 9K.
Conversely, equation (2.2) with v € S’(0K) implies (1.1) for u := U|g. Therefore,
we have

PrOPOSITION 2.1. Equation (1.1) for u € S'(K) is equivalent to (2.2) with
U € S'(K) and the boundary density v € S'(0K): the equivalence is given by
u= U|K

I1. Existence of boundary values. Next we have to justify the statement
of boundary conditions (1.2). We understand boundary conditions (1.2) in the
following sense. Let u(z) be a solution of the homogeneous equation (1.1). Then,
by ellipticity, v € C*°(K) and its traces on the rays z; = ¢, ¢ > 0, parallel to
the sides of the angle are well-defined. It is easy to see that these traces belong to
S’(R*) (with the natural identification of Rt and the rays mentioned above). The
same is valid for the normal derivatives of u on these rays, and for all derivatives
of u on these rays as well. Let us prove the existence of the limits in the sense of
distributions as € — 0+.

Recall that S’(R") is the space of restrictions of distributions from S’(R) to
R+. More precisely, S’(R") is the factorspace S'(R)/S’ (R—) where S'(R¥) = {f €
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S'(R) : supp f C RE}. Note that the solution u(x) is smooth in K due to the
elliplicity of the operator A.

DEFINITION 2.2. For any a = (a1, ) with ag,a9 = 0,1,2, ... set
(6 —_ 3 (0%
{ 0%u(xy,0+) = 51_1%5r 0%u(xy,¢€), 1 >0,

(2.3) 0%u(0+,z5) = lim 0%u(e,x2), z2 >0,
e—0+

if the convergence holds in S'(R").
The limits exist in the case of elliptic operators.

PROPOSITION 2.3. Let A be an elliptic second order operator (2.1). Then for
any solution u(x) € S'(K) to equation (1.1), the limits (2.3) exist for each a =
(a1, a2) with a;,as =0,1,2, ...

PROOF. We develop a variant of the theory of the “smoothness property” [53]
(or “transmission” property, see [8]). First let us consider the simplest case when
the operator A is strongly elliptic (see (1.3)). Then there exists a unique fundamen-
tal solution E(z) € S'(R?) of A, which is smooth for z # 0 and decays exponentially
as |z| = oo. Therefore (2.2) implies the representation of U(z) as the potential of
the boundary density ~

(2.4) U(z) = E*v(z) = (E(z —y),7()), v € R
Then the existence of the limits (2.3) would follow by a modification of the methods
of [8, 53]. Below we give a suitable modification for the general case of an elliptic
operator A.

For the general case, we modify slightly the arguments connected with the
convolution (2.4). Since the boundary density y(z) € S'(0K), it admits a repre-
sentation

(2.5) v(z) = Z g (21)0® () Z iy (22)6®) (21), = € B2,
0<k<s 0<k<s

where s < oo corresponds to the singularity of the solution u(z) (or U(x)), and
9k, hie € S'(Rt). Let us define the Fourier transform as F,_,;[¢](2) := ¢(z) =

e ¢(x)dx for test functions ¢ € C$°(R?), and as the extension by continuity
for tempered distributions. In the Fourier representation (2.2) and (2.5) become
(2.6)  F(2) = A(2)U(2) = Z G (21)(=izz)" Z hi(22)(=iz1)*, 2z € R2.

0<k<s 0<k<s

As the operator A is elliptic, there exist an R > 0 such that
(2.7) A(2) #£0, |2 > R.

Choose a cutoff function ¢ (x) € C°°(R?) such that 1(z) = 0, |2| < R and ¢(2) =
|2| > 2R. Then (2.6) implies

28) U(z) = %(2) Z G (21)(—iz2)" Z hi(22)(—iz1)* | JA(2)
0<k<s 0<k<s
+(1 = ()T (2),
= U1(2) + Ua(2), 2 € .
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Obviously, Us(z) := F %, [(1 - w(z))ﬁ(z)] is a smooth function in R? with power
bounds for each derivative. Hence, for this function all limits (2.3) exist in S'(RT).

It remains to analyze the function
(2.9)

P(2) ( PRENICENETSY ﬁk(zz)(—izl)’“) /A(2)

0<k<s 0<k<s

zZ—=T

where z € R2. Let us denote Ey(z) := F, ! [zb(z)//l(z)]. Obviously, ¥(z)/A(z)

is the symbol of a classical pseudodifferential operator (PDO) [16]. For any multi-
index a and any N > 0, we have by the standard technique of PDO:

Ey(x) € C=(R \ {0),
(2.10) 102 By (2)] < Cala| 1719, Jo| <1,

|05 Ey(2)] < Can@ + |2)7, |a] > 1.

Therefore, (2.9) can be rewritten as the convolution (cf. (2.4))

(2.11) Uie) = (> gr(1)6® (y2), Ey(z —y))
+() " hi(y2)6® (1), Ey(z — y))

=: U11(.CB) + UlZ(-T), x € R2.

Let us prove the existence of limits (2.3) on the side I'; = {(0,71) € R? : 77 >
0}. For the function Uj»(x) all the limits exist as its any derivative admits a power
bound z7? in the halfplane z; > 0 by (2.10). Hence, we get from (2.8) and (2.11)
that

(2.12) U(x) = Uni(z) + R(z), z € R?,

where R(z) := Uia(z) + Usz(z) is smooth in the halfplane z1 > 0, and its any
derivative admits a power bound z]? in the halfplane z; > 0. Hence, the function
R(z) admits an extension to a smooth function of 2o € R with values in S'(R+),
so for R(z) all the limits (2.3) exist in S"(RT).

For the analysis of U1, we return to the Fourier transform since the convolution
with Ey is a classical pseudodifferential operator,

(2.13) Un(z) =9) | D dulz)(—iz)*/A(z) |, z € R
0<k<s

For any k, N =0,1,2, ..., we have the expansions (cf. [8, 53])

Q1) BRI A = Y Pyla)(-iz)

N-1
+ ) Quj(z1)(22 + 1) + Ren (21, 22),

Jj=1
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where z € R?. Here Py, Qy; are polynomials of degrees < j, < k—2+j, respectively,
and the remainder Ry admits the bound

(2.15) |07 Rinv (21, 22)] < Crn (1 + |21 )2V =27 (1 4 |2o) N

for any m = 0,1, 2, .... Therefore, for each fixed 25 € R, Ryn(21,22) is a continuous
multiplicator in S’(R) with the following finite seminorms: for all M > 0 and some
Py = —2N + 2 +m,
na(z2) := sup sup |95, Ry (21, 22)|(1 + |21]) 7PM < o0.
|a|<M z1ER
Moreover, estimates (2.15) imply that the seminorms are summable in z, € R if

N > 2. Therefore, performing the partial inverse Fourier transform F_!,  in
(2.14), we get for N > 2

k—2

(216) FL., [v()(=i) /AG)| = 3 Py()s* (@)

=0

N—-1
+ 37 Qui(21)Cia} M 0(ws)e "

i=1
+R;n(21,22), (21,22) € R

Here the function R}, (21,2) is a continuous function with power bounds for each
derivative in z; as N > 2. Therefore, for each fixed z2, R} (21,22) is a continuous
multiplicator in S’'(R) which depends continuously on z» € R. Hence, applying
F! to (2.13), we get

k—2
(17)  Uul) = > [ 3D (@) F L, Pe(21)3k(21)

0<k<s j=0
N-1
i—1 - — " -
+ Zxé 0(z2)e szzll—lekj(zl)gk(zl)
Jj=1

+F2:1—>$1R;N(z17x2)gk(z1)j| , & € R2.
Therefore, the function Uiy (21, x2) is a continuous function of x5 € R with values
in S'(R). s

ITI. Reformulation via the Cauchy data. Our general strategy is the
following:

A. We plan to derive the solution U(z) from equation (2.2) by the Fourier
transform. Hence, we have to express the boundary density v(z) via the boundary
data fi(x1), f2(x2) of problem (1.1), (1.2).

B. To do so, we would like to express v and the boundary conditions (1.2) via
the Cauchy data of the solution u(z),

0
( ) Ulo(xl) = u(w1,0+), Un(xl) = 8—1:2U(£U1,0+), xr1 > 0,
2.18
UQO(.'L‘Q) = U(0+,.’IJ2)7 ’u,21(.’1,'2) = %U(O-}-,l‘z), xo > 0,
1

which exist by Proposition 2.3.
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C. The final step is the derivation of the Cauchy data in terms of the functions
f1 and fo. Then the boundary density v(x) is also known, and the solution U(x)
can be found from equation (2.2) by the Fourier transform.

IV. Boundary conditions via the Cauchy data. In the simplest cases
boundary conditions just specify some of the Cauchy data. For instance, for the
Dirichlet problem we have u;o(z;) = fi, | =1,2.

For a general elliptic operator A, boundary conditions (1.2) can be expressed
via the Cauchy data of the solution by the Cauchy-Kovalevskaya method in the
following form:

Biouio(z1) + Briuii(z1) = fi(z1), z1 € RY,
(2.19)
Bogugo(z2) + Bayusi (x2) = fo(z2), 22 € RY.

Here By are some differential operators, By, = Zn<ml biin 0y, , with the symbols
Bin(21) = 32, <m, bikn(—i2)", and

Bio(#1) + Bi1(21)(—i22) = By(2) mod A(z),
(2.20) ~ ~ ~ }
BQO(ZQ) + BQl(ZQ)(—izl) = BQ(Z) mod A(Z)

Therefore, the Shapiro-Lopatinskii condition (1.4) implies
(221) Blo(zl) + Bu(zl)(—izQ) :,_r_/-' 0, BQO(ZQ) + Bo1 (ZQ)(—izl) .,i_ 0.

Let us fix arbitrary extensions vy, (2;) € S'(R+) of the Cauchy data w;x(x;) by zero
for z; < 0. Then (2.19) becomes

Biovio(z1) + Buivii(zi) = f{)(ﬂh) + > Cla6(a) (1), 21 € R,

la|<s1
(2.22)
Bagvao(z2) + Baivai (z2) = f;?(l‘z) + > C1a5(a) (x2), z2 € R,

la|<s2

where f(z;) € S'(RT) stand for some fixed extensions of f?(z;) by zero for ; < 0,
and Cj, are some complex constants.

V. Boundary densities via the Cauchy data. For a general continuation
U € S'(R2) of the solution u, the distribution v cannot be expressed via the Cauchy
data as the continuation U can contain “spurious” distributions with support in
OK. We will construct a “canonical” extension U°(z) € S'(R?) for which the
corresponding density 7° is expressed uniquely through the Cauchy data wu(z;)
modulo a finite sum ", ., C,0(® (). The magnitude of s depends on the order of
the singularity of the solution. Then the choice of the constants C,, determines the
solution uniquely. Let us emphasize however, that the constants are not arbitrary.
We will discuss the choice of the constants below.

Rewrite the operator 4 in two different forms,

(2.23) A=) Ao, =) As0],
J<2 J<2
where A;; = Ay;(0z,) are some differential operators of order < 2 — j.

PROPOSITION 2.4. Consider equation (1.1) with an elliptic operator A. Then
for any solution u(x) € S'(K), there exists an extension U°(x) € S'(R?) such that
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with some s > 0 and C, € C,

(2.24)  A%x) := AU%(2) = Z Z Avjvig(z1)69 7170 (35)

k=0,1 14+k<;j<2

+ Z Z Agvap(22)0U 1R (17)
k=0,1 14+k<5<2
+ Y Cad(z), 2 € R,

loe|<s
where vi; are the extensions of the Cauchy data fized above.

ProOF. First, consider a simple case when the solution u(z) is a smooth func-
tion in K. Then define U° as the continuation by zero:

(2,25) UO(.’L‘) — { g’($£7€$R§ {(I,{

Then (2.24) follows by the well-known formula for the distribution derivative of a
piecewise continuous function. Hence, the density v and the solution u are deter-
mined uniquely by the Cauchy data.

Now consider the general case when the solution u(z) € S'(K). Let us start
with an arbitrary extension U € S’(R?). Then (2.2) holds with a density v € S’(R?)
of the form (2.5).

We can reduce the expression (2.5) for v by means of the division by the oper-
ator A. Namely, divide the first sum in (2.6) by the symbol A(z, 25) in the module
of polynomials in z5 with coefficients in S’(R) which depend on z;. Similarly, we
divide the second sum in (2.6) by the symbol A(z;, z;) in the module of polynomials
in z; with coefficients in S’(R) which depend on z;. Then the result is

(2.26) 7(2) = A(2)U(2) = A(2)S(2) + Z Gr(21)(=iz)" + Z Hi(z)(—iz)¥,

k=0,1 k=0,1

where z € R?, 5(2) is a distribution of the form (2.5), and Gy, Hy, € S'(RF). Then
(2.27)
v(z) = AU(z) = AS(z) + Z Gr(x1)0™ (22) + Z Hy(22)0®) (1), = € R?,
k=0,1 k=0,1

where S € S'(R?), supp S C OK. Finally, define the canonical extension by U° :=
U — S. Then

(2.28) 7%(z) := AU%(z) = > Gi(z1)6W (22) + > Hi(@2)0™ (21), = € B2
£=0,1 £=0,1
For the simplification of the exposition consider further the operator A = A+a.
Then the assertion (2.24) that we have to prove becomes
(2:29) Vo (z) == AU (z) = O(w2)vir(z1) + &' (22)vi0(21)
+ (5($1)V21($2) + 6I($1)V20($2)
+ Z Cod ¥ (z), z € R2.

la|<s
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We deduce (2.29) from (2.28) verifying that the distributions G and Hy, are some
extensions of the Cauchy data, i.e.

Gi—k(z1) = vig(21), ©1 >0,
(2.30) k=0,1.
Hy_p(z2) = vag(2), 22 >0,
To verify the first line, we will prove the following expansion in the halfplane zo > 0:
02U (z)
z2

where r(z) is a regular function of z5 € R with values in S"(RT).

(231) = Gl(xl)é'(xg) + Go(l’l)é(.’ﬂz) + T(.’L’), z1 > 0,

LEMMA 2.5. Ezxpansion (2.81) holds with the remainder r(x) which is a piece-
wise continuous function of x2 € R with values in S’'(RT) in the following sense:
for any test function ¢(z) € CS°(R?) with support in the halfplane 2 > 0

(232 (@), 6@) = [ (rC22), 80 2)da,
R2
where r(-,x2) is a continuous function of x5 € RE with values in S'(RT).
ProOOF. We follow the arguments (2.12)-(2.17). Namely, the Fourier transform

of (2.28) gives an equation similar to (2.6). Therefore, U° admits the expansion
U° = vq1 + RO of type (2.12), where

(2.33) vi1(2) = ¥(2) Z Gr(21)(=iz)fJA(2) |, 2 € R2.

Any derivative of R°(z) admits a power bound z; ? in the halfplane z; > 0. Hence,
the function R%(z) admits an extension to a smooth function of x5 € R with values
in S'(R*), so for 92, R°(z) the expansion of type (2.31) holds.

Therefore, it suffices to prove the expansion (2.31) for vi;. For this purpose we
apply the arguments (2.13)-(2.17) to 82 Ui1(z). First, (2.33) gives for the Fourier
transform of this function,

(2.34) (—iz2)*V11(2) = ¥(2) Z Gk (21)(—i22) k+2/A( )|, z e R

Further, for A= A +a and k =0, 1, we have similarly to (2.14)

(2.35) (=) (—iz2)" P JA(2) ~ (=iz)* + ) Quj(a)(z2 +0) 7, |za| = o0,
j>1

where ()y; are some polynomials. Then (2.31) and (2.32) follow from the expansion

of type (2.17) for 92, v11(z). O

Finally, it is easy to check that (2.31) together with Lemma 2.5 imply the first
line of (2.30), and the second line follows similarly. Now (2.30) implies that

Gir(z1) =vir(@1) + Y D1ad(z1),

|a|<s1

Hi_p(22) = varp(z2) + 3 D240 (22).

[a|<s2
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Substituting these expressions in (2.28), we get (2.24). Therefore, Proposition 2.4
is proved for the operator A = A + a. The proof for general elliptic operators is
similar. O

VI. Relation between the Cauchy data on complex characteristics.
We planned to find the Cauchy data of the solution of the boundary value problem
(1.1), (1.2) to express the boundary density 7°(z) in (2.24) and then to find the
solution u(x).

Boundary conditions in the form (2.19) give two equations for the Cauchy
data. So we need at least two additional equations for the Cauchy data. It is quite
surprising that the single equation (2.2) provides the missing algebraic equations
for the Cauchy data.

Let us apply the complex Fourier transform to (2.24). Recall that supp U° C K
and supp® C K. Therefore, by the Paley-Wiener theorem [19, Thm. II.5.2,
p.161], U°(2) and 7°(z) are analytic functions of two complex variables in the tube
domain CK* := {z € C? : 321 > 0,322 > 0}, and

(2.36) U%(z) = (U°(x), %), 7(2) = (1°(2),€*), z € CK".
Hence, (2.2) implies
(2.37) A(2)U°2) =3°(2), z € CK*.

Finally, this equation implies the key relation (we call it the “connection equation”)
on the Riemann surface V of the complex characteristics of the operator A (see
Definition 1.1),

(2.38) (2) =0, ze V* .=V NCK*.

It relates the Cauchy data by (2.24). Together with the boundary conditions (2.19),
equation (2.38) allows us to express the Cauchy data via the functions f1, fa.

Relation (2.38) is the necessary condition for the existence of the solution
U(z) € S'(K) to equation (2.2) with a given distribution (z). It is very important
that equation (2.38) is indeed equivalent to equation (2.2).

PROPOSITION 2.6. Let A # 0 be an arbitrary differential operator with constant
coefficients in R2 with an irreducible symbol, and let a tempered distribution v°(z) €
S'(K) satisfy relation (2.38). Then the equation AU®(z) = ~°(z), € R2, admits
a unique solution U°(z) € S'(K).

PrOOF. Equation (2.37) determines an analytic function U°(z) uniquely in
CK* since the irreducible symbol A(z) is not identically zero in CK*:

(2.39) U°(2) = 7°(2)/ A(z), = € CK* \ V.

A priori, the quotient may be nonanalytic in CK* if the symbol A(z) vanishes at
some points there. However, as the relation (2.38) holds, the quotient (2.39) is an
analytic function in CK* as the symbol A(z) is irreducible.

Furthermore, we have to justify yet that the analytic quotient corresponds to
a tempered distribution U%(z) € S'(K). This follows by the general theorem on
division from [18, 34]: the quotient (2.39) is the Fourier transform of the (unique)
U%(x) € S'(K) as the quotient is analytic in CK*. O
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Below, we use the identity (2.38) together with the boundary conditions (2.19)
as an algebraic system, which allows us to reconstruct 4°(z) in terms of the functions
f1 and fo. Then the solution u(z) also is determined uniquely:

(2.40) u(@) = F2,5°(:) /A=), @ € K.

VII. Undetermined algebraic equation on the Riemann surface. Substi-
tuting the expression (2.24) for 10 into (2.38), we get an algebraic equation for the
Fourier transforms of the Cauchy data

(241) ’70(2) = Z Z Alj (21)‘71;;(21)(—2'22)].71716
k=0,1 1+k<;j<2
+ 3 Apj(e)Var(ze)(—iz ) T F
k=0,1 1+k<j<2
+ ) Cu(-iz)*=0, zeV™

la|<s

Similarly, boundary conditions (2.22) give two algebraic equations after the complex
Fourier transformation:
Blo(zl)\?lo (21) +B11 (21)\711 (Zl) = f?(zl) + E Cla(—izl)a, Sz > 0,

la|<s1

(2.4 )
Bao(22)¥20(22) +Bo1 (22)¥21 (22) = f(22)+ 3 Cag(—i22)%, Szo > 0.

la|<s2

REMARK 2.7. Equations (2.41), (2.42), generally speaking, are not solvable for
an arbitrary choice of the constants C,,Cj,. The constants are determined from
these equations simultaneously with the unknown functions v;.

Let us summarize the equivalence between the algebraic system (2.41), (2.42)
and the original boundary value problem (1.1), (1.2).

THEOREM 2.8. Let the second order operator A be elliptic and irreducible, the
Shapiro-Lopatinskii condition (1.4) hold, and f; € S'(RT). Then

i) For any solution u € S'(R?) to (1.1), (1.2), arbitrary eztensions of the
Cauchy data give a solution Vi;(z;) € F[S'(Rt)], I = 1,2, k = 0,1, to system
(2.41), (2.42) with some constants Cy, C1a, Ca2q.

it) Conversely, for arbitrary constants Co, Cia, Con, any solution Vi;(z;) €
F[S'(RF)], 1 = 1,2, k = 0,1, to system (2.41), (2.42), if it exists, gives a solution
u € S'"(R?) to (1.1), (1.2) by formula (2.40).

Below we give a complete solution to system (2.41), (2.42). In this section, we
reduce the system to one functional equation with a shift on the Riemann surface
V' with two unknown functions.

First, we rewrite (2.42) as equations on V. Namely, introduce V; := {z € V :
Sz, > 0}, 1 =1,2, and define the functions

uk(2) == Vi(2), k=01,

(2.43) . .
a(z) = f2z2)+ X Cual(—iz)?,

la|<si
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where z € V;, [ = 1,2. Similarly, we define

aie(z) = Y Ayj(z)(—iz) TR,
1+k<j<2

agr(z) == Y Agj(za)(—iz) 1,
14k<j<2

blk(z) = Blk(zl), l= 1,2,
where z € V, k = 0,1. Finally, define C(z) := — > Cu(—iz)*, z € V. Now
lal<s
system (2.41), (2.42) becomes
> a(2)vik(2) + Y agw(z)vak(z) = C(z), z € V¥,
=0

k=0,1 k=0,1

(2.44) bio(2)v10(2) + br1(2)v11(2) = g1(2), z € Vi,

bao(2)v20(2) + b21(2)v21(2) = g2(2), 2 € Va.
This is an algebraic system for four unknown functions vy, which are analytic in V;:
(2.45) v € H(CT), 1=1,2, k=0,1,

where C* stands for the complex upper plane Sz; > 0, and H(C") for the space of
analytic functions on C*.

We can eliminate two of the functions and get one algebraic equation with
two unknown functions. Namely, the Shapiro-Lopatinskii condition implies (2.21)
which provides that for each [ = 1,2 at least one of the polynomials By, k = 0,1,
is not identically zero. Assume for definiteness that Bjo(z;) Z 0, ] = 1,2 (example:
for the Dirichlet boundary conditions, Bijo(z;) =1 and Bj1(%) =0, [ = 1,2). Then
two last equations in (2.44) allow us to express the Dirichlet data vo(z) via the
Neuman data vj1(2) for z € V, hence for all z € V* since V* = V; N V4. Then,
substituting the expressions for vjo(z) into the first equation, we get the algebraic
equation

(2.46) S1(2)v11(2) + S2(2)v21(2) = F(2), z € V™,

with known polynomial coefficients S;(z) and the function F(z) which contains
known (fixed) extensions of the boundary data f? and the unknown coefficients C,
with |a| < s, and Cjq with || < s, I = 1,2. The following important lemma is
proved in [18]:

LEMMA 2.9. Let the operator A be strongly elliptic (see (1.3)), and the Shapiro-

Lopatinskii condition (1.4) hold. Then the polynomials S;(z) are not identically zero
onV,

(2.47) Si(z) 20, ze V.

REMARK 2.10. The dimension of the space of solutions to problem (1.1), (1.2)
depends on the order of singularity of the solutions considered and in general it tends
to infinity when the order of singularity tends to infinity (i.e. as s, s1, 82 — 00).

ExAMPLE 2.11. Consider the Dirichlet problem in the angle K for the operator
A = A+a. Then we have vio(z;) = f2(21) + > lal<s: C1a0() (z), and (2.29) implies
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an equation of type (2.46),
(2.48) v11(2) +v21(2) = F(2), z € V*.

The algebraic equation (2.46) contains two unknown functions vj;(z) on the
Riemann surface V*. Hence, this is an underdetermined algebraic problem. How-
ever, each function v;;(2) “depends only on z;” by definition (2.43). We will show
that this property can be adjusted in a suitable way, which makes problem (2.46)
well-posed.

REMARK 2.12. For problem (1.1), (1.2) in the angle @ of magnitude ® > =, the
Paley-Wiener theorem is absent as the corresponding tube domain CQ* = 0 in this
case. Respectively, an analytic continuation of identity (2.37) is impossible, and
relation (2.38) does not make sense. Nevertheless, the corresponding generalization
of relations (2.41) and (2.46) was found in this case in [20]: the same relation holds
for the analytic continuations of the functions vy, along the Riemann surface V.
After this observation all the remaining steps of the method are exactly the same.

VIII. Malyshev’s automorphic function method. The central point of
the method is the application to (2.46) of Malyshev’s automorphic function method
[30]. The main idea of the method is to express the structure of the functions
vi1(2), I = 1,2, as an invariance with respect to the transpositions h; of the points
(21,22) € V with identical coordinates z;. Let us analyze the properties of the
coordinate projections on V.

DEFINITION 2.13. p; : V — C is the map p; : (21,22) — 2, [ = 1,2.

Rewrite the equation of the Riemann surface V with notations (2.23) as
(2.49)

V={2eC:) Aj(z1)(—iz)’ =0} ={z € C: > Ayj(2)(~iz1)’ = 0}.

5<2 <2
These equations, which determine the surface V', imply that each projection p; is a
two-folded holomorphic map (the covering) p; : V. — C, and p[l has two branching
points since the symbol A(z) is irreducible.
Hence, the equation z; = p;z with a fixed z; admits two roots, 2/,2" € V, and
the roots are distinct away from the branching points.

DEFINITION 2.14. h; : V = Visthemap hy : 2/ — 2" and h; : 2" — 2/, 1 =1, 2.

The automorphism h; is the generator of the monodromy group of the covering
pi. Equations (2.23) imply, by the Vieta theorem,
(2.50) h1z = (21, —iA11(21)/A1a—22), hoz = (—iAa (20)Aga—21,22), z€V.
Introduce the exponential notation
v (2) = v(hz), z€V,

for a function v on V and a map h : V — V. Now we can formulate the desired
property of the functions v;;(2) as the invariance with respect to h;:

(2.51) Ulhk’(z) =u(z), z€V, k=0,1, =12

This is a system of four algebraic equations. It means that vy (2) are automorphic
functions with respect to the monodromy group of the covering p;. The combined
system, (2.23) with (2.51), is equivalent to system (2.41) with (2.42).
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Now we return to equation (2.46) and complete it with two invariance equations
for vy (2):

(2.52) vfll (z) =v11(2), z€W, vgf (z) =v21(2), z€Ws.

The main strategy of Malyshev’s method is to apply the automorphisms h; to (2.46)
and use (2.52). However, to do this we need to know more about the domain of
action of the automorphisms h;. For this purpose, we introduce appropriate local
coordinates on the Riemann surface V. More precisely, we will use the global
coordinates (the wuniformization) on the universal covering surface V of V. The
general case of irreducible operators is analyzed in [17]; the surface V is isomorphic
to C\ 0, hence the universal covering V is isomorphic to C.
Here, for being definite, we consider the operator

(2.53) A={(82, —2cosady, 0y, +02,) —m*sin® a}/ sin’ a.

It arises from the operator of the type A —m? after the linear change of coordinates
transforming the plane angle @ of magnitude o € (0,7) to the first quadrant K.
Let us calculate the universal covering C — V as the function z(w) of w € C, and
express the monodromy automorphisms 4, in the coordinate w.

For the operator (2.53), the symbol is A(z) = (—2z? + 2cosaz;z2 — 25 —
m?sin” )/ sin® a. Hence the equation of the Riemann surface V can be written as

(2.54) (z1sin@)? + (29 — 21 cosa)? = —(msina)?.

Now the uniformization is obvious:

(2.55) zysina = imsinasing, 2o — 21 cosa = im sin a cos @, w € C.
Therefore, z; = imsing and z5 = zycosa + imsinacos¢ = imsingcosa +
imsin a cos ¢ = imsin(¢ + ). We prefer the coordinate w = —i¢, hence finally, we

will use the uniformization

(2.56) z1 = z1(w) :=msinhw, 25 = 29(w) := msinh(w + i), ¢ eC
We identify the regions V;" and V" with the regions Vl+ and “/2+ on V, where
(257) Vi={weC:0<Sw<n}, Vi={weC:—-a<Sw<nr—al.
Then V* = V;" NV, will be identified with the covering region (see fig. 1)

(2.58) Vi=VInVf ={w: 0<Sw<7—al.
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Furthermore, (2.50) becomes
(2.59) hi(z1,22) = (21,221 cosa — 22), ha(z1,22) = (2z2cos @ — 21, 22).-

Note that the lifting & : V — V of the generator h; to V defined by hy(z(w)) =
z(hi(w)) is nonunique. We choose the branch which maps V;* (see (2.57)) onto
itself for I = 1,2. Then by (2.59), (2.56) h; act as follows:

(2.60) hy(w) = —w + im, hy(w) = —w + iw — 2ia.

The automorphism hy is the symmetry of V with respect to the point i7/2, and hs
is the symmetry with respect to the point im/2 —ia. We note that similar automor-
phisms appeared already in [43, 27, 42] but were obtained from completely differ-
ent heuristic considerations connected with an appropriate choice of the contour of
integration in the integral representation of solutions to the Helmholtz equation.

Now we are ready to perform Malyshev’s elimination process. First, note that
the function F'(z) in (2.46) admits a splitting

(2.61) F(z) :F1(2)+F2(Z), z € V*,

where F is holomorphic on V;*, I = 1,2. It suffices to solve equation (2.46) with
each function Fj instead of F' as the uniqueness can be analyzed easily. Consider,
for example,

(2.62) S1(2)v11(2) + S2(2)ve1(2) = F1(2), z € V™.

This implies that ve;(2) admits a meromorphic continuation to V;" as Sa(2) is a
polynomial function which is not identically zero in V' by (2.47). Now (2.62) holds
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for z € V/*:

(2.63) Sy (2)v11(2) + Sa(2)v21(2) = Fi(z), z € V.
Therefore, applying hy to (2.46), we get by the first equation from (2.52),
(2.64) St (2)vin(2) + S5 (2)v31 (2) = F{'' (), z € Vi

Then, eliminating vy (z) from (2.63) and (2.64), we get the following equation for
the meromorphic continuation of the function vys,

(2.65) Q1(2)v12(2) — Q2(2)vr3 (2) = G1(2), 2 € Vi

This equation contains only one unknown function, however, this is a so-called one-
sided problem [58] which connects the values of an analytic function on one side
of the boundary. Hence, equation (2.65) is not a well-posed problem (see [58]).
To get a well-posed problem, we use the last equation from (2.52): it implies that

VPl (2) = vB2M (%), hyz € V;F. Hence, denoting h = hohy, we get from (2.65)
(2.66) Q1(2)v21(2) — Q2(2)v31 (2) = G1(2), 2 € ViF NV,

Let us lift this equation to V. Namely, denote by 91 (w) the lifting of the mero-
morphic function vz (22) from Vit UVt to ViF U Vit and by Q) the lifting of Q; to
V by means of formulas (2.56):

(2.67) b1 (w) = va1 (22(w)),  Qu(w) = Qu(z1(w), 2a(w)), 1=1,2.
Moreover, QZ is a 2wi-periodic function of w. Further, in the variable w the shift
h becomes hw = hohyw = w — 2ia by (2.60) and V;* N h1 Vst corresponds to

a < Sw < m with the identifications V,* + Vfr. Hence, (2.66) turns into the
following difference equation:

(2.68) Q1 (w)ba1 (w) — Q2 (w)day (w — 2ia) = G1(w), 0 < Sw < 7.
More precisely, (2.66) implies this identity for @« < Sw < 7, which extends to

0 < Sw < 7 by a suitable meromorphic continuation of 9»; to the strip I, :=
{weC: —2a < Sw < 7}.

REMARK 2.15. The poles of 91 (2) in II™,, and their multiplicities correspond
to the zeros of S;(z) and Sa(z) in V.

IX. Reduction to the Riemann-Hilbert problem. Equation (2.68) is a
Hasemann problem for the meromorphic function 915 (w) (see [58]). We reduce it
to a Riemann-Hilbert problem. Namely, (2.68) is equivalent to

(2.69) Q1 (w)ba1 (w — i0) — Qo (w)da1 (w — 2iax +i0) = Gy (w), Sw =,
where the limit values of 057 are understood in the sense of distributions. There
exists a holomorphic map w + t of the strip IT onto C\ I, where I is the segment
[—1,1], such that the line Sw = 7 becomes I + 0. Denote a1 (t) = 1521( ) in C\ 1,
and for ¢ € I set Q1 (t) = Q1(w), G1(t) = G1(w), where Sw = 7 and Q2 (t) = Q2(w)
where Sw = 7 — 2a. Then (2.69) reduces to the Riemann-Hilbert problem for the
meromorphic function 99 (t) in C\ I,

(2.70) Q1 (021 (t +10) + Q2 (t)Ta1 (t — i0) = G(t) for t € (~1,1).
The solution to this Riemann-Hilbert problem can be written explicitly as the

function G(t) is known for t € (—1,1) and the coefficients (; have at most finite
set of zeros on I with finite multiplicities by (2.47).
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REMARKS 2.16. i) The Riemann-Hilbert problem (2.70) corresponds to the
strongly elliptic operator (2.53) and depends on the geometry of the regions V;*
and V* on the Riemann surface V. For a general strongly elliptic operator (1.3),
the corresponding Riemann-Hilbert problem has a similar structure (2.70). Then
the strong Shapiro-Lopatinskii condition (1.4) together with Remark 2.15 guarantee
that problems (2.70) and (1.1), (1.2) have finite-dimensional kernels and cokernels
in the appropriate functional spaces (see [17] for details).

ii) The Helmholtz operator (1.5) with real w is not strongly elliptic. Respec-
tively, the geometry of the regions VlJr and V* is quite different and in the cor-
responding Riemann-Hilbert problem the relation of type (2.70) holds only for
t € (0,1), while the solution is meromorphic outside [—1,1]. Therefore, this
Riemann-Hilbert problem is ill-posed as well as problem (1.1), (1.2). This is a
standard situation for the Helmholtz equation in unbounded domains, where some
additional principle must be added to make the problem well-posed: limiting ab-
sorption principle, limiting amplitude principle, or Sommerfeld radiation conditions
at infinity. Merzon [35] has established that the limiting absorption principle makes
this problem well-posed in the case of the Dirichlet and Neumann boundary con-
ditions in (1.2). Namely, he proved that this principle implies that relation (2.70)
holds for —1 < t < 0 with G (t) = 0.

iii) For a strongly elliptic operator A the solution w(z) is given by formula
(2.40) which can be represented as the convolution of type (2.4) with a tempered
fundamental solution of the operator A. The Helmholtz operator is not strongly
elliptic. Hence we cannot express (2.40) as a convolution. In [21] Merzon found an
analog of (2.4) for the solutions to problem (1.1), (1.2) for the Helmholtz equation
with Dirichlet and Neumann boundary conditions. Namely, he transformed the
expression (2.40) to Sommerfeld-type representation for solutions satisfying the
limiting absorption principle.

3. The Ursell problem

I. Statement of the problem. In this section we describe the application
of the method to the proof of completeness of trapping modes of water waves on
a sloping beach of angle «. This problem consists in finding certain solutions (to
be specified later) of the Laplace equation in 2 x R, where Q is the plane angle
0<y<ztana, 0 < a < m/2, with the corresponding boundary conditions:

RP+9;24+022=0in Q xR,
(3.1)
02® — g0, ®=00nT'p xR, 0h®=00onTp xR

Here ®(z,y, z,t) denotes the velocity potential of the fluid. If v(x,y, 2,t) is the ve-
locity at the point (x,y,2) € QxR at the moment ¢, then v(z, y, z,t) = V®(z, v, 2, 1),
Ir = {(x,0): z > 0} is the free surface, 'g = 90 \ T'r is the ocean bottom, n is
the outer normal to I'g, g is the acceleration of gravity. We seek the solutions of
problem (3.1) of the form

(3-2) ®(z,y,2,t) = R{p(z,y) expi(ot — k2)},
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where o is a real number, k¥ > 0 and p(z,y) is a real-valued function. We assume
¢ fits the following finite energy condition:

(3.3) /Q (o9 + V(e y)P)dzdy < oo.

The solution corresponds to a sinusoidal wave propagating along the z-axis without
decreasing or aberration. In (3.2) o is the frequency, k is the wave number. The
wave propagates with the phase velocity o/k. We substitute the expressions (3.2)
in (3.1) and put g = 1. After the scaling (z,y) — (kz, ky), we get the boundary
value problem in the plane angle Q for ¢(z,y):

Ap—p=0inQ, ¢ Z0,
(3.4)
dyp+o2p=00nTr, O,p=00nTg,

(we have denoted 02 /k by o2 again). The assumption (3.3) means that ¢ belongs

to the Sobolev space H(Q), thus the traces of ¢ on I'r and I'g are well-defined as

0
square summable functions; the traces of the normal derivative v onI'r and I'p

are well defined in the sense of distributions (see Lemma 10.1 in prendix in [22]
for details). The following problem will be called Ursell’s problem in the sequel:
Problem U. To find all real-valued functions ¢(z,y) Z 0 in Q, ¢ € HY(Q), and
all numbers a2 > 0 that satisfy (3.4).

Ursell [52] has found a sequence of nontrivial solutions to problem (3.4) with
0 = 0y, Where

(3.5) o2 =sin(2n + 1)a, (2n+a < g n=0,1,2,....
Ursell’s solutions are

(3.6) @n(z,y) = exp{—[zcosa+ysina]}

+ i Amn{exp{—[zcos(2m — 1)a — ysin(2m — 1)a]}

m=1

+ exp{—[z cos(2m + 1)a + y sin(2m + 1)a]}},

where A, = (=1)™ [] [tan(n —r + 1)a/tan(n +r)a], n=0,1,2,..., 1 <m < n.

r=1

It is obvious that the solutions ¢, belong to H®(Q) for all s > 0 under the
condition (2n 4+ 1)a < 7/2. For all a < § there exists a solution exp{—[z cosa +
ysina]} corresponding to n = 0. This solution is called the Stokes mode [50].

By means of the general method of Section 2 we prove that:

1) there are no other solutions of system (3.4) with values o from (3.5) except
for those found by Ursell (3.6);

2) there are no other values o except for those found by Ursell (3.5) for which
there exist nontrivial solutions of system (3.4) belonging to the space H(Q).

II. Reduction to a linear algebraic equation on a Riemann surface.
We reduce problem (3.4) to a linear algebraic equation on a Riemann surface of
type (2.41). But, since we seek solutions of system (3.4) belonging to the space
H' (), it is more convenient to make it reducing the b.v.p. to an integral identity.
This is done in [22]. Namely, the following lemma is proved there. For a function
@ € HY(Q) denote by ¢ its extension by zero outside .
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LEMMA 3.1 (see [22]). Ursell’s problem (U) is equivalent to the problem of
finding a function o € H*(Q) satisfying

B Bvo—pod) = [ powds—o® [ plo0(a00s v € O (RE),

where the boundary values of p on O are well defined by the Sobolev trace theorem.
As in Section 2.I, introduce the linear transformation

(3.8) (x1,22) = L(z,y) := (x —y cota,y/sina),

which reduces the angle Q to the first quadrant K. Then (3.4) becomes the following
problem for the function U°(z1,z2) 1= po(L 1 (z1,22)):

(3.9 HU®(zy,22) = 7°%(21, 22), (21,22) € R2.
Here H is the operator
(3.10) H = (A - 2cosady,dy, —sin’ a) /sin® a,
and 7y is the distribution defined by
(3.11) (7°(x1, 22),9(x))
= (sina) ! /000 U°(0,29){cot ad,,9(0, 25) — (sin ) 18,,9(0, z2) }dxo

+ (sina@) ™! / U%(21,0){cot ady,¥(z1,0) — (sin a) "1 0,9 (1, 0)
0
- 0'2’19(.231, 0)}d$1

for any test function ¥ € C§°(R?).
Note that Ursell’s solutions (3.6) in the variables (z1,z2) € K have the form

(3.12) up(x1,22) = exp{—[z1cosa+ z2]}

n
+ Z Apn{exp{—[z1 cos(2m — 1)a + x5 cos 2ma]}
m=1

+ exp{—[z1 cos(2m + 1)a + x2 cos 2ma]}}.

The Fourier transform reduces (3.9) to the algebraic equation which is analo-
gous to (2.37):

(3.13) H(2)U%2) =4°(2), » € CK*.

Here H(z) is the symbol of the operator (3.10):

(3.14) H(z) = (=22 — 22 + 22123 cos a — sin” @)/ sin? .

Further, (3.9) implies for the distribution 4°(z) the representation

(3.15) 7%(2) = (sina) ™ 2[vy(21) (321 cos a —izg — 0% sin @) + v (22) (iz2 cosa —i21)],
where the functions v; stand for the Fourier transforms of the Dirichlet data
(3.16) vi(z1) = Uo(x1,0+), va(ze) = Up(0+, z2).

Note that the functions v; were denoted as vjg in Section 2 (see (2.43)).
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REMARK 3.2. Arbitrary constants C, in (3.15) in contrast to (2.41), (2.42)
do not appear due to the following reason: the integral formulation (3.7) of our
problem already uses the boundary conditions. Therefore the 7° from (3.15) differs
from (2.24) which contains all the four Cauchy data. If one applies the general
method directly to problem (3.4), then the corresponding constants appear both
in the right-hand side of (3.13) and in the Fourier transforms of the boundary
conditions (cf. [36]) but afterwards these constants cancel out (since both (2.41),
(2.42) contain them) and the corresponding functional equation (2.62) and our
right-hand side (3.15) do not contain them.

Equation (3.13) implies the “connection equation” of type (2.38) on the Rie-
mann surface V*:

(3.17) F(z)=0, zeV*
As in (2.40), the solution of problem (3.9) is expressed by
(3.18) u(e) = F23, [°()/H ()], v e K.

Note that the Dirichlet data vi(z;) € L*(Rt) = {u € L*(R), supp u € Rt}
by the Sobolev trace theorem since ¢ € H'(2). Thus, each solution to Ursell’s
problem U corresponds to a solution of the following

Problem A. To find all 62 € R such that there exist two functions v;(z;) €
L*(R+), 1 = 1,2, at least one of them not vanishing identically, such that (3.17)
holds for 9 (z) defined by (3.15), where v; := ;.

II1. Difference equation for the Ursell problem. We solve problem A
reducing the connection equation (3.17) to a difference equation of type (2.68) on
the universal covering V of the Riemann surface V (see Definition 1.1). To this end
we use the method of Malyshev described in Section 2, VIII.

Firstly, using (2.56), we obtain from the connection equation (3.17) and (3.15)
the equation of type (2.62) in the variable w,

(3.19) By (w) (= cosh(w + i) + 0y (w)(coshw — ¢%) = 0, w € V*.

Apply ks to (3.19) and eliminate 9, (w) analogously to (2.67) and (2.68). Thus we
obtain the difference equation of type (2.68) with an unknown meromorphic func-

tion 91 (w) with the condition of analyticity (2.45) and the automorphy condition
(2.52), (2.60) (see [22] for details):

01 (w)(coshw — 0?) — 1 (w + 2ia)(cosh(w + 2ia) + 02) =0, w € C,
(3.20 )
U1 (—w + ’MT) = @1(10), w e (C, U1 € ,H(‘/l—i_)

Here H(O) is the space of all analytic functions on the open region O. Thus we
have the following theorem.

THEOREM 3.3. If 02, ¥, | = 1,2, constitute a solution of problem A, then
0%, 9, constitute a solution of system (3.20).

IV. Uniqueness of Ursell’s eigenvalues. We recall that we consider the
solutions to the Problem A such that

(3.21) v1 € L*(R¥)

We use the following consequence of (3.21).
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LEMMA 3.4 (Paley-Wiener, [11]). i) If v(z) € L*(R), v(z) =0 for x <0, then
for all n > 0 the following estimate is valid:

(3.22) / ()= < C,

QJz=n

where C' does not depend on 1 > 0.
ii) The following bound holds for any e > 0:

(3.23) [F(2)| < C.(S2)"Y2, Sz>e>0.

In [22] we construct the eigenfunctions of problem (3.20) corresponding to the
eigenvalues o2 (3.5) and prove their uniqueness in the space L2(R*) related to the
space L?(R*+) in the following sense.

Denote by z : Vit — Ct the two-folded covering defined by (2.56). This
map defines a bijective correspondence between the space H(CT) and the space
of all functions f(w) € H(V;") such that f(hi(w)) = f(—w + iw) = f(w). This
correspondence is indeed bijective because sinh(—w + i) = sinh(w) . Denote by f
the lifting of a function f(z) € H(C) to V;* and by f the lowering of f € H(V;') to
C* with the help of the same map.

DEFINITION 3.5. The space L2(R") is defined by the following formula:
LPRY) ={f e H") : f((w)) = f(w), 3. (f) € L*(RV)}.
Similarly,

A~

H(RY) = {f e HVi") : f((w)) = f(w), F.2,(f) € LX(RF),

Fz_»—1>z(f)|R+ € HS(R+)}
Note that if f € L?(R") then

(3.24) |f(w)| < Ce 3" fore < Qw < m—ec.
Indeed, this follows from (3.23) and the equality (see (2.56))
(3.25) 21 = sin(Sw) cosh(Rw).

Now we can describe the derivation of the formulas for the eigenfunctions to problem
(3.20) and the proof of their uniqueness in the space introduced above.

Namely, it is possible to solve system (3.20) explicitly for Ursell’s values of o2
(3.5). In this way we get the following formulas [22]:

1 2

(3.26) 01 (w) = for of =sina,

isinhw — cos &

n

I1 —isinhw + cos(a(2k — 2n + 1))

(3.27) t1(w)=C k:_$1 for o2 =sin(2n + 1)a,
I1 ésinhw + cos(a(2k + 2n + 1))
k=0
where n =1,2,.... (For simplification we suppress an additional index n in the
notation).

LEMMA 3.6. [22, Thm. 4.1] For Ursell’s values of o2 from (8.5) the solutions
(3.26), (3.27) to the system (3.20) are unique up to a factor in the space L*>(R').
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PROOF. We transform conformally the region IT; = {w : Rw > 0, 7/2 —a <
Sw < /2 + a} to C\ [0, 1] by the map

(3.28) t = t(w) = coth?((r/(2a))w — in?/(4a)).

Then the first equation of (3.20) becomes the Riemann-Hilbert problem of type
(2.70) with G(t) = 0. The problem admits the solutions (3.26), (3.27). The
uniqueness up to a factor follows by a detailed analysis of the asymptotics of the
factorization at the end points t = 0,1 (see [22] for details). O

Thus we have the following

COROLLARY 3.7. Let 02 = sin(2n + 1)a and (2n + 1)a < w/2. Then (up to
a constant factor) there are mo nontrivial solutions to problem (8.9) in the space
HY(K) except for the Ursell mode (3.12).

PROOF. Let a function U € H(K) and its extension U%(zy,z3) by zero to
R?\ K be a solution to equation (3.9) corresponding to the eigenvalue 02 = sin(2n+
Da, n = 0,1,.... Then the corresponding function v; satisfies condition (3.21).
Furthermore, the corresponding #; is a solution to system (3.20) by Theorem 3.3.
Clearly, the same statements hold for Ursell’s solution (3.9). Then we apply Lemma
3.6: up to a constant factor, 91 (w) is equal to the function (3.26) if n = 0 or (3.27)
if n > 0. Then the connection equation (3.19) implies that the Dirichlet datum
va(x9) of the function U®(x1,x2) coincides with corresponding Dirichlet datum of
Ursell’s mode (3.9). Finally, by (3.15), (3.18) the solution U coincides with Ursell’s
mode (3.12) up to a constant factor. O

V. Obtaining the Ursell modes. The Sommerfeld integral. Further
we obtain from (3.26), (3.27) the expressions (3.6) for Ursell’s modes. Note that
Ursell [52] does not give a method for finding these modes. To this end we prove
a rather general theorem which allows us to express the solutions of Helmholtz
equations of type (3.4) by means of their Cauchy data, for example by means of the
Dirichlet datum. We call this representation the Sommerfeld-type representation.
We obtain the representation in the variables (z,y) = £~ (z1,z2) . We also use
polar coordinates (p, 6):

(3.29) x=pcosf, y=psing, p>0, 0<é<a.

To formulate this representation, let us introduce for ¢ > 0 the contours
(3.30)

A

Lie={weVi"\;": Sa(w) =}, T, ={we N\ : Sm(w) =<},

where the functions zq (w) and z2(w) were defined in (2.56). We choose the direc-
tions of the contours I'; _ in such a way that the regions Jz;(w) > ¢ are to the left

of the contours. For sufﬁciently small € > 0 these contours take the following form
(see fig. 2):
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- —a T2

Figure 2.

THEOREM 3.8 (see [22], Thm. 5.1). Let ¢ € HY(Q) be a solution to problem
(8.4), let u(x1,x2) = p(L(xz,y)) and let 61 (w) be the lifting of the Fourier transform
of

[ u(z1,0), 21 >0,
vi(m) = { 0, 21 <0,

to V;*. Then there exists an ¢ > 0 such that for all (z, y) = (pcosh, psiné) €
Q, p>0, 0<0 < a, the following representation is valid:

1 - ,
/ e~ wsinh(wti0) 5 (1) (coshw — 02)dw,
T uly,

(33) e, 4) = o

where the integral converges absolutely.

REMARK 3.9. If the function @ (w) is periodic with period 27i, the integral
(3.31) is equal to the same integral over another contour

(3.32) I =15, Uy, - 2m).

By means of this theorem we find the Ursell modes (3.6). We show how to find
these modes in the case n = 0. The case n > 1 is analyzed analogously (see [22],
§6). From (3.26), (3.5) it follows that
coshw —sin

) b hw — o2) = W= Sha
(3.33) d(w)(eoshw —o7) tsinhw — cosa
From (3.33), (3.31) we get the expression for p(z,y) in Q:

1 . )
34 — —ipsinh(w+1i6
(3.34 o) =5 [ e

) coshw — sina
isinhw — cosa
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where I is the contour (3.32). We transform this expression to the form (3.6) (for
n = 0) by the Cauchy residue theorem. This is possible because of the analyticity
and decay of the integrand in (3.34) in the region enclosed by the contour T'. For
this purpose, note that the zeros of the integrand lying in the closure of the strip
Iy ={w e C: —7 < Sw < —a} are wg = —in/2 —ia. Calculating the integral
by the Cauchy residue theorem we obtain the expression (3.6).

VI. Nonexistence of eigenvalues distinct from the Ursell ones. Finally
we show how to prove, using the general method, that there are no other eigen-
values o2 except for the Ursell values (3.5). Here we prove only that there are no
eigenvalues satisfying 02 < sina. All the other cases are analyzed in [22], §§ 8, 9.

THEOREM 3.10. Let 0 < 02 < sina. Then there are no nontrivial solutions to
problem (3.20) satisfying (3.21).

PROOF. Let 91 be a nontrivial solution to (3.20) satisfying (3.21). Denote
T'(w) = 91 (w). Then from (3.20) it follows that

(3.35) T(w)/T(w + 2ia) = (cosh(w + 2ia) + 02)/(coshw — 02) = P(w), w € V.

The equality in (3.35) holds, in particular, for w € a4 := {w; +in/2+ia: wy > 0}
because a4 C V' due to (2.57). Since the transform (3.28) transfers a; onto
a := (0, 1), equality (3.35) is equivalent to
(3.36) TH(t)/T(t) = P(t), t € (0, 1), where T%(t) = lim T(s).

s—1£140
Here the limits exist because T'(w) is analytic in V;* and TT; C V;* since a < 7/2.

The analyticity of the function T'(w) in the region V;* implies its analyticity
in T1; UT, U Ty, where 'y = {iws : 7/2 < wa < /24 a}, Ty = {iws : 7/2 —a <
wy < 7/2}. Taking into account the fact that the function T'(w) is invariant with
respect to hy, we obtain that T'(t) is analytic in C \ [0, 1].

To prove Theorem 3.10, let us consider the asymptotics of the function 7'(t) as
t—0.

First, note that T'(ir/2 — ia) = T(in/2 + ia) = T* by T'(hy(w)) = T'(w) and
(2.60). Then T* = 0. Indeed, if, on the contrary, T* # 0, then, after substituting
w = iw/2 — ia in equation (3.20), we get T'(ir/2 — ia)(cosh(im/2 — ia) — 02) = 0.
Hence 02 = sina, and this contradicts the assumption of Theorem 3.10. Thus
T =0.

Recall that the function T'(w) is analytic at the point w = ir/2 — ia. Then we
have for some integer k > 1 that T'(w) = (w — i7/2 + ia)* T  (w), where T (w) —
const # 0 as w — im/2 — ia. Hence (3.28) implies that

(3.37) IT(t)] = [t*/2|9" (t)], |5 ()] — const # 0 as ¢ — 0.

Consider the asymptotics of T'(t) as ¢ — 1. Lemma 3.4 and (3.21) imply that 7'(w)
satisfies the estimate (3.24) in the region {¢ < Sw < 7 + ¢} and in particular in
the region II. This estimate in the variable ¢ (3.28) takes the form

(3.38) IT(t)| < Cult — 1%/ for |t — 1] < e,

because the condition w — +00 is equivalent to the condition ¢ — 1.
Now we introduce the “standard” factorization for problem (3.36).
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LEMMA 3.11 (see Lemma 7.1 in [22]). Let 0 < 0% < sina. Then there ezists a
solution Ty (t) to problem (3.36) such that
i) T1(t) is analytic and nonzero in C\ [0, 1],
i) Ty (t) — const # 0 as t — oo, and

iii)
(3.39) Ty ()| - [t|Y/2 = CL #0as t — 0,
(3.40) [Ty ()] - |t —1*" /" - Cy #0ast — 1.

Now let us finish the proof of Theorem 3.10. Compare two solutions of the
factorization problem (3.36): the unknown solution 7'(t) and the known standard
solution 7} (t). Namely, consider the fraction R(t) = T(t)/Ti(t), t € C\[0, 1]. From
(3.36) and Lemma 3.11 it follows that the function R(t) has an analytic continuation
to the region C\ {0, 1}. Lemma 3.11 ii), analyticity of T'(w) at the point w = ir/2,
the condition T(—w + i) = T'(w) and (3.28) imply that R(t) is analytic at the
point ¢t = oo. From (3.37) and (3.39), we have that ¢ = 0 is a removable singularity
of R(t). Finally, (3.38) and (3.40) imply that R(t) — 0 as t — 1. Thus R(t) is an
entire function which is equal to zero at t = 1 and is analytic at the point ¢ = co.
Hence R(t) = 0 by the Liouville theorem, and thus 7'(t) = 0. Theorem 3.10 is
proven. O

4. The Neumann problem in an angle

In this section we describe briefly the following result. Consider the well-
known Sommerfeld integral which provides a solution to the Neumann problem
for the Helmholtz equation in a plane angle 2 with boundary data from the space
H~'/2(T"), where T is the boundary of Q. We prove that this Sommerfeld solution
belongs to the Sobolev space H'(f)) and depends continuously on the boundary
data. For the proof we use the general method described in Section 2. Namely, we
use the Fourier representation (2.40). All the details can be found in [57].

I. Formulation of the problem. Let 2 be a plane angle of magnitude a < =
with vertex at the origin and sides I't = {(#,0) : z > 0}, T'» = {(z,ztana):z >
0}. Denote by 7 the trace operator of restriction of normal derivatives of functions
from D(Q) to the boundary T' = T'; UT of the angle. We consider the Neumann
problem of the form

(4.1) (A=1Du=0, (z,9) €, mu=(91,92)-

Problems of type (4.1) arise in various applications; see, for example, paper [56],
where the motions of a two-layer fluid are studied.

DEFINITION 4.1. i) H;I/Q(R“L) is the set of functions from H~/2(R) whose
supports belong to Rt .
ii) H'/2 (Rt) is the subspace of H'/?(Rt) consisting of functions h(z) whose con-
tinuations by zero to R belong to H'/?(R) with the norm [10, 44]

=B + [ H@)P el da,
H R+

2(RH)
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iii) H=Y/(T") (T = 'y UT) consists of pairs (g1(s),ga(t)) € [HY? (T'1)] x [H'/?
(T'2)]’ such that

(4.2) 91(s) + g2(s) € H'*(RT).
We equip H~'/2(T") with the norm

(4.3) (g1, 92l r-1/2(r) = ||91||[131/2(R+)], + ”92||[131/2(R+)]' + g1 + 92||H;1/2(R+)-

Here the norm in the space [H'/? (R*)]’ is the standard norm of the dual to a
Banach space, and the norm of the space H;l/ 2(R*) is the one induced by the
norm of H~/2(R) (see [44]).

It is known ([44], p. 189) that the operator v, can be continued to a bounded
operator acting from the space E = {p € H;(Q) : (A —1)p € L>(Q)} to H~Y/*(D).

We assume (g1,92) € H='/2(T") (I' = I'; UT's) and consider the problem (4.1) in
the generalized sense as, for example, in [44]. It is not hard to reduce this problem
to a problem with zero Neumann condition on one of the sides, e.g., on I';. The
second datum g; turns out to belong automatically to the space H;l/ 2(]R*) because
of the compatibility condition (3.25). We will assume in the sequel that g» = 0 and
g1=gE€ H;1/2(]R+).

It is known (see, for example, [22], [57]) that an explicit solution of problem
(4.1) can be obtained by means of the Sommerfeld integrals. On the other hand,
it is also known that there exists a unique solution from H?'(Q2), which can be
proved by means of the standard variational technique. Nevertheless, it is not clear
whether the latter solution is the one given by the Sommerfeld integral. In other
words, does the Sommerfeld integral belong to H(Q)?

Seemingly, the answer must be quite simple. The following example shows that
the situation is more difficult. Consider the function ¢ = e~¢®+¥) with ¢ = 1/1/2.
Obviously, ¢ € H*(Q2) (and even ¢ € S(Q)) and satisfies (4.1) in the angle of
magnitude 7/4 with g = ce**,z > 0. The Sommerfeld integral for this function
has the form

—1/ o~ ipsinh(w-+i9) cosh(w +ir/4) d
C1UC>

o(z,y) = - isinh(w + in/4) — 1 “

where p,d are polar coordinates, C; = {w —in/4,w € R}, Cy = {w + im,w €
R}. It is easy to see that this integral converges for 0 < ¢ < /4, but on the
sides ¥ = 0,7/4 the convergence holds only in the sense of the principal value.
After differentiation, convergence is even worse. This example demonstrates the
difficulties that arise when showing that the Sommerfeld integral belongs to H!.
Thus it is not surprising that only in 1998 this problem was solved in [33] for a right
angle when the Sommerfeld integral reduces to an inverse Fourier transform. This
section is a generalization of the results of [33] to an arbitrary angle of magnitude
<.

We bypass the difficulties connected with the direct study of the Sommerfeld
integral by means of the use of the Fourier representation (2.40), which reduces to
the Sommerfeld integral as in Theorem 3.8. In contrast to the Sommerfeld integral
(3.31), the Fourier representation can be handled by means of the standard Fourier
technique.
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II. Reduction to a difference equation. In order to avoid certain technical
difficulties connected with the analytic continuation of solutions of the difference
equation (4.9) (see below), we will consider only the case 7/2 < a < w. After
the change of the variables (3.8) © = (x1,22) = L(x,y), which transforms the
angle Q into the first quadrant K, we obtain the following integral identity (which
is simply the weak formulation of problem (4.1) and is an analog of the identity
(3.7)). Denote H = (A — 2 cos ady, 0, — sin’ @) /sin® a.

Problem N. Find u(z) € H'(K) and v; 2 € S'(RT) such that

(4.4) /Ku(x)Hﬁdxlda:g = —sina{g(z1),9(x1))

+(v1(21), €08 @y, 91 (x1) + D7 (1)) + (va(22), cOS A0y, V2 (22) + 95 (22))
for all ¥ € S(2). Here ¥ 5, 9] , are the Dirichlet and Neumann data of the function
¥ on corresponding sides of the quadrant K and S'(R*) is the space of tempered
distributions with supports in R+.
The solution of problem N is connected with the solution of problem (4.1)
through the change of the variables indicated above. Extending the solution u(z)
by zero to the function U° on the plane as in (2.25) and applying the complex

Fourier transform (2.36) we obtain the equation in the class of functions analytic
in CK* (cf (2.37), (3.13)):

(4.5)  H()U°2) =4%2), H(2)= (-2} — 22 + 22122 cosa — sin® @)/ sin’ a,

where

(4.6)

7°%(2) = (sina) 2 [(—sin@)§(z1) + (iz1 cosa — iz9)¥1(21) + (122 cosa — iz1)¥2(22)] .
Note that, as in the previous section, (4.6) does not contain arbitrary constants

by the same reasons as in Remark 3.2.

Equation (4.5) implies the necessary condition (2.38) for the function 7° (cf
(3.17)):

(4.7) %2) =0 for z€V*:={(2,2)€CK*: H(z) = 0}.
If this condition holds, the solution of problem N has the form (2.40), (3.18):
(48) u(er, @) = U0@n, )| = F23, [0/ H()]| -

The expression (4.6) for 4°(z) involves two unknown functions ¥;(z;) and Vo(23),
21,2 € CT, which are analytic in Ct (see (2.45)).

We derive these functions by solving the connection equation (4.7). Namely,
the Riemann surface V* := {(z1,2) € C* : H(z) = 0} has the universal covering
V, which is isomorphic to C and can be uniformized by means of the parameter w
via the formulas (2.56) with m = 1. Denote I1% = {w : a < Sw < b}, and let 91 (w),
O2(w),w € I and §(w),w € IIF, be the liftings of the functions ¥;(z;),l = 1,2,
and §(z1) to V, respectively, in the sense (2.67). The results of Section 2, VIII
imply that if u(z,y) is a solution to (4.1), then

i) ¥3(w) is meromorphic in II", , and the following difference equation holds
(cf. (2.68)):

(4.9) O2(w) cosh(w + ia) — O3 (w — 2ia) cosh(w —ia) = —2¢(w), w €IIf,
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ii) the automorphy condition (2.52) holds (see (2.60)):
(4.10) O9(im — 2ia — w) = Va(w), w €I, .
For us a converse statement, guaranteeing that the solution of (4.9), (4.10) gives

the solution of (4.1), is important. To obtain it, we prove the following theorem.
Denote

(4.11) 01 (w) = (§(w) + 92 (w) cosh(w + ia))/coshw, w € IIT.

THEOREM 4.2 (see [57], Thm. 6.3). Let 02(w) be an analytic in 1™, solution
of problem (4.9),(4.10). Assume that O, € F [S'(R_"‘)], I =1,2, and the identity
(4.11) holds. Let u(x) defined by (4.8) and (4.6) belong to H' (K). Then u(x)

solves problem N.

We express the solution of problem (4.1) in terms of the function 93 (w) which
solves (4.9), (4.10). Namely,

(4.12) do(w) = T'(w + i — im/2) / cosh(w + i), w € NO",,,
where
(4.13)
T(w) = L /Oo sin wt 9(t) dt, w eI g(t) = / 9(w +Z'7T/2)eiwtdw
27 —c0 sinhat - Co )

and C, = {w + ia,w € R}. We prove that corresponding function u(z) defined
by (4.8), (4.6) and (4.11) belongs to H!(K). For this purpose we study carefully
the integral operator (4.13). Finally, it can be shown [22], [57] that the function
(4.8) reduces to the Sommerfeld integral. Thus we obtain the desired result: the
Sommerfeld integral is the finite energy solution of problem (4.1).

In the next section we indicate the main steps of the proof of the facts mentioned
in the last paragraph.

ITI. Boundedness of the integral operator. Quadratic summability of
the solution u(x,z2) is proved in a relatively simple way by means of the use of
“crude” properties of the solution ¥2 of the difference equation (4.9). The proof
of the inclusions 9;, z,u € L? is much more involved. To prove it, we also use
representation (4.8) for U, but after differentiation there naturally appear d-type
singularities on the boundary of K. Subtracting them, we prove that the functions
Ui(z1,22) = 05, U%(21,22) — v3_i(23_;) X 8(x;),1 = 1,2, belong to L2(R2?). Passing
to the Fourier transforms in the last expressions, using (4.8) and the variables
w = (w1,ws), 21 = sinhwy, 25 = sinh(wy + ia), we obtain the following expression
for, e.g., Uy (w): U1 (w) = B1(w) + Ba(w), where

_i(sinhw; cosa — sinh(wy + ia))

4.14) B;(w) = _ R(w,w")g(w' + i7/2)dw’,
(@19 Bi(w) o [ R w)istw + i)
, tanh w; sinh 2a; tanh(ws + ic) sinh 2as
R(w,w') = 2 7 2 2
cosh” b — cosh” a; cosh” b — cosh” as
b =1w, a = t(wy —in/2), as = T(wy — in/2), T = 7w/ (20a), fI(whwg) =

H(sinh wy, sinh(wy + ia)) and By(w) is a certain function depending on vy and
g such that, as it is not hard to see,

B € I*(S, P(w)) = {f(w) / | (w)[2P(w)|dw] < o0},
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P(w) = exp(|wi| + |wz|), & = Co x Cq. (Note that the latter inclusion is equivalent
to the inclusion By € L?(R2?) in the variables z;,z2.) Thus we are left with the
proof of the fact that B; € L?(Z, P) and depends continuously on the boundary
datum g with respect to the norm (4.3). This, in fact, is the central technical result
of the paper [57].

We prove that the integral operator in (4.14) is bounded as an operator from
L?(C.) to L?(%, P) for some ¢ > 0 by means of the Schur test [15], which, in
particular, states that if [y, |K(w,w')|[dw < C and [, |K(w,w')|dw’ < C, then
K is a bounded kernel in L?. By means of this assertion and using the fact that
R is close to zero on the diagonal w; = ws as |w| — oo, we obtain the necessary
estimates and this finishes the proof of our result.
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