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Abstract: Consider the Klein—Gordon equation (KGE)IRf, n > 2, with constant

or variable coefficients. We study the distributipn of the random solutionat time

t € R. We assume that the initial probability measurehas zero mean, a translation-
invariant covariance, and a finite mean energy density. We also assune getisfies

a Rosenblatt- or Ibragimov—Linnik-type mixing condition. The main result is the con-
vergence ofu,; to a Gaussian probability measureras> oo which gives a Central
Limit Theorem for the KGE. The proof for the case of constant coefficients is based on
an analysis of long time asymptotics of the solution in the Fourier representation and
Bernstein’s “room-corridor” argument. The case of variable coefficients is treated by
using an “averaged” version of the scattering theory for infinite energy solutions, based
on Vainberg’s results on local energy decay.

1. Introduction

The aim of this paper is to underline a special role of equilibrium distributions in sta-
tistical mechanics of systems governed by hyperbolic partial differential equations (for
parabolic equations see [6,27]). Important examples arise when one discusses the role
of a canonical Gibbs distribution (CGD) in the Planck theory of spectral density of
the black-body emission and in the Einstein—Debye quantum theory of solid state (see,
e.g. [31]). [The word “canonical” is used in this paper to emphasize the fact that the
probability distribution under consideration is formally related to the “Hamiltonian”,

or the energy functional, of the corresponding equation by the Gibbs exponential for-
mula. Owing to the linearity of our equations, there are plenty of other first integrals
which lead to other stationary measures.] Historically, the emission law was established
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at a heuristic level by Kirchhoff in 1859 (see [34]) and stated formally by Planck in
1900 (see [25]). The law concerns the correspondence between the temperature and the
colour of an emitting body (e.qg., a burning carbon, or an incandescent wire in an electric
bulb). Furthermore, it provides fundamental information on an interaction between the
Maxwell field and “matter”. Planck’s formula specifies a “radiation intensity(w) of

the electromagnetic field at a fixed temperatiire- 0, as a function of the frequency

w > 0. Itis convenient to treakr (-) as the spectral correlation function of a station-

ary random process. Thengdf denotes an equilibrium distribution of this process, the
Kirchhoff-Planck law suggests the long-time convergence

W — gr, t— 00. (1.1)

Hereu;, is the distribution at time of a nonstationary random solution. The resulting
equilibrium temperaturd” is determined by an initial distributiopng. Convergence

to equilibrium (1.1) is also expected in a system of Maxwell’s equations coupled to an
equation of evolution of “matter”. For example, both (1.1) and the Kirchhoff-Planck law
should hold for the coupled Maxwell-Dirac equations [5], or for their second-quantised
modifications. However, the rigorous proof here is still an open problem.

Previously, the convergence of type (1.1) to a Cgbhas been established for an
ideal gas with infinitely many particles by Sinai (see, e.g., [7]). Similar results were
later obtained for other infinite-dimensional systems (see [2,10] and a survey [9]). For
nonlinear wave problems, the first such result has been established by Jaksic and Pillet
in [18]: they consider a system of a classical particle coupled to a wave field in a
smooth nonlocal fashion. For all these models, the G&Ds well-defined, although
the convergence is highly non-trivial. On the other hand, for the local coupling such
as in the Maxwell-Dirac equations, the problem of “ultraviolet divergence” arises: the
CGDs cannot be defined directly as the local energy is formally infinite almost surely.
This is a serious technical difficulty that suggests that, to begin with, one should analyse
convergence taon-canonicaktationary measurgs,,, with finite mean local energy:

In fact, most of the above-mentioned papers establish the convergence to both CGDs
and non-canonical stationary measures, by using the same methods. In our situation, the
aforementioned ultraviolet divergence makes the difference between (1.1) and (1.2).

In this paper we prove convergence (1.2) for the Klein—-Gordon equation (KGE) in
R", n > 2:

ii(x, 1) =3"_ 18 —iAj(x)2u(x, 1) —m?u(x,t), x eR",
j=11 (1.3)
uli=0 = uo(x), ul=0= vo(x).
d . .
Hered; = P x eR" re R, m> 0is afixed constant andi1(x), ..., A,(x)) a

X
vector potenti]al of an external magnetic field, we assume that funcfigs) vanish
outside a bounded domain. The solutietx, ¢) is considered as a complex-valued
classicalfunction.

It is important to identify a natural property of the initial measpggeguaranteeing
convergence (1.2). We follow an idea of Dobrushin and Suhov [10] and use a “space’-
mixing condition of Rosenblatt- or Ibragimov—Linnik-type. Such a condition is natural
from physical point of view. It replaces a “quasiergodic hypothesis” and allows us to
avoid introducing a “thermostat” with a prescribed time-behaviour. Similar conditions
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have been usedin [2,3,33,32]. In this paper, mixing is defined and applied in the context
of the KGE.

Thus we prove convergence (1.2) for a class of initial measugesn a classical
function space, with a finite mean local energy and satisfying a mixing condition. The
limiting measureu, is stationary and turns out to be a Gaussian probability measure
(GPM). Hence, this result is a form of the Central Limit Theorem for the KGE.

Another important question we discuss below is the relation of the limiting measure
oo to the CGDgr. The (formal) Klein-Gordon Hamiltonian is given by a quadratic
form and so the CGDgy are also GPMs, albeit generalised (i.e. living in generalised
function spaces). As our limiting measuyes are “classical” GPMs, they do notinclude
CGDs. However, in the case of constant coefficients, a CGD can be obtained as a limit
of measuresi, as the “correlation radius” figuring in the mixing conditions imposed
on 1o tends to zero. More precisely, we assume that for a fixed O,

1
S E(v0(0v0(y) + Vuo() - Vuo(y) + mPuo(uo(y)) — T8(x =y). r = 0.
(1.4)

where E denotes the expectation. Then the covariance functions (CFs) of the corre-
sponding limit GPMu, converge to the covariance functions of the C&Db In turn,
this implies the convergence

Mt — Moo ~ 8T, T —> 1. (1.5)

See Sect. 4.

It should be noted that the existence of a “massive” (in a sense, infinite-dimensional)
set of the limiting measures., that are different from CGD’s is related to the fact that
KGE (1.3) is degenerate and admits infinitely many “additive” first integrals. Like the
Klein—Gordon Hamiltonian, these integrals are quadratic forms; hence they generate
GPMs via Gibbs exponential formulas.

Convergence (1.2) has been obtained in [19-21] for translation-invariant initial mea-
suresug. However, the original proofs were too long and used a specific apparatus of
Bessel’s functions applicable exclusively in the case of the KGE. They have not been
published in detail because of the lack of a unifying argument that could show the limits
of the method and its forthcoming developments. To clarify the mechanism behind the
results, one needed some new and robust ideas. The current work provides a modern
approach applicable to a wide class of linear hyperbolic equations with a nondegenerate
“dispersion relation”, see Eq. (7.20) below. We also weaken considerably the mixing
condition on measurgg. Moreover, our approach yields much shorter proofs and is
applicable to non-translation invariant initial measures. The last fact is important in re-
lation to the two-temperature problem [3,12,33] and the hydrodynamic limit [8]. Such
progress became possible in large part owing to the systematic use of a Fourier transform
(FT) and a duality argument of Lemma 7.1. [The importance of the Fourier transform
was demonstrated in earlier works [3,32,33].]

Similar results, for the wave equation (WE)&i with oddnr > 3, are established in
[11] which develops the results [26]. The KGE shares some common features with the
WE (which is formally obtained by setting = 0 in (1.3)), and the exposition in [20,
21] followed the structure of the earlier work [26]. On the other hand, the KGE and WE
also have serious differences, see below.

It is worth mentioning that possible extensions of our methods include, on the one
hand, Dirac’s and other relativistic-invariant linear hyperbolic equations and on the other
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hand harmonic lattices, as well as “coupled” systems of both types. We intend to return
to these problems elsewhere.

We now pass to a detailed description of the results. Formal definitions and statements
are given in Sect. 2. Seti(r) = (Y°(t), YX(t)) = (u(, 1), i, 1), Yo = (¥Q, ¥} =
(ug, vo). Then (1.3) takes the form of an evolution equation

Yt)=AY(t), t eR; Y(0) =Y. (1.6)

Here,

A= (2 g) , (17)

whereA = >_1(3; —iA;(x))? — m®. We assume that the initial dalg is a random
element of a’complex functional spagé corresponding to states with a finite local
energy, see Definition 2.1 below. The distribution¥gfis a probability measurgg of
mean zero satisfying some additional assumptions, see CondtieS8below. Given
t € R, denote by, the measure that gives the distributionraf), the random solution
to (1.6). We study the asymptotics of ast — +oo.

We identify C = R? and denote by the tensor product of real vectors. The CFs of
the initial measure are supposed to be translation-invariant:

04 (v, ») = E(¥j) @ Y ()
=q6j(x—y), x,yeR" i,j=0,1 (2.8)
(in fact our methods require a weaker assumption, but to simplify the exposition, we
will not discuss it here). We also assume that the initial mean energy density is finite:
e0 = E(Jvo(0)? + [ Vuo(o)[? + m2luo() ?)
= 431(0) — Agg°(0) + m*¢J%(0) < 00, x € R". (1.9)

Finally, we assume that measuytg satisfies a mixing condition of a Rosenblatt- or
Ibragimov—Linnik type, which means that

Yo(x) and Yo(y) areasymptotically independentas |x — y| — oco. (1.10)

As was said before, our main result gives the (weak) convergence (2)@é limiting
measure., which is a stationary GPM oH. A similar convergence holds for— —oo.
Explicit formulas are then given for the CFs of..

The strategy of the proof is as follows. First, we prove (1.2) for the equation with
constant coefficients4 (x) = 0), in three steps.
I. We check that the family of measurgs, t > 0, is weakly compact.
Il. We check that the CFs converge to a limit: foj = 0, 1,

Jy) = / Y() ® Y/ ()i (dY) — Q5(x.y). 1 — oo. (1.11)
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lll. Finally, we check that the characteristic functionals converge to a Gaussian one:

1
A (0) = /exp{i(Y, U)r(dY) = expl—3 Qoo (W, W)}, 100, (L12)

Here W is an arbitrary element of the dual space &g the quadratic form with the
integral kernel(Q, (x, ¥))i,j=0,1; {¥, ¥) denotes the scalar product in a real Hilbert
spacel2(R") ® R".

Property | follows from the Prokhorov Theorem by a method used in [37]. First,
we prove a uniform bound for the mean local energyjnusing the conservation of
mean energy density. The conditions of the Prokhorov Theorem are then checked by
using Sobolev’'s embedding Theorem in conjunction with Chebyshev’s inequality. Next,
we deduce Property Il from an analysis of oscillatory integrals arising in the FT. An
important role is attributed to Proposition 6.1 reflecting the properties of the CFs in the
FT deduced from the mixing condition.

On the other hand, the FT approach alone is not sufficient for proving Property I
even in the case of constant coefficients. The reason is that a function of infinite energy
correspondsto a singular generalised functioninthe FT, and the exact interpretation of the
mixing condition (1.10) for such generalised functions is unclear. We deduce Property llI
from a representation of the solution in terms of the initial date in coordinate space. This
is a modification of the approach adopted in [19-21]. It allows us to combine the mixing
condition with the fact that waves in the coordinate space disperse to infinity. This leads
to a representation of the solution as a sum of weakly dependent random variables. Then
(1.12) follows from a Central Limit Theorem (CLT) under a Lindeberg-type condition.
Checking such a condition is an important part of the proof.

Itis useful to discuss the dispersive mechanism that is behind (1.12) and compare the
KGE (m > 0) and WE {n = 0). Take, for simplicityy, = 3 andug = 0. The solution
to (1.3) (withAx (x) = 0) is given by

u(x,t) = /S(x —y,Hvo(y)dy, >0, (2.13)

where€ is the “retarded” fundamental solution

mo(t — |x|) Ji(m/t2 — x2)

4 t2 _ x2

1
E(x.1) = 5 — (x| —1) (1.14)

J1 is the Bessel function of the first order. Far= 0 the functionf (-, ¢) is supported
by the spheréx| =  of area~ 2, and (1.13) becomes the Kirchhoff formula

1
ulx, 1) = ,— / vo(y) dS(y), (1.15)

l—yl=t

which manifests the dispersion of waves in the 3D space. Dividing the sphese
R3: |x — y| =t} into N ~ 2 “rooms” of a fixed widthd > 1, we rewrite (1.15) as

N

> Tk

k=1

Nk

u(x, 1) ~ (1.16)
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wherer, are nearly independent owing to the mixing condition. Then (1.2) follows by
the well-known Bernstein “room-corridor” arguments.

Form > 0O function(-, ) is supported by the balk| < ¢ which means the absence
of a strongHuyghen’s principle for the KGE. The volume of the ballsz3, hence
rewriting (1.13) in the form (1.16) would need asymptotics of the type

Ex,)=00"%?%, |x|<t (1.17)

ast — 0o.As J1(r) ~ coSr — 3n/4)/4/r, asymptotics (1.17) only holds in the region
|x] < vt with v < 1. For instance,

cogmyt — 3 /4)
|\x\=vt ~ (y1)32 ’

wherey = +/1 — v2. However, the degree of the decay is different near the light cone
|x| =t corresponding t@ = 1 andy = 0. For example, for a fixed > 0,

c coSm~/2rt — 3 /4)
||x|:t—r (Zrt)3/4

= 0@, (1.18)

wherer = ¢t —|x| is the “distance” from the light cone. This illustrates that an application
of Bernstein’s method in the case of the KGE requires a new idea.

The key observation is that the asymptotics (1.18) displays oscillatiaresm /21
of £ near the light cone as — oo. The solution becomes an oscillatory integral,
and one is able to compensate the weak deeay %* by a partial integration with
Bessel functions, by a method following an argument from [23, Appendix B]. Such an
approach was used in [21] and was accompanied by tedious computations in a combined
“coordinate-momentum” representation. The approach adopted in this paper allows us
to avoid this part of the argument. An important role is played by a duality argument
of Lemma 7.1 leading to an analysis of an oscillatory integral with a phase function
(="dispersion relation”) with a nondegenerate Hessian, see (7.20).

Simple examples show that the convergence may fail when the mixing condition does
not hold. For instance, takey(x) = 41 andvg(x) = 0 with probability p. = 0.5.

Then the mean value is zero and (1.9) holds, but (1.10) does not. The salttion =
+ cos (mt) a.s., hence, is periodic in time, and (1.2) fails.

Finally, a comment on the case of variable coefficiefitéx). In this case explicit
formulas for the solution are unavailable. Here we construct a scattering theory for
solutions of infinite global energy. This version of the scattering theory allows us to
reduce the proof of (1.2) to the case of constant coefficients (this strategy is similar
to [4,11,12]). In particular, in [11] one establishes, in the case of a WE, a long-time
asymptotics

U@)Yg =OUo(t)Yo+ p(t) Yo, t > 0. (12.19)
HereU (¢) is the dynamical group of the WE with variable coefficieiig(t) corresponds
to the “free” equation with constant coefficients, a@nds a “scattering operator”. In this
paper, instead of (1.19), we use a dual representation:

U'(HW = Uyt )WV +r(H)W, > 0. (1.20)
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HereU'(r) is a "formal adjoint” to the dynamical group of Eq. (1.3), whilg(z) corre-
sponds to the “free” equation, withy (x) = 0. The remainder(¢) is small in mean:

E|(Yo, r(OW)|> > 0, 1 — oo. (1.21)

This version of scattering theory is essentially based on Vainberg’s bounds for the local
energy decay (see [35, 36]).

Remark 1.1(i) In[11]we deduce asymptotics (1.19) from its primal counterpart (1.20).
In this paper we do not analyse connections between (1.20) and (1.19).

(ii) It is useful to comment on the difference between two versions of scattering theory
produced for the WE and KGE. In the first theory, the remaindérsandr(¢) are
small a.s., while in the second theory, developed in this paggris small in mean
(see (1.21)). Such a difference is related to a slow (power) decay of solutions to the
KGE.

The main result of the paper is stated in Sect. 2 (see Theorem A). Sections 3-8
deal with the case of constant coefficients: the main statement is given in Sect. 3 (see
Theorem B), the relation to CGDs is discussed in Sect. 4, the compactness (Property 1) is
established in Sect. 5, convergence (1.11) in Sect. 6, and convergence (1.12) in Sects. 7, 8
In Sect. 9 we check the Lindeberg condition needed for convergence to a Gaussian limit.
In Sect. 10 we discuss the infinite energy version of the scattering theory, and in Sect. 11
convergence (1.2). In Appendix A we collected FT-type calculations. Appendix B is
concerned with a formula on generalised GPMs on Sobolev spaces.

2. Main Results

2.1. Notation. We assume that functionf (x) in (1.3) satisfy the following conditions:

El. A;(x) are realC*-functions.
E2. A;(x) =0for|x| > Rg, whereRg < 0.
A A
g3 A1 0424 5
0x2 dx1
Assume that the initial stat& belongs to the phase spafedefined below.
Definition 2.1. H = HL.(R") & H2.(R") is the Fréchet space of pairg(x) =
(u(x), v(x)) of complex functions(x), v(x), endowed with local energy seminorms

1Y% = / (|v(x)|2+ [Vu(x)[? +m2|u(x)|2>dx <oo, VR>0. (2.1)
|x|<R

Proposition 2.2 follows from [22, Thms. V.3.1, V.3.2]) as the speed of propagation
for Eq. (1.3) is finite.

Proposition 2.2.(i) For anyYy € H there exists a unique (generalised) solutiog)
C(R, H) to (1.6).
(ii) For anyt € R the operatorU () : Yo — Y (¢) is continuous ir.
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Letus choose a functian(x) € C3°(R") with £(0) # 0. Denote by .(R"), s € R,
the local Sobolev spaces, i.e. the Fréchet spaces of distributiend’ (R") with finite
seminorms

el = 1A% (£Ce/ Rou) 2y (22)

whereA®v := F 1 ((k)S(k)), (k) := V|k|? + 1, andi := Fuvis the FT of a tempered

k—x

distributionv. Foryr € D defineFyr (k) = /eik'xw(x)dx.

Definition 2.3. For s € R denote}® = HAI (R") @ H) (R™).

Using standard techniques of pseudodifferential operators (see, e.g. [16])
Sobolev’s Theorem, it is possible to prove thé&? = # c H ¢ for everye > 0,
and the embedding is compact.

2.2. Random solution. Convergence to equilibriuibet (22, X, P) be a probability
space with expectatiof andB(H) denote the Boret-algebra inH. We assume that
Yo = Yo(w, -) in (1.6) is a measurable random function with valueg#f) B(#)). In
other words(w, x) — Yo(w, x) is a measurable ma@ x R* — C? with respect to
the (completedy-algebrasy x B(R") and B(C?). Then, owing to Proposition 2.2,
Y(t) = U(t)Yp is again a measurable random function with value€Hn B(H)). We
denote byo(dYp) a probability measure oK giving the distribution of thé’y. Without
loss of generality, we assumi&, X, P) = (H, B(H), no) andYp(w, x) = w(x) for
no(dw) x dx-almost all(w, x) € H x R".

Definition 2.4. u, is a probability measure o#{ which gives the distribution df (¢):
pi(B) = po(U(=1)B), B €B(H), t eR. (2.3)

Our main goal is to derive the weak convergence of the meagurigsthe Fréchet
spaceH ¢ for eache > 0,

H*E
Wi = oo, = 00, (2.4)

whereu is a limiting measure on the spagé This means the convergence
/f(Y)Mt(dY) - /f(Y)Moo(dY), t — oo, (2.5)

for any bounded continuous functionflon 7 ~¢. Recall that we identiffC = R? and
® stands for the tensor product of real vectors. Defgte= R? ® R2.

Definition 2.5. The CFs of the measuyg are defined by

0V (x,y) = E<Yi(x, HY(y, t)), i,j=0,1, for almost allx,y e R" x R",
(2.6)

assuming that the expectations in the RHS are finite.

and
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We setD = D@ D, and(Y, W) = (Y0, wO 4+ (yX vl fory = (¥% v1) € H and
v = (W0, wl) e D. For a probability measure on #, denote by the characteristic
functional (FT)

(W) = /exp(i(Y, U)) u(dY), W eD.

A probability measure is called a GPM (of mean zero) if its characteristic functional
has the form

1
/(W) = eXp{—EQ(\I& )}, W eD,
where@ is a real nonnegative quadratic formZh A measureu is called translation-

invariant if
w(TpB) = u(B), B e B(H), heR",

whereT,Y(x) = Y(x — h), x € R".

2.3. Mixing condition.Let O(r) denote the set of all pairs of open bounded subsets
A, B c R" at distance disi4, B) > r ando (A) theo-algebra inH generated by the
linear functionaly’ — (Y, W), wherew e D with supp¥ C .A. Define the Ibragimov-
Linnik mixing coefficient of a probability measupey onH by (cf. [17, Def. 17.2.2])

lo(A N B) — po(A)o(B)

p(r)=  sup sup ’ 2.7)
(AB)e0(r) A eo(A), B eo(B) Ho(B)
uo(B) >0

Definition 2.6. The measurg. satisfies the strong, uniform Ibragimov—Linnik mixing
condition if

o(r) > 0, r— 0. (2.8)

Below, we specify the rate of decay pf(see Condition S3).

2.4. Main assumptions and resultd/e assume that measwrg has the following prop-
ertiesS0-S3

S0. uo has zero expectation value,
EYo(x) =0, xeR". (2.9

S1. uo has translation-invariant CFs, i.e. Eq. (1.8) holds for almost,all € R”.
S2. uo has a finite mean energy density, i.e. Eq. (1.9) holds.

S3. po satisfies the strong uniform Ibragimov—Linnik mixing condition, with

o0
Q= /r"_1¢1/2(r)dr < 00. (2.10)
0
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Define, for almost alk, y € R", the matrixQuc(x, y) = (Qé’;(x, y))' o1 by
L, J=U,
1 ( @+ P xqghHx —y) @ — gl (x — y)
Qoolx, y) = 2 10 _ 01 11 2y 00 -(2:11)
(@5" —aq9)(x —y) (g5~ — (A =m%)gp ) (x — y)

HereP(z) is the fundamental solution for the operaten + m?2, andx stands for the
convolution of generalized functions. We show below mﬁt e L?(R") (see (6.1)).
Then the convolutiorP * g3t in (2.11) also belongs th2(R").

Let H = L%(R") @ HY(R") denote the space of complex valued functidns=
(Yo, W) with a finite norm

1w )% = /(|wo<x>|2 + VW1 ()12 + [W1(x)[?) dx < oo. (2.12)
Rn
Denote byQ, a real quadratic form iff defined by
Qv )= 3 [ (G )W e wi))dx dy. (213)
1.j=0.1 gn s gn

where(~, ) stands for the real scalar productGf = R*. The formQ, is continuous

in H as the function@f,é(x, y) are bounded.

Theorem A.Letn > 2, m > 0, and assume th&1-E3 SO0-S3hold. Then
(i) The convergence in (2.4) holds for any- 0.

(i) The limiting measurg., is aGPMonH.
(iii) The characteristic functional gi., has the form
1
floo(W) = exp[—é Qu(WW, W)}, W eD,

whereW : D — H is a linear continuous operator.

2.5. Remarks on conditions on the initial measufi@ The (rather strong) form of mixing
in Definition 2.6 is motivated by two facts: (a) it greatly simplifies the forthcoming
arguments, (b) it allows us to produce an “optimal” (most slow) decay inficating
natural limits of Bernstein’s room-corridor method. Condition (2.7) can be easily verified
for GPMs with finite-range dependence and their images under “local” Haps H.
See the examples in Sect. 2.6 below. (ii) Tmgform Rosenblatt mixing condition [30]
also suffices, together with a higher power2 in the bound (1.9): there exisis> 0
such that

E(luo) 2 +Vuo() 2 + mlug(x)[*?) < oo. (1.4)

Then (2.10) requires a modification:

/ "1aP(r)d where p = min( ) 1) (2.10)
< 00 = — = .
0 r a”(r)ar , P 2 8,2 B
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wherea(r) is the Rosenblatt mixing coefficient defined as in (2.7) but witho(g)
in the denominator. The statements of Theorem A and their proofs remain essentially
unchanged, only Lemma 8.2 requires a suitable modification [17].

2.6. Examples of initial measures with mixing condition.

2.6.1. Gaussian measureh this section we construct initial GPMg satisfyingS0O—
S3 Let ug be a GPM oriH with the characteristic functional

1
[io(W) = E expli (Y, ¥)) = exp{ — 5o, \1/)}, WeD. (2.14)

HereQy is a real nonnegative quadratic form with an integral ke(Qéjf (x, ¥))i, j=0,1.
Let

Qg (x, ) = g5 (x — ), (2.15)
for anyi, j, where the functiog € C2(R") ® M2 has compact support. Th&f, S1
andS2are satisfiedS3holds withg(r) = 0 for r > rq if g5 (z) = 0 for |z| > ro. For a
given matrix function(qéj (z)) such a measure exists on spatdf the corresponding
FT is a nonnegative matrix-valued meaSL(rééj (k)) > 0,k € R", [15, Thm V.5.1].
For example, all these conditions holdjff (k) = D;8 f (k1) - - - - £ (k) with D; > 0

and 5
o= (LS’ g

2.6.2. Non-Gaussian measuradow choose a pair of odd function®, 1 e C1(R),
with bounded first derivatives. Defingf; as the distribution of the random function

(f°(r°x)), f1(rt(x))), where(y?, 1 is a random function with a Gaussian distri-
butionpo from the previous example. Th&0-S3hold for .. with a mixing coefficient
¢*(r) = 0forr > ro. Measureu is not Gaussian iD; > 0 and the functiong’ are
bounded and nonconstant.

3. Equations with Constant Coefficients

In Sects. 3—9 we assume that coefficieitgx) = 0. Problem (1.3) then becomes

i(x,t) = Au(x,t —mzu(x,t , tel,

(x, 1) ( .) ) (3.1)
ul;=0 = uo(x), ul=0 = vo(x).

As in (1.6), we rewrite (3.1) in the form

Y(t) = AgY (1), t €R; Y(0) = Y. (3.2)

m:(&é) (3.3)

Here we denote
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whereAg = A — m?. Denote byUy(1), t € R, the dynamical group for problem (3.2),
thenY(¢) = Up(t)Yo. The following proposition is well-known and is proved by a
standard integration by parts.

Proposition 3.1.Let Yy = (1o, vo) € H, andY (-, 1) = (u(-,t),u(-,t)) € CR,H) is
the solution to (3.1). Then the following energy bound holds®or 0 and: € R,

/ (|1,'t(x,t)|2+IVu(x,t)|2+m2|u(x,t)|2)dx
|x|<R

= [ (ot + 1Vuo) P+ mPuoto?) dx. (3.4
x| <R+|t]

Setu;(B) = uo(Uo(—1)B), B € B(H), t € R. Then our main result for problem
(3.2)is

Theorem B.Letn > 1, m > 0, and ConditionsS0-S3hold. Then the conclusions of
Theorem A hold withW = I, and the limiting measurg , is translation-invariant.

Theorem B can be deduced from Propositions 3.2 and 3.3 below, by the same arguments
as in [37, Thm XI1.5.2].

Proposition 3.2.The family of measureig;, t € R}, is weakly compact ifil ~¢ with
anye > 0, and the bounds hold:

SUPE |Uo(t)Yoll% < 00, R > 0. (3.5)
>0

Proposition 3.3.For every¥ € D,
" ) 1
(1) zfexp(z(Y,\IJ)),ut(dY) — exp{ - EQm(\y, W}, - oo (3.6)

Propositions 3.2 and 3.3 are proved in Sects. 5 and 7-9, respectively. We will use re-
peatedly the FT (12.2) and (12.3) from Appendix A.

4. Relation to CGDs

In this section we discuss how our results are related to CGDs. We restrict consideration
to the case of Eq. (1.3) with constant coefficients and to the translation-invariant isotropic
case. The CGRr with the absolute temperatufe> 0 is defined formally by

H
1

gr(du x dv) = 7 e T Udu(x)dv(x), (4.1)

1 . L
where H := 5/ <|v(x)|2 + [Vu@) 2 + m2|u(x)|2>dx, and Z is a normalisation

constant.
To make the definition rigorous, let us introduce a scale of weighted Sobolev spaces
H*S*(R™) with arbitrarys, « € R. We use notation (2.2).
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Definition 4.1. (i) H*“(R") is the complex Hilbert space of the distributions €
S’(R™) with the finite norm

lwlls,a = 14)* A’ wll L, rny < 00. (4.2)

(i) H* is the Hilbert space of the pairg = (u, v) € H1¥(R") @& H**(R") with
the norm

Y s, = Nullits,e + NVlls,a- (4.3)

Note thatH*® c H** if 5 < s anda < «, and this embedding is compact. These
facts follow by standard methods of pseudodifferential operators and Sobolev’s Theorem
(see, e.g. [16]).

Now we can define the CGDs rigorousdy: isa GPM on a spack®%, s, < —n/2,
with the CFs

g0 —y) =TPx —y), g —y) =Tk —y),

(4.4)
g7 (x = ) = 7% — y) = 0.

By Minlos Theorem [15, Thm. V.5.1], such a measure exist$/6f with s, « < —n/2
as,formally (see Appendix B),

/ I¥II2, gr(dY¥) < co. (4.5)

Measuregy is stationary for the KGE, as its CFs are stationary; the last fact follows from
formulas (12.6), (12.2). Alsgy is translation invariant, s81holds. ConditiorS2fails
since the “mean energy density2}(0) — Ag%%(0) + m?g9%(0) is infinite; this gives an
“ultraviolet divergence”. Mixing conditiofs3holds due to an exponential decay of the
P(z). The convergence of type (1.1) holds for initial measyrgghat are absolutely
continuous with respect to the CGp, and the limit measure coincides wigh . This
mixing property (and even thig-property) can be proved by using well-known methods
developed for Gaussian processes [7], and we do not discuss it here.

Remark.AssumptionS2implies thatuo(#) = 1 and hencgo (H) = 1. This excludes

the case of a limiting CGD as it is a generalised GPM not supportgd.byowever, it

is possible to extend our results to a class of generalised initial measures converging to
CGDs. For the case of constant coefficients such an extension could be done by smearing
the initial generalised field as the dynamics commutes with the averaging (cf. [12]). For
variable coefficients such an extension requires a further work.

To demonstrate the special role of the CGDs we consider a family of initial GPMs
o r € (0,1], satisfyingS0-S3 with the radius of correlation. More precisely,

suppose that the corresponding Q%@ have the following propertie60-G3

GO. QL (x) =¢Jr(—2). z € R".

r

Gl. q5i(2) — Agdd(2) + m%qQ0(x) =0, Iz| = r.
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1
G2. For someT > 0O, > / (qO,(z) Aqo (2) +m2q89(z) )dz - T, r— 0.

G3. sup [ (lagt@)1+12g8)1+m21a8d (1) dz <oc.
re(0,1]

Note thatGO means a symmetry relatiafiug(x)vo(y) = Eug(y)vo(x) that holds for
an isotropic measure where the CFs depend only eny|. Examples of such a family
will be provided later.

Properties50—-G3imply conditionsSO—S3for the initial measureg . Therefore,

H78

Theorem B implies the convergenge, — e, ¢ — 00, Of type (2.4). The
following proposition means that the limiting measwrg . is close to CGDzr on the
Sobolev space of distributior#g®-¢ with s, « < —n /2.

Proposition 4.2.Let ConditionsGO—G3 hold. Then corresponding limiting measures
oo, @re concentrated on any spage-* with s, « < —n/2 and weakly converge to
CGD g7 on the spacé{*“:

HS
Uoor — g1, r— 0. (4.6)

Proof. The convergence follows by the same arguments as in [37] from two facts (cf.
Propositions 3.2, 3.3): forany o withs <5 < —n/2 anda <o < —n/2,

() sup [ Y11 ghtoo,r (dY) < o0.
re(0,1]

an For W eD, Qoo r(W, V) - Gr (Y, V), r — 0,

whereQ » is the quadratic form with the integral kerr@éé(x — y)), andgGr cor-

responds tc(giTj (x — y)). It is important that the embeddirig** c H** is compact.
Property (I) can be checked with the help of formula (13.3) and by using the Parseval
identity:

C(@)
(2"

/ 1Y I ght00.r (@Y ) = (0 1G22, (0 + 0> 1420, (0 ) dk

=C@ f (A@ 163, @ + L) (-2 +mD1e2, (2))dz,

~ik% )2k and fo(c) = — e P
20 e (k) and f2(z) = 2 e 2z ore

precisely, Property (1) follows fron&3 as both functionsf; (x) are bounded and con-
tinuous fors < —n/2. FurthermoreGO and (2.11) imply that;oo ;= qoor = 0,
hence

where f1(z) =

Qo (W, W) = / (42, (r = )W), WO )y

+ [ (8 0= i, wio)axay. @)
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G1 andG2 together imply that

qiir(x —y)—=>Téx—y), r—0.
Then (2.11) implies
00 _ 11
door = P*qoo’r — TP, r— 0.

Therefore, Property (Il) follows from (4.7): the justification follows easily in the FT
space. The convergence of the covariance (ll) provides the convergence of the measures
(4.6) as all the measures are Gaussian.

Example.Consider an initial measuney constructed in Example in Sect. 2.6.1. It sat-
isfies Assumptionss0-S3and GO. Furthermoregd®(z) = ¢3l(z) = 0, |z| > 1if
we chooseg = 1. Denote byYo(x) = (¥Y2(x), Y3(x)) a random function with distri-
bution po. Denote byuo,, r > 0, the distribution of the random functidry, - (x) =

1y 1x), r v (r~x)), wherev = n/2. The corresponding CFs ayé{,(z) =
r2=n=i=igd (r~1z). Then all Conditions GO-G3 hold withi := 7 / rgal(z)dz.

5. Compactness of the Family of Measureg,
This section gives the proof of bound (3.5). Proposition 3.2 will follow then with the help
of the Prokhorov Theorem [37, Lemma 11.3.1] as in the proof of [37, Thm. XI1.5.2]. It

is important that the embeddiftg C ¢ is compact, by virtue of Sobolev's Theorem,
if & > 0. Set:

e = E(m(x, D%+ |Vulx, )2 + m?u(x, r)|2), x e R". (5.1)

The CFs of measurg, are translation invariant due to condition S1. Hence, taking
expectation in (3.4), we get by S2,

er|BR| < eo| Br+:| < 00. (5.2)
Here By is the ball|x| < R in R", and|Bg| is its volume. TakingR — oo we derive
from (5.2) thate; < eq: in fact, the reversibility implies theey = ¢g (the mean energy
density conservation). Hence, taking the expectation in (1.5), we get (3.5):

E||Uo(1)Yoll% = eol Br| < oo.

Corollary 5.1. Bound (3.5) implies the convergence of the integrals in (2.6).

6. Convergence of the Covariance Functions

In this section we check the convergence of the CFs of meagureih the help of the
FT. This convergence is used in Sect. 8.
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6.1. Mixing in terms of the spectral densityhe next proposition gives the mixing
property in terms of the Fg of the initial CFsqg . AssumptionS2 implies that

qéj (z) is a measurable bounded function. Therefore, it belongs to the Schwartz space of
tempered distributions as well as its FT.

Proposition 6.1.Letthe assumptions of Theorem Bhold.T&t’érE LYRM@M?, Vi, j.
Proof. Step 1 First, let us prove that
7qf () e LPRY @M, p=1 lyl<2—i—] 6.)
ConditionsS0Q, S2andS3imply, by [17, Lemma 17.2.3] (see Lemma 8.2 (i) below), that
19745 ()] < Ceop™?(I2)), z € R", (6.2)
The mixing coefficient is bounded, hence (6.2) and (2.10) imply (6.1):

.. o0
/|3yq6](z)|pdz < Ceé’/go”/z(lzl)dz < Cleg/ r"_lwl/z(r)dr <o0. (6.3)
0
R’l

Step 2 By Bohner’s theoremyy = (”J (k))dk is a complex positive-definite matrix-
valued measure oR”, andS2implies that the total measufg(R") is finite. On the

other hand, (6.1) witlp = 2 implies thajj € L2(R") ® M2. 0O

6.2. Proof of convergence of covariance functiofR®rmulas (12.3), (12.2) and Propo-
sition 6.1 imply for example,

O = ) = E(utr.) @ u(y,1) ) (6.4)

1 ik(x—y)[ 1+ COS 2ot Aoo ~01 ~10
= prix _— k k k
(hwfe = () + 202 GOy 1 G0y

1—cos2vr .
]k

where the integral converges and defines a continuous function determirdidfor e

R”. Similar integrals give a convenient modification for all functhﬁs(x —y), which
we will work with.

Proposition 6.2.Covariance functionsfj (2),i,j =0,1, converge for alt € R":
g’ (@) > q@), 1 o0, (6.5)
where function@é’;}(z) are defined in (2.11).
Proof. Equation (6.4) and Proposition 6.1 imply,
1
0% = 5(a6°@) + P ') = 4P 1= ox. (6.6)

as the oscillatory integrals tend to zero by the Lebesgue—Riemann Lemma. For other
i, j the proofis similar. O
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Note thatP(z) € L1(R"). Therefore, (6.1) withp = 1 and explicit formulas (2.11)
imply the following

Corollary 6.3. Functionsg’, belong toL1(R") @ M2, i, j = 0, 1.
Remark 6.4A similar argument in the FT representation implies compactness in Pro-

position 3.2. We provided an independent proof of the compactness in Sect. 5 to show
the relation with energy conservation.

7. Bernstein’s Argument for the Klein—Gordon Equation

In this and the subsequent section we develop a version of Bernstein’s “room-corridor”
method. We use the standard integral representation for solutions, divide the domain of
integration into “rooms” and “corridors” and evaluate their contribution. As a result, the
value (Up(t) Yo, W) for U € D is represented as the sum of weakly dependent random
variables. We evaluate the variances of these random variables which will be important
in next section.

First, we evaluatéY (¢), W) in (3.6) by using duality arguments. Foe R, introduce
“formal adjoint” operatorg/y(r), U’ (¢) from spaceD to a suitable space of distributions.
For example,

(Y, Uy()¥) = (Uo(1)Y, V), WeD, YeH. (7.1)
Denoted (-, r) = U,(r)¥. Then (7.1) can be rewritten as
(Y(1),¥) = (Yo, ®(-, 1)), t€R. (7.2)
The adjoint groups admit a convenient description. Lemma 7.1 below displays that the
action of groupsy(r), U'(r) coincides, respectively, with the action bj(r), U (1),

up to the order of the components. In particuléf(r), U’ (r) are continuous groups of
operatorsD — D.

Lemma 7.1.For ¥ = (V9 wl) e D,
Uy = (9(-, 1), ¢ (-, 1)), UMW = (-, 1), ¥ (-, 1)), (7.3)

where¢ (x, t) is the solution of Eq. (3.1) with the initial dateo, vo) = (1, ¥%) and
¥ (x, 1) is the solution of Eq. (1.3) with the initial statgo, vo) = (W1, ¥0).

Proof. Differentiating (7.1) irr with Y, ¥ € D, we obtain
(Y. Up(t) W) = (Uo(1)Y. W). (7.4)

GroupUo(r) has the generator (3.3). The generatob/gfr) is the conjugate operator
0A
Ay = (1 00). (7.5)

Hence, Eq. (7.3) holds witli = Agy. For groupU’(r) the proof is similar. O
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Nextwe introduce a “room-corridor” partition &*. Givenr > 0, choose =d; > 1
andp = p, > 0. Asymptotic relations between d; and p, are specified below. Set
h=d+ pand

a/ = jh, bl =al +d, jel. (7.6)
We call the slabR! = {x e R" : a/ < x" < b/} “rooms” andC;/ = {x e R" : b/ <
x" < a/t1} “corridors”. Herex = (x1,..., x"), d is the width of a room, ang of a
corridor.

Denote byy, the indicator of the intervalO, d] and x. that of [d, h] so that
Z{ez(xr(s—jh)ﬂc(s—jh)) = 1for (almostally € R. The following decomposition
holds:

(Yo, 0. 1)) = > (Yo, L @ (. 1)) + (Yo, X[ @ (. 1)), (7.7)
JjeZ

wherexf = x(x" — jh) andxé/ = x.(x" — jh). Consider random variableé, c,’
where

= (Yo, X/ @C.0). ¢ = (Yo xl®C. 1),  jeL (7.8)
Then (7.7) and (7.2) imply
(Uo()Yo, W) = > ¢/ +¢)). (7.9)
JEL

The series in (7.9) is indeed a finite sum. In fact, (7.5) and (12.1) imply that in the FT
representationd (k, 1) = AL (k) d(k, 1) andd(k, 1) = G, (k)W (k). Therefore,

D(x, 1) = f e G (k)W (k) dk. (7.10)
(2"
Rn
This can be rewritten as a convolution
O, 1) =R x U, (7.11)

whereR; = F*lgA,/. The support supf C Br with an7 > 0. Then the convolution
representation (7.11) implies that the support of the funcicet ¢ > 0 is a subset of
an “inflated future cone”

supp® C {(x,1) e R"" x Ry : |x| <t +T7}, (7.12)

asR;(x) is supported by the “future conét| < ¢. The last fact follows from general
formulas (see [13, (11.4.5.12)]), or from the Paley—Wiener Theorem (see, e.g. [13, Thm.
11.2.5.1]), asR, (k) is an entire function ok € C” satisfying suitable bounds. Finally,
(7.8) implies that

rl=c =0 for jh4+t<-F of jh—t>F. (7.13)
Therefore, series (7.9) becomes a sum
Nt . . l’
(Uo(t)Yo, W) = ,ZN(”] +e) N~ (7.14)

ash > 1.
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Lemma 7.2.Letn > 1, m > 0, andS0-S3hold. The following bounds hold for> 1:
Eir/? <CW)di/t, El/?<CW)p/t, jeL (7.15)

Proof. We discuss the first bound in (7.15) only; the second is done in a similar way.

Step 1 Rewrite the left-hand side as the integral of CFs. Definition (7.8) and Corol-
lary 5.1 imply by Fubini’s Theorem that

Elrf 1 = (x! "3l 6™gox — y), @(x.1) @ D(y.1) ). (7.16)
The following bound holds true (cf. [29, Thm. X1.17 (b)]):

sup | (x, 1) = O "?), t > . (7.17)

xeR?
In fact, (7.10) and (12.2) imply thak can be written as the sum

1

D(x,t) = 2ny

Z /e—i(kx:Fwt)ai(w)\fj(k) dk, (7.18)
+

Rn

wherea™ (w) is a matrix whose entries are linear functionswbr 1/w. Let us prove
the asymptotics (7.17) along each vay= vt + xo with |v| < 1, then it holds uniformly
in x € R" owing to (7.12). We have by (7.18),

1

O (vt + x0,t) = 2y

Z /efi(kv:Fw)l*ikXOai(a))\i’(k) dk. (7.19)
+ R

This is a sum of oscillatory integrals with the phase functignék) = kv + w (k). Each
function has two stationary points, solutions to the equatiea +Vw (k) if |v| < 1,
and has none ifv] > 1. The phase functions are nhondegenerate, i.e.

2 n
det(a ¢i(k)) £0, keR" (7.20)
okiok; ),

At last, (k) is smooth and decays rapidly at infinity. Therefode(vr + xo, 1) =
O(r7"/?) according to the standard method of stationary phase, [14].

Step 2 According to (7.12) and (7.17), Eq. (7.16) implies that

Elrj?<ci™ / X! (llgo(x — )|l dxdy = Ct™" f X! (x")dx fllqo(z)lldz,
bel=t+r x|<t+7 R"

(7.21)

where|go(z)|| stands for the norm of a matrié«;éj (z)). Therefore, (7.15) follows as
lqo()Il € L*®R™) by (6.1). O
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8. Convergence of Characteristic Functionals

In this section we complete the proof of Proposition 3.3. We use a version of the CLT
developed by lbragimov and Linnik. ©.,(¥, ¥) = 0, Proposition 3.3 is obvious.
Thus, we may assume that for a givene D,

Qoo (W, W) # 0. (8.1)

Choose 0< § < 1 and
t

o~ 11 d ~ inT t — 00. (8.2)

Lemma 8.1.The following limit holds true:

Ni (o) + (%)1/2) + N2(0M2(00) + %) -0, i—>o00.  (83)
Proof. Functiong(r) is nonincreasing, hence by (2.10),
r r
oY (r) = n/s”_lgol/z(r) ds < n/s”_l(pl/z(s) ds < Cp < oo. (8.4)
0 0

Then Eq. (8.3) follows as (8.2) and (7.14) imply tdgt~ In¢. O
By the triangle inequality,

1 (¥) = f1oo(W)] = |E expli (Uo()Yo, W) — Eexplid i ||
o] - 25 5] e - Soncn w

+‘E exp{iztr,j} - exp{ - %ZIE|r,j|2H

=h+ Db+ I3 (8.5)

N;
where the sun}_, stands for ) . We are going to show that all summarnids/, I3
j=—N;
tend to zero as — oo.
Step (i) Equation (7.14) implies

n=|Eexpiy" rilemli}" d}-v[ = EldI= Y EI]DY2 (86)
From (8.6), (7.15) and (8.3) we obtain that

I < CNi(p;/D)Y? > 0, t - oo. (8.7)

Step (ii) By the triangle inequality,
2 = 5|30 Bl P = QoW W) = 5191V, W) — Quo(W, )]

+3 B(S ) - X a4 3l (E) - o w)

= D1+ Ioo + I3, (8.8)



Convergence to Equilibrium Distribution, | 21

whereQ; is a quadratic form with the integral kerr(eQﬁ-’ (x, y)) . Equation (6.5) implies
that/>1 — 0. As to Iy, we first have that

I < Z E|rtjrtl . (8.9)

j<l
The next lemma is a corollary of [17, Lemma 17.2.3].

Lemma 8.2.Let £ be a complex random variable measurable with respect tasthe
algebrao (A), n with respect to the -algebrao (B), and the distancdist(A, B) > r >
0.

(i) Let(EE[)Y2 <a, (E|n»Y2 < b. Then
|EEn — EEEn| < Cab oY?(r).

(i) Let|&] <a,|nl <ba.s.Then
|EEn — EEEn| < Cab ¢(r).

‘We apply Lemma 8.2 to deduce thab — 0 ast — oo. Note thatr,j = (Yo(x),
x! (x")(R; » ¥)) is measurable with respect to thealgebrac (R;). The distance

between the different room&,j is greater than or equal {9 according to (7.6). Then
(8.9) andS1, S3imply, together with Lemma 8.2 (i), that

L < CN2oY?(py), (8.10)

which goes to 0 as— oo because of (7.15) and (8.3). Finally, it remains to check that
I>3 — 0,1t — oo. By the Cauchy—Schwartz inequality,

o= |E(S )~ (S + L) |
< CNY Elel P+ C(E(Ztrj)2)1/2<N,ZtE|ctj|2>1/2. (8.11)
Then (7.15), (8.9) and (8.10) imply

N 2 . .
(X ) = > EIrP42Y" Elrr) < CNidi/1 +CiNig™(pr) < C2 < o0,
Now (7.15), (8.11) and (8.3) yield
L3 < C1NZp;/t + CoNi(pr /)2 > 0, t — oc. (8.12)
So, all termslz1, I22, I231n (8.8) tend to zero. Then (8.8) implies that
1 .
= J12 _
- ‘Ztmr, 2~ O (W, \11)‘ 50, 1 oo (8.13)

Step (i) It remains to verify that

I3 = ‘E exp{iztrtj} — exp{ — %E(er,’)z}‘ — 0, 1t — oo. (8.14)
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Using Lemma 8.2 (ii) yields:

N;
‘E exp{izlrtf} — ] E exnlir/
—N,

N; Ny
< ‘Eexp{irt_N’}exp{i > rt]}—Eexp{irt_N’}Eexp{i > r’H
—N;+1 —N;+1
Nl . NI .
~|—‘E exp{ir,_N’}Eexp{i > r,’} — [ ] Eexplir/}
—N+1 —N;
N N, '
< Co(py+|Eexpli 30 )= ] Eexptir/)].
—N+1 —Ni+1

We then apply Lemma 8.2 (i) recursively and get, according to Lemma 8.1,

‘Eexp{iztr,j} - ﬁ E explir]}

7]\],

< CN;p(p;) > 0, t— oo. (8.15)
It remains to check that

N;
‘ H Eexp{irtj} — exp{ — %Ztmrﬁz” — 0, t - oo. (8.16)
—N;

According to the standard statement of the CLT (see, e.g. [24, Thm. 4.7]), it suffices to
verify the Lindeberg conditiorv¥e > 0,

1 .
=3 Ecyglr{?—> 0, t > oc. (8.17)
Oy t

Hereo;, = Z,E|rf|2, and Es f = EX;sf, whereX; is the indicator of the event
|1 > 8°. Note that (8.13) and (8.1) imply that

o = Qoo(V, W) #0, t — oo.
Hence it remains to verify thate > 0,
X:tEg|rlj|2 — 0, t - oo. (8.18)

We check Eq. (8.18) in Sect. 9. This will complete the proof of Proposition 33.
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9. The Lindeberg Condition

The proof of (8.18) can be reduced to the case when for strme0 we have, almost
surely, that

lug(x)| + vo(x)| < A <00, x € R". (9.2)

Then the proof of (8.18) is reduced to the convergence
ZIE|r,‘i|4 -0, t > (9.2)

by using Chebyshev’s inequality. The general case can be covered by standard cutoff

arguments by taking into account that the bound (7.15)Efm{|2 depends only oig
andg. The last fact is obvious from (7.21) and (6.3) wih= 1 andy = 0.
We deduce (9.2) from

Theorem 9.1.Let the conditions of Theorem B hold and assume that (9.1) is fulfilled.
Then for anyW € D there exists a constaidt(¥) such that

Elrl|* < C(W)A*?/1?, 1> 1. (9.3)

Proof. Step 1 Given four pointscy, x2, x3, x4 € R”, set:

MY (x1. ... x4) = E (Yo(x1) ® .. ® Yo(xa)) .
Then, similarly to (7.16), Egs. (9.1) and (7.8) imply by the Fubini Theorem that

Elr = Gl e o M (et xa), @1, 1) @ - @ D(xa, 1)) (9.4)

Let us analyse the domain of the integrati@f)* in the RHS of (9.4). We partition
(R™* into three partsW,, W3 and Wy:

4
4 = 4
R = Wi, Wi ={F = (v1, %2, 33, xa) € ®)* ¢ xp — x| = max |x1—xpl}.
. P=4,9,
i=2

(9.5)
Furthermore, giverx = (x1, x2, x3,x4) € W;, divide R" into three partsS;, j =
1,2, 3:R" = §1 U S, U S3, by two hyperplanes orthogonal to the segnienfx;] and
partitioning it into three equal segments, wheges S; andx; € S3. Denote byx,, x,
the two remaining points witlp, g # 1,i. Set: A; = {x ¢ W; : x, € S1,x4 € S3},
B ={x eW: Xp,Xq & S1} andC;, = {x € W; : Xp,Xq & S3}, i = 2,3,4. Then

W; = A; U B; UC;. Define the function rfg‘n‘) (X), ¥ € (RM*, in the following way:

4, _
mé)(x)

M((>4)(f) —qo(x1 — xp) ® qo(xi — xg), X €A,
. (9.6)

M F), TeBuC.
This determines rééi) (x) correctly for almost all quadruples Note that
(X ) - xd (go( — xp) ® qo(xi — xg), @1, 1) @ -+ ® B(xa, 1)
= (! Dx (h)goler — xp), P(x1, 1)
R (xp. 1)) (X! ()X (K go(xi — xg), D(x;. 1) ® (g, 1)).
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Each factor here is bounded 6YW) d; /. Similarly to (7.15), this can be deduced from
an expression of type (7.16) for the factors. Therefore, the proof of (9.3) reduces to the
proof of the bound

L= 103 G o MY (1), @1 D) ® - ® (g, 1))
< C(W)A*?/r?, r>1 9.7)

Step 2 Similarly to (7.21), Eq. (7.17) implies,
h=c [ Chim . xwldx dve dra da, - (98)
(B])*
whereB! is the ball{x € R" : |x| <t + 7}. We estimate rgf') using Lemma 8.2 (ii).
Lemma 9.2.For eachi = 2, 3, 4 and almost allk € W; the following bound holds:
(4) 4 i
Imy” (x1, ..., xa)| < CA%p(|x1 — x;1/3). (9.9)
Proof. Forx € A; we apply Lemma 8.2 (ii) t€C? @ C? = R* ® R*valued random
variablest = Yp(x1) ® Yo(x,) andn = Yo(x;) ® Yo(x,). Then (9.1) implies the bound
for almost allx € A;,
Im§? (®) < CA*(Ix1 — xi1/3). (9.10)

Forx € B;, we apply Lemma 8.2 (ii) t§ = Yo(x1) andn = Yo(x,) ® Yo(xy) @ Yo(x;).
ThenSOimplies a similar bound for almost all € 5;,

ImS? ()| = | MY @) — EYox) ® E(Yo(xp> ® Yolxy) ® Yo(xz'))‘
< CA%(Ix1 — xi/93), (9.11)
and the same for almost alle C;. 0O

Step 3 It remains to prove the following bounds for eack 2, 3, 4:

Vilt) = / X D) - X DX @ (Ix1 — xi1/3)dxy dxa dxs dxa < Cd2? 2,
(BD*
(9.12)

whereX; is an indicator of the s&¥;. In fact, this integral does not dependigmence
seti = 2 in the integrand:

Vi) <C f X! ee(lx1 — x21/3) / X () / Xo(X) dxg | dxz | dxydxa.
(BN)? Bf Bl
(9.13)
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Now a key observation is that the inner integraliity is O(|x1 — x2|") asX2(x) = 0
for |x4 — x1| > |x1 — x2|. This implies

Vi(t) < c7* / X e / o(x1 — x21/3)x1 — xa|" dxa | dx1 f X! (x8) dxa.

B B B
(9.14)
The inner integral inlx> is bounded as
2(t+7)
f o(|x1 — x2|/3)|x1 — x2|" dxz < C(n) / r?Lo(r/3) dr
0
B]
2(t+1)
<Cim) sup  reY20/3) / Y23 . (9.15)
rel0,2(t+7r)] 0

where the “sup” and the last integral are bounded by (8.4) and (2.10), respectively.
Therefore, (9.12) follows from (9.14). This completes the proof of Theorem @11.

Proof of convergence (9.2As d;, < h ~ t/N;, bound (9.3) implies,

; CA%d? C1A?
Z,E|rtj|4§ ; LN, < Zlv -0, N —>o00. O

10. The Scattering Theory for Infinite Energy Solutions

In this section we develop a version of the scattering theory to deduce Theorem A from
Theorem B. The main step is to establish an asymptotics of type (1.20) for adjoint groups
by using results of Vainberg [35].

Consider operator8’(r), Uy() in the complex spactl = L%(R") @ HL(R") (see
(2.12)). The energy conservation for the KGE implies the following corollary:

Corollary 10.1. There exists a constant > 0 such thatvW € H:
IUO¥Ilr < Cl¥la, I1U'OVIg < Cl¥Ia, teR (10.1)

Lemma 10.3 below develops earlier results [35, Thms. 3, 4, 5]. Consider a family of
finite seminorms ind ,

1912, = /<|wO<x)|2+|w1<x>|2+|W1<x)|2>dx, R > 0.

[x|<R

Denote byH gy the subspace of functions frofh with a support in the balB.

Definition 10.2. H. denotes the spacer-.oH ) endowed with the following conver-
gence: a sequencé, converges tol in H, iff 3R > 0 such that all¥, € H), and
¥, converge toV in the norm|| - || ().
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Below, we speak of continuity of maps frof. in the sense of sequential continuity.
Givent > 0, denote

(t+1)7%2 n>3,
e(t) = (10.2)
¢+ n2(:4+2),n=2.

Lemma 10.3.Let AssumptionE1-E3hold, andn > 2. Then for anyR, Rg > 0 there
exists a constar® = C(R, Rp) such that for € H(g),

IU" () Wll(ryy < Ce@IWli(r), t = 0. (10.3)

This lemma has been proved in [21] by using Conditiégiis-E3 and a method
developed in [36]. For the proof, the contour of integration inithgane from [35] had
to be curved logarithmically at infinity as in [36], but should not be chosen parallel to
the real axis.

The main result of this section is Theorem 10.4 below. Given0, set

t+1)7Y2 n>3
e1(t) =

10.4
N1t 4+2),n=2 (104)

Theorem 10.4.Let AssumptionE1-E3and SO-S3hold, andr > 2. Then there exist
linear continuous operator¥, r(r) : H. — H such that forv € H,,

UV = Uyt )WV +r(t)¥, >0, (10.5)

and the following bounds hoMR > 0 and ¥ € H(g):

lr@)¥lla < CREDI¥llr), =0, (10.6)
E|(Yo, r()¥) > < C(R)EZD)||W[|Z,, t > 0. (10.7)

Proof. We apply the standard Cook method: see, e.g., [29, Thm. XL.4JWF& H g,
and definegW ¥, formally, as

o
. d
W = tlmgo Up(—)U' () = ¥ + / EUC’)(—Z‘)U’(I)\IJ dt.
0

We have to prove the convergence of the integral in norm in sga¢erst, observe that
d / Y TRT d / Al
EUO(I)‘IJ = AgUp(1) Y, EU O =AU ()Y,

where Ay and A" are the generators to groupi(r), U’ (1), respectively. Similarly to
(7.5), we have

A= (2%), (10.8)
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n
whereA = Y (3; —iA;)? — m?. Therefore,
j=1

d
— U= U)W = UY(—1)(A' — ApU' (1) . (10.9)

dt
/ / oL

Now (10.8) and (7.5) imply
FurthermoreE2impliesthatL = Y (3; —iA;)?— A is afirst order partial differential
j=1
operator with the coefficients vanishing fatt > Rg. Thus, (10.1) and (10.3) imply that
1Uo(=)(A" = AU’ )Wz < C (A" = AU OVl n
0
= C (A = AU O¥) ll2(5,,)

1
= 11 (VO¥) liisey

= CREMIWl(r), t = 0. (10.10)
Hence (10.9) implies
00
/ ”%U(/J(_I)U/(I)\IJHH dt < C(R)ea()II¥ gy, s=0. (10.112)

Therefore, (10.5) and (10.6) follow by (10.1). It remains to prove (10.7). First, similarly
to (7.16),

E(Yo, r()%)? = {qo(x — y), r(D¥ () @ r()¥ (). (10.12)
Therefore, the Shur Lemma implies (similarly to (7.21))
E(Yo. r()W)? < llgoliz2 @)Wl 2 [Ir) W]l . (10.13)
where the norm§ - || .» have an obvious meaning. Finally, (10.6) implies$oe H(g),
lr@Wl2 < Clir@WVla < C(R)er() 1 W]I(r)- (10.14)
Therefore, (10.7) follows from (10.13) sindgo|l ;1 < co by (6.1). O

11. Convergence to Equilibrium for Variable Coefficients
The assertion of Theorem A follows from two propositions below:

Proposition 11.1.The family of the measurdg,, t € R}, is weakly compact i ¢,
Ve > 0.

Proposition 11.2.For any W € D,

i (1) E/eX[Xi(Y, W) w (dY) — exp{—%Qoo(W\Il, W)Y, t— oo, (11.1)
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We deduce these propositions from Propositions 3.2 and 3.3, respectively, with the help
of Theorem 10.4.

Proof of Proposition 11.1Similarly to Proposition 3.2, Proposition 11.1 follows from
the bounds

SUPE|U(t)Yollr <00, R > 0. (11.2)

>0
For the proof, write the solution to (1.3) in the form
ulx,t) =v(x,t) +wix,t). (11.3)

Herev(x, t) is the solution to (3.1), and(x, ¢) is the solution to the following Cauchy
problem:

B, ) = YOk — iAr@))?wlx, 1) — m®w(x, 1)
— Y k1 21 AR () (x, 1) — Y p_1 (0 Ak (x) + A,f(x))v(x, 1), (11.4)
Wli=0 =0, wl=0=0, x € R".
Then (11.3) implies
E|UMYollr < EllUo()Yollr + El(w(-, 1), w(, ))& (11.5)
By Proposition 3.1 we have
fg(?Elon(t)YoHR < 00. (11.6)

It remains to estimate the second term in the right-hand side of (11.5). The Duhamel
representation for the solution to (11.4) gives

t

(w, w) = f U@ —s)0,v(,s))ds, (11.7)
0
wherey (x, s) = —2i i Ar(x)ogv(x,s) — i(iakAk(x) + A,%(x))v(x, s). Assump-
k=1

k=1 =
tion E2 implies that supg/ (-, s) C Bg,. Moreover,
1O, ¥ (o )Ry < Cllv G, ) H1(Bey) = CllUs) Yol Ro- (11.8)

The decay estimates of type (10.3) hold for the groi(p), as well as fol’(¢), as both
groups correspond to the same equation by Lemma 7.1. Hence, we have from (11.8),

1U@ =)0, ¥ sDlr = C(R)e® — IO, ¥, )l ro
= C1(R)e(t = 5)[|Uo(s)Yoll o> (11.9)
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wheree () is defined in (10.2). Therefore, (11.7) and (11.6) imply

1
Ell(w(, 1), w(, D))lr = C(R)/S(t — 8)E||Uo(s)Yollro ds
0

<C2(R) <00, t=>0. (11.10)
Then (11.6) and (11.5) imply (11.2).0
Proof of Proposition 11.2Equations (10.5) and (10.7) imply by Cauchy—Schwartz,
|E expi(U(1)Yo, W) — E expi (Yo, Uy() WW)| < E|(Yo, r(t)V)|
< (E|(Yo,r()¥)[HY2 >0, t - oo.

It remains to prove that
1
E expi (Yo, Uy() W) — exp{ — S QW WY )}, t o0, (11.11)

This does not follow directly from Proposition 3.3 since generdiiyy ¢ D. We
approximateW W by functions fromD. WW¥ € H, andD is dense inH. Hence, for any
€ > 0 there existsb € D such that

WV — @]y <e. (11.12)

Therefore, we can derive (11.11) by the triangle inequality

. p 1
‘E expi (Yo, UY(t)WW) — exp{ — S Qu (W, WY )H
< ‘E expi (Yo, U)(t)WW) — E expi (Yo, Ué(t)d))‘
. 1
+ E| expi (Uo()Yo. @) — exp{ — 20w (@, &)
1 1
+ ‘exp[ — 5Qu(@. @ )] _ exp{ — S Qu (W, W )H (11.13)
Applying Cauchy—Schwartz, we get, similarly to (10.12)-(10.14), that
E|(Yo, Uy()(WW — ®))| < (E|(Yo, Uy(t)(WW — ®))|H)H? < C||Us(t)(WW — ®)|| .
Hence, (10.1) and (11.12) imply
E|(Yo, Uy(t)(WW — ®))| < Ce, t > 0. (11.14)

Now we can estimate each term on the right-hand side of (11.13). The first term is
O(e) uniformly int > 0 by (11.14). The second term converges to zero-as oo by
Proposition 3.3 sincé € D. Finally, the third term iD(¢) owing to (11.12) and the
continuity of the quadratic forn@., (¥, ¥) in L2(R") ® C2. The continuity follows

from the Shur Lemma since the integral kerngls(z) € L1(R") ® M? by Corollary
6.3. Now the convergence in (11.11) follows sirce 0 is arbitrary. O
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12. Appendix A. Fourier Transform Calculations

Consider the covariance functions of the solutions to the system (3.2). Lat — w
denote the FT of a tempered distributiane S’ (R") (see, e.g. [13]). We also use this
notation for vector- and matrix-valued functions.

12.1. Dynamics in the FT spacén the FT representation, the system (3.2) becomes
Yk, 1) = Ag(k)Y (k, 1), hence

Yk, t) = G(k)Yo(k),  Gi(k) = exp(Ao(k)r). (12.1)
Here we denote
A 0 1 A coSer sinwt
Ao(k) = ) , , Gi(k) = @ . (12.2)
—lk|*=m= 0 —wSinwt coswt

wherew = w(k) = /|k|?2 + m?2.

12.2. Covariance matrices in the FT space.

Lemma 12.1.In the sense of matrix-valued distributions,

ax =y = E(Y@n®Y(.0) = Ft_ G®i®d®, teR. (123)

Proof. Translation invariance (1.8) implies
E(Yotx) ®c Yo) ) = € (x = ), E(Yo) ®c Yoly) ) = Cg (x = y).  (124)
where®¢ stands for the tensor product of complex vectors. Therefore,

E(Yotk) ®c Toi) ) = Frk Fyp CF (x = y) = 20)"8(k + K)CF k),

E(Yotk) ®c Tok) ) = Feik Fyos Cy (x = y) = @1)"8(k = K)Cq (k). (12.5)
Now (12.1) and (12.2) give in matrix notation that
E(P (k.0 ®c PK'.1) ) = @08 + )G, (0 C ()G K.
E(Pk.n@c P (.0 ) = @05tk —K)G(0CG 0GK).  (12.6)
Therefore, by the inverse FT formula we get
E(Y(x, H®c Y1) ) = FL GCE G k),
E(Y(r.00c V0.0 ) = Fb, G0 Cq (0. (12.7)

Then (12.3) follows by linearity. O
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13. Appendix B. Measures in Sobolev’s Spaces

Here we formally verify the bound (4.5) fet « < —n /2. Definition (4.2) implies for
ue H>*,

/ <x>2°‘[ f e“"‘(k‘k/)(k)s(k’)sﬁ(k)mdkdk/]dx. (13.1)

2 _
lull§o = W

Let u(du) be a translation-invariant measureffi-* with a CFQ(x, y) = g¢(x — y).
Similarly to (12.5), (12.4), we get

/ a(akHu(du) = 2n)'s(k — k') rg (k). (13.2)
Then, integrating (13.1) with respect to the meagui#u), we get the formula
[ 1t = o [ w0 wado (13.3)
5 2m)"

Applying itto (k) = T with a, s < —n/2 and tog (k) = T (k% + m?)~ T with 1 + s
instead ofs, we get (4.5).
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