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Abstract. We consider the Dirac equation in R3 with a potential, and study
the distribution µt of the random solution at time t ∈ R. The initial measure
µ0 has zero mean, a translation-invariant covariance, and a finite mean charge
density. We also assume that µ0 satisfies a mixing condition of Rosenblatt-
or Ibragimov – Linnik-type. The main result is the long time convergence of
projection of µt onto the continuous spectral space. The limiting measure is
Gaussian.

Keywords: Dirac equation, random initial data, mixing condition, Gaussian mea-

sures, covariance matrices, characteristic functional, scattering theory

AMS Subject Classification: 35Q41, 47A40, 60F05

1. Introduction

This paper can be considered as a continuation of our papers [5–8,11] which
concern the long time convergence to equilibrium distribution for the linear
wave, Klein –Gordon and Schrödinger equations.

The convergence should clarify the distinguished role of the canonical Max-
well –Boltzmann – Gibbs equilibrium distribution in statistical physics. One of
fundamental examples is the Kirchhoff – Planck black body radiation law which
specify the equilibrium distribution for the Maxwell equations, and served as a
basis for creation of quantum mechanics. The law likely should be correlation
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function of limiting equilibrium measure for coupled Maxwell – Schrödinger or
Maxwell –Dirac equations.

Our ultimate goal would be the proof of the convergence for nonlinear hyper-
bolic PDEs. At the moment, a unique result in nonlinear case has been proved
by Jaksic and Pillet for wave equation coupled to a nonlinear finite dimensional
Hamiltonian system [12].

The main peculiarity of the problem is the time-reversibility of dynamical
equations. For infinite particle systems this difficulty was discussed in Boltz-
mann – Zermelo debates (1896–1897). Many attempts were made to deduce the
convergence from an ergodicity for such systems by H. Poincaré, G. Birkhoff,
A. Hinchin, and many others. However, the ergodicity is not proved until now.

In 1980 R. Dobrushin and Yu. Suhov have introduced a totally new idea for
obtaining the convergence to equilibrium measures imposing a mixing condition
on initial distributions [4] in the context of infinite particle systems.

We develop this approach for hyperbolic PDEs. In [5–8, 10, 11] the conver-
gence to equilibrium distributions has been proved for the linear wave, Klein –
Gordon and Schrödinger equations with potentials, for the harmonic crystal,
and for the free Dirac equation. The initial distribution are translation invari-
ant and satisfy the mixing condition of Rosenblatt or Ibragimov – Linnik type.

Here we consider the linear Dirac equation with the Maxwell potentials
in R3:{

iψ̇(x, t) = Hψ(x, t) :=
[− iα · ∇+ βm+ V (x)

]
ψ(x, t)

ψ(x, 0) = ψ0(x)

∣∣∣∣ x ∈ R3, (1.1)

where ψ(x, t) ∈ C4, m > 0 and α = (α1, α2, α3). The hermitian matrices β = α0

and αk satisfy the following relations:
{
α∗k = αk

αkαl + αlαk = 2δklI

∣∣∣∣ k, l = 0, 1, 2, 3, 4.

The standard form of the Dirac matrices αk and β (in 2× 2 blocks) is

β =
(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
(k = 1, 2, 3), (1.2)

where I denotes the unit matrix, and

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

We assume the following conditions:

E1. The potential V ∈ C∞(R3) is a hermitian 4× 4 matrix function such that

|∂αV (x)| ≤ C(α)〈x〉−ρ−|α|, 〈x〉σ = (1 + |x|2)σ/2 (1.4)

with some ρ > 5.
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E2. The operator H presents neither resonance nor eigenvalue at thresholds.

Under the condition E2 the operator H has a finite set of eigenvalues
ωj ∈ (−m,m), j = 1, . . ., N with the corresponding eigenfunctions ζ1

j , . . ., ζ
kj

j ,
where kj is the multiplicity of ωj . Denote by Pj the Riesz projection onto the
corresponding eigenspaces and by

Pc := 1− Pd, Pd =
∑

j

Pj (1.5)

the projections onto the continuous and discrete spectral spaces of H.
We fix an arbitrary δ > 0 such that 5 + δ < ρ and consider the solutions

ψ(x, t) ∈ C4 with initial data ψ0(x) which are supposed to be a random element
of the weighted Sobolev space H = L2

−5/2−δ, see Definition 2.1 below. The
distribution of ψ0 is a Borel probability measure µ0 on H with zero mean satis-
fying some additional assumptions, see Conditions S1–S3 below. Denote by µt,
t ∈ R, the measure on H, giving the distribution of the random solution ψ(t) to
problem (1.1). We identify the complex and real spaces C4 ≡ R8, and ⊗ stands
for the tensor product of real vectors. The correlation functions of the initial
measure are supposed to be translation-invariant:

Q0(x, y) := E
(
ψ0(x)⊗ ψ0(y)

)
= q0(x− y), x, y ∈ R3. (1.6)

We also assume that the initial mean charge density is finite:

e0 := E
∣∣ψ0(x)

∣∣2 = tr q0(0) <∞, x ∈ R3. (1.7)

Finally, we assume that the measure µ0 satisfies a mixing condition of a Rosen-
blatt- or Ibragimov – Linnik type, which means that

ψ0(x) and ψ0(y) are asymptotically independent as |x− y| → ∞. (1.8)

Let P ∗c µt denote the projection of µt onto the space Hc := PcH. Our main
result is the (weak) convergence of P ∗c µt to a limiting measure ν∞,

P ∗c µt ⇁ ν∞, t→∞, (1.9)

which is an equilibrium Gaussian measure on Hc. A similar convergence holds
for t→ −∞ since our system is time-reversible.

The convergence (1.9) for the free Dirac equation with V (x) ≡ 0 has been
proved in [8]. The case of the perturbed Dirac equation with V 6= 0 requires
new constructions due to the absence an explicit formula for the solution. To
reduce the case of perturbed equation to the case of free equation we formally
need a scattering theory for the solutions of infinite global charge. We manage
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a dual scattering theory for finite charge solutions to avoid the infinite charge
scattering theory:

PcU
′(t)φ = U ′0(t)Wφ+ r(t)φ, t ≥ 0. (1.10)

Here U ′0(t) and U ′(t) are a ’formal adjoint’ to the dynamical groups U0(t) and
U(t) of the free equation with V ≡ 0 and equation (1.1) with V 6= 0 respectively.
The remainder r(t) is small in the mean:

E
∣∣〈ψ0, r(t)φ

∣∣2 −→ 0, t→∞. (1.11)

where 〈·, ·〉 is defined in (2.9). This version of scattering theory is based on the
weighted energy decay established in [2].

2. Main results

2.1. Well posedness

Definition 2.1. For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R3,C4) the weighted
Sobolev spaces with the finite norms

‖ψ‖Hs
σ

= ‖〈x〉σ〈∇〉sψ‖L2 <∞.

We set L2
σ = H0

σ. Note, that the multiplication by V (x) is bounded operator
L2

σ → L2
σ+ρ. The finite speed of propagation for equation (1.1) implies

Proposition 2.1.

i) For any ψ0 ∈ L2
−σ with 0 ≤ σ ≤ ρ there exists a unique solution ψ(· , t) ∈

C(R, L2
−σ) to the Cauchy problem (1.1).

ii) For any t ∈ R, the operator U(t) : ψ0 7→ ψ(·, t) is continuous in L2
−σ.

Proof. Fist, consider the free Dirac equation:
{
χ̇(x, t) = H0χ(x, t) = (−α · ∇ − iβm)χ(x, t), x ∈ R3,

χ(x, 0) = ψ0(x).
(2.1)

Let s ∈ R and ψ0 ∈ L2
s. In the Fourier space the solution to (2.1) reads

χ̂(k, t) = ei(α·k−βm)t ψ̂0(k).

Since ψ̂0 ∈ Hs then χ̂(·, t) ∈ Hs and the bounds hold

‖χ(·, t)‖L2
s

= C‖χ̂(·, t)‖Hs ≤ Cs(t)‖ψ̂0‖Hs ≤ C ′s(t)‖ψ0‖L2
s
. (2.2)
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Now consider perturbed equation (1.1). Let 0 ≤ σ ≤ ρ and ψ0 ∈ L2
−σ. We

seek the solution to (1.1) in the form

ψ(x, t) = χ(x, t) + φ(x, t), (2.3)

where χ(t) = U0(t)ψ0 ∈ L2
−σ is the solution to free equation (2.1), and

φ̇(x, t) = Hφ(x, t) + V χ(x, t), φ(x, 0) = 0. (2.4)

Since φ(0) = 0 and V χ ∈ L2 then there exists the unique solution φ(t) ∈ L2

to (2.4) which is given by Duhamel representation:

φ(t) =

t∫

0

U(t− τ)V χ(τ) dτ.

Finally, by charge conservation for the Dirac equation we obtain

‖U(t− τ)V χ(τ)‖L2
−σ
≤ ‖U(t− τ)V χ(τ)‖L2 = ‖V χ(τ)‖L2

≤ C‖χ(τ)‖L2
−ρ
≤ C‖χ(τ)‖L2

−σ
<∞.

2

2.2. Random solution. Convergence to equilibrium

Let (Ω,Σ, P ) be a probability space with expectation E and B(H) denote
the Borel σ-algebra in H. We assume that ψ0 = ψ0(ω, ·) in (1.1) is a measurable
random function with values in (H, B(H)). In other words, (ω, x) 7→ ψ0(ω, x)
is a measurable map Ω × R3 → C4 with respect to the (completed) σ-algebras
Σ× B(R3) and B(C4). Then, owing to Proposition 2.1, ψ(t) = U(t)ψ0 is again
a measurable random function with values in (H,B(H)). We denote by µ0(dψ0)
a Borel probability measure in H giving the distribution of the random func-
tion ψ0. Without loss of generality, we assume (Ω,Σ, P ) = (H,B(H), µ′) and
ψ0(ω, x) = ω(x) for µ0(dω)× dx-almost all (ω, x) ∈ H × R3.

Definition 2.2. µt is a probability measure on H which gives the distribution
of ψ(t):

µt(B) = µ0(U(−t)B), ∀B ∈ B(H), t ≥ 0. (2.5)

Denote by P ∗c µt the projection of measure µt onto Hc = PcH:

P ∗c µt(B) = µt(P−1
c B), ∀B ∈ B(Hc), t ≥ 0. (2.6)
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Our main goal is to derive the weak convergence of P ∗c µt in the Hilbert space
PcH

−ε
−σ for any ε > 0, and σ > 5/2 + δ:

P ∗c µt

PcH−ε
−σ−⇁ ν∞, as t→∞, (2.7)

where ν∞ is a Borel probability measure on PcH
−ε
−σ. By definition, this means

the convergence
∫
f(ψ)P ∗c µt(dψ) −→

∫
f(ψ) ν∞(dψ), as t→∞ (2.8)

for any bounded and continuous functional f(ψ) in PcH
−ε
−σ.

Set

Rψ ≡ (Reψ, Imψ) = {Reψ1, . . . ,Reψ4, Imψ1, . . . , Imψ4}
for ψ = (ψ1, . . . ψ4) ∈ C4 and denote by Rjψ the jth component of the vector
Rψ, j = 1, . . ., 8. The brackets (·, ·) mean the inner product in the real Hilbert
spaces L2 ≡ L2(R3), in L2 ⊗ RN , or in some their different extensions. For
ψ(x), φ(x) ∈ L2(R3,C4), write

〈ψ, φ〉 := (Rψ,Rφ) =
8∑

j=1

(Rjψ,Rjφ). (2.9)

Definition 2.3. The correlation functions of the measure µ0 are defined by

Qij
0 (x, y) ≡ E

(Riψ0(x)Rjψ0(y)
)

for almost all x, y ∈ R3, i, j = 1, . . ., 8,
(2.10)

provided that the expectations in the right-hand side are finite.

Denote by D the space of complex-valued functions in C∞0 (R3) and write
D := [D]4. For a Borel probability measure µ denote by µ̂ the characteristic
functional (the Fourier transform)

µ̂(φ) ≡
∫

exp(i〈ψ, φ〉)µ(dψ), φ ∈ D.

A measure µ is said to be Gaussian (with zero expectation) if its characteristic
functional is of the form

µ̂(φ) = exp
{
− 1

2
Q(φ, φ)

}
, φ ∈ D,

where Q is a real nonnegative quadratic form on D. A measure µ on H is said
to be translation-invariant if

µ(ThB) = µ(B), B ∈ B(H), h ∈ R3,

where Thψ(x) = ψ(x− h), x ∈ R3.
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2.3. Mixing condition

Let O(r) be the set of all pairs of open bounded subsets A,B ⊂ R3 at the
distance not less than r, dist (A,B) ≥ r, and let σ(A) be the σ-algebra in H
generated by the linear functionals ψ 7→ 〈ψ, φ〉, where φ ∈ D with suppφ ⊂ A.
Define the Ibragimov – Linnik mixing coefficient of a probability measure µ0

on H by the rule (cf. [9, Def. 17.2.2])

ϕ(r) ≡ sup
(A,B)∈O(r)

sup
A∈σ(A),B∈σ(B)

µ0(B)>0

|µ0(A ∩B)− µ0(A)µ0(B)|
µ0(B)

. (2.11)

Definition 2.4. We say that the measure µ0 satisfies the strong uniform Ibra-
gimov –Linnik mixing condition if

ϕ(r) −→ 0 as r →∞. (2.12)

We specify the rate of decay of ϕ below (see Condition S3).

2.4. Main assumptions and results

We assume that the measure µ0 has the following properties S0–S3:

S0 µ0 has zero expectation value,

Eψ0(x) ≡ 0, x ∈ R3.

S1 µ0 has translation invariant correlation functions,

Qij
0 (x, y) ≡ E

(Riψ0(x)Rjψ0(y)
)

= qij
0 (x− y), i, j = 1, . . ., 8 (2.13)

for almost all x, y ∈ R3.

S2 µ0 has finite mean charge density, i.e. eqn (1.7) holds.

S3 µ0 satisfies the strong uniform Ibragimov – Linnik mixing condition, with

∞∫

0

r2ϕ1/2(r) dr <∞. (2.14)

Remark 2.1. The examples of measures on L2
loc(R3) satisfying properties S0–S3

have been constructed in [5] (see §§2.6.1-2.6.2). The measures on L2
−σ with any

σ > 3/2 can be construct similarly.
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Introduce the following 8× 8 real valued matrices (in 4× 4 blocks)

Λ1 =
(
α1 0
0 α1

)
, Λ2 =

(
0 iα2

−iα2 0

)
, (2.15)

Λ3 =
(
α3 0
0 α3

)
, Λ0 =

(
0 −β
β 0

)
.

Note that ΛT
k = Λk, k = 1, 2, 3, ΛT

0 = −Λ0. Write

Λ = (Λ1,Λ2,Λ3), P = Λ · ∇+mΛ0. (2.16)

For almost all x, y ∈ R3, introduce the matrix-valued function

Q∞(x, y) ≡ (
Qij
∞(x, y)

)
i,j=1,...,8

=
(
qij
∞(x− y)

)
i,j=1,...,8

. (2.17)

Here

q̂∞(k) =
1
2
q̂0(k)− 1

2
P̂(k)P̂ (k)q̂0(k)P̂ (k), (2.18)

P̂ (k) = −iΛ · k+mΛ0, P̂(k) = 1/(k2 +m2), and q̂0(k) is the Fourier transform
of the correlation matrix of the measure µ0 (see 2.13). We formally have

q∞(z) =
1
2
q0(z) +

1
2
P ∗ Pq0(z)P (2.19)

where P(z) = exp{−m|z|}/(4π|z|) is the fundamental solution for the operator
−∆ +m2, and ∗ stands for the convolution of distributions.

Lemma 2.1. Let conditions S0, S2 and S3 hold. Then

q0 ∈ Lp(R3), p ≥ 1. (2.20)

Proof. Conditions S0, S2 and S3 imply (cf. [9, Lemma 17.2.3]) that
∣∣qij

0 (z)
∣∣ ≤ Ce0ϕ

1/2(|z|), z ∈ R3, i, j = 1, . . ., 8.

The mixing coefficient ϕ is bounded, hence

∫ ∣∣qij
0 (z)

∣∣p dz ≤ C

∫
ϕp/2(|z|) dz ≤ C1

∞∫

0

r2ϕ1/2(r) dr <∞

by (2.14). 2
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Lemma 2.1 with p = 2 imply that q̂0 ∈ L2. Hence, q̂∞ ∈ L2 by (2.18),
and q∞ also belongs to L2 by (2.19).

Denote by Q∞ a real quadratic form on L2 defined by

Q∞(φ, φ) ≡ (
Q∞(x, y),Rφ(x)⊗Rφ(y)

)

=
8∑

i,j=1

∫

R3×R3

Qij
∞(x, y)Riφ(x)Rjφ(y) dx dy.

Corollary 2.1. The form Q∞ is continuous on L2 because q̂0(k) and then
q̂∞(k) are bounded by Lemma 2.1 and formula (2.18).

Our main result is the following:

Theorem 2.1. Let m > 0, and let conditions E1–E2, S0–S3 hold. Then

i) the convergence in (2.7) holds for any ε > 0 and σ > 5/2 + δ;

ii) the limiting measure µ∞ is a Gaussian equilibrium measure on Hc;

iii) the characteristic functional of ν∞ is of the form

ν̂∞(φ) = exp
{
− 1

2
Q∞(Wφ,Wφ)

}
, φ ∈ D,

where W : D → L2 is a linear continuous operator.

2.5. Remark on various mixing conditions for initial measure

We use the strong uniform Ibragimov – Linnik mixing condition for the sim-
plicity of our presentation. The uniform Rosenblatt mixing condition [13] with
a higher degree > 2 in the bound (1.7) is also sufficient. In this case we assume
that there exists an ε, ε > 0, such that

sup
x∈R3

E|ψ0(x)|2+ε <∞.

Then condition (2.14) requires the following modification:

∞∫

0

rαp(r) dr <∞, p = min
( ε

2 + ε
,
1
2

)
,

where α(r) is the Rosenblatt mixing coefficient defined as in (2.11), but without
the denominator µ0(B). The statements of Theorem 2.1 and their proofs remain
essentially unchanged.
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3. Free Dirac equation

Here we consider the free Dirac equation (2.1). We have

(∂t − α · ∇ − iβm)(∂t + α · ∇+ iβm) = ∂2
t −∆ +m2.

Then the fundamental solution G(x, t) of the free Dirac operator reads

Gt(x) = (∂t − α · ∇ − iβm)Et(x), (3.1)

Et(x) is the fundamental solution of the Klein –Gordon operator ∂2
t −∆ +m2:

Et(x) = F−1
k→x

sinωt
ω

, ω = ω(k) =
√
|k|2 +m2. (3.2)

Using the notations (2.15) and (2.16), we obtain in real form

Rχ(t) = Gt ∗ Rψ0, Gt = (∂t − P )Et. (3.3)

The convolution exists since the distribution Et(x) is supported by the ball
|x| ≤ t. Now we derive an explicit formula for the correlation function

Qt(x, y) = qt(x− y) = E
(Rχ(x, t)⊗Rχ(y, t)

)
. (3.4)

Lemma 3.1 (cf. [8], formula (4.6)). The correlation function Qt(x, y) reads

Qt(x, y) = qt(x− y) (3.5)

= F−1
k→x−y

[1 + cos 2ωt
2

q̂0(k)− sin 2ωt
2ω

(
q̂0(k)P (k)− P (k)q̂0(k)

)

− 1− cos 2ωt
2ω2

P (k)q̂0(k)P (k)
]
.

Proof. Applying the Fourier transform to (3.3) we obtain

R̂χ(k, t) = Ĝt(k)R̂ψ0(k) =
(

cosωt− P̂ (k)
sinωt
ω

)
ψ̂0(k). (3.6)

By translation invariance condition (2.13) we have

E
( R̂ψ0(k)⊗ R̂ψ0(k

′)
)

= Fx→k,y→k′q0(x− y) = (2π)3δ(k − k′)q̂0(k).

Then (3.6) implies that

E
( R̂χ(k, t)⊗ R̂χ(k′, t)

)
= (2π)3δ(k − k′)Ĝt(k)q̂0(k)Ĝ∗t (k).

Therefore,

q̂t(k) = Ĝt(k)q̂0(k)Ĝ∗t (k) =
(

cosωt− P̂ (k)
sinωt
ω

)
q̂0(k)

(
cosωt+ P̂ (k)

sinωt
ω

)

since P̂ ∗(k) = −P̂ (k). Hence (3.5) follows. 2
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Corollary 3.1. For any z ∈ R3 the convergence holds

qt(z) −→ q∞(z), t→∞

where q∞(z) is defined in (2.19).

Proof. The convergence follows from (3.5) since the integrals with the oscillatory
functions converge to zero. 2

Below we will need the following lemma:

Lemma 3.2. Let conditions S0–S3 hold. Then for any σ > 3/2 the bound
holds

sup
t≥0

E
∥∥χ(·, t)

∥∥2

L2
−σ

<∞. (3.7)

Proof. Denote
et(x) := E|χ(x, t)|2, x ∈ R3.

The mathematical expectation is finite for almost all x ∈ R3 by (2.2) with
s = −σ and the Fubini theorem. Moreover, et(x) = et for almost all x ∈ R3

by S1. Formula (3.5) implies

qt(0) =
1

(2π)3

∫ [
cos2(ωt)q̂0(k)− sin 2ωt

2ω
(
q̂0(k)P (k)− P (k)q̂0(k)

)

− sin2 ωt

ω2
P (k)q̂0(k)P (k)

]
dk. (3.8)

Then et = tr qt(0) ≤ Ce0. Hence for σ > 3/2 we obtain

E
∥∥χ(·, t)

∥∥2

L2
−σ

= et

∫
(1 + |x|2)−σ dx ≤ C(ν)e0

and then (3.7) follows. 2

We will use also the following result:

Proposition 3.1 (see Proposition 2.8 of [8], Proposition 3.3 of [5]).
Let conditions S0–S3 hold. Then for any φ ∈ D,

E exp{i〈U0(t)ψ0, φ〉} −→ exp
{
− 1

2
Q∞(φ, φ)

}
, t→∞. (3.9)

Remark 3.1. In [8] the phase space L2
loc(R3) ⊗ C4 has been considered. Never-

theless, all the steps of proving the convergence (3.9) in [8] remain true if we
change L2

loc(R3)⊗ C4 by L2
−σ with σ > 3/2.
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4. Perturbed Dirac equation

4.1. Scattering theory

To deduce Theorem 2.1 we construct the dual scattering theory (1.10) for
finite energy solutions using the Boussaid results, [2].

Lemma 4.1 (see Theorem 1.1 of [2]). Let conditions E1–E2 hold and
σ > 5/2. Then the bound holds

‖PcU(t)ψ‖L2
−σ
≤ C(1 + |t|)−3/2‖ψ‖L2

σ
, t ∈ R. (4.1)

Note that for ψ0 ∈ L2 the solutions U0(t)ψ0 and U(t)ψ0 to problems (2.1)
and (1.1), respectively, also belong to L2 and the charge conservation holds:

‖U(t)ψ0‖ = ‖ψ0‖, ‖U0(t)ψ0‖ = ‖ψ0‖. (4.2)

Here and below ‖ · ‖ is the norm in L2.
For t ∈ R, introduce the operators U ′0(t) and U ′(t) which are conjugate to

the operators U0(t) and U(t) on L2:

(ψ,U ′0(t)φ) = (U0(t)ψ, φ), (ψ,U ′(t)φ) = (U(t)ψ, φ), ψ, φ ∈ L2. (4.3)

Here (·, ·) stands for the hermitian scalar product in L2(R3,C4). The adjoint
groups admit a convenient description:

Lemma 4.2. For φ ∈ L2 the function U ′0(t)φ0 = φ(·, t) is the solution to

φ̇(x, t) = [α · ∇+ iβm]φ(x, t), φ(x, 0) = φ0(x). (4.4)

Proof. Differentiating the first equation of (4.3) with ψ, φ ∈ D, we obtain

(ψ, U̇ ′0(t)φ) = (U̇0(t)ψ, φ). (4.5)

The group U0(t) has the generator

A0 = −α · ∇ − iβm. (4.6)

Therefore, the generator of U ′0(t) is the conjugate operator

A′0 = α · ∇+ iβm. (4.7)

Hence, (4.4) holds, where φ̇(t) = A′0φ(t). 2

Similarly, we obtain
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Lemma 4.3. For φ ∈ L2 the function U ′(t)φ = φ(x, t) is the solution to

φ̇(x, t) = [α · ∇+ iβm+ iV ]φ(x, t), φ(x, 0) = φ(x). (4.8)

Corollary 4.1.

i) U ′0(t) = U0(−t), U ′(t) = U(−t).
ii) For any φ ∈ L2 the uniform bounds hold:

‖U ′0(t)φ‖ = ‖φ‖, ‖U ′(t)φ‖ = ‖φ‖, t ≥ 0. (4.9)

iii) Under assumptions E1–E2 for U ′(t) a bound of type (4.1) also holds:

‖PcU
′(t)ψ‖L2

−σ
≤ C(1 + |t|)−3/2‖ψ‖L2

σ
, t ∈ R (4.10)

with σ > 5/2.

Now we formulate the scattering theory in the dual representation.

Theorem 4.1. Let conditions E1–E2 and S0–S3 hold and σ > 5/2. Then
there exist linear operators W, r(t) : L2

σ → L2 such that for φ ∈ L2
σ

PcU
′(t)φ = U ′0(t)Wφ+ r(t)φ, t ≥ 0, (4.11)

and the bounds hold

‖r(t)φ‖ ≤ C(1 + t)−1/2‖φ‖L2
σ
, (4.12)

E
∣∣〈ψ0, r(t)φ〉

∣∣2 ≤ C(1 + t)−1‖φ‖2L2
σ
, t > 0. (4.13)

Proof. We apply the Cook method, [14, Theorem XI.4]. Fix φ ∈ L2
σ and de-

fine Wφ, formally, as

Wφ = lim
t→+∞

U ′0(−t)PcU
′(t)φ = φ+

+∞∫

0

d

dτ
U ′0(−τ)PcU

′(τ)φdτ. (4.14)

We have to prove the convergence of the last integral in the norm of L2. First,
observe that

d

dτ
U ′0(τ)φ = A′0U ′0(τ)φ,

d

dτ
U ′(τ)φ = A′U ′(τ)φ, τ ≥ 0

where A′0 and A′ are the generators to the groups U ′0(τ), U
′(τ), respectively.

Therefore,

d

dτ
U ′0(−τ)PcU

′(τ)φ = U ′0(−τ)(A′ −A′0)PcU
′(τ)φ. (4.15)
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We have A′ −A′0 = iV . Furthermore, E2, (4.9), (4.10) imply that

‖U ′0 (−τ)(A−A0)PcU
′(τ)φ‖ (4.16)

≤ C‖(A−A0)PcU
′(τ)φ‖ = C‖V U ′(τ)φ‖

≤ C1‖U ′(τ)φ‖L2
−ρ
≤ C2(1 + τ)−3/2‖φ‖L2

σ
, τ ≥ 0.

Hence, the convergence of the integral in the right hand side of (4.14) follows.
Further, (4.11) and (4.14) imply

r(t)φ = PcU
′(t)φ− U ′0(t)Wφ = −U ′0(t)

∞∫

t

d

dτ
U ′0(−τ)PcU

′(τ)φdτ.

Hence (4.12) follows by (4.9), (4.15) and (4.16).
It remains to prove (4.13). Applying the Shur lemma we obtain

E
∣∣〈ψ0, r(t)φ〉

∣∣2 =
〈
q0(x− y), r(t)φ(x)⊗ r(t)φ(y)

〉 ≤ ‖q0‖L1‖r(t)φ‖2. (4.17)

Hence, (4.13) follows by (2.20) with p = 1 and (4.12). 2

4.2. Convergence to equilibrium distribution

Theorem 2.1 can be derived from Propositions 4.1–4.2 below by using the
same arguments as in [15, Theorem XII.5.2].

Proposition 4.1. The family of the measures {P ∗c µt, t ∈ R} is weakly compact
in PcH

−ε
−σ for any ε > 0 and σ > 5/2 + δ.

Proposition 4.2. For any φ ∈ D

P̂ ∗c µt(φ) ≡
∫

exp(i〈ψ, φ〉)P ∗c µt(dψ) −→ exp
{
− 1

2
Q∞(Wφ,Wφ)

}
, t→∞.

(4.18)

Proposition 4.1 provides the existence of the limiting measures of the family
P ∗c µt, and Proposition 4.2 provides the uniqueness of the limiting measure, and
hence the convergence (2.8). We deduce these propositions with the help of
Theorem 4.1.

Proof of Proposition 4.1. First, we prove the bound

sup
t≥0

E‖PcU(t)ψ0‖H <∞. (4.19)

Representation (2.3) implies

PcU(t)ψ0 = Pcχ(x, t) + Pcφ(x, t), (4.20)
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where χ(x, t) = U0(t)ψ0, and φ(x, t) is the solution to (2.4). Therefore,

E‖PcU(t)ψ0‖H ≤ E‖Pcχ(t)‖H + E‖Pcφ(t)‖H. (4.21)

Bound (3.7) implies

sup
t≥0

E‖χ(t)‖H <∞. (4.22)

Further, we have by the Cauchy – Schwartz inequality

E‖(χ(t), ζj)ζj‖L2
−σ
≤ C‖ζj‖L2

−σ
‖ζj‖L2

σ
E‖χ(t)‖L2

−σ

≤ CjE‖χ(t)‖L2
−σ
, σ = 5/2 + δ,

since the eigenfunctions ζj ∈ L2
s with any s, see Appendix. Therefore

sup
t≥0

E‖Pcχ(t)‖H <∞

since Pcχ(x, t) = χ(x, t)− Pdχ(x, t) by (1.5).
It remains to estimate the second term in the r.h.s. of (4.21). Choose a

δ1 > 0 such that δ1 < ρ − 5 − δ. It is possible due to E1. Then the Duhamel
representation (2.4) and bounds (4.1) and (4.22) imply

E‖Pcφ(t)‖H ≤
t∫

0

E‖PcU(t− s)V χ(s)‖L2
−5/2−δ

ds (4.23)

≤ C

t∫

0

(1 + t− s)−3/2E‖V χ(t)‖L2
5/2+δ1

ds

≤ C1

t∫

0

(1 + t− s)−3/2E‖χ(t)‖L2
5/2+δ1−ρ

ds ≤ C2, t > 0

since 5/2 + δ1 − ρ < −5/2− δ. Now (4.21)–(4.23) imply (4.19).
Now Proposition 4.1 follows from (4.19) by Prokhorov theorem [15, Lem-

ma II.3.1] as in the proof of [15, Theorem XII.5.2]. 2

Proof of Proposition 4.2. We have
∫

exp(i〈ψ, φ〉)P ∗c µt(dψ) =
∫

exp(i〈Pcψ, φ〉)µt(dψ) = E exp i〈PcU(t)ψ0, φ〉.

Bound (4.13) and Cauchy – Schwartz inequality imply
∣∣E exp i〈PcU(t)ψ0, φ〉 − E exp i〈U0(t)ψ0,Wφ〉∣∣
=

∣∣E exp i〈ψ0, PcU
′(t)φ〉 − E exp i〈ψ0, U

′
0(t)Wφ〉

∣∣
≤ E|〈ψ0, r(t)φ〉| ≤ (E〈ψ0, r(t)φ〉2)1/2 −→ 0
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as t→∞. It remains to prove that

E exp i〈ψ0, U
′
0(t)Wφ〉 −→ exp

{
− 1

2
Q∞(Wφ,Wφ)

}
, t→∞. (4.24)

The convergence does not follow directly from Proposition 3.1 since Wφ 6∈ D.
We can approximate Wφ ∈ L2 by functions from D since D is dense in L2.
Hence, for any ε > 0 there exists φε ∈ D such that

‖Wφ− φε‖ ≤ ε. (4.25)

By the triangle inequality
∣∣∣E exp i〈ψ0, U

′
0(t)Wφ〉 − exp

{
− 1

2
Q∞(Wφ,Wφ)

}∣∣∣
≤ ∣∣E exp i〈ψ0, U

′
0(t)Wφ〉 − E exp i〈ψ0, U

′
0(t)φε〉

∣∣

+ E
∣∣∣ exp i〈U0(t)ψ0, φε〉 − exp

{
− 1

2
Q∞(φε, φε)

}∣∣∣

+
∣∣∣ exp

{
− 1

2
Q∞(φε, φε)

}
− exp

{
− 1

2
Q∞(Wφ,Wφ)

}∣∣∣. (4.26)

Let us estimate each term in the r.h.s. of (4.26). Theorem 4.1 implies that
uniformly in t > 0

E
∣∣ 〈
ψ0, U

′
0(t)(Wφ− φε)

〉∣∣

≤ (
E

∣∣〈ψ0, U
′
0(t)(Wφ− φε)〉

∣∣2)1/2 ≤ ‖q0‖1/2
L1 ‖U ′0(t)(Wφ− φε)‖

≤ C‖Wφ− φε‖ ≤ Cε.

Then the first term is O(ε) uniformly in t > 0. The second term converges
to zero as t → ∞ by Proposition 3.1 since φε ∈ D. At last, the third term
is O(ε) by (4.25) and the continuity of the quadratic form Q∞(φ, φ) in L2⊗C4.
The continuity follows from Corollary 2.1. Now convergence (4.24) follows since
ε > 0 is arbitrary. 2

Appendix. Decay of eigenfunctions

Here we prove the spatial decay of eigenfunctions.

Lemma A.1. Let V satisfy E1, and ψ(x) ∈ L2(R3) be an eigenfunction of the
Dirac operator corresponding to a eigenvalue λ ∈ (−m,m), i.e.

Hψ(x) = λψ(x), x ∈ R3.

Then ψ ∈ L2
s for all s ∈ R.
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Proof. Denote by R0(λ) = (H0 − λ)−1 the resolvent of the free Dirac equation.
The equation (H0 + V − λ)ψ = 0 implies

ψ = R0(λ)f, where f = −V ψ ∈ L2
2+ρ. (A.1)

From the identity

(−iα · ∇+ βm− λ)(iα · ∇ − βm− λ) = ∆−m2 + λ2

it follows that

R0(λ) =
iα · ∇ − βm− λ

∆−m2 + λ2
. (A.2)

Hence, in the Fourier transform, the first equation of (A.1) reads

ψ̂(k) =
(−α · k + βm+ λ)f̂(k)

k2 +m2 − λ2
.

Since |λ| < m, we have

‖ψ‖L2
2+ρ

= C‖ψ̂‖H2+ρ ≤ C1‖f̂‖H2+ρ = C2‖f‖L2
2+ρ

≤ C3‖ψ‖L2
2
.

Hence, ψ ∈ L2
s with any s ∈ R by induction. 2
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