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Abstract

The long-time asymptotics is analyzed for all finite energy solutions to a model
U(1)-invariant nonlinear Klein–Gordon equation in one dimension, with the non-
linearity concentrated at a single point: each finite energy solution converges as
t → ±∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e−iωt . The
global attraction is caused by the nonlinear energy transfer from lower harmonics
to the continuous spectrum and subsequent dispersive radiation.

We justify this mechanism by the following novel strategy based on inflation
of spectrum by the nonlinearity. We show that any omega-limit trajectory has the
time spectrum in the spectral gap [−m,m] and satisfies the original equation. This
equation implies the key spectral inclusion for spectrum of the nonlinear term.
Then the application of the Titchmarsh convolution theorem reduces the spectrum
of each omega-limit trajectory to a single harmonic ω ∈ [−m,m].

The research is inspired by Bohr’s postulate on quantum transitions and
Schrödinger’s identification of the quantum stationary states to the nonlinear eigen-
functions of the coupled U(1)-invariant Maxwell–Schrödinger and Maxwell–Dirac
equations.

1. Introduction

The long-time asymptotics for nonlinear wave equations have been the sub-
ject of intensive research, starting with the pioneering papers by Segal [Seg63a,
Seg63b], Strauss [Str68], and Morawetz and Strauss [MS72], where the non-
linear scattering and the local attraction to zero were considered. The asymp-
totic stability of solitary waves has been studied since the 1990s by Soffer and
Weinstein [SW90, SW92], Buslaev and Perelman [BP93, BP95], and then by
others. The existing results suggest that the set of orbitally stable solitary waves
typically forms a local attractor, that is, attracts finite energy solutions that were
initially close to it.
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In this paper, we consider the global attractor for all finite energy solutions. For
the first time, we prove that in a particular U(1)-invariant dispersive Hamiltonian
system the global attractor is finite-dimensional and is formed by solitary waves.
The investigation is inspired by Bohr’s quantum transitions (“quantum jumps”).
Namely, according to Bohr’s postulates [Boh13], an unperturbed electron lives
forever in a quantum stationary state |E〉 that has a definite value E of the energy.
Under an external perturbation, the electron can jump from one state to another:

|E−〉 �−→ |E+〉. (1.1)

The postulate suggests the dynamical interpretation of the transitions as long-time
attraction

�(t) −→ |E±〉, t → ±∞ (1.2)

for any trajectory�(t) of the corresponding dynamical system, where the limiting
states |E±〉 generally depend on the trajectory. Then the quantum stationary states
should be viewed as the points of the global attractor S which is the set of all
limiting states (see Figure 1). Following de Broglie’s ideas, Schrödinger identified
the stationary states |E〉 as the solutions of the wave equation that have the form

ψ(x, t) = φω(x)e
−iωt , ω = E/�, (1.3)

where � is Planck’s constant. Then the attraction (1.2) takes the form of the long-
time asymptotics

ψ(x, t) ∼ ψ±(x, t) = φω±(x)e
−iω±t , t → ±∞, (1.4)

that hold for each finite energy solution. However, because of the superposition
principle, the asymptotics of type (1.4) are generally impossible for the linear
autonomous Schrödinger equation of type

(i∂t − V (x))ψ(x, t) = (−i∇ − A(x))2ψ(x, t), (1.5)

where V (x) and A(x) are scalar and vector potentials of a static external Maxwell
field. An adequate description of this process requires us to consider the Schrö-
dinger (or Dirac) equation coupled to the Maxwell system which governs the time
evolution of the Maxwell 4-potential A(x, t) = (V (x, t), A(x, t)). This coupling
is inevitable indeed, because, again by Bohr’s postulates, the transitions (1.1) are
followed by electromagnetic radiation responsible for the atomic spectra. The
coupled Maxwell–Schrödinger system was initially introduced in [Sch26]. It is a
U(1)-invariant nonlinear Hamiltonian system. Its global well-posedness was con-
sidered in [GNS95]. We might expect the following generalization of asymptotics
(1.4) for solutions to the coupled Maxwell–Schrödinger (or Maxwell–Dirac) equa-
tions:

(ψ(x, t), A(x, t)) ∼
(
φω±(x)e

−iω±t , Aω±(x)
)
, t → ±∞. (1.6)

The asymptotics of this form are not available yet in the context of coupled systems.
Let us mention that the existence of the solitary waves for the coupled Maxwell–
Dirac equations was established in [EGS96].
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Fig. 1. Attraction of any trajectory �(t) to the set of solitary waves as t → ±∞

The asymptotics (1.6) would mean that the set of all solitary waves

{(φω(x), Aω(x)) : ω ∈ C}
forms a global attractor for the coupled system. Similar convergence to a global
attractor is well known for dissipative systems, like Navier–Stokes equations (see
[BV92, Hen81, Tem97]). In this context, the global attractor is formed by the static
stationary states, and the corresponding asymptotics (1.4) only hold for t → +∞
(and with ω+ = 0).

Our main impetus for writing this paper was the natural question of whether
dispersive Hamiltonian systems could, in the same spirit, possess finite dimensional
global attractors, and whether such attractors are formed by the solitary waves. We
prove such a global attraction for a model nonlinear Klein–Gordon equation

ψ̈(x, t) = ψ ′′(x, t)− m2ψ(x, t)+ δ(x)F(ψ(0, t)), x ∈ R. (1.7)

Here m > 0,ψ(x, t) is a continuous complex-valued wave function, and F is a non-
linearity. The dots stand for the derivatives in t , and the primes for the derivatives
in x . All derivatives and the equation are understood in the sense of distributions.
Equation (1.7) describes the linear Klein–Gordon equation coupled to the nonlinear
oscillator. We assume that equation (1.7) is U(1)-invariant; that is,

F(eiθψ) = eiθ F(ψ), ψ ∈ C, θ ∈ R.

Note that the group U(1) is also the (global) gauge group of the coupled Maxwell–
Schrödinger and Maxwell–Dirac equations, with the representation given by

(ψ(x), A(x)) �→ (eiθψ(x), A(x)).

This gauge symmetry leads to the charge conservation and to the existence of the
solitary wave solutions of the form (1.6) (see [EGS96]). We clarify the special role
of the “nonlinear eigenfunctions”, or solitary waves, of equation (1.7) which are
finite energy solutions of type (1.3):

ψω(x, t) = φω(x)e
−iωt , ω ∈ C. (1.8)
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We prove that indeed they form the global attractor for all finite energy solutions
to (1.7).

Equation (1.7) has the following key features of the coupled Maxwell–
Schrödinger and Maxwell–Dirac equations: (i) the linear part of this equation has
a dispersive character; (ii) it is a nonlinear Hamiltonian system; (iii) it is U(1)-
invariant. We suggest that just these features are responsible for the global attrac-
tion, such as (1.4), (1.6), to “quantum stationary states”.

Let us introduce the set of all solitary waves.

Definition 1.1. Let S be the set of all functions φω(x) ∈ H1(R) with ω ∈ C, so
that φω(x)e−iωt is a solution to (1.7).

Here H1(R) denotes the Sobolev space. Generically, the quotient S /U(1) is iso-
morphic to a finite union of one-dimensional intervals. We will give an explicit
construction of the set of all solitary waves for equation (1.7); see Proposition 2.1
and its proof in Appendix A. Let us mention that there are numerous results on
the existence of solitary wave solutions of the form φ(x)e−iωt to nonlinear Hamil-
tonian systems with U(1) symmetry [Str77, BL83a, BL83b, BL84, CV86, ES95].
Typically, such solutions exist for ω from an interval or a collection of intervals of
the real line.

Our main result is the following long-time asymptotics: in the case when the
nonlinearity F is polynomial of order strictly greater than 1, we prove the attraction
of any finite energy solution to the set S of all solitary waves:

ψ(·, t) −→ S , t → ±∞, (1.9)

where the convergence holds in local energy seminorms. In the linear case, when
F(ψ) = aψ with a ∈ R, there is generally no attraction to S ; instead, we show that
the global attractor is the linear span of all solitary waves, 〈S 〉. See Theorem 2.3.

Remark 1.1. Although we proved the attraction (1.9) to S , we have not proved
the attraction to a particular solitary wave, falling short of proving (1.4). Hypothet-
ically, a solution can be drifting along S , keeping asymptotically close to it, but
never approaching a particular solitary wave.

Remark 1.2. The requirement that the nonlinearity F is polynomial allows us to
apply the Titchmarsh convolution theorem that is vital to the proof. We do not know
whether this requirement could be dropped.

Let us mention related earlier results:

(i) The asymptotics of type (1.4) were discovered first with ψ± = 0 in the scat-
tering theory [Str68, MS72, Str78, GS79, Kla82, GV85, Hör91]. In this case,
the attractor S consists of the zero solution only, and the asymptotics mean
well-known local energy decay.

(ii) The global attraction of type (1.4) with ψ± 
= 0 and ω± = 0 was established
in [Kom91, Kom95, KV96, KSK97, Kom99, KS00] for a number of non-
linear wave problems. There the attractor S is the set of all static stationary
states. Let us mention that this set could be infinite and contain continuous
components.
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(iii) First results on the asymptotics of type (1.4), with ω± 
= 0, were obtained for
nonlinear U(1)-invariant Schrödinger equations in the context of asymptotic
stability. This establishes asymptotics of type (1.4) but only for solutions close
to the solitary waves, proving the existence of a local attractor. This was first
done in [SW90, BP93, SW92, BP95], and then developed in [PW97, SW99,
Cuc01a, Cuc01b, BS03, Cuc03] and other papers.

The global attraction (1.9) to the solitary waves with ω 
= 0 was announced
for the first time in [Kom03] for equation (1.7). In the present paper we give the
detailed proofs, and also add the well-posedness result which is not trivial since the
Dirac delta-function δ(x) does not belong to L2(R).

Let us mention that the attraction (1.4) for equation (1.7) with m = 0 was
proved in [Kom91, Kom95]; in that case ω± = 0. Our proofs for m > 0 are quite
different from [Kom91, Kom95], and are based on a nonlinear spectral analysis
of omega-limit trajectories for t → +∞ (and similarly for t → −∞). First, we
prove that their time spectrum is contained in a finite interval [−m,m], since the
spectral density is absolutely continuous for |ω| > m and the corresponding com-
ponent of the solution disperses completely. Second, the nonlinear equation (1.7)
implies the crucial spectral inclusion: the nonlinearity does not inflate the spec-
trum of any omega-limit trajectory. Finally, the Titchmarsh convolution theorem
allows us to reduce the spectrum of the omega-limit trajectory to a single harmonic
ω+ ∈ [−m,m]. This implies the attraction (1.9).

Remark 1.3. The global attraction (1.4), (1.6) for U(1)-invariant equations sug-
gests the corresponding extension to general G-invariant equations (G being the
Lie group):

ψ(x, t) ∼ ψ±(x, t) = e�±tφ±(x), t → ±∞, (1.10)

where �± belong to the corresponding Lie algebra and e�±t are corresponding
one-parameter subgroups. Respectively, the global attractor would consist of the
solitary waves (1.10). In particular, for the unitary group G = SU(3), the asymptot-
ics (1.10) relates the “quantum stationary states” to the structure of the correspond-
ing Lie algebra su(3). On a seemingly related note, let us mention that according
to Gell-Mann–Ne’eman theory [GMN64] there is a correspondence between the
Lie algebras and the classification of the elementary particles which are the “quan-
tum stationary states”. The correspondence has been confirmed experimentally by
the discovery of the omega-minus Hyperon.

The plan of the paper is as follows. In Sect. 2 we state the main assumptions
and results. Section 3 describes the exclusion of dispersive components from the
solution. In Sect. 5 we state the spectral properties of all omega-limit trajectories
and apply the Titchmarsh convolution theorem. For completeness, we also give the
exhaustive treatment of the linear case, when F(ψ) = aψ with a ∈ R; see Sect. 6.
In Appendix A, we collect the properties of the solitary waves. In Appendix B, we
describe properties of quasimeasures and corresponding multiplicators. The global
well-posedness of equation (1.7) in H1(R) is proved in Appendix C.
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2. Main results

Model

We consider the Cauchy problem for the Klein–Gordon equation with the non-
linearity concentrated at a point:

{
ψ̈(x, t) = ψ ′′(x, t)− m2ψ(x, t)+ δ(x)F(ψ(0, t)), x ∈ R, t ∈ R,

ψ |t=0 = ψ0(x), ψ̇ |t=0 = π0(x).
(2.1)

If we identify a complex number ψ = u + iv ∈ C with the two-dimensional vector
(u, v) ∈ R

2, then, physically, equation (2.1) describes small crosswise oscillations
of the infinite string in three-dimensional space (x, u, v) stretched along the x-axis.
The string is subject to the action of an “elastic force” −m2ψ(x, t) and coupled to
a nonlinear oscillator of force F(ψ) attached at the point x = 0.

We define �(t) =
[
ψ(x, t)
π(x, t)

]
and write the Cauchy problem (2.1) in the vector

form:

�̇(t) =
[

0 1
∂2

x − m2 0

]
�(t)+ δ(x)

[
0

F(ψ)

]
, �|t=0 = �0 ≡

[
ψ0
π0

]
. (2.2)

We will assume that the oscillator force F admits a real-valued potential:

F(ψ) = −∇U (ψ), ψ ∈ C, U ∈ C2(C), (2.3)

where the gradient is taken with respect to Reψ and Imψ . Then equation (2.2)
formally can be written as a Hamiltonian system,

�̇(t) = J DH (�), J =
[

0 1
−1 0

]
,

where DH is the variational derivative of the Hamilton functional

H (�)= 1

2

∫

R

(
|π |2 + |ψ ′|2 + m2|ψ |2

)
dx+U (ψ(0)), �=

[
ψ(x)
π(x)

]
. (2.4)

We assume that the potential U (ψ) is U(1)-invariant, where U(1) stands for the
unitary group eiθ , θ ∈ R mod 2π : namely, we assume that there exists u ∈ C2(R)

such that

U (ψ) = u(|ψ |2), ψ ∈ C. (2.5)

Remark 2.1. In the context of the model of the infinite string in R
3 that we described

after (2.1), the potential U (ψ) is rotation invariant with respect to the x-axis.

Conditions (2.3) and (2.5) imply that

F(ψ) = α(|ψ |2)ψ, ψ ∈ C, (2.6)

where α(·) = 2u′(·) ∈ C1(R) is real-valued. Therefore,

F(eiθψ) = eiθ F(ψ), θ ∈ R, ψ ∈ C. (2.7)
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Then the Nöther theorem formally implies that the functional

Q(�) = i

2

∫

R

(
ψπ − πψ

)
dx, � =

[
ψ(x)
π(x)

]
, (2.8)

is conserved for solutions �(t) to (2.2).
We introduce the phase space E of finite energy states for equation (2.2). Denote

by L2 the complex Hilbert space L2(R)with the norm ‖ ·‖L2 , and denote by ‖ ·‖L2
R

the norm in L2(−R, R) for R > 0.

Definition 2.1.

(i) E is the Hilbert space of the states � =
[
ψ(x)
π(x)

]
, with the norm

‖�‖2
E := ‖π‖2

L2 + ‖ψ ′‖2
L2 + m2‖ψ‖2

L2 . (2.9)

(ii) EF is the space E endowed with the Fréchet topology defined by the seminorms

‖�‖2
E ,R := ‖π‖2

L2
R

+ ‖ψ ′‖2
L2

R
+ m2‖ψ‖2

L2
R
, R > 0. (2.10)

The equation (2.2) is formally a Hamiltonian system with the phase space E
and the Hamilton functional H . Both H and Q are continuous functionals on E .
Let us note that E = H1 ⊕ L2, where H1 denotes the Sobolev space

H1 = H1(R) = {ψ(x) ∈ L2(R) : ψ ′(x) ∈ L2(R)}.
We introduced into (2.9), (2.10) the factor m2 > 0; this provides the convenient
relation H (�) = 1

2‖�‖2
E + U (ψ(0)). The space EF is metrizable (but not com-

plete).

Global well-posedness

To have a priori estimates available for the proof of the global well-posedness,
we assume that

U (ψ) � A − B|ψ |2 for ψ ∈ C, where A ∈ R and 0 � B < m. (2.11)

Theorem 2.1. Let F(ψ) satisfy conditions (2.3) and (2.5):
F(ψ) = −∇U (ψ), U (ψ) = u(|ψ |2), u(·) ∈ C2(R).

Additionally, assume that (2.11) holds. Then:
(i) For every �0 ∈ E the Cauchy problem (2.2) has a unique solution �(t)

∈ C(R,E ).
(ii) The map W (t) : �0 �→ �(t) is continuous in E and EF for each t ∈ R.

(iii) The energy is conserved:
H (�(t)) = const, t ∈ R. (2.12)

(iv) The following a priori bound holds:
‖�(t)‖E � C(�0), t ∈ R. (2.13)

We prove this theorem in Appendix C.

Remark 2.2. The value of the charge is also conserved: Q(�(t)) = const, t ∈ R.
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Solitary waves and the main theorem

Definition 2.2.

(i) The solitary waves of equation (2.2) are solutions of the form

�(t) = 
ωe−iωt , where ω ∈ C, 
ω =
[

φω
−iωφω

]
, φω ∈ H1(R).

(2.14)

(ii) The solitary manifold is the set S = {
ω: ω ∈ C} of all amplitudes 
ω.

Identity (2.7) implies that the set S is invariant under multiplication by eiθ ,
θ ∈ R. Let us note that since F(0) = 0 by (2.6), for any ω ∈ C there is a zero
solitary wave with φω(x) ≡ 0.

Note that, according to (2.6), α(|C |2) := F(C)/C ∈ R for any C ∈ C\0.
We will need to distinguish the cases when F is linear and nonlinear; for this, we
introduce the following definition.

Definition 2.3. The function F(ψ) is strictly nonlinear if the equation α(C2) = a
has a discrete (or empty) set of positive roots C for each particular a ∈ R.

Lemma 2.1. If F(ψ) is strictly nonlinear in the sense of Definition 2.3, then non-
zero solitary waves exist only for ω ∈ R.

We prove this Lemma in Appendix A.

Proposition 2.1 (Existence of solitary waves). Assume that F(ψ) satisfies (2.7)
and that one of two following conditions holds:
(i) F(ψ) is strictly nonlinear in the sense of Definition 2.3;

(ii) F(ψ) = aψ with a ∈ R.

Then all nonzero solitary wave solutions to (2.2) are given by (2.14) with

φω(x) = Ce−κ|x |, (2.15)

where κ > 0, ω ∈ C, and C ∈ C\0 satisfy the following relations:

α(|C |2) = 2κ, κ2 = m2 − ω2. (2.16)

Additionally, if F(ψ) is strictly nonlinear, then ω ∈ (−m,m).

We prove this Proposition in Appendix A.

Remark 2.3. Let us denote κC = α(|C |2)/2 and ω±
C = ±

√
m2 − κ2

C for C ∈ C.
Then the relation (2.16) demonstrates that the set of all solitary waves can be
parametrized as follows:

(i) When F(ψ) is strictly nonlinear, in the sense of Definition 2.3, the profile func-
tion φC (x) = Ceiθe−κC |x |, with C � 0 and θ ∈ [0, 2π ], corresponds to the
solitary waves with ω = ω±

C as long as κC ∈ (0,m] (so that φC ∈ H1 and ω is
real in agreement with Lemma 2.1).
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(ii) When F(ψ) = aψ with a ∈ R, we see from (2.16) that κC = a/2 is constant.
If a > 0, the profile function φC (x) = Ce−a|x |/2, with C ∈ C, corresponds

to the solitary waves with ω = ±
√

m2 − a2

4 . The restriction κC ∈ (0,m] no
longer applies since the value of ω may be imaginary. (This is different from
the case of strictly nonlinear F , when imaginary values of ω are prohibited by
Lemma 2.1.) If a � 0, then there is only the zero solitary wave solution.

As we mentioned before, we need to assume that the nonlinearity is polynomial.
This assumption is crucial in our argument: it will allow us to apply the Titchmarsh
convolution theorem. Now all our assumptions on F can be summarized as follows.

Assumption 2.1.

F(ψ) = −∇U (ψ), U (ψ) =
N∑

n=0

un|ψ |2n, (2.17)

where un ∈ R, uN > 0, N � 2.

This assumption guarantees that the nonlinearity F satisfies (2.3) and (2.5), and
also the bound (2.11) from Theorem 2.1. Moreover, Assumption 2.1 implies that
F is strictly nonlinear in the sense of Definition 2.3. By Lemma 2.1, this in turn
implies that all nonzero solitary waves correspond to ω ∈ R.

Our main result is the following theorem.

Theorem 2.2 (Main Theorem). Let the nonlinearity F(ψ) satisfy Assumption 2.1.
Then for any �0 ∈ E the solution �(t) ∈ C(R,E ) to the Cauchy problem (2.2)
with �(0) = �−

0 converges to S in the space EF :

�(t)
EF−→ S, t → ±∞. (2.18)

Let us note that the convergence to the set S in the space EF is equivalent to

lim
t→±∞ ρ(�(t),S) = 0, (2.19)

where ρ is a metric in the space EF and ρ(�(t),S) := inf

∈S

ρ(�(t),
).

Let us also give the corresponding result for the linear case, when F(ψ) = aψ
with a ∈ R. We restrict our consideration to the case when a < 2m. It is in this case
that condition (2.11) is satisfied. We do not consider the case a � 2m, since in this
case the solutions are generally not bounded in E norm (see Remark 6.1), while
our arguments rely significantly on the bounds (2.13). This case will be considered
in more detail elsewhere.

Theorem 2.3 (Linear case). Assume that F(ψ) = aψ , where a < 2m. Then for any
�0 ∈ E the solution�(t) ∈ C(R,E ) to the Cauchy problem (2.2) with�(0) = �0
converges in the space EF to the linear span of S, which we denote by 〈S〉:

�(t)
EF−→ 〈S〉, t → ±∞. (2.20)
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Remark 2.4. In Sect. 6 we will show that:

(i) If 0 < a < 2m, then 〈S〉 
= S. Particular solutions show that the attraction
(2.18) does not hold in general (see Remark 6.3) and has to be substituted by
(2.20).

(ii) If a � 0, 〈S〉 = S = {0}.

Strategy of the proof

For m = 0 the global attraction of type (2.18) is proved in [Kom95], where the
proof was based on the direct calculation of the energy radiation for the wave
equation. For the Klein–Gordon equation with m > 0, the dispersive relation
ω2 = k2 + m2 results in the group velocities v = ω′(k) = k/

√
k2 + m2, so

every velocity 0 � |v| < 1 is possible. This complicates considerably the investi-
gation of the energy propagation, so the approach in [Kom95] built on the fact that
the group velocity was |v| = 1 no longer works. To overcome this difficulty, we
introduce a new approach based on the nonlinear spectral analysis of the solution.

We prove the absolute continuity of the spectrum of the solution for |ω| > m.
This observation is similar to the well-known Kato theorem. The proof is not obvi-
ous and relies on the complex Fourier–Laplace transform and the Wiener–Paley
arguments.

We then split the solution into two components: dispersive and bound, with the
frequencies |ω| > m and ω ∈ [−m,m], respectively. The dispersive component
is an oscillatory integral of plane waves, while the bound component is a super-
position of exponentially decaying functions. The stationary phase argument leads
to a local decay of the dispersive component, due to the absolute continuity of its
spectrum. This reduces the long-time behavior of the solution to the behavior of
the bound component.

Next, we establish the spectral representation for the bound component. For
this, we need to know an optimal regularity of the corresponding spectral measure;
we have found out that the spectral measure belongs to the space of quasimeasures
which are Fourier transforms of bounded continuous functions [Gau66]. The spec-
tral representation implies compactness in the space of quasimeasures, which in
turn leads to the existence of omega-limit trajectories for t → ∞.

Further, we prove that an omega-limit trajectory itself satisfies the nonlinear
equation (1.7), and this implies the crucial spectral inclusion: the spectrum of the
nonlinear term is included in the spectrum of the omega-limit trajectory. We then
reduce the spectrum of this limiting trajectory to a single harmonic ω+ ∈ [−m,m]
using the Titchmarsh convolution theorem [Tit26] (see also [Lev96, p.119] and
[Hör90, Theorem 4.3.3]). In turn, this means that any omega-limit trajectory lies
in the manifold S of the solitary waves, which proves that S is the global attractor.

Empirically, the last part of our argument is a contemplation of the radiative
mechanism based on the inflation of spectrum by the nonlinearity: a low-frequency
perturbation of the stationary state does not radiate the energy until it generates
(via a nonlinearity) “a spectral line” embedded in the continuous spectrum outside
[−m,m]. This embedded spectral line gives rise to the wave packets which bring
the energy to infinity. This radiative mechanism has been originally observed in the
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numerical experiments with the nonlinear relativistic Ginzburg–Landau equation
(see [KMV04]). The spectral inclusion for the omega-limit trajectories expresses
their nonradiative nature: the limiting trajectory cannot radiate since the initial
energy was bounded.

3. Separation of dispersive components

It suffices to prove Theorem 2.2 for t → +∞; we will only consider the solution
ψ(x, t) restricted to t � 0. In this section we eliminate two dispersive components
from ψ(x, t).

First dispersive component

Let us split the solution �(t) =
[
ψ(x, t)
π(x, t)

]
into �(t) = �1(t) + �2(t), where

�1(t) =
[
ψ1(x, t)
π1(x, t)

]
and �2(t) =

[
ψ2(x, t)
π2(x, t)

]
are defined for t � 0 as solutions to the

following Cauchy problems:

�̇1(t) =
[

0 1
∂2

x − m2 0

]
�1(t), �1|t=0 = �0, (3.1)

(3.2)

�̇2(t) =
[

0 1
∂2

x − m2 0

]
�2(t)+ δ(x)

[
0

f (t)

]
, �2|t=0 = 0, (3.3)

where �0 =
[
ψ0
π0

]
is the initial data from (2.2), and

f (t) := F(ψ(0, t)), t � 0. (3.4)

Note that ψ(0, ·) ∈ Cb(R+) by the Sobolev embedding since � ∈ Cb(R+,E ) by
Theorem 2.1 ( iv). Hence, f (·) ∈ Cb(R+). On the other hand, since�1(t) is a finite
energy solution to the free Klein–Gordon equation, we also have

�1 ∈ Cb(R+,E ). (3.5)

Hence, the function �2(t) = �(t)−�1(t) also satisfies

�2 ∈ Cb(R+,E ). (3.6)

Lemma 3.1. There is a local decay of �1 in EF seminorms. That is, ∀R > 0,

‖�1(t)‖E ,R → 0, t → ∞. (3.7)

Proof. We have to prove that

‖�1(t)‖2
E ,R =

∫

|x |<R

(
|π1(x, t)|2 + |ψ ′

1(x, t)|2 + m2|ψ1(x, t)|2
)

dx (3.8)
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goes to zero as t tends to infinity. Fix a cut-off function ζ(x) ∈ C∞
0 (R) with

ζ(x) = 1, |x | � 1 and ζ(x) = 0, |x | � 2. For r > 0, let ζr (x) = ζ(x/r). Denote
by
r (t) and�r (t) the solutions to the free Klein–Gordon equation with the initial
data ζr�0 and (1 − ζr )�0, respectively, so that�1(t) = 
r (t)+�r (t). Then there
exists Cr > 0 that depends on r so that ‖
r (t)‖2

E ,R � Cr (1+ t)−1 for t > 0, since
the solution
r is represented by the integral with the Green function, which is the
Bessel function decaying like (1 + t)−1/2 (see e.g. [Kom94, (2.7′), Chapter I]). We
then have:

‖�1(t)‖2
E ,R � Cr (1 + t)−1 + C‖�r (t)‖2

E ,R (3.9)

where r > 0 could be arbitrary. To conclude that the left-hand side of (3.9) goes to
zero, it remains to note that

‖�r (t)‖E ,R � ‖�r (t)‖E = ‖�r (0)‖E (3.10)

where the last relation is due to the energy conservation for the free Klein–Gordon
equation, and that the right-hand side of (3.10) could be made arbitrarily small if
r > 0 is taken sufficiently large. ��

Complex Fourier–Laplace transform

Let us analyze the complex Fourier–Laplace transform of ψ2(x, t):

ψ̃2(x, ω) = F+
t→ω[ψ2(x, ·)] :=

∫ ∞

0
eiωtψ2(x, t) dt, ω ∈ C

+, (3.11)

where C+ := {z ∈ C : Im z > 0}. Due to (3.6), ψ̃2(·, ω) is an H1-valued analytic
function of ω ∈ C

+. Equation (3.3) for ψ2 implies that

−ω2ψ̃2(x, ω) = ψ̃ ′′
2 (x, ω)− m2ψ̃2(x, ω)+ δ(x) f̃ (ω), ω ∈ C

+.

Hence, the solution ψ2(x, ω) is a linear combination of the fundamental solutions
which satisfy

G ′′±(x, ω)+ (ω2 − m2)G±(x, ω) = δ(x), ω ∈ C
+.

These solutions are given by G±(x, ω) = e±ik(ω)|x |

±2ik(ω)
, where k(ω) stands for the

analytic function

k(ω) =
√
ω2 − m2, Im k(ω) > 0, ω ∈ C

+, (3.12)

which we extend toω ∈ C+ by continuity. We use the standard “limiting absorption
principle” for the selection of the fundamental solution: since ψ̃2(·, ω) ∈ H1 for
ω ∈ C

+, only G+ is appropriate, because for ω ∈ C
+ the function G+(·, ω) is in

H1 while G− is not. Thus,

ψ̃2(x, ω) = − f̃ (ω)G+(x, ω) = − f̃ (ω)
eik(ω)|x |

2ik(ω)
, ω ∈ C

+. (3.13)
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Define z̃(ω) := F+
t→ω[z(t)] with z(t) := ψ2(0, t). Then z̃(ω) = − f̃ (ω)/(2ik(ω)),

and (3.13) becomes

ψ̃2(x, ω) = z̃(ω)eik(ω)|x |, ω ∈ C
+. (3.14)

Let us extend ψ2(x, t) and f (t) by zero for t < 0:

ψ2(x, t) = 0 and f (t) = 0 for t < 0. (3.15)

Then

ψ2 ∈ Cb(R, H1) (3.16)

by (3.6) since ψ2(x, 0+) = 0 by initial conditions in (3.3). The Fourier trans-
form ψ̂2(·, ω) := Ft→ω[ψ2(·, t)] is a tempered H1-valued distribution of ω ∈ R

by (3.6). The distribution ψ̂2(·, ω) is the boundary value of the analytic function
ψ̃2(·, ω), in the following sense:

ψ̂2(·, ω) = lim
ε→0+ ψ̃2(·, ω + iε), ω ∈ R, (3.17)

where the convergence is in the space of tempered distributions S ′(Rω, H1).
Indeed, ψ̃2(·, ω+ iε) = Ft→ω[ψ2(·, t)e−εt ] and ψ2(·, t)e−εt −→

ε→0+ψ2(·, t) where

the convergence holds in S ′(Rt , H1) by (3.15). Therefore, (3.17) holds by the
continuity of the Fourier transform Ft→ω in S ′(R).

Similarly to (3.17), the distributions ẑ(ω) and f̂ (ω), ω ∈ R, are the boundary
values of the analytic in C

+ functions f̃ (ω) and z̃(ω), ω ∈ C
+, respectively:

ẑ(ω) = lim
ε→0+ z̃(ω + iε), f̂ (ω) = lim

ε→0+ f̃ (ω + iε), ω ∈ R, (3.18)

since the functions z(t) and f (t) are bounded for t � 0 and zeros for t < 0. The
convergence holds in the space of tempered distributions S ′(R).

Let us justify that the representation (3.14) for ψ̂2(x, ω) is also valid when
ω ∈ R if the multiplication in (3.14) is understood in the sense of quasimeasures
(see Appendix B).

Proposition 3.1. For any fixed x ∈ R, the identity

ψ̂2(x, ω) = ẑ(ω)eik(ω)|x |, ω ∈ R, (3.19)

holds in the sense of tempered distributions. The right-hand side is defined as the
product of quasimeasure ẑ(ω) by the multiplicator eik(ω)|x |.

Proof. The representation (3.19) for ω 
= ±m follows from (3.14)–(3.18) since
eik(ω)|x | is a smooth function of ω ∈ C+ outside the points ±m.

So, we only need to justify (3.14) in a neighborhood of each point ω = ±m.
The main problem is the low regularity of k(ω) = √

ω2 − m2 at the points ±m.
Choose a cut-off function ζ(ω) ∈ C∞

0 (R) such that

ζ |[−m−1,m+1] ≡ 1. (3.20)
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Let us note that ψ2(x, ·) ∈ Cb(R) for each particular x ∈ R by (3.16) and the
Sobolev embedding theorem. Therefore, for each x ∈ R, ψ̂2(x, ·) belongs to the
space QM (R) of quasimeasures which are defined as functions with bounded con-
tinuous Fourier transform (see Definition B.1). In particular, ẑ(·) is a quasimeasure
since it is the Fourier transform of the function z(t) := ψ2(0, t). On the other
hand, the function eik(ω)|x |ζ(ω) is a multiplicator in QM (R) by Lemma B.3 (i)
and Lemma B.2 (i) (see Appendix B). Let us now prove that

ψ̂2(x, ω)ζ(ω) = ẑ(ω)eik(ω)|x |ζ(ω), ω ∈ R (3.21)

in the sense of quasimeasures. We define µε(ω) := z̃(ω + iε) = Ft→ω[z(t)e−εt ]
for ε > 0. Then µε(ω) ∈ QM (R), and µε(ω)

QM−→ µ(ω) := ẑ(ω) as ε → 0+
since z(t)e−εt Cb,F−→ z(t) by (3.15) (see Definition B.2).

Let us denote Mx,ε(ω) = eik(ω+iε)|x |ζ(ω) for ω ∈ R and ε � 0. By Lem-
mas B.2 (ii) and B.3 (ii), Mx,ε(ω) are multiplicators in the space of quasimeasures.
This implies that

z̃(ω + iε)eik(ω+iε)|x |ζ(ω) QM−→ ẑ(ω)eik(ω)|x |ζ(ω) as ε → 0 +. (3.22)

On the other hand, the left-hand side converges to the left-hand side of (3.21) by
(3.14) and (3.17). ��

Absolutely continuous spectrum

We study the regularity of the spectral density ẑ(ω) from (3.19). Denote

Ωδ := (−∞,−m − δ) ∪ (m + δ,∞), δ � 0. (3.23)

Note that Ω0 = (−∞,−m] ∪ [m,∞) coincides with the continuous spectrum of
the free Klein–Gordon equation, and the function ωk(ω) is positive for ω ∈ �0.

Proposition 3.2. The distribution ẑ(ω) is absolutely continuous for ω ∈ Ω0, and
ẑ ∈ L1(Ω0). Moreover,

∫

Ω0

|ẑ(ω)|2ωk(ω) dω < ∞. (3.24)

Proof. Let us first explain the main idea of the proof. By (3.19), the function
ψ2(x, t) formally is a linear combination of the functions eik|x | with the ampli-
tudes ẑ(ω):

ψ2(x, t) = 1

2π

∫

R

ẑ(ω)eik(ω)|x |e−iωt dω, x ∈ R. (3.25)

Forω ∈ Ω0, the functions eik(ω)|x | are of infinite L2 norm, whileψ2(·, t) is of finite
L2 norm. This is possible only if the amplitude is absolutely continuous inΩ0: for
example, if we took ẑ(ω) = δ(ω − ω0) with ω0 ∈ Ω0, then ψ2(·, t) would be of
infinite L2 norm.
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For a rigorous proof, we use the Paley–Wiener arguments. Namely, the Parseval
identity and (3.6) imply that

∫

R

‖ψ̃2(·, ω + iε)‖2
H1 dω = 2π

∞∫

0

e−2εt‖ψ2(·, t)‖2
H1 dt � C

ε
, ε > 0.

(3.26)

On the other hand, we can calculate the term in the left-hand side of (3.26) exactly.
First, according to (3.14),

ψ̃2(·, ω + iε) = z̃(ω + iε)eik(ω+iε)|x |,

and hence (3.26) results in

ε

∫

R

|z̃(ω + iε)|2‖eik(ω+iε)|x |‖2
H1 dω � C, ε > 0. (3.27)

Here is a crucial observation about the norm of eik(ω+iε)|x |.

Lemma 3.2.

(i) For ω ∈ R,

lim
ε→0+ ε‖eik(ω+iε)|x |‖2

H1 = n(ω) :=
{
ωk(ω), |ω| > m
0, |ω| < m

, (3.28)

where the norm in H1 is chosen to be ‖ψ‖H1 =
(
‖ψ ′‖2

L2 + m2‖ψ‖2
L2

)1/2
.

(ii) For any δ > 0 there exists εδ > 0 such that for |ω| > m + δ and ε ∈ (0, εδ),
ε‖eik(ω+iε)|x |‖2

H1 � n(ω)/2. (3.29)

Proof. Let us compute the H1 norm using the Fourier space representation. Setting
kε = k(ω + iε), so that Im kε > 0, we get Fx→k

[
eikε |x |] = 2ikε/(k2

ε − k2) for
k ∈ R. Hence,

‖eikε |x |‖2
H1 = 2|kε|2

π

∫

R

(k2 + m2)dk

|k2
ε − k2|2 = −4Im

[
(k2
ε + m2)kε
k2
ε − kε2

]
. (3.30)

The last integral is evaluated using the Cauchy theorem. Substituting the expression
k2
ε = (ω + iε)2 − m2, we get:

‖eik(ω+iε)|x |‖2
H1 = 1

ε
Re

[
(ω + iε)2k(ω + iε)

ω

]
, ε > 0, ω ∈ R, ω 
= 0.

(3.31)

The relation (3.28) follows since the function k(ω) is real for |ω| > m, but is purely
imaginary for |ω| < m.

The second statement of the lemma follows since n(ω) > 0 for |ω| > m, and
n(ω) ∼ |ω|2 for |ω| → ∞. ��
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Remark 3.1. Note that n(ω) in (3.28) is zero for |ω| < m, since in that case the
function eik(ω)|x | decays exponentially in x and the H1 norm of eik(ω+iε)|x | remains
finite when ε → 0+.

Substituting (3.29) into (3.27), we get:

∫

Ωδ

|z̃(ω + iε)|2ωk(ω) dω � 2C, 0 < ε < εδ, (3.32)

with the same C as in (3.27), and the regionΩδ defined in (3.23). We conclude that
for each δ > 0 the set of functions

gδ,ε(ω) = z̃(ω + iε)|ωk(ω)|1/2, ε ∈ (0, εδ),

defined for ω ∈ Ωδ , is bounded in the Hilbert space L2(Ωδ), and, by the Banach
Theorem, is weakly compact. The convergence of the distributions (3.18) implies
the following weak convergence in the Hilbert space L2(Ωδ):

gδ,ε ⇁ gδ, ε → 0+, (3.33)

where the limit function gδ(ω) coincides with the distribution ẑ(ω)|ωk(ω)|1/2
restricted onto Ωδ . It remains to note that the norms of all functions gδ , δ > 0, are
bounded in L2(Ωδ) by (3.32), and hence (3.24) follows. Finally, ẑ(ω) ∈ L1(Ω0)

by (3.24) and the Cauchy–Schwarz inequality.

Let us denote

ẑd(ω) :=
{

ẑ(ω), ω ∈ Ω0,

0, ω ∈ R \Ω0.
(3.34)

Then, by Proposition 3.2, ẑd(ω) ∈ L1(R).

Second dispersive component

Proposition 3.2 and the representation (3.25) suggest that we introduce the
function

ψd(x, t) = 1

2π

∫

R

ẑd(ω)e
ik(ω)|x |e−iωt dω, x ∈ R, t ∈ R, (3.35)

with ẑd defined by (3.34). The Fourier transform ofψd(x, t) is given by the formula
similar to (3.19):

ψ̂d(x, ω) = ẑd(ω)e
ik(ω)|x |, x ∈ R, ω ∈ R. (3.36)

We will show that ψd(x, t) is a dispersive component of the solution ψ(x, t) in the
following sense.
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Proposition 3.3. ψd(·, t) is a bounded continuous H1-valued function:

ψd(·, t) ∈ Cb(R, H1). (3.37)

The local energy decay holds for ψd(·, t): for any R > 0,

∥∥∥
[
ψd (·, t)
ψ̇d (·, t)

]∥∥∥
E ,R

→ 0, t → ∞. (3.38)

Proof. Changing the variable, we rewrite (3.35) as follows:

ψd(x, t) = 1

2π

∫

R

ẑ(ω(k))eik|x |e−iω(k)t k dk

ω(k)
, x ∈ R, (3.39)

where ω(k) = √
k2 + m2 is the branch analytic for Im k > 0 and continuous for

Im k � 0. Note that the function ω(k), k ∈ R\0, is the inverse function to k(ω)
defined on C+ (see (3.12)) and restricted ontoΩ0 = (−∞,−m)∪ (m,∞). Let us
introduce the functions

ψ±(x, t) := 1

2π

∫

R

ẑ(ω(k))e±ikx e−iω(k)t kdk

ω(k)
, x ∈ R, t � 0. (3.40)

Both functions ψ±(x, t) are solutions to the free Klein–Gordon equation on the
whole real line. The (free Klein–Gordon) energy of each solution is finite, since

∥∥∥
[
ψ±(·, 0)
ψ̇±(·, 0)

]∥∥∥
2

E
=

∫

R

(ω2(k)+ |k|2 + m2)|ẑ(ω(k))|2 k2

ω2(k)
dk

=
∫

R

2|ẑ(ω(k))|2k2 dk = 2
∫

Ω0

|ẑ(ω)|2ωk(ω) dω < ∞.

In the last inequality, we used (3.24). Hence, both ψ− and ψ+ are bounded contin-
uous H1-valued functions:

ψ± ∈ Cb(R, H1), (3.41)

and for any R > 0

∥∥∥
[
ψ±(·, t)
ψ̇±(·, t)

]∥∥∥
E ,R

→ 0, t → ∞ (3.42)

by the same arguments as in the proof of Lemma 3.1. The function ψd(x, t) coin-
cides with ψ+(x, t) for x � 0 and with ψ−(x, t) for x � 0:

ψd(x, t) = ψ±(x, t), ±x � 0.

Moreover, ψ−(0−, t) = ψ+(0+, t), so ψd(x, t) has no jump at x = 0 and there-
fore ψ ′

d(x, t) is square-integrable over the whole x-axis. Therefore, (3.37) follows
from (3.41), and (3.38) follows from (3.42). ��
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4. Bound component

Spectral representation

We introduce the bound component of the solution ψ(x, t) by

ψb(x, t)=ψ2(x, t)− ψd(x, t) = ψ(x, t)−ψ1(x, t)− ψd(x, t), x ∈ R, t ∈ R.

(4.1)

Then (3.16) and Proposition 3.3 imply that

ψb ∈ Cb(R, H1). (4.2)

By (4.2), the function

zb(t) := ψb(0, t) = ψ2(0, t)− ψd(0, t)

is bounded and continuous. Therefore, its Fourier transform ẑb ∈ S ′(R) is a quasi-
measure:

ẑb = ẑ − ẑd ∈ QM (R), supp ẑb ⊂ [−m,m], (4.3)

where the last inclusion follows from (3.34). Now (3.19), (3.36), and (4.1) imply
the multiplicative relation

ψ̂b(x, ω) = ẑb(ω)e
ik(ω)|x |. (4.4)

We denote

κ(ω) := −ik(ω) =
√

m2 − ω2, Re κ(ω) � 0 for Imω � 0, (4.5)

where k(ω)was introduced in (3.12). Let us note that Re κ(ω) � 0 and that κ(ω) >
0 for ω ∈ (−m,m). We rewrite (4.4) as

ψ̂b(x, ω) = ẑb(ω)e
−κ(ω)|x |, ω ∈ R. (4.6)

Therefore, (4.3) implies that ψ̂b(x, ω) for any fixed x ∈ R is a quasimeasure with
the support supp ψ̂b(x, ·) ⊂ [−m,m], and finally,

ψb(x, t) = 1

2π
〈ẑb(ω)e

−κ(ω)|x |, e−iωt 〉, x ∈ R, t ∈ R. (4.7)
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Compactness

We are going to prove a compactness of the set of translations of the bound com-
ponent, {ψb(x, s + t): s � 0}. We will derive the compactness from the following
uniform estimates which we deduce from (4.3), (4.7) by Lemma B.2.

Proposition 4.1.

(i) The function ψb(x, t) is smooth for x 
= 0 and t ∈ R, and the following repre-
sentation holds for any fixed x 
= 0, t ∈ R, and any nonnegative integers j ,
k:

∂
j
x ∂

k
t ψb(x, t) = 1

2π

〈
ẑb(ω)(−κ(ω) sgn x) j e−κ(ω)|x |, (−iω)ke−iωt

〉
. (4.8)

(ii) For any R > 0, there is a constant C j,k,R > 0 so that

sup
0<|x |�R

sup
t∈R

|∂ j
x ∂

k
t ψb(x, t)| � C j,k,R . (4.9)

Remark 4.1. Let us note that the bounds (4.9) are independent of x and remain
valid in the regions x > 0 and x < 0, although the derivatives ∂ j

x ∂
k
t ψb(x, t) with

j 
= 0 may have a jump at x = 0. (This is the case for the solitary waves in (2.15))

Proof.

(i) The representation (4.8) with j = 0 and any k follows directly from (4.3),
(4.7). Further, consider, for example, j = 1 and k = 0:

∂xψb(x, t) = lim
ε→0

1

2π

〈
ẑb(ω)

e−κ(ω)|x+ε| − e−κ(ω)|x |

ε
ζ(ω), e−iωt

〉
(4.10)

if the limit exists. Here ζ(ω) ∈ C∞
0 (R) is any cut-off function which satisfies

(3.20). The relation (4.10) follows by Lemma B.2 (ii), if we verify that the
following convergence holds in L1(Rt ):

F−1
ω→t

[
e−κ(ω)|x+ε| − e−κ(ω)|x |

ε
ζ(ω)

]
L1−→ F−1

ω→t [∂x e−κ(ω)|x |ζ(ω)].
(4.11)

We rewrite the expression in the brackets in the left-hand side of (4.11) as

e−κ(ω)|x+ε| − e−κ(ω)|x |

ε
ζ(ω) =

∫ 1

0
∂x e−κ(ω)|x+ρε|ζ(ω) dρ. (4.12)

Now the convergence (4.11) follows from the Puiseux expansion of type (B.7)
for ∂x e−κ(ω)|x+ρε|ζ(ω).
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(ii) For fixed nonnegative integers j and k, denote

Nx (ω) = (−κ(ω) sgn x) j e−κ(ω)|x |(−iω)kζ(ω).

Lemma B.3 (iii) implies that Nx (ω) = K̂x (ω), with Kx (·) ∈ L1(R). Then
(4.8) becomes

∂
j
x ∂

k
t ψb(x, t) = 1

(2π)2

∫

R

zb(t − τ)Kx (τ )dτ. (4.13)

The bounds (4.9) follow by Lemma B.1 and (B.6) since zb(t) = ψb(0, t) ∈
Cb(R) by (4.2). ��

Corollary 4.1. By the Ascoli–Arzelà theorem, for any sequence s j → ∞ there
exists a subsequence s j ′ → ∞ such that for any nonnegative integers j and k,

∂
j
x ∂

k
t ψb(x, s j ′ + t) → ∂

j
x ∂

k
t β(x, t), x 
= 0, t ∈ R, (4.14)

for some β ∈ Cb(R, H1). The convergence in (4.14) is uniform in x and t as long
as |x | + |t | � R, for any R > 0.

We call omega-limit trajectory any function β(x, t) that can appear as a limit in
(4.14). Previous analysis demonstrates that the long-time asymptotics of the solu-
tion ψ(x, t) in EF depends only on the bound component ψb(x, t). By Corollary
4.1, to conclude the proof of Theorem 2.2, it suffices to check that every omega-limit
trajectory belongs to the set of solitary waves; that is,

β(x, t) = φω+(x)e
−iω+t , x, t ∈ R, (4.15)

with some ω+ ∈ [−m,m].

Spectral identity for omega-limit trajectories

Here we study the time spectrum of the omega-limit trajectories.

Definition 4.1. Let f be a tempered distribution. By Spec f we denote the support
of its Fourier transform:

Spec f := supp f̃ .

Proposition 4.2.

(i) For any omega-limit trajectory β(x, t), the following spectral representation
holds:

β(x, t) = 1

2π
〈γ̂ (ω)e−κ(ω)|x |, e−iωt 〉, x ∈ R, t ∈ R, (4.16)

where γ̂ ∈ QM (R), and

supp γ̂ ⊂ [−m,m]. (4.17)
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(ii) The following bound holds:
sup
t∈R

‖β(·, t)‖H1 < ∞. (4.18)

Note that, according to (4.16), γ̂ (ω) is the Fourier transform of the function
γ (t) := β(0, t), t ∈ R.

Proof. The representation (4.7) implies that

ψb(x, s j + t) = 1

2π
〈ẑb(ω)Nx (ω)e

−iωs j , e−iωt 〉, x 
= 0, t ∈ R,

(4.19)

where Nx corresponds to j = k = 0. The convergence (4.14) and the bounds (4.9)
with j = k = 0 imply, by Definition B.2, that

zb(s j ′ + t)
Cb,F−→ γ (t), s j ′ → ∞, (4.20)

where γ (t), t ∈ R, is some continuous bounded function. Hence, by Definition B.3,

ẑb(ω)e
−iωs j ′ QM−→ γ̂ (ω), s j ′ → ∞. (4.21)

Now Lemma B.2(ii) and Lemma B.3(iii) imply that

ẑb(ω)Nx (ω)e
−iωsk′ QM−→ γ̂ (ω)Nx (ω), s j ′ → ∞. (4.22)

Hence, the representation (4.16) follows from (4.19), and (4.17) follows from (4.3).
Finally, the bound (4.18) follows from (4.2) and (4.14). ��

The relation (4.16) implies the basic spectral identity:

Corollary 4.2. For any omega-limit trajectory β(x, t),

Specβ(x, ·) = Spec γ, x ∈ R. (4.23)

Remark 4.2. It is mainly for the proof of (4.23) that we develop the theory of the
quasimeasures and multiplicators in Appendix B. This theory provides the compact-
ness of the set of distributions {ẑb(ω)e−iωs : s � 0} in the space of quasimeasures
(see (4.21)) and the spectral representation (4.16).

5. Nonlinear spectral analysis

Here we will derive (4.15) from the following identity:

γ (t) = Ce−iω+t , t ∈ R, (5.1)

which will be proved in three steps.
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Step 1

The identity is equivalent to γ̂ (ω) ∼ δ(ω−ω+), so we start with an investigation
of Spec γ := supp γ̂ .

Lemma 5.1. For omega-limit trajectories the following spectral inclusion holds:

Spec F(γ (·)) ⊂ Spec γ. (5.2)

Proof. The convergence (4.14) and equation (2.1), together with Lemma 3.1 and
Proposition 3.3(ii), imply that the limiting trajectoryβ(x, t) is a solution to equation
(2.1) (although ψb(x, t) is not!):

β̈(x, t) = β ′′(x, t)− m2β(x, t)+ δ(x)F(β(0, t)), (x, t) ∈ R
2. (5.3)

Since β(x, t) is a smooth function for x � 0 and x � 0, we get the following
algebraic identity (cf. (A.5)):

0 = β ′(0+, t)− β ′(0−, t)+ F(γ (t)), t ∈ R. (5.4)

The identity implies the spectral inclusion

Spec F(γ (·)) ⊂ Specβ ′(0+, ·) ∪ Specβ ′(0−, ·). (5.5)

On the other hand, Specβ ′(0+, ·)∪Specβ ′(0−, ·) ⊂ Spec γ by (4.23). Therefore,
(5.5) implies (5.2). ��
Remark 5.1. The spectral inclusion (5.4) follows from the algebraic identity (5.4),
which in turn is a consequence of the fact that β(x, t) solves (2.1). We cannot prove
(5.5) for the function ψb(x, t) since generally it is not a solution to (2.1).

Step 2

Proposition 5.1. For any omega-limit trajectory, the following identity holds:
|γ (t)| = const. t ∈ R. (5.6)

Proof. We are going to show that (5.6) follows from the key spectral relations
(4.17), (5.2). Our main assumption (2.17) implies that the function F(t) := F(γ (t))
admits the representation (cf. (2.6))

F(t) = α(t)γ (t), (5.7)

where, according to (2.17),

α(t) = −
N∑

n=1

2nun|γ (t)|2n−2, N � 2; uN > 0. (5.8)

Both functions γ (t) and α(t) are bounded continuous functions in R by Proposi-
tion 4.2(iii). Hence, γ (t) and α(t) are tempered distributions. Furthermore, γ̂ and
γ̂ have the supports contained in [−m,m] by (4.17). Hence, α̂ also has a bounded
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support since it is a sum of convolutions of finitely many γ̂ and γ̂ by (5.8). Then the
relation (5.7) translates into a convolution in the Fourier space, F̂ = α̂ ∗ γ̂ /(2π),
and the spectral inclusion (5.2) takes the following form:

supp F̂ = supp α̂ ∗ γ̂ ⊂ supp γ̂ . (5.9)

Let us denote F = supp F̂ , A = supp α̂, and � = supp γ̂ . Then the spectral
inclusion (5.9) reads as

F ⊂ �. (5.10)

On the other hand, it is well known that supp α̂∗γ̂ ⊂ supp α̂+supp γ̂ , or F ⊂ A+�.
Moreover, the Titchmarsh convolution theorem states that the last inclusion is exact
for the ends of the supports:

Theorem 5.1 (The Titchmarsh convolution theorem). Let α̂, γ̂ be two distributions
in R with compact supports A and � respectively, and F = supp α̂ ∗ γ̂ . Then

inf F = inf A + inf �, sup F = sup A + sup �. (5.11)

This theorem was proved first in [Tit26] for α̂, γ̂ ∈ L1(R) (see also [Lev96,
p.119] and [Hör90, Theorem 4.3.3]). The Titchmarsh convolution theorem, together
with (5.10), allows us to conclude that inf A = sup A = 0, and hence A ⊂ {0}.
Indeed, (5.10) and (5.11) result in

inf F = inf A + inf � � inf �, sup F = sup A + sup � � sup �, (5.12)

so that inf A � 0 � sup A. Thus, we conclude that supp α̂ = A ⊂ {0}, and therefore
the distribution α̂(ω) is a finite linear combination of δ(ω) and its derivatives. Then
α(t) is a polynomial in t ; since α(t) is bounded by Proposition 4.2(iii), we conclude
that α(t) is constant. Now the relation (5.6) follows since α(t) is a polynomial in
|γ (t)|, and its degree is strictly positive by (5.8). ��
Remark 5.2. The boundedness of the spectrum of both γ (t) and α(t) is critical for
our argument, since otherwise the Titchmarsh convolution theorem does not apply.
It is to ensure that the spectrum of α(t) is also bounded that we had to assume the
polynomial character of the nonlinearity in Assumption 2.1.

Step 3

Now the same Titchmarsh arguments imply that � := Spec γ is a point ω+ ∈
[−m,m]. Indeed, (5.6) means that γ (t)γ (t) ≡ C , and hence in the Fourier trans-
form γ̂ ∗ γ̂ = 2πCδ(ω). Therefore, if γ is not identically zero, the Titchmarsh
theorem implies that

0 = sup � + sup(−�) = sup � − inf �.

Hence inf � = sup � and therefore � = ω+ ∈ [−m,m], so that γ̂ (ω) is a finite
linear combination of δ(ω − ω+) and its derivatives. As the matter of fact, the
derivatives could not be present because of the boundedness of γ (t) = β(0, t) that
follows from Proposition 4.2(iii). Thus, γ̂ ∼ δ(ω − ω+), which implies (5.1).
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Conclusion of the proof of Theorem 2.2. The representation (4.16) implies that
β(x, t) = Ce−κ+|x |e−iω+t since γ̂ ∼ δ(ω−ω+). Therefore, the equation (5.3) and
the bound (4.18) imply that β(x, t) is a solitary wave. This completes the proof of
Theorem 2.2. ��

6. Linear case

Let us now give a complete treatment of the linear case and prove Theorem 2.3.
We assume that F(ψ) that enters (2.1) is given by F(ψ) = aψ , where a ∈ R, and
a < 2m. Thus, the potential is given by U (ψ) = −a|ψ |2/2, and we consider the
equation

ψ̈(x, t) = ψ ′′(x, t)− m2ψ(x, t)+ aδ(x)ψ(0, t), x ∈ R, t ∈ R. (6.1)

All conclusions of Theorem 2.1 on global well-posedness hold for equation (6.1)
with a < 2m since in this case the condition (2.11) is satisfied. Let us note that if
a � 2m, then the conclusions (i), (ii), and (iii) of Theorem 2.1 are still valid (their
proofs in Appendix C apply for bounded times, and then the conclusions follow
for all times by the linearity of the equation). On the other hand, the a priori bound
(2.13) is generally violated when a/2 � m (see below).

Remark 6.1. Let us summarize the properties of the solitary waves for the linear
case that follow from Proposition 2.1. Note that, according to (2.16), κ = a/2.

(i) For a � 0 there are no nonzero solitary waves since we need κ > 0 for (2.15)
to be from H1.

(ii) When a > 0, a 
= 2m, all solitary waves are given by φω(x) = Ce−a|x |/2,
where C ∈ C and ω = ±ωa , where ωa := √

m2 − a2/4. Note that if a > 2m,
then the values ±ωa are purely imaginary and the corresponding solitary waves
are exponentially growing.

(iii) If a = 2m, then ω0 = 0 and there is a nonzero static solitary wave solution
φ0(x) = e−m|x |. Besides, there is secular (linearly growing) solution te−m|x |.

Remark 6.2. When a > 2m, the values of ω are purely imaginary, and the E
norm of solitary waves that correspond to ±Imω > 0 grows exponentially for
t → ±∞. When a = 2m, we have ω = 0; the E norm of the secular solution
grows linearly in time. In both cases (a � 2m), the a priori bound (2.13) fails. This
illustrates that condition (2.11) is sharp, since this condition fails for the potential

U (ψ) = −a

2
|ψ |2 with a � 2m.

Proof of Theorem 2.3. Let us prove the global attraction to the set 〈S〉. We pro-
ceed as in the proof of Theorem 2.2 until we get to equation (5.3). Since now
F(ψ) = aψ , (5.3) takes the following form:

β̈(x, t) = β ′′(x, t)− m2β(x, t)+ aδ(x)β(0, t), (x, t) ∈ R
2. (6.2)
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Now we cannot use the Titchmarsh arguments, and we have to solve the equation
directly to prove that

[
β(·, t)
β̇(·, t)

]
∈ 〈S〉 for t ∈ R. (6.3)

In the Fourier transform β̂(x, ω) = Ft→ω[β(x, t)] the equation (6.2) becomes

−ω2β̂(x, ω) = β̂ ′′(x, ω)− m2β̂(x, ω)+ aδ(x)β̂(0, ω), (x, ω) ∈ R
2.

(6.4)

On the other hand, the representation (4.16) implies that

β̂(x, ω) = γ̂ (ω)e−κ(ω)|x |. (6.5)

Substituting the above into (6.4), we obtain

2κ(ω)γ̂ (ω)δ(x) = aδ(x)γ̂ (ω). (6.6)

Therefore, on the support of the distribution γ̂ (ω), the identity holds

2κ(ω) = a, (6.7)

and hence supp γ̂ ⊂ �a := {ω ∈ [−m,m] : 2κ(ω) = a} by (4.17). Now let us
consider two cases.

(i) In the case 0 < a < 2m, according to Remark 6.1(ii), the set of finite energy
solitary waves is given by

S =
{

C1

[
e−a|x |/2

iωae−a|x |/2
]

+ C2

[
e−a|x |/2

−iωae−a|x |/2
]

: C1, C2 ∈ C

}
. (6.8)

On the other hand, the set �a contains exactly two points ±ωa since 0 < a <
2m. Hence, γ̂ is a linear combination of δ(ω ± ωa) and their derivatives. The
derivatives are forbidden since γ (t) is bounded, so finally

β(x, t) =
(

C1eiωa t + C2e−iωa t
)

e−a|x |/2. (6.9)

Now (6.3) follows from (6.9).
(ii) In the case a � 0, the set of finite energy solitary waves consists of the zero solu-

tion only by Remark 6.1(i). For a < 0, the set�a is empty, and henceβ(x, t) = 0
and (6.3) follows. When a = 0, we have ωa = m and �a = {−m} ∪ {m}. Any
omega-limit point β is given by (6.9) with a = 0. Since β(·, t) ∈ H1, we
conclude that C1 = C2 = 0 in (6.9), so that β(x, t) = 0 and the inclusion (6.3)
follows. ��
This finishes the proof of Theorem 2.3.

Remark 6.3. For 0 < a < 2m, a particular exact solution to (6.1), for example
(6.9), with C1 
= 0 and C2 
= 0, shows that in general there could be no attraction
to S.
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Appendix A. Solitary waves

Here we prove Lemma 2.1 and Proposition 2.1.

Proof of Lemma 2.1. Substituting φω(x)e−iωt into (2.1), we get the equation

−ω2φω(x)e
−iωt = φ′′

ω(x)e
−iωt − m2φω(x)e

−iωt + δ(x)F(e−iωtφω(0)),

(A.1)

where (x, t) ∈ R × R. We can assume that φω(0) 
= 0. Indeed, if φω(0) = 0, then
(A.1) turns into a homogeneous second-order linear differential equation, which
together with the inclusion φω ∈ H1(R) results in φω(x) ≡ 0. Equation (A.1)
leads to the identity e−iωt� = F(e−iωtφω(0)),with� = φ′

ω(0−)−φ′
ω(0+). This

results in

�

φω(0)
= F(e−iωtφω(0))

e−iωtφω(0)
= F(et Imωφω(0))

et Imωφω(0)
, t ∈ R. (A.2)

We used (2.7) in the last equality. The condition that F(ψ) is strictly nonlinear
(in the sense of Definition 2.3) implies that (A.2) only holds at discrete values of
t Imω; thus, Imω = 0, finishing the proof. ��
Proof of Proposition 2.1. The relation (A.1) turns into the following eigenvalue
problem:

−ω2φω(x) = φ′′
ω(x)− m2φω(x)+ δ(x)F(φω(x)), x ∈ R. (A.3)

The phase factor e−iωt can be canceled out because either F(ψ) = aψ or, when
F is strictly nonlinear, we can use (2.7) (since in this case ω ∈ R by Lemma 2.1).
Equation (A.3) implies that away from the origin we have

φ′′
ω(x) = (m2 − ω2)φω(x), x 
= 0,

and hence φω(x) = C±e−κ±|x | for ±x > 0, where κ± satisfy κ2± = m2 − ω2.
Since φω(x) ∈ H1, it is imperative that κ± > 0; we conclude that |ω| < m and
that κ± = √

m2 − ω2 > 0. Moreover, since the function φω(x) is continuous,
C− = C+ = C 
= 0 (since we are looking for nonzero solitary waves). We see that

φω(x) = Ce−κ|x |, C 
= 0, κ ≡
√

m2 − ω2 > 0. (A.4)

Equation (A.3) implies the following gluing condition at x = 0:

0 = φ′
ω(0+)− φ′

ω(0−)+ F(φω(0)). (A.5)

This condition and (A.4) lead to the equation 2κC = F(C) which is equivalent to
(2.16) for C 
= 0. ��
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Appendix B. Quasimeasures and multiplicators

Quasimeasures

Let us denote by ǧ the inverse Fourier transform of a tempered distribution g:

ǧ(t) = F−1
ω→t [g(ω)].

Definition B.1. A tempered distribution µ(ω) is a quasimeasure if µ̌ ∈ Cb(R).

For example, any function from L1(R) is a quasimeasure, and so is any finite
Borel measure on R.

Lemma B.1. Let µ(ω) be a quasimeasure and ϕ(ω) be a test function from the
Schwartz space S (R). Then

|〈µ(ω), ϕ(ω)〉| � C‖ϕ̌(t)‖L1(R). (B.1)

The lemma is a trivial consequence of the Parseval identity:

|〈µ(ω), ϕ(ω)〉| = 2π |〈µ̌(t), ϕ̌(t)〉| � 2π‖µ̌(t)‖L∞(R)‖ϕ̌(t)‖L1(R). (B.2)

Definition B.2. Cb,F (R) is the vector space of bounded functions f (t) ∈ Cb(R)

endowed with the following convergence: fε(t)
Cb,F−→ f (t), ε → 0+ if and only if

(i) ∀T > 0, ‖ fε(t)− f (t)‖C[−T,T ] → 0, ε → 0+;
(ii) sup

ε∈(0,1]
‖ fε(t)‖Cb(R) < ∞.

This type of convergence coincides with the convergence stated in the Ascoli–
Arzelà theorem. Next we introduce the dual class of the “Ascoli–Arzelà quasi
measures”.

Definition B.3. QM (R) is the linear space of all quasimeasures µ(ω) endowed
with the following convergence:

µε(ω)
QM−→
ε→0+ µ(ω) if and only if µ̌ε(t)

Cb,F−→
ε→0+ µ̌(t).

Multiplicators

Now let us give a simple characterization of multiplicators in QM (R). Let us
consider a continuous function M(ω) ∈ C(R). We also denote by M the corre-
sponding operator of multiplication:

M : µ(ω) �→ M(ω)µ(ω), µ(ω) ∈ C∞
0 (R).

Lemma B.2.

(i) Let M̌(t) ∈ L1(R). Then the operator M extends to a linear continuous oper-
ator in the space of quasimeasures:

M : QM (R) → QM (R).
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(ii) Let µε(ω)
QM−→ µ(ω) and M̌ε(t)

L1−→ M̌(t) as ε → 0+. Then

Mε(ω)µε(ω)
QM−→ M(ω)µ(ω), ε → 0 + . (B.3)

Proof. First we define M(ω)µ(ω) := Ft→ω[(M̌ ∗ µ̌)
(t)](ω) that agrees with the

case µ ∈ C∞
0 (R). Then (i) follows from (ii) with Mε = M and µε ∈ C∞

0 (R). To
prove (ii), we need to show that

F−1
ω→t [Mε(ω)µε(ω)] = (

M̌ε ∗ µ̌ε
)
(t)

Cb,F−→ (
M̌ ∗ µ̌)

(t). (B.4)

We have to check both conditions (i) and (ii) of Definition B.2 for the functions

fε(t) := F−1
ω→t [Mε(ω)µε(ω)] = (

M̌ε ∗ µ̌ε
)
(t),

f (t) := F−1
ω→t [M(ω)µ(ω)] = (

M̌ ∗ µ̌)
(t).

We have:

fε(t)− f (t) = (
M̌ε ∗ µ̌ε

)
(t)− (

M̌ ∗ µ̌)
(t) = (

(M̌ε − M̌) ∗ µ̌ε
)
(t)

+(
M̌ ∗ (µ̌ε − µ̌)

)
(t).

The first term in the right-hand side converges to zero uniformly in t ∈ R since
M̌ε − M̌ → 0 in L1 while µ̌ε ∈ Cb(R) and is bounded uniformly for ε ∈ (0, 1).
Let us analyze the second term,

∫

R

M̌(τ )(µ̌ε(t − τ)− µ̌(t − τ)) dτ. (B.5)

Since M̌ ∈ L1, for any δ > 0 there exists a finite R > 0 so that
∫
|τ |>R |M̌(τ )| dτ �

δ.On the other hand, for any T > 0, the difference µ̌ε(t −τ)−µ̌(t −τ) is uniformly
small for |t | � T , |τ | < R and small ε. Therefore, the integral (B.5) converges to
zero uniformly in |t | � T as ε → 0+. Hence, the convergence (i) of Definition B.2
follows.

Finally, the uniform bound (ii) of Definition B.2 for the functions fε(t) is obvi-
ous. The convergence (B.4) is proved. ��

Bounds for multiplicators

Let us justify the properties of the multiplicators which we used in Sect. 4.
Recall that we use the notation

Mx,ε(ω) := eik(ω+iε)|x |ζ(ω), x ∈ R, ε � 0,

where ζ(ω) ∈ C∞
0 (R) is a fixed cut-off function, and also the notation

Nx (ω) := (ik(ω) sgn x) j eik(ω)|x |(−iω)kζ(ω), x ∈ R,

where j , k are fixed nonnegative integers.
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Lemma B.3. For any fixed x ∈ R we have:

(i) M̌x,ε(t) ∈ L1(R) for any ε � 0.

(ii) M̌x,ε(t)
L1−→ M̌x,0(t), ε → 0.

(iii) Ňx ∈ L1(R), and for any R > 0 there exists C j,k,R > 0 so that

sup
|x |�R

‖Ňx‖L1(R) � C j,k,R . (B.6)

Proof. For any fixed x ∈ R, the Puiseux expansion holds:

eik(ω+iε)|x | ∼ 1 +
∑
±

∞∑
j=1

C±
j (x)(ω + iε ∓ m) j/2, ω + iε → ±m, ε > 0.

(B.7)

Therefore, the function M̌x,ε(t) is smooth and decays at least like |t |−3/2 when
t → ∞. This finishes the proof of the first statement of the lemma.

The second statement of the lemma follows from (B.7).
The last statement of the lemma follows by the same arguments from the

Puiseux expansion for Ňx (ω) similar to expansion (B.7) with ε = 0. ��

Appendix C. Global well-posedness

Here we prove Theorem 2.1. We first need to adjust the nonlinearity F so that
it becomes bounded, together with its derivatives. Define

�(�0) =
√

H (�0)− A

m − B
, (C.1)

where �0 ∈ E is the initial data from Theorem 2.1 and A, B are constants from
(2.11). Then we may pick a modified potential function Ũ ∈ C2(C,R), Ũ (ψ) =
Ũ (|ψ |), so that

Ũ (ψ) = U (ψ) for |ψ | � �(�0), ψ ∈ C, (C.2)

Ũ (ψ) satisfies (2.11) with the same constants A, B as U (ψ) does:

Ũ (ψ) � A − B|ψ |2, for ψ ∈ C, where A ∈ R and 0 � B < m, (C.3)

and so that |Ũ (ψ)|, |Ũ ′(ψ)|, and |Ũ ′′(ψ)| are bounded for ψ � 0. We define

F̃(ψ) = −∇Ũ (ψ), ψ ∈ C, (C.4)

where ∇ denotes the gradient with respect to Reψ , Imψ ; then F̃(eisψ) = eis F̃(ψ)
for any ψ ∈ C, s ∈ R.

We consider the Cauchy problem of type (2.1) with the modified nonlinearity,
{
ψ̈(x, t) = ψ ′′(x, t)− m2ψ(x, t)+ δ(x)F̃(ψ(0, t)), x ∈ R, t ∈ R,

ψ |t=0 = ψ0(x), ψ̇ |t=0 = π0(x),

(C.5)



134 Alexander Komech & Andrew Komech

which we rewrite in the vector form in terms of� =
[
ψ(x, t)
π(x, t)

]
similarly to (2.2):

�̇ =
[

0 1
∂2

x − m2 0

]
� + δ(x)

[
0

F̃(ψ)

]
, �|t=0 = �0 ≡

[
ψ0(x)
π0(x)

]
. (C.6)

This is a Hamiltonian system, with the Hamilton functional

H̃ (�) =
∫

R

(
|π |2 + |∇ψ |2 + m2|ψ |2

)
dx + Ũ (ψ(0, t)), � =

[
ψ(x)
π(x)

]
∈ E ,

(C.7)

which is Fréchet differentiable in the space E = H1 × L2. By the Sobolev embed-
ding theorem, L∞(R) ⊂ H1(R), and there is the following inequality:

‖ψ‖2
L∞ � 1

2m
(‖ψ ′‖2

L2 + m2‖ψ‖2
L2) � 1

2m
‖�‖2

E . (C.8)

Thus, (C.3) leads to

Ũ (ψ(0)) � A − B‖ψ‖2
L∞ � A − B

2m
‖�‖2

E . (C.9)

Taking into account (C.7), we obtain the inequality

‖�‖2
E = 2H̃ (�)− 2Ũ (ψ(0)) � 2H̃ (�)− 2A + B

m
‖�‖2

E , � ∈ E ,

(C.10)

which implies

‖�‖2
E � 2m

m − B

(
H̃ (�)− A

)
, � ∈ E . (C.11)

Lemma C.1.

(i) There is the identity H̃ (�0) = H (�0).

(ii) If � =
[
ψ(x)
π(x)

]
∈ E satisfies H̃ (�) � H̃ (�0), then Ũ (ψ(0)) = U (ψ(0)).

Proof.

(i) According to (C.11), the Sobolev embedding (C.8), and the choice of �(�0)

in (C.1),

‖ψ0‖2
L∞ � 1

2m
‖�0‖2

E � H (�0)− A

m − B
= �(�0)

2. (C.12)

Thus, according to the choice of Ũ (equality (C.2)), Ũ (ψ0(0)) = U (ψ0(0)),
proving (i).
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(ii) By (C.8), (C.11), the condition H̃ (�) � H̃ (�0), and part (i) of the lemma,
we have:

‖ψ‖2
L∞ � 1

2m
‖�‖2

E � H̃ (�)− A

m − B
� H̃ (�0)− A

m − B
= H (�0)− A

m − B
= �(�0)

2.

Hence, (ii) follows by (C.2). ��

Remark C.1. We will show that if �(t) solves (C.6), then H̃ (�(t)) = H̃ (�0),
and therefore Ũ (ψ(0, t)) = U (ψ(0, t)) by Lemma C.1(ii). Hence, F̃(ψ(0, t)) =
F(ψ(0, t)) for all t � 0, allowing us to conclude that �(t) solves (2.2) as well as
(C.6).

Local well-posedness

The solution to the Cauchy problem

�̇ =
[

0 1
∂2

x − m2 0

]
�, �(x, 0) = �0(x) =

[
ξ0(x)
η0(x)

]
(C.13)

is represented by

�(x, t) = W0(t)�0 =
∫

R

[
Ġ(x − y, t) G(x − y, t)
G̈(x − y, t) Ġ(x − y, t)

] [
ξ0(y)
η0(y)

]
dy, (C.14)

where G(x, t) is the forward fundamental solution to the Klein–Gordon equation,
G(x, t) = θ(t −|x |)J0(m

√
t2 − x2)/2,with J0 being the Bessel function (see e.g.

[Kom94]). Then the solution to the Cauchy problem (C.6) can be represented by

�(x, t) = W0(t)�0 + Z [ψ(0, ·)](t),
where Z [ψ(0, ·)](t) :=

∫ t

0
W0(t − s)

[
0

δ(·)F̃(ψ(0, s))

]
ds. (C.15)

Lemma C.2. For any nonnegative integers j and k there is a constant C j,k > 0
such that

|∂ j
x ∂

k
t J0(m

√
t2 − x2)| � C j,k(1 + t) j+k, |x | < t. (C.16)

Proof. The proof immediately follows from the observation that all the derivatives
of the Bessel function J0(z) are bounded for z ∈ R, and that J0(z) is an absolutely
converging Taylor series in even powers of z. Hence, all derivatives of the function
J0(

√
r) in r are bounded for r � 0. ��

The next lemma establishes the contraction principle for the integral equation
(C.15).
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Lemma C.3. There exists a constant C > 0 so that for any two functions�k(·, t) =[
ψk(·, t)
πk(·, t)

]
∈ C([0, 1],E ), k = 1, 2, we have:

‖Z [ψ1(0, ·)](t)− Z [ψ2(0, ·)](t)‖E � Ct1/2 sup
s∈[0,t]

‖�1(·, s)−�2(·, s)‖E ,

for 0 � t � 1.

Proof. According to (C.14) and (C.15),

Z [ψ1(0, ·)](t)− Z [ψ2(0, ·)](t) =
[

I (x, t)
∂t I (x, t)

]
,

where

I (x, t) :=
∫ t

0
G(x, t − s)

(
F̃(ψ1(0, s))− F̃(ψ2(0, s))

)
ds.

First we prove the L2 estimate for I (x, t). By the Sobolev embedding theorem,

‖I (·, t)‖L2 � C

∥∥∥∥
∫ t

0
θ(t − s − |x |)|F̃(ψ1(0, s))− F̃(ψ2(0, s))| ds

∥∥∥∥
L2

� C sup
z∈C

|∇ F̃(z)|
∥∥∥∥
∫ t

0
θ(t − s − |x |) ds

∥∥∥∥
L2

sup
s∈[0,t]

‖ψ1(·, s)

−ψ2(·, s)‖H1

� C ′ t3/2 sup
s∈[0,t]

‖ψ1(·, s)− ψ2(·, s)‖H1 , (C.17)

where we took into account that |∇ F̃(z)| is bounded due to the choice of Ũ .
Similarly, we derive the L2 estimate for the derivative ∂x I (x, t − s). We first

analyze

∂x G(x, t − s) = 1

2
θ(t − s − |x |)∂x J0

(
m

√
(t − s)2−x2

)
− 1

2
sgn x δ(t−s−|x |).

By Lemma C.2 for |x | � |t − s| � 1, we have |∂x J0(m
√
(t − s)2 − x2)| � C; we

conclude that ‖∂x I (·, t)‖L2 is bounded by
∥∥∥∥
∫ t

0

[
Cθ(t − s − |x |)+ δ(t − s − |x |)

2

]
ds

∥∥∥∥
L2

sup
s∈[0,t]

∣∣F̃(ψ1(0, s))

−F̃(ψ2(0, s))
∣∣

� C ‖θ(t − |x |)‖L2 sup
s∈[0,t]

‖ψ1(·, s)− ψ2(·, s)‖H1

� C ′ t1/2 sup
s∈[0,t]

‖ψ1(·, s)− ψ2(·, s)‖H1 . (C.18)

The L2 norm of ∂t I (x, t) is estimated similarly. ��
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For E > 0, let us denote EE = {�0 ∈ E : H (�0) � E}.
Corollary C.1.

(i) For any E > 0 there exists τ = τ(E) > 0 such that for any �0 ∈ EE there is
a unique solution�(x, t) ∈ C([0, τ ],E ) to the Cauchy problem (C.6) with the
initial condition �(0) = �0.

(ii) The map W (t) : �0 �→ �(t), t ∈ [0, τ ] are continuous maps from EE to E .

Smoothness of the solution

In this section, we will study the smoothness of the solution

�(x, t) = (ψ(x, t), π(x, t)) ∈ C([0, τ ],E )
constructed in Corollary C.1(i) assuming that ψ0(x), π0(x) ∈ C∞

0 (R). According
to the integral representation (C.15), ψ(x, t), t ∈ [0, τ ], can be represented as

ψ(x, t) =
∫

R

(
Ġ(x − y, t)ψ0(y)+ G(x − y, t)π0(y)

)
dy

+
t∫

0

G(x, t − s)F̃(ψ(0, s)) ds. (C.19)

First, let us prove the smoothness of the function ψ(0, t).

Lemma C.4. ψ(0, t) ∈ C∞([0, τ ]).
Proof. The integral representation (C.19) implies that, for t ∈ [0, τ ],

ψ(0, t) =
∫

R

(
Ġ(y, t)ψ0(y)+ G(y, t)π0(y)

)
dy

+1

2

t∫

0

J0(m(t − s))F̃(ψ(0, s)) ds. (C.20)

The first integral is a smooth function. Further, from ‖ψ(·, t)‖H1 � C < ∞, t ∈
[0, τ ], we conclude that |ψ(0, t)| is bounded. Hence, (C.20) implies that ψ(0, ·) ∈
C([0, τ ]), and then by induction thatψ(0, ·) ∈ C∞([0, τ ]) since the Bessel function
is smooth. ��

Now, from (C.19), we conclude that ψ(x, t) is smooth away from the singular-
ities of G(x, t).

Proposition C.1. The solution ψ(x, t) is piecewise smooth inside each of the four
regions of [0, τ ] × R cut off by the lines x = 0 and x = ±t .
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Proof. The first integral in the right-hand side of (C.19) is infinitely smooth in x
and t for all x ∈ R, t � 0. Now let us consider the second integral in the right-hand
side of (C.19), which could be written as follows:

θ(t − |x |)
2

∫ t−|x |

0
J0

(
m

√
(t − s)2 − x2

)
F̃(ψ(0, s)) ds. (C.21)

Here the function F̃(ψ(0, s)) is smooth in s ∈ [0, τ ]by Lemma C.4. By Lemma C.2,
all the partial derivatives of J0(m

√
(t − s)2 − x2) in x and t are continuous and

uniformly bounded for |x | < t − s, t � τ . Therefore, (C.21) is smooth, with all
the derivatives uniformly bounded, in each of the regions 0 � x � t , −t � x � 0.
In the regions |x | > t , (C.21) is identically equal to zero. ��
Lemma C.5. For 0 < t � τ ,

lim
x→0− ψ̇(x, t) = lim

x→0+ ψ̇(x, t). (C.22)

Proof. We have to analyze only the contribution from the second term in the right-
hand side of (C.19), that is,

∂t

t∫

0

G(x, t − s)F̃(ψ(0, s)) ds = G(x, 0+)F̃(ψ(0, t))

+
t∫

0

Ġ(x, t − s)F̃(ψ(0, s)) ds.

The first term in the right-hand side is equal to zero for x 
= 0. The second term is
continuous since the Green function G(x, t − s) is smooth at x = 0 for t − s > 0.
��
Lemma C.6. For 0 < t � τ ,

(i) ψ̇(x, t)+ ψ ′(x, t) is continuous across the characteristic x = t .
(ii) ψ̇(x, t)− ψ ′(x, t) is continuous across the characteristic x = −t .

Proof. The proofs for both statements of the lemma are identical; we will only
prove the first statement with x > 0. We have to study only the contribution from
the second term in the right-hand side of (C.19), i.e.

(∂t + ∂x )

t∫

0

G(x, t − s)F̃(ψ(0, s)) ds =
t∫

0

(∂t + ∂x )G(x, t − s)F̃(ψ(0, s)) ds.

(C.23)

Here we took into account that, as above, G(x, 0+)F̃(ψ(0, t)) = 0 for x 
= 0. Next,
the key observation is that, for x > 0, the derivative ∂t + ∂x applied to G(x, t),
does not produce a delta-function:

(∂t + ∂x )G(x, t) = 1

2

{
θ(t − x)(∂t + ∂x )J0(m

√
t2 − x2)

}
.

Hence, the integral (C.23) is continuous in x and t across the line x = t , 0 < t � τ

by Lemma C.2 ��
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Energy conservation and global well-posedness

Lemma C.7. For the solution to the Cauchy problem (C.6) with the initial data
�0 ∈ E , the energy is conserved: H̃ (�(t)) = const, t ∈ [0, τ ].
Proof. We follow [Kom95]. First, we prove that the energy is conserved for the

smooth initial data with compact support: �0 =
[
ψ0
π0

]
, with ψ0, π0 ∈ C∞

0 (R).

Consider the norm (2.9),

‖�(t)‖2
E = int∞−∞[|ψ̇ |2 + |ψ ′|2 + m2|ψ |2] dx, t ∈ [0, τ ]. (C.24)

We split this integral into four pieces: the integration over (−∞,−t), (−t, 0), (0, t),
and (t,∞). By Proposition C.1, on the support of each of these integrals ψ(x, t)
for t ∈ [0, τ ] is a smooth function of x and t . Then, differentiating, we may express
∂t‖�(t)‖2

E as

∂t‖�(t)‖2
E =

[
|ψ̇ |2 + |ψ ′|2 + m2|ψ |2

]x=−t+0

x=−t−0

−
[
|ψ̇ |2 + |ψ ′|2 + m2|ψ |2

]x=t+0

x=t−0

+2
∫ ∞

−∞
[ψ̇ψ̈ + ψ ′ψ̇ ′ + m2ψψ̇] dx, t ∈ [0, τ ]. (C.25)

The terms m2|ψ |2 could be discarded due to continuity of ψ across the character-
istics x = ±t . Integrating by parts the terms ψ ′ψ̇ ′ and using the cancelations of
the integrals due to equation (C.5) away from x = 0, we get:

∂t‖�(t)‖2
E =

[
|ψ̇ |2 + |ψ ′|2 − 2ψ ′ψ̇

]x=−t+0

x=−t−0

−
[
|ψ̇ |2 + |ψ ′|2 + 2ψ ′ψ̇

]x=t+0

x=t−0
− 2

[
ψ ′ψ̇

]x=0+
x=0−

=
[
(ψ̇ − ψ ′)2

]x=−t+0

x=−t−0
−

[
(ψ̇ + ψ ′)2

]x=t+0

x=t−0

−2
[
ψ ′ψ̇

]x=0+
x=0−. (C.26)

According to Lemma C.6, the first two terms in (C.26) do not give any contribu-
tion. Let us compute the contribution of the last term. According to Lemma C.5,
ψ̇(0±, t) = ψ̇(0, t) for t ∈ [0, τ ], and therefore

[
ψ ′ψ̇

]x=0+
x=0− = [

ψ ′(x, t)
]x=0+

x=0− ψ(0, t) = −F̃(ψ(0, t))ψ̇(0, t) = d

dt
Ũ (ψ(0, t)).

In the second equality, we computed the jump of ψ ′ using equation (C.5) and the
piecewise smoothness of the solution. We conclude that

d

dt

{
1

2
‖�(t)‖2

E + Ũ (ψ(0, t))

}
= 0,

and hence the value of the functional H̃ defined in (C.7) is conserved.
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Since we proved the energy conservation for the initial data that constitute a
dense set in E and since the dynamical group is continuous in E by Corollary C.1(ii),
we conclude that the energy is conserved for arbitrary initial data from E . ��
Corollary C.2.

(i) The solution � to the Cauchy problem (C.6) with the initial data �|t=0 =
�0 ∈ E exists globally: � ∈ Cb(R,E ).

(ii) The energy is conserved: H̃ (�(t)) = H̃ (�0), t � 0.

Proof. Corollary C.1(i) yields a solution � ∈ L∞([0, τ ],E ) with a positive
τ = τ(E). However, the value of H (�(t)) is conserved for t � τ by Lemma C.7.
Corollary C.1(i) allows us then to extend � to the interval [τ, 2τ ], and eventually
to all t � 0. In the same way we extend the solution �(t) for all t < 0. ��

Conclusion of the proof of Theorem 2.1

The trajectory� =
[
ψ(x, t)
π(x, t)

]
∈ Cb(R,E ) is a solution to (C.6), for which Corol-

lary C.2(ii) together with Lemma C.1(i) imply the energy conservation (2.12). By
Lemma C.1(ii), Ũ (ψ(0, t)) = U (ψ(0, t)), for all t ∈ R. This tells us that ψ(x, t)
is a solution to (2.1). Finally, the a priori bound (2.13) follows from (C.11) and the
conservation of H (�(t)). This finishes the proof of Theorem 2.1.
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