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Abstract 

We consider nonlinear wave and Klein-Gordon equations with general nonlin- 
ear terms, localized in space. Conditions are found which provide asymptotic 
stability of stationary solutions in local energy norms. These conditions are 
formulated in terms of spectral properties of the Schr6dinger operator correspond- 
ing to the linearized problem. They are natural extensions to partial differential 
equations of the known Lyapunov condition. For  the nonlinear wave equation in 
three-dimensional space we find asymptotic expansions, as t ~ o% of the solutions 
which are close enough to a stationary asymptotically stable solution. 

1. Introduction 

We consider the asymptotics as t ~ oo of solutions to nonlinear wave and 
Klein-Gordon equations and systems in the whole space R n, of the type 

/i(x, t) = Au(x, t) - m2u(x, t) + f ( x ,  u(x, t)), (x, t) e R "+1. (1) 

We assume that m > 0, n > 1, u(x, t) ~ R a for (x, t) e R "+1, and f ( x ,  u) is a smooth 
enough vector-valued function. 

Remark 1.1. Equation (1) is a system of d real scalar equations. The case of wave 
equations with scalar complex solutions corresponds to d =2. 

We assume the nonlinear term f ( x ,  u) has a real potential V(x, u) e C~ x Ra): 

f ( x ,  u) - - V/,(x, u) for (x, u) ~ R" x R a. (2) 

Thus (1) formally is a Hamiltonian system with the Hamiltonian functional 

~ ( u ,  fi) = ~[�89 2 + �89 2 + �89 2 + V(x ,u)]  dx. (3) 

Let S(x) be a stationary solution to (1), that is, 

0 = AS(x)  -- m2S(x) + f ( x ,  S(x)), x e R". (4) 
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Remark1.2. There are many results concerning existence of stationary solutions to 
equations and systems of type (1): see, for instance, [1, 2] and their bibliographies. 

The main purpose of this paper is to find conditions which ensure the asymp- 
totic stability for stationary solutions S(x), i.e., conditions which ensure the conver- 
gence 

u(x, t) --, S(x) a s  t -- ,  oo (5) 

(in an appropriate sense) for each solution u(x, t) of (1) with initial data "close 
enough" to initial data of the stationary solution S(x). In other words, the station- 
ary point (S(x), 0) in the phase space of (1) attracts some of its neighborhoods. We 
also derive the asymptotic expansion as t ~ oe for the solutions u(x, t) when n -- 3 
and m =0. 

There are known results by SEGAL [25], STRAUSS [29, 30], MORAWETZ & STRAUSS 
[21], and others, on the decay of local energy in nonlinear scattering problems for 
equation (1) with a "stable" spatially homogeneous nonlinear term, similar to 
lulP-lu, p > 1. The spatial homogeneity means that the nonlinear term f (x ,  u) 
=f(u) does not depend on x. The "stability" of the nonlinear term means (in the 
case d = 1) thatf(u)  __< 0 for u > 0 andf(u)  > 0 for u < 0. It leads to the positiveness 
of energy and to the estimate of solutions uniform in t. In those papers it is also 
assumed that f(0) = f ' ( 0 )  = 0, so u(x, t) =- 0 is a solution to (1). With these assump- 
tions the authors proved the global existence of solutions (for 0 < t < o9) to the 
Cauchy problem and proved the decay of the local energy of solutions as t ~ oe. 
The decay of solutions means in particular the asymptotic stability of the zero 
equilibrium position. The results were used by the authors to construct the wave 
operators and scattering operators. Further extensions of these results were derived 
by CHADAM [3], J. GINIBRE • VELO [4, 5], REED [24], and others. GLASSEY 
& STRAUSS [6, 7] derived the local energy decay for the free and coupled (with 
a scalar field) Yang-Mills equations with "stable" nonlinear terms. 

HORMANDER [9] and KLAINERMAN [i0]  studied asymptotic stability of the zero 
solution to the very general relativistic nonlinear wave and Klein-Gordon equa- 
tions without "stability" assumption on nonlinear terms. The initial data are 
assumed to be small in the Sobolev norms W f  with p =1 and p =2  for large 
enough values of l. Then solution converges to zero as t--* oo in L2(R ") and 
uniformly in x e R". 

There are recent results by PAYNE, SATTINGER, GRILLAKIS, SHATAH and STRAUSS 
[22, 26, 27, 28, 8] concerning stability and instability of solutions to wave problems, 
which are either spatially homogeneous or invariant under a certain group of 
operators. The results concern the stability, but not the asymptotic stability, of 
solutions. Thus the question of whether the solution that is singled out attracts all 
the solutions from some neighbourhood was not studied. 

The main features which distinguish our work from those cited above are the 
following. We study the asymptotic stability of a nontrivial stationary solution 
S(x). We consider the equations without an assumption of invariance, but we 
require the nonlinear t e rmf(x ,  u) in (1) to be localized in x, i.e., for some a > 0, 

f ( x , u ) - O  f o r l x l  > a .  (6) 
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We do not assume that the differential f / , (x ,  S(x))cSu of the nonlinear term 
is identically zero (so that the linearized equation may have variable coefficients). 
We require neither the non-positiveness of f ' (x ,  S(x ) )  nor the positiveness of the 
energy. 

The important element in studying asymptotic stability problems is the choice 
of metric in which convergence (5) holds. The energy norm is generally used when 
the stability of solutions is studied. However, one cannot expect to have the 
asymptotic stability of solutions in the energy norm because the energy conserva- 
tion law is usually in effect for problems under consideration (see Theorem 3.1). 
Nevertheless, the convergence (5) may hold in the local energy metric (i.e., in the 
energy norms in any bounded part of the space). The reason for this convergence is 
the scattering of waves to infinity for wave equations in the whole space. This 
scattering plays the role of a dissipation of local energy and may provide the 
asymptotic stability. 

Such a dissipation was discovered initially for linear problems by MORAWETZ, 
LAX and PHILLIPS [ 15--20] (see also [31-36] ). It plays the key role in the paper cited 
above concerning the local energy decay in nonlinear problems. 

Let us note that for one-dimensional equations (1) with assumption (6) asymp- 
totics of type (5) were established in [11-14] for all solutions of finite energy 
without the assumption of "stability" for the nonlinear term. This convergence is 
also due to the scattering of waves to infinity and shows that in this case the wave 
operators do not exist in general. 

In order to specify our main results on stabilization (5) we need a couple of 
notations. We linearize (1) about the solution u(x ,  t) - S(x): 

~(x, t) = AO(x, t) - mZO(x ,  t) - q ( x ) ~ ( x ,  t). (7) 

Here q(x)  is the d x d real symmetric matrix function (a "potential"): 

We denote by 

q(x) -- - j ; ( x ,  S(x)) = v ; - (x ,  u). (8) 

the Schr6dinger operator corresponding to the linearized problem. Let 7tv = 
(v(., t), ~(', t)) denote the Cauchy data of the function v = v(x,  t), and Jr 7~v He, R 
denote the "local energy norm": 

rl~vll~,R ~ y [l~5(x,t)12 -t- l V v ( x , t ) 2  + l v (x , t )12]  dx.  (10) 
Ixl<R 

Then our main results are the following. We find the "stability conditions" in 
terms of spectral properties of H which guarantee the decay of local energy of the 
difference v(x ,  t) =- u(x ,  t) - S(x) .  This means that for any solution u = u(x ,  t) of(l) 
and for any R > 0, 

[lytvJjr,R~O ast--*oo (11) 

H =- - A + q(x)  (9) 
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if initial data 7or of the difference v = u - S have compact support  and the energy 
norm I[ 7or II~, ~ ofyov is small enough. The rate of the decay of local energy depends 
on n and m as follows: 

117tvlI~,R ~ CR, b~(t) ll~oVllE,b for t > 0, (12) 

where b is the "size" of supp 7or while 

e x p ( - a t )  with some e > 0  if n_->l is odd and m = 0 ,  

#( t ) -=~l / ( t l nE t+l )  if n > 2  is even and m = 0 ,  (13) 
! 

(1/(t + 1) 3/2 if n > 1 is odd and m :I= 0. 

In this paper  we do not consider the case when n is even and m =~ 0. 
In order to formulate the main assumptions which guarantee asymptotic 

stability we consider the truncated resolvent Rx(2 ) = z (H - 2)-1)~ of the operator  
H. Here Z e C; ~ is some cut-off function. The continuous spectrum of the 
operator H coincides with the semiaxis 2 > 0. Hence the resolvent R(2) - (H - 2)- 1 
is a meromorphic  function of 2 in the complex plane outside of the semiaxis, and 
has its poles at eigenvalues of the operator H. The truncated resolvent does not 
"feel" the continuous spectrum, and has a meromorphic  continuation with respect 
to 2 through the semiaxis 2 > 0 on the second sheet of the Riemannian surface (see 
[31-36]). The truncated resolvent has a branch point at 2 = 0 and it may be 
unbounded in any neighbourhood of the point 2 = 0. 

Now our main assumptions which lead to asymptotic stability are the 
following: 

AS-1. Operator  H does not have negative eigenvalues. 
AS-2. The truncated resolvent Rx(z ) - z(H - z)-  1 z is bounded in a neighborhood 
of the point z = 0  for some cut-off function ) ~  C~(R n) such that Z(x)=1 for 

I x l < a .  

Moreover, we show that the same stability conditions provide the 
following expansion as t ~ oe for the solutions of the wave equation (1) with m = 0 
when dimension n = 3. We assume that the initial data roy of the difference 
v(x, t )= u(x, t ) -  S(x) fit the conditions mentioned above (the supports are 
compact and the energy is small enough). Then the solution has the asymptotic 
form 

r k 

u(x, t) ~ S(x) + ~ ~ ak,r(x)t r exp(--  iookt). (14) 
k = l  r = 0  

Here rk < 0% k, r are integers, ak, r(X) e C~176 while 0 > Im COk ~ -- OO as k --* oe. 
Let us note that the estimates (12), (13) and asymptotic expansion (14) with 

S(x) =_ 0 were obtained for linear equations of type (7) in the case when m = 0 by 
MORAWETZ, LAX and PHILLIPS [15 17, 19, 20] and by VAINBERG [31, 32, 34--36]. 
The case m ~ 0 was studied by VAINBERG in [33]. In [31 36] it was shown that 



Nonlinear Wave Equations 231 

assumptions AS-l, AS-2 are equivalent to the decay (12), (13) of solutions to the 
linearized equation (7). These results concerning linear problems play the key role 
in the present paper. 

Remark 1.3. (i) There are simple sufficient conditions which guarantee AS-l, AS-2. 
We describe them in the next section. 

(ii) Scattering frequencies cok in (14) run over the set of all finite sums 
of scattering frequencies co ~ corresponding in a similar way to the linearized 
equation (7) (the frequencies co ~ may be repeated several times in these sums). 
The "combinational principle" seems to be natural to the perturbational 
procedure. 

(iii) Conditions AS-l, AS-2 are natural extensions to partial differential 
equations of the well-known Lyapunov asymptotic stability condition. In the 
case of ordinary differential equations, the Lyapunov condition can be for- 
mulated in terms of the eigenvalues of the corresponding linearized problem. It 
is equivalent to the decay of solutions to the linearized problem. As we mentioned 
earlier, conditions AS-l, AS-2 are equivalent to the decay (12), (13) of solutions 

to the linearized problem (7). (In fact if n is odd and m = 0, then these 
conditions are equivalent to a decay of solutions t) to the linearized problem. 
In other cases the solutions 0 may decay with time while the truncated resolvent 
is unbounded at the origin. However, if m =0,  then AS-l, AS-2 are equi- 
valent to the decay of 0 with the rate which guarantees the convergence 
of the integral S ~ I[ 7tv ll~,Rdt.) Thus conditions AS-l, AS-2 really are extensions 
of the Lyapunov condition. Let us stress, however, that the Lyapunov condition 
is never fulfilled for the ordinary systems of type 2 = F(x) with real vector 
field F(x), while it can be fulfilled for the partial differential equation (1). This 
distinction is related to the existence of the continuous spectrum of the Schr6dinger 
operator H. 

The plan of the paper is as follows: In Section 2 we collect all assumptions 
on the nonlinear term f(x,  u) of the equation (1). In Section 3 an existence 
theorem is stated for solutions to the Cauchy problem for equation (1) with 
initial data close enough to a stationary state S(x). We assume that the 
stability conditions AS-l, AS-2 are fulfilled. The proof of existence of 
solutions in Section 4 follows the well-known contraction mapping approach 
(see, for example, [24, 23]), and uses essentially the local energy decay of 
solutions to the linearized problem. Section 5 concerns the energy conservation 
law. 

The exposition in Section 4 is given in such a way that it could be used in 
Section 6 to prove asymptotic stability of the stationary state S(x). We conclude 
Section 6 with a short discussion showing that asymptotic stability does not hold in 
the global energy norm. In Section 7 we derive the asymptotic expansion (14) in the 
case when n = 3, m = 0. 

Let us note that everywhere in the present paper we could consider the exterior 
problems for equation (1) with Dirichlet, Neumann, or mixed boundary conditions 
instead of the Cauchy problem. Then all the results would still be valid if the 
non-trapping condition is fulfilled. 
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2. Assumptions on the nonlinear term 

We assume that  the nonlinear  term f = f ( x ,  u) satisfies the following conditions: 

A1. Funct ion  f i s  smooth: 

f ( x ,  u) ~ C~(R" x R e , Re). (15) 

A2. The nonlinear  t e r ro r (x ,  u) is localized in x, that  is, relation (6) is fulfilled. 

Remark 2.1. Due to (6) we may choose the potential  V(x, u) in (2) so that  

V(x, u ) ~ C ~ ( R " x R d ) ,  V ( x , u ) = O  f o r ] x l > a .  (16) 

F r o m  now on we assume that  (16) holds. 

A3. In the case n > 2, we assume that  

If(x,u)l  < C(1 + ]u]) p, If '(x,u)l  < C(1 + ]u]) p 1 for ( x , u ) ~ R " x R  d, (17) 

where 

n 
p = p(n), p(n) - if n > 2, p(2) is arbitrary.  (18) 

n - 2  

Without  loss of generality we may assume that  p(2) > 2. 

Remark 2.2. (i) p(3) = 3, p(4) = 2, and 1 < p(n) < 2 when n > 4. 
(ii) By the Sobolev embedding theorem, H I ( R  ") c LlzoPc~")(R ") is a cont inuous em- 
bedding for n > 2, i.e., 

[lu(x)llr2,(R~ < Cllu(x)ll~l<~,.>, n >= 2, p < p(n). (19) 

If n = 1, then 

max[u(x)l < C ]] u(x)Ilul~R). (20) 
x E R  

A4. The s tat ionary solution S(x) is smooth: 

S(x) ~ C~(R"). (21) 

(In fact, some finite smoothness in (15) and in (21) is enough.) 
A5. The asymptot ic  stability condit ions AS-1 and AS-2 are fulfilled. 

Remark 2.3. (i) Condi t ion  AS-2 is fulfilled for n > 2 if the equat ion HO(x) = O, 
x e R", has only the trivial solution in the class of functions satisfying the estimate 
]0(x)l _-< C]x] 2-" in some ne ighborhood  of infinity (see Section 3 in Chapter  IX of 
[36]). It is also true for n = 1 if the class of bounded  solutions ~ is considered. 
(ii) Both condit ions AS-1 and AS-2 are fulfilled when the matr ix "potential"  q(x) 
defined in (7), (8) is nonnegat ive (and not  identical zero if n < 2), i.e., 

q(x) > 0 for x ~ R" (and q(x) ~- O, if n =< 2). (22) 
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Relation (22) is fulfilled in particular if the potential V(x ,  u) is a convex function in 
u ~ R" for each x ~ R ~. 
(iii) The assumptions A1, A2, A4 guarantee that the truncated resolvent Rx(co 2) of  
operator (9) is analytic in some half-plane Im co > const, and has a meromorphic 
continuation with respect to co over the whole complex plane C if the dimension n is 
odd, or over the plane with the cut along the negative part of the imaginary axis if 
the dimension n is even (see [31-36]). The poles of the meromorphic continuation 

o form a sequence coj E C such that 

Imco ~  a s j ~ o o .  (23) 

Assumptions AS-1 and AS-2 provide the inequality 

Im coo < 0 for all j (24) 

and the decay (12), (13) of local energy of solutions to the linearized equation (see 
[31-36]). 

In (13) in the case of linear equations we may take c~ = a0 _ 6 > 0, where 
~o = mini] Im co~ while 6 > 0 may be chosen arbitrarily small. 

3. The function spaces and existence of solutions 

Let us denote by H s with an integer s > 0 the Sobolev space of vector-valued 
functions u ( x ) =  (ul(x)  . . . .  , ud(x)). Here Uk(X) are real-valued measurable func- 
tions, and the norm in H S is defined by 

d 
Ilu(x)ll ff = ~ ~ 5 IO2uj(x)12dx < oe. (25) 

j = l  I~l<s R" 

We also use the spaces H~oo with finite seminorms p[ u I[*,g, for each R > 0, defined 
similarly to (25): 

d 
Ilu(x)lF~R = Z Y, 5 l#~xUa(x)l 2 d x < ~ .  (26) 

j = l  I~]<s [xl<R 

Let us consider the Cauchy problem for equation (1): 

ii(x, t) = Au(x ,  t) - mZu(x,  t) + f ( x ,  u(x, t)), (x, t) ~ R "+1, 
(27) 

/Air=0 = U0(X), /J]t=0 = /'/1(X) for x e R". 

Let us introduce the phase space E for (1): 

Definition 3.1. E -= H 1 • H ~ is the space with the norm 

IP(u~ ul)ll~ = Ilu~ + Ilu 1110. (28) 
We introduce similarly the space Elo c = Hlloc • HI~ with corresponding finite 
seminorms as in (10): For  each R > 0, 

U 0 U 1 2 11( , )IIE, R ~ S [ - lu l (x ) [2  -~- [vb/O(x) 12 "~- ]U0(X)[2] dx. (29) 
Ixl<R 
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We define the Hamiltonian functional Yf on the phase space E for each 
(u ~ u 1) ~ E by an expression similar to (3): 

~(t~ ~ u 1) =- f[�89 2 q- llVu~ q- �89176 2 -4- g(x ,  u~ dx, (30) 

where V is the potential function with the property (16). 

Proposition 3.1. The Hamiltonian functional 2/f is (i) well defined on E, and (ii) a 
continuous function on E, endowed with the norm (28). 

This proposition is evident for n = 1 because of (20), and it follows from 
Remarks 3.1 and 5.1 below for the case n > 2. 

We seek a solution of problem (27) in the space g of functions "of finite energy": 

Definition 3.2. u(x, t) e g if 

(u(', t), fi(', t)) e C([0, oo); E). (31) 

We denote by gloc the similar space defined by (31) with Eloc instead of E. 
Let 

7,u - (u(., t), fi(-, t)) for t e R, u ~ d~ (32) 

We now formulate a result on existence and uniqueness of the solution to the 
Cauchy problem (27). 

Theorem 3.1. Let assumptions A1-A5 of Section 2 hold. Let  (u ~ u 1) ~ Eloc, and 

u~ -- S(x) = ul(x) -- 0 for Ix[ > b (33) 

with some b < oo. Moreover, let the distance H ( u~ - S ,  u 1) I[E between (u ~ u 1) and 
(S, O) be small enough. Then 
(i) The Cauchy problem (27) has a solution u(x, t) ~ gloo, and the solution is unique. 
(ii) Moreover, if  S(x) E H 1, then u(x, t) s g, and the energy conservation law holds: 

Jf(Ttu) =- const for t e R. (34) 

The proof will be given in Sections 4 and 5. It uses the well-known contraction 
mapping approach [24] (see also [23]) and the decay of local energy of solutions to 
the linearized equation. 

The remainder of this section is devoted to important technical lemmas which 
we need for the proof of Theorem 3.1. 

We rewrite problem (27) for a new unknown function v(x, t) = u(x, t) - S(x): 

b(x, t) = Av(x, t) - mZv(x, t) + f ( x ,  S(x) + v(x, t)) - f ( x ,  S(x)), x ~ R' ,  t > O, 

~oV = (v ~ vl), (35) 

where v~ --- u~ - S(x), and vl(x) ==_ ul(x). 
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Let us denote 

F(x, v) = f ( x ,  S(x) + v) - f ( x ,  S(x)) + q(x)v for (x, v) �9 R n x R e (36) 

where q(x) was defined in (8). Then by (36), (8) and (6) we have 

F(x, v) = O fxl > a. (37) 

Now (35) takes the form 

b(x, t) = Av(x, t) - m2v(x, t) - q(x)v(x, t) + F(x, v(x, t)), x �9 R", t > O, 

(38) 
7or  = (v ~ vl). 

We are interested in solution v(x, t) belonging to the space gloc. 
The following two lemmas are the main tools for the investigation of problem 

(38). 

Lemma 3.1. The map v ( x ) ~  F(x, v(x)) is bounded from Hlloo to H ~ and the 
followin9 inequalities are fulfilled: 

C( II v(x)II~,a + II V(X)II 1,a) / f  n = 2 or  3, 

I[ f ( x ,  v(x))IIo _-< f C t[ v(x)I[~,a /f n > 4, (39) 

B( II v(x)[I 2. ~)r[ v 112 /f n -- 1, 

where p = p(n) is defined in (18), a is defined in (6), and B( II v(x)II 1,a) is bounded for 
bounded [I v(x)II 1,a- 

Proof. (i) Let us consider first the case when n = 2 or 3. Then from (36) we get by 
assumptions A2 and A3 that  

IF(x, V)l ~ C([I)IP "]- [/)[2) for (x, v) �9 R 3 x R e. (40) 

Therefore, from (37) it follows that  

[]F(x,t,(x))]]o 2 =< C ~ [Iv(x)] p + Iv(x)]2] 2 dx 
Ixr<a 

Ix[ a I x l < a  

Hence from the Sobolev embedding theorem (19) we get 

liE(x, v(x))l/~ = < C(llvll~,~ + IIv ll~,~), 

which is equivalent to (39) when n = 2 or 3. 
(ii) Estimate (39) in the case n > 4 may be proved identically in virtue of the 

inequality 

I f ( x , v ) l < C l v l  p if n > 4 .  

The last inequality follows from A2, A3 and (36). 
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(iii) The case n = 1 may be considered similarly by using (20) instead of (19). 
Indeed, in this case we have the following estimate instead of (40). For  any 

B < oe, there exists a constant  C(B) such that  

Then  

[F(x, v)l <-_ C(B)lvl 2 if Ivl < B. 

IIF(x, v(x) llo ==_ (2a)1 /2C(  sup  Iv (x ) l )  sup  [v(x)[ 2. 
\lxl<a [x[<a 

Together  with (20) this estimate leads to the last of inequalities (39). [ ]  

Remark 3.1. The same method  leads to assertion (i) of P ropor t ion  3.1 for n > 2. 
Indeed, according to (2) we may  put  

V(x, u) =- ~ F(x, v) dr, (41) 
y 

where 7 is an arbi t rary smooth  path  in R a connecting points 0 and u (and the 
integral does not  depend on the choice of 7). 

Then  (16) follows from (6) and (15); moreover ,  by (17), 

[V(x,u)]<=C(l+]u[) p+I f o r ( x , u ) e R ' x R  a. (42) 

Hence the integral of V(x, u~ contained in (30) converges by the Cauchy integral 
inequality. Indeed (1 + [ u o (x)[)P 6 L 2 (B~) according to (19) and ( 1 + ]u o (x)[) e L 2 (B,). 

Lemma 3.2. The map v(x) ~ F(x, v(x)) is a Lipschitz map from H(oc to H ~ i.e.,for 
any vl, v2 ~ H~or 

II f ( x ,  v2(x)) - F(x, vl(x))Iio ~ ~c Ik vdx)  - vl(x)kl 1,a, (43) 

where K is bounded for bounded [] vjl]l,a,j = 1, 2 and ~c ~ 0  when ][vj[[1,a ~ 0 , j  = 1, 2. 

1 Proof.  Let vl, v2 ff Hlo  c. Then by the mean value theorem, 

]AF(x)[ - IF(x,/)2(x)) -- F(x, vl(x))[ == max ]F;(x, vl(x) + OAv(x))l'lAv(x)l, 
0<0~<1 

where Av(x) = Vz(X) - Vx(X), and 0 < 0 _< 1. 
Let  us consider first the case n > 2. Then  by H61der's inequality and by (37) we 

get 

I[AF(x)ll~ _-< max IF'(x, ~(x)) ][Av(x) IIL2p(B~ (44) 
0 <~ 0 <- 1 L2q(Ba) 

1 1 where ~ (x )=  vj (x)+ OAv(x),p is defined in (18), and q is defined by ~ + ~ =1.  
p 

Hence q - p_ 1. 
N ow from A2, A3 and (36) it follows that  

(C([vl p-1 +]v]) if n = 2  or 3, 
[F'(x,v)l < <[Clv] p-1 if n > 4. (45) 
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Hence  taking into account  that  I~(x)l ~ Iv~(x)l + Iv2(x)l, we get 

m a x  
0_<0<1  

[f~(x, ~(x))l < ~ C((Iva(x)l + Iv2(x)l) ~-1 + Ivl(x)l + Iv~(x)l) 
= ~. C(Ivl(x)l + Iv2(x)l) ~- 1 

if n = 2  or 3, 

if n > 4 .  

(46) 

Then  we take the 2q-power  of  bo th  sides (46), and integrate  over  the ball Ix[ < a: 

max  IF;(x, ~(x))12qdx 
B a O ~ O < -  i 

C ~ (Iv~(x)l z" + Iv2(x)l 2p + IVl(X)[ 2q + Iv~(x)12q)dx 
< Ix[<a 

= C ~ (Ivl(x)l 2p +[v2(x)12p)dx 
Ix[<a 

if n = 2  or 3, 

if n > 4 .  

(47) 

Since p > 2 and q = p _P z, it follows that  q < p. Hence  by the Sobolev embedding  
theorem (19) we get 

2q 
m a x  I f ;(x ,  ~(x))l 

0 <-- 0 <- 1 L 2q(Ba) 

2p 2p 2q 2q 
< C( I[ vx II 1,~ + II v2 II 1,~ + [I v~ II 1,o + II v2 II 1,a) 
= 2p 2p 

( C( II vl I[ 1,a -}- [I/)2 Iil,a) 

if n = 2 or  3, 
if n _> 4. (48) 

By the same Sobolev theorem,  

II Av(x)IILz,<B.> ~ C II Av(x)II 1,a. 

Hence  f rom (48) and  (44) we get (43) in the case n > 2. 
The  case n = 1 m a y  be considered similarly by using (20). 

(49) 

4. An integral equation and a contraction mapping 

In  this section we prove  assert ion (i) of  T h e o r e m  3.1. We have reduced the 
p rob lem (27) to the invest igat ion of (38). We rewrite (38) as the first-order system 

d 
dt Vtv = Avtv + J(TtV)' t > 0 ,  

~0/) = /30 
(50) 

for an unknown  function v(x, t )~  8~oc. The  no ta t ion  7tv was in t roduced in (32), 
Vo = (v ~ vl), and A denotes  the mat r ix  ope ra to r  

(0 
A =  - - H - - r n  z ' (51) 
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where H is the SchriSdinger operator (9). By J ( . )  we denote the vector-valued 
function 

J (Ttv) =- (0, F(" , v( . ,  t) ) ). (52) 

In (50) and everywhere below we treat all vectors 7tv, J(Ttv) . . . . .  as column 
vectors. 

I f J  - 0, then the system (50) is linear and has a unique solution v(x, t) e g~oc for 
each Vo e E [24], and, in fact, v(x, t) ~ g. We denote by U(t)  the group of linear 
operators in E, which map Vo ~ y,v, where v e g is the solution to the linear 
problem. 

For  u(x, t) ~ glo~ the system (50) is equivalent to the integral equation 

7,v = i U(t  -- ~)J(y~v) dz + U(t)Vo, t > 0. (53) 
0 

Indeed, if v e glow, then v( t) e C([0, oo); 1 ", Hloe)  , and hence J(Ttv)E C([0, oo); E) 
according to Lemma 3.2. Then (53) is equivalent to (50) according to the Duhamel 
principle for solutions to the nonhomogeneous linear systems with right-hand sides 
continuous with respect to t. Moreover, it follows from (53) that the solutions 
u(x, t) from d~ belong in fact to g. 

Now we are going to consider equation (53) only for [xl < a. Let us denote by 
P the operator of restriction which maps any function f ( x )  defined for x e R" to the 
same function with domain I xl < a. We introduce spaces H~a) - P H  ~, E(,) - P E  
with norms given by (26), (29) respectively, where R = a. Similarly, g(~) = Pglo~. 

For  any w = (w ~ w 1) e E(~) we consider J(w(x) )  as a function with domain R", 
which is equal to zero outside the ball I xl < a: 

F(O, w~ 
J(w~ wl)(x) - [0, 

Hence 

Ix I < a, 
(54) 

I x l > a .  

J(Pvo)(X) - J(vo(X)) for each Vo(X) e Eloc (55) 

due to (37) and (52). 
Now let us consider equation (53) in the ball [xl < a: 

7tw = i P U ( t  -- ~)J(7~w) d~ + PU(t)Vo,  t > 0, (56) 
0 

where w ~ d~(a). 
This equation is equivalent to (53). Indeed, let v e g be a solution to (53). Then 

applying the restriction operator P to both sides of (53) we get that w = Pv ~ g(a) is 
the solution to (56), because J(7 ,w)  -- J(7~v) according to (55). 

Conversely, let w ~ &(,) be the solution to (56). Then we define the correspond- 
ing solution v(x, t) ~ g to (53) by extension of w(x, t) for Ixl > R. Namely, we define 
y,v(x, t) as the right-hand side of (53) with y~w instead of 7~v in the integrand. Such 
a function ~v is equal to 7~w for Ix[ < a according to (56), and hence J(7,v) 
=-- J(7tw). Therefore the constructed function 7tv is a solution to (53). 
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We rewrite (56) as an equation for the vector-valued function z ( t )= 
(z~ zl (t)): 

z(t) = i PU(t - z)J(z(z))dz + PU(t)Vo, t > 0 (57) 
0 

with z e C(0, oo; E(,)). 
This equation is equivalent to (56), because from (57) it follows that 

zl(t) = i~ and therefore each solution to (57) may be written in the form 
z(t) ~ 7tw. Thus all equations (38), (50), (56), (57) are equivalent to one another, and 
we study (57) instead of (38). We are going to apply the contraction mapping 
theorem to the integral equation (57). 

Let ~ be the Banach space N = C([0, oo); E(,)) with the norm 

]lzlPe -- sup IIz(t)Jle~,,. (58) 
O<t<~ 

We denote by ~0 the ball in N of radius 6 with center at 0. 
Let us rewrite equation (57) in operator form as 

z = T (z) + r, (59) 

where T (z) is the integral term in the right-hand side of (57), while r - PU(t)Vo. 
We show that the contraction mapping theorem can be applied to (59) in the 

ball ~ with a small enough ~ > 0, if r e N~/2. For this purpose we use the results 
mentioned in the Introduction on the decay of local energy for the group U(t), 
corresponding to the linearized equation (7). These results can be formulated in the 
form of the following Proposition 4.1. 

Definition 4.1. For any b > 0 denote by E b the subspace of functions ~o(X) E E such 
that 

Oo(X) ~ 0 for Ixl ~ b. (60) 

Proposition 4.1 ([31-36]). Let assumptions AS-1 and AS-2 hold. Then for each 
R > 0 and for all ~o(X) ~ Eb, 

II U(t)t~o N~,R <--<_ CR,bp(t)II ~0 I]~,b for t > O, (61) 

where #(t) is defined in (13). 

As was mentioned in the Introduction, the estimate (61) (decay of local energy) 
for some classes of linear problems was obtained earlier by MORAWETZ, LAX, and 
PHILLIPS. 

Lemma 4.1. For 6 > 0  small enough and for any r ~ , V 2 ,  the operator 
Q : z ~ Tz + r is a contraction map from ~ to ~ .  
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Proof of Lemma 4.1. We first prove that the operator T maps N~ into N0/2 for 
6 > 0 small enough. Let us first check that for z e ~ we have 

t 

Tz( t )  =- I P U ( t  - z )J (z ( z ) )dz  e C(0, oo; E(,)). (62) 
0 

Indeed, from the inclusion z ~ e C([0, . 1 oo), H(,)) and from Lemma 3.2 it follows that 

J ( z ( ' ) )  e C([0, oo); E.). (63) 

Then (62) follows because the norms of the operators U(O in the space E are 
bounded for bounded t due to the usual energy estimates for linear equations. 

Now let z e -~0. Then from Lemma 3.1 and from (61) with R = a we get 

t 

II Tz l l .  <-<_ C sup S ~(t  - ~)(llz(v) ' II~,. + II z(~)IIg, o)& (64) 
t>O 0 

(where the quadratic term in the integrand may be omitted if n > 4). Hence 

}l Tz l}e  < C sup i I~(t - v) d'c(}}z}}~ + }1 z)}~) 
t > 0  0 

< C sup I~(s)ds(6 p + 62) < C S P(s)ds( 8p + 62) �9 (65) 
t>O 0 0 

So II Tz I1~ -5_ 6/2 for 6 > 0 small enough, because So #(s)ds < oo for each function 
# in (J3) and p > 1 for each n. 

Hence the operator Q transforms the ball N0 into itself if r e N0/2 and ~ > 0 is 
small enough. To prove Lemma 4.1 it remains to check that the operator Q is 
a contraction on N0 (for any r E N0/z and 6 > 0 small enough). 

If z l ,  zz e ~o ,  then 

t 

Qz2 - QZl = Tz2 - T z l  = S P U ( t  - ,c)[J(zz(z)) - J ( z l  (,c)) ] dz. 
0 

As in (64), (65) we thus get by Lemma 3.2 that 

t 

II Qz2 - Qzl  II~ < C sup S #( t  - r)JiJ(zz(z))  - J(zl(z))]}E, ,dz 
t>O 0 

Here tr ~ 0 as 6 --, 0 by Lemma 3.2, and hence Lemma 4.1 is proved. 

Now let us prove (i) of Theorem 3.1. First of all, we choose 6 > 0 so that the 
assertion of Lemma 4.1 holds. According to (33) and (61) with R = a we have 

II r II~ -= II P U ( O v o  lie ~ sup ]1 u( t )Vo  I]z,a 
t > 0  

< C sup tz(t){I Vo {IE,b < C li Vo II~,b < 6 /2  (66) 
t>O 
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if l] Vo II~,b is small enough. Let us consider problem (35) with initial data v0 e Elo~ 
satisfying the last inequality in (66). Then the map Q is a contraction in Na. Hence 
the equation (57) has a solution z e No, and this solution is unique in No. 

Equations (57), (56), (53), (50), (38) are equivalent to problem (27), and therefore 
assertion (i) of Theorem 3.1 is proved. 

5. Energy conservation law 

Let us prove the assertion (ii) of Theorem 3.1. 
From (53) and (52) it follows that the solution v e gloo to (35) constructed above 

belongs in fact to g. Hence u - v + S(x) also belongs to o ~, if S(x) ~ H 1. 
It remains to prove the energy conservation law (34). It is enough to establish 

(see [18]) the standard identity for the derivative of the potential energy, contained 
in (3): 

f dt V ( x , u ( x , t ) ) d x = -  f ( x , u ( x , t ) ) f i ( x , t ) d x ,  t >O 

for u ~ & To prove this let us write 

= Au(x, t) r(x, t) V(x, u(x, t + At))At - V(x, u(x, t)) V'(x, u(x, t)) At + At 

Here Au(x, t) - u(x, t + At) - u(x, t), and 

Jr(x, t)] < C[ r/,',(x, u(x, t) + O(x, t)Au(x, t))[(Au) 2, where 0 < O(x, t) < 1. (67) 

Since u ~ ~, we have V'(x, u(x, t)) = - f ( x ,  u(x, t)) E H ~ for each t > 0 by 
Lemma 3.1. Moreover Au/At -+ fi in H ~ as At -+ 0. 

Hence it remains to verify that 

f r(x, t) P=- A T -  dx ~ O  as A t e 0 .  (68) 

This may be proved as Lemma 3.2. In fact, by (67), 

< C~I  max f~,(x,u + OAu)l.]Au[. Au dx. P 
d 0<0<1 L ~  

Let n > 2. As in (44) we get 

< C max f2(x, ~) 'll Au IIL2p<8~ Au P (69) 
0 < 0 < 1 L2q (Ba) ~ t  L2 (Ba) 

where p = p(n), q = v p- 1, ~ = u + OAu. Now as in (48) and (49) we respectively obtain 

max f : (x ,  ~) < B (  sup I[u( ' ,  "is) l[1,a~; (70) 
0<0< I L2q(Ba) \ t < ~ < t + A t  / 

I[ Au r/L=p(Ba~ =< C II Au/I,,o, (71) 

where the function B -- B(s) in the right-hand side of(70) is bounded for bounded s. 
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Let us take into account that II Au II 1,a--+ 0 and I[ Au/AtIIL2wa)is bounded as 
At ~ 0 for u ~ g. Then (68) follows from (69) in virtue of (70) and (71). 

The case n = 1 may be considered similarly by using (20). 
Assertion (ii) of the Theorem 3.1 is proved, and therefore the proof of Theorem 

3.1 is complete. 

Remark 5.1. By the same H61der estimates used in this section, one may check 
assertion (ii) of Proposition 3.1. 

Let us note that it is also possible to prove the energy conservation law (34) in 
the same way as in [18], where only property (63) of the nonlinear term is used. 

6. Asymptotic stability of stationary solutions 

Now we formulate the main result on the asymptotic stability of a stationary 
solution to (1). 

Theorem 6.1. Let  all the assumptions A1-A5 and (33) of Theorem 3.1 hold, and let 
u(x, t) ~ g be a solution to the Cauchy problem (27). Then for any b > 0 there exists 
an 8 = e(b) such that for each R > 0 

117,(u - S) I[E,R _--< CR, b#(t) llTo(U -- S) IIE, b for t > 0 (72) 

/f 117o(U - S)l[~,b =< e. Here b > 0 is the parameter defined in (33). 

Proof. We introduce a new unknown function h(t) ~ C(O, co; E) by the identity 

7t(u - S) =- 7tv = #(t)h(t). (73) 

Then (72) is equivalent to the boundedness of h(t) in Eloc, i.e., for any R > 0, 

[Ih(t)lle, R <-_ CR, bl[~o(U -- S)l[e,~ for t > 0. 

Let us substitute 7tv =- #(t)h(t)  into (53). Then we get 

t 
h(t) = # 1(0 [. U ( t -  z)J(#(z)h(z))dz + # - l ( t )U( t )Vo ,  t > O. 

0 

Therefore from (12) and Lemma 3.1 we derive 

t 

[I h(t)I[E,R <= CR, b# - l ( t )  [. #(t  -- Z)(#P(z)[I h(z) p II~,a + #2(z) II h(z)112,.) dz 
0 

+ CR, bllVo[IE,b, t > 0 (74) 

(the second term in the integrand may be omitted in the case n => 4). 
Let us denote pR(S) =-- maxo_<~_<s [] h(t)[le, R and p(s) = p~(s). Inequality (74) 

leads to 

pR(S) =< CR, b(mp(s)p'(s) + m2(s)p2(s) + II Vo Ilk, b), s >_- 0. (75) 
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Here we denote 

mv(s ) = max /~-l(t) i #(t - z)#P(z)dz. 
O<_t<s 0 

One can easily check that for any p > 1, 

mp(s) < C v < ~ f o r s > 0 .  (76) 

This is a crucial point of the proof. From here and (75) with R = a it follows that 

p(s) <= K(pP(s) q- p2(s) + II Vo liE, b), s _--> O, (77) 

where K > 0 is a constant. 
Let us show that p(s) is bounded if [I Vo II~,b is small enough. We choose e > 0 

such that 

K(((2 + K ) e )  p q- ((2 + K ) e )  2 q- 8) =< (1 q- K)~, (78) 

The existence of such an ~ is obvious. Let II Vo IIE, b =< e. Since/~(0) = 1, relation (73) 
leads to the following estimate: p(0) _-< e. Now from (77) and (78) it follows that the 
inequality p(s) < (2 + K)e leads to p(s) <__ (1 + K)e. Since function p(s) is continu- 
ous and p(0) < e < (1 + K)e, it follows that p(s) < (1 + K)e for all s > 0. The 
boundedness of p(s) gives the boundedness of pR(S) due to (75). The proof of 
Theorem 6.1 is completed. 

Remark 6.1. Asymptotic stability of solutions u(x, t) to equation (1) is absent in the 
phase space E endowed with norm (28). Indeed, we may take 7oUe E with 
II SoU - (S, 0)liE arbitrarily small, but at the same time we may provide 

.Yt~(),oU) + ~ ( S ,  0) (79) 

(we may choose for instance u~ ~ S(x) with I[ u I [11 being very small and + 0). 
Then by Theorem 3.1 there exists the corresponding solution u ~ & However, the 
convergence [ lT tu-  (S, 0)][e ~ 0  as t ~ o o  is impossible due to (79), (34) and to 
assertion (ii) of Proposition 3.1. 

7. Asymptotic expansion for solutions to the nonlinear 
three-dimensional wave equation 

In this section we consider the equation (1) in the case when n = 3 and m = 0, 
and we assume, in addition to assumptions A1-A5 listed in Section 2, that the 
following new one is fulfilled. 
A6. The nonlinear termf(x ,  u) in (1) is a polynomial in u of degree no more than 3: 

f ( x ,  u) = ~ fo(x)u p for (x, u) ~ (R n x Rd). (80) 
I/~[ =< 3 
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Here fl = (fin . . . .  , rid), where fik > 0 are integers, [fi[ = fll + " " " + fla, and as 
usual 

d 

= FI @.  (81) 
1 

Remark 7.1. (i) It  follows from our  assumptions (15) and (6) that  for each fl 

f~(x) E C ~ ( R  ") | R e, f~(x) = 0 for Ixl = a. (82) 

(ii) By our  main assumptions AS-1 and AS-2 the t runcated resolvent Rz(0) 2) of the 
linearized equat ion has a meromorph ic  cont inuat ion with respect to co in the whole 

o of  the continua- complex plane (see assertion (iii) of Remark  2.3), and the poles 0)j 
t ion fit (23), (24): 

0 0 > Im 0)~ --+ - oo as j ~ c~. (83) 

o with positive Definition 7.1. The sequence 0)k is the set of all finite sums of the 0)~ 
integer coefficients, ordered as follows: 

Then by (83), 

0 > I m 0 ) l  > I m o ) 2 >  . . .  

0 > I m  0)k -+ --C~ as k -+ oo. 

o o and similarly ~k -- -- Im Oak. We use the nota t ion  c~j - - Im co t 
The main  result of  the section is the following theorem: 

(84) 

(85) 

Theorem 7.1. Let all the assumptions A1-A6 hold, and let e =- e(b) > 0 be the number 
from the conclusion of Theorem 6.1. Let relations (33) be fulfilled and 

1 1 7 0 ( u  - < ~. (86) 

Then for each M = O, 1, 2 . . . .  the solution u(x, t) admits the asymptotic expansion 

M r k 

u(x, t) - S(x) = ~ ~ ag,~(x)V e x p ( -  iCOkt) + pM(X, t) (87) 
k=l  r=0 

Here the rk are integers, rk < oo, ak,r(x) ~ C~ and the remainder term pM(X, t) in 
(87) has the following estimate: For each R, 6 > O, 

[]7tPMIIE, R = o(exp((--  aM+ 1 § c~)t) as t ~ +oo. (88) 

Proof.  We prove the theorem by induct ion on M. For  M = 0 the expansion is 
given by Theorem 6.1. Indeed, f rom the last assertion of Remark  2.3 it follows that  
#(t) in the basic estimate (61) has the form e x p ( - a t )  with e = c~ ~ - 6 > 0 and 
arbitrarily small ~ > 0. Hence we may  take the same #(t) in (72), and so we get (87), 
(88) for M = 0. 

Let us assume that  (87) holds for some value of M = L > 1. We then prove (87) 
for M = L + 1. We may  perform the transfer with the help of the following 
refinement of  Propos i t ion  4.1. 
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Proposition 7.1 (VAINBERG [-31, 32, 34-36]). Let assumptions AS-1 and AS-2 hold. 
Then for each M > 0 the following expansion is valid: 

M o 

U(t) = ~ ~ Aa, f e x p ( -  ico~ + Qv(t) for t > 0. (89) 
j = l  r=0 

Here, j, r, r ~ < c~ are integers; the A j,~ are bounded operators from Eb to Elor and the 
remainder term Qm(t) is rapidly decreasing: For each R, b, 3 > 0 and for all 
4Jo(X) �9 E~, 

[IY,QMOO[[e,R<CR,bexp((--~O+I+a)t)D[OoIKE f o r t > O .  (90) 

Remark 7.2. (i) The main terms in (89) are residues of Rz((D 2) e x p ( -  icot) (where 
0 Rx(2 ) is the meromorphic continuation of the truncated resolvent) at poles co = co j ,  

and the r ~ + 1 are orders of the poles. 
(ii) Under some other assumptions expansion (89) was obtained earlier by 

MORAWETZ, LAX and PHILLIPS [17-193. 

Now let us perform the transformation M = L ~ M = L + 1 in (87). For  this 
purpose we substitute expansion (87) with M = L for v and expansion (89) with 
M = L + 1 for U in the right-hand side of the Duhamel representation (53). We are 
going to get the expansion (87) with M = L + 1 from this representation. 

Indeed, all exponential terms are evident. We need only to verify the estimates 
for all remainder terms. This is possible by (80), (82), (21) and the following lemma. 

Lemma 7.1. There exist finite constants C 2 and C3 such that for v~(x)�9 Hi(R3), 
i =1,2 ,  3, 

[I V l (X)V 2 (X)[I H ~ (R 3) ~ C2 ]1 v l (x)11H 1(R3)I] V2 (X)II/_/1 (R3), (91) 

and similarly 

[I UI(X)V2(X)V3(X)HH~ 3) C2 Pr fl v2(x)11.1<.3, II v3(x)I]//1(R3). (92) 

The proof follows easily from the H61der inequality and the Sobolev imbedding 
theorem (19) with n = 3 and p = 3. 

We now expose the transformation M ~ M + 1 in detail in the case when 
.o = 0. The general case of arbitrary M and r ~ is M = 0 and all poles are simple, i.e., ~ j 

very similar. 
o = 0 ) :  So let us write (89) for M = 1 (with all rj 

U(t) = A l e x p ( -  ioo~ + Ql(t) for t > 0. (93) 

Substituting this expansion into (53), we get 

t 
~tv = A1Vo e x p ( -  ico~ + QI (t)Vo + e x p ( -  leo~ ~ exp(ico%) A 1 (0, f ( . ,  v(., r))) dr 

0 

+ i Ql(t - r)(0, F ( ' ,  v( ' ,  z))) dr for t > 0. (94) 
0 
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Hence we have the desired expansion (87) with M = 1: 

7tv = a l , o ( x ) e x p ( -  ico~ + p~(x, t) for t > 0, 

where 

(95) 

0o 
aa,o(X) = Alvo + ~ exp(i~o~ AI(0, F(- ,  v( ' ,  r))) dr, (96) 

0 

pl(x, t) = Ql(t)Vo - e x p ( -  ico~ S exp(io)~ AI(0, F(- ,  v(.,  r)))dz 
t 

t 

+ ~ Ql(t - r)(O, F( ' ,  v(',  v))) dz for t > 0. (97) 
0 

It remains only to verify estimate (88), which in our case has the form 

1[TtPl[I~,R = o(exp((--~2 + 6)t)) as t ~  +o% (98) 

with e2 = min(e ~ 2c~~ 
Let us estimate each term in the right-hand side of (97) separately. First we get 

from (90) for each 6 > 0 that 

]lQl(t)VO[lE, R = o(exp( ( -  s ~ + 6)t)) as t ~  +Go. (99) 

Further, from (36) it follows that F(x, v) is a polynomial in v which consists of 
monomials of order 2 and 3 only. Then from the induction assumption (i.e., (88) 
with M = 0) we get by Lemma 7.1 that 

1[ (0, F ( ' ,  v(., r)))]l~,a = o ( exp ( -  2(e ~ + 6)t)) as t ~ + oo. (100) 

Since the operator A ~ : Eb --, Eloo is bounded, it follows from (100) that 

e x p ( -  ico~ S exp(iog~) A1 (0, F ( ' ,  v(.,  ~))) dr = o ( e x p ( -  2(c~ ~ + ~)t)) 
0 E ,R 

as t ~ + oo. (101) 

Finally from (90) with M = 0 and (100) we get the following estimate for the last 
summand in (97): 

iQ l ( t -~ ) (O ,F( ' , v ( ' ,~ ) ) )d~  =o(exp(-(c~~ ast---, +oo. (102) 
0 E , R  

Estimate (98) then follows from (97), (99), (101), (102). 
This completes the proof of Theorem 7.1. 

Remark 7.3. It is easy to see by induction that the set of frequencies {ok} is an 
0 additive semigroup, generated by the poles coj. 
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