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Abstract

A new class of one-dimensional relativistic nonlinear wave equations with a
singular δ-type nonlinear term is considered. The sense of the equations is defined
according to the least-action principle. The energy and momentum conservation is
established. The main results are the existence of time-periodic finite-energy solu-
tions, the existence of global solutions and soliton-type asymptotics for a class of
finite-energy initial data.

1. Introduction

We consider real-valued solutions to a relativistic nonlinear wave equation of
the type

ü(x, t) = u′′(x, t)+ F(u(x, t)), x ∈ R. (1.1)

We assume that u(x, t) ∈ C(R2) and the nonlinear term F(u) is a distribution of
the type

F(u) =
∑
k∈Z

Fkδ(u− zk), u ∈ R, (1.2)

where Z = {zk : k ∈ Z} is a discrete closed subset of R. Then there exists a
piecewise constant potential V (u) such that F(u) = −V ′(u). Let us note that
any continuous potential can be approximated by piecewise constant functions.
Physically, (1.1) describes a string with a nonlinear self-action. This self-action is
concentrated at the union of the level sets

�k = �k(u) = u−1(zk) ≡ {(x, t) ∈ R
2 : u(x, t) = zk}. (1.3)

We define the sense of (1.1) by the variational Hamilton least-action principle.
This sense does not coincide with distributional treatment of (1.1) because the tan-
gent space to the phase manifold differs from the standard space of test functions.
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Moreover, the distributional treatment of (1.1) seems to be impossible. Indeed,
δ(u(x, t)− zk) is a well-defined distribution if u(x, t) ∈ C1 at the points of �k(u).
However, this C1 continuity contradicts (1.1).

Consider the Cauchy problem for (1.1) with the initial conditions

u|t=0 = u0(x), u̇|t=0 = v0(x), x ∈ R. (1.4)

We subject the initial data to a monotonicity condition that in particular includes
the case of monotone u0(x) and v0(x) ≡ 0. We restrict ourselves by piecewise C2

initial data and piecewise C2 solutions for the simplicity of exposition.
We prove the existence and uniqueness of a global solution to the Cauchy prob-

lem (1.1), (1.4). Our main results are the existence of time-periodic solutions to
(1.1) and the following soliton-type asymptotics:

u(x, t) ∼ b(λ(x − vt), λ(t − vx))+
∑
±

φ±(x ∓ t), t →∞. (1.5)

Here b(x, t) is a time-periodic solution (“breather”) to (1.1), |v| < 1, λ = 1/√
1− v2 and the “photons” φ±(x∓ t) are concentrated near the light cone |x| ∼ t .

Similar asymptotics hold as t → −∞. The results hold for the potentials V (u)

which are piecewise constant approximations to the Ginzburg-Landau potential
(u−u−)2(u−u+)2 (see Fig. 1). For proofs we reduce (1.1) to a system of ordinary
differential equations for the lines �k(u) and derive the corresponding properties
for the solutions to the system. This derivation is the main part of our analysis.

Soliton-type asymptotics are established for some translation invariant com-
pletely integrable one-dimensional equations, [9]. The asymptotics in local energy
seminorms are established for a translation-invariant three-dimensional system of
a scalar field coupled to a particle [8]. The asymptotics of type (1.5) in global
energy norm are established for small perturbations of soliton-type solutions to
one-dimensional nonlinear Schrödinger translation-invariant equations [3] and to
a translation-invariant three-dimensional system of a scalar or Maxwell field cou-
pled to a particle [5, 6]. In the present paper the asymptotics of type (1.5) are
established for the first time for a relativistic-invariant nonlinear wave equation.

V

u- u+

V(u)

uz4z3z2z1z0z-1

Fig. 1.
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The existence of time-periodic solutions is known only for the sine-Gordon equa-
tion with F(u) = sin u, [2, 7]. The nonexistence of the breathers for a smooth
function F(u) �≡ sin u has been analyzed in [2, 4, 7]. For singular F(u) of type
(1.2) we construct infinite sets of the breathers depending on a functional parameter.
We suppose that the existence of the breathers in our case is related to the fact that
equation (1.1) with the nonlinear term of type (1.2) is degenerate in some sense.
For instance, the set of finite-energy stationary solutions is not discrete, because it
contains any constant function u(x, t) = c with c /∈ Z. In this paper we restrict
ourselves to a particular class of solutions monotonous in x. We hope that a suitable
development of our technique could provide the existence of global solutions and
the asymptotics (1.5) for each finite-energy solution.

Remark. Numerical experiments [1, 10] show that the asymptotics of type (1.5)
hold for general equations (1.1) with a polynomialF(u). The results were confirmed
with high precision by G. Cohen, F. Collino, T. Fouquet, P. Joly, L. Rhaouti and
O. Vacus (Project ONDES, INRIA). However, the proof is still an open problem.

2. Main results

Let us describe our results more precisely. We denote by V (u) the potential,
F(u) = −V ′(u). We choose u± ∈ R such that (see Fig. 1)

V (u±) = 0, (2.1)

u± �∈ Z. (2.2)
Note that the potential V (u) satisfying (2.1) exists if and only if∑

k: u−<zk<u+
Fk = 0. (2.3)

For instance, such potential always exists in the case u+ = u−. We assume that the
potential V (u) is bounded from below,

V (u) � −V0, u ∈ R, (2.4)
where V0 � 0 due to (2.1). Let us introduce a phase space E of finite-energy states
for (1.1). For an open set ω ⊂ R and l = 0, 1, 2, . . . denote by Cl

b(ω) the space of
functions in ω with bounded derivatives up to the order l. Let I = [a, b] ⊂ R be a
closed interval. Denote by Cl

pw(I ) the space of piecewise Cl-continuous functions

u(x). This means that there exists a finite subset S(u) ⊂ I such that u ∈ Cl
b(ω̄) for

any open interval ω ⊂ I \ S(u). Denote by Cl
pw(R) the set of functions u(x) such

that u ∈ Cl
pw(I ) for each finite interval I = [a, b] ⊂ R.

Definition 2.1. The phase space E is the set of the states (u(x), v(x)) ∈ C2
pw(R)×

C1
pw(R) such that

(i) u′(x), v(x) ∈ L2(R), where u′(x) is the derivative in the sense of the distribu-
tions,

(ii) the set {x ∈ R : u(x) ∈ Z} is discrete, and
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u(x)→ u±, v(x)→ 0, x →±∞. (2.5)

Equation (1.1) is a formal Hamiltonian system with the phase space E and with
the Hamiltonian functional H and the total momentum P

H(u, v) =
∫ (

1
2 |v(x)|2 + 1

2 |u′(x)|2 + V (u(x))
)
dx, (2.6)

P(u, v) =
∫

u′(x) v(x) dx (2.7)

for (u, v) ∈ E. The Lagrangian functional L is defined in the phase space E by

L(u, v) =
∫ (

1
2 |v(x)|2 − 1

2 |u′(x)|2 − V (u(x))
)
dx. (2.8)

Remark. The integrands in (2.6)–(2.8) are defined for a.e. x ∈ R and the integrals
converge due to (2.2), (2.1) and Definition 2.1.

Let us define an appropriate class E ⊂ C(R2) of solutions u(x, t) to (1.1). We
call a set S ⊂ R

2 characteristic if it is a union of open intervals of some character-
istics x ± t =const. We call a characteristic set S locally finite if for every B > 0
the intersection of S with the set |x|+ |t | < B is a union of a finite number of open
intervals of the characteristics. Define � = �(u) = ∪k�k(u) (see (1.3)).

Definition 2.2. The set E is the set of functions u(x, t) ∈ C(R2) such that

(i) (u(·, t), u̇(·, t)) ∈ E, t ∈ R, where u̇(x, t) is the derivative in the sense of
distributions.

(ii) The following limits hold ∀ t ∈ R:

u(x, t)→ u±, x →±∞. (2.9)

(iii) If the set �k = �k(u) is nonempty for a k ∈ Z, then it is a line x = xk(t) with
xk(·) ∈ C(R) ∩ C2

pw(R).

(iv) We have u(x, t) ∈ C2(#̄) for any connected (open) component # of
R

2 \ (� ∪ S) where S = S(u) ⊂ R
2 is a locally finite characteristic set.

To define the sense of (1.1) for u(x, t) ∈ E we introduce a “continuity” function

C(x, t) = 1
2 |u̇(x, t)|2 − 1

2 |u′(x, t)|2 + V (u(x, t)), (x, t) ∈ R
2 \ (�(u) ∪ S(u)).

(2.10)
The function is well defined due to Definition 2.2(iv).

Definition 2.3. The function u(x, t) ∈ E is a solution to (1.1) if

(i) in the sense of distributions,

ü = u′′, (x, t) ∈ R
2 \ �(u), (2.11)

(ii) The following splicing condition holds on each non-empty �k(u):

C(xk(t)− 0, t) = C(xk(t)+ 0, t), a.e. t ∈ R. (SC)
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Remarks. (i) The condition (SC) is meaningful due to Definition 2.2(iv). (ii) For
u(x, t) ∈ E , the system (2.11), (SC) is equivalent to the Hamilton least-action
principle (see Appendix C).

In Appendix A we prove the following lemma that provides a priori estimates
for solutions.

Lemma 2.4. Let u(x, t) ∈ E be a solution to (1.1). Then

(i) if (2.1) and (2.2) hold, the energy is conserved:

H(u(·, t), u̇(·, t)) = const, t ∈ R, (2.12)

(ii) if (2.2) and (2.3) hold, the momentum is conserved:

P(u(·, t), u̇(·, t)) = const, t ∈ R. (2.13)

We introduce a class of “monotonic” states.

Definition 2.5. We define

(i) M as the set of the states (u, v) ∈ E such that

|u′(x ± 0)| > |v(x ± 0)|, x ∈ R, (2.14)

(ii) and M as the set of the functions u(x, t) ∈ E such that (u(·, t), u̇(·, t)) ∈ M ,
t ∈ R, where u̇(·, t) is the derivative in the sense of distributions.

Remark. From inequality (2.14) it follows that the functions u(x) ± ∫ x

0 |v(y)|dy
are strong monotone.

The set Z is discrete. Hence, for u(x, t) ∈ E the set �(u) is a disjoint union of a
finite number of the lines �k = �k(u) : x = xk(t), k = 1, . . . , N . We may assume
that xk(0) increase in k. Then by continuity xk(t) is also increasing in k for every
t ∈ R,

−∞ ≡ x0(t) < x1(t) · · · < xN(t) < xN+1(t) ≡ +∞. (2.15)

Theorem 2.6. Let (2.1) hold and (u0, v0) ∈ M . Then

(i) There exists a unique solution u(x, t) ∈M to the Cauchy problem (1.1), (1.4).
(ii) The line �k is time-like for any k = 1, . . . , N in the following sense:

|ẋk(t ± 0)| < 1, t ∈ R. (2.16)

For the proof we derive a finite system of nonlinear ordinary differential equa-
tions for the functions xk(t). Namely, the lines �k divide the plane x, t into N + 1
“strips”,

(k = {(x, t) ∈ R
2 : xk−1(t) < x < xk(t)}, k = 1, . . . , N + 1. (2.17)

First we prove the following weakened form of (2.16).

Lemma 2.7. Let u(x, t) ∈M be a solution to (1.1). Then for any k = 1, . . . , N ,

|xk(t)− xk(s)| < |t − s|, s �= t. (2.18)
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This lemma and (2.11) imply the d’Alembert representation

u(x, t) = fk(x − t)+ gk(x + t) (2.19)

in every strip (k , k = 0, . . . , N + 1. Definition 2.2(iii) implies

fk, gk ∈ C(R) ∩ C2
pw(R). (2.20)

Then substituting the representation (2.19) into (SC) we obtain the system of differ-
ential equations for the functions xk(t). The system implies the bound (2.16). This
allows us to prove the existence and uniqueness of the solution x1(t), . . . , xN(t)

and to reconstruct the functions fk and gk .
Next we consider weak solutions to (1.1). The weak solutions u(·, t) admit the

values u = zk on non-empty open segments. Therefore, we have to distinguish
the values zk − 0 and zk + 0 to define V (u) correctly in (2.6), (2.8) and (2.10).
This allows us to remove the restriction (2.2). For concreteness, we consider the
particular case when the interval [u−, u+] contains only two points of the set Z
(see Fig. 1):

[u−, u+] ∩ Z = {z1, z2}, z1 < z2 . (2.21)

We consider the weak solutions û(x, t) which take the values in the disjoint union
Î := [u−, z1 − 0] ∪ [z1 + 0, z2 − 0] ∪ [z2 + 0, u+]. We have F1 = −F2 by (2.3),
then (2.1) implies

V (û) =



0, û− � û � z1 − 0
F2, z1 + 0 < û � z2 − 0

0, z2 + 0 � û � û+

∣∣∣∣∣∣ û ∈ Î (2.22)

with a natural ordering in Î . The potential with F2 > 0 simulates the features of the
Ginzburg-Landau potential (u− u−)2(u− u+)2 (see Fig. 1). We introduce a weak
phase space M̂ and a class M̂ of weak solutions instead of M and M (mainly we
replace > by � in (2.14)). For the simplicity of exposition we change the condition
(2.5) in Definition 2.1 to

û(x) = û±, v(x) = 0, ±x � R (2.23)

with some R > 0. We adjust the sense of the weak solution in Section 5.
We prove the existence and uniqueness of the global weak solution û(x, t) ∈ M̂

for (û0, v0) ∈ M̂ assuming thatF2 > 0 in (2.22) (Theorem 5.6). In the next theorem
we consider the initial states (û0, v0) ∈ M̂ with the boundary values û− = z1 − 0,
û+ = z2 + 0 in (2.23):

û(x) =
{
z1 − 0, x < −R
z2 + 0, x > R

∣∣∣∣ v(x) = 0, |x| � R. (2.24)

Let us note that this is possible since the restriction (2.2) is not necessary for the
weak solutions. Then we prove that the corresponding weak solution is a breather,
i.e., is time-periodic up to a Lorentz transformation:
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Theorem 2.8. Let (2.22) hold, and (û0, v0) ∈ M̂ admits the boundary values (2.24).
Then the weak solution to the Cauchy problem (1.1), (1.2) admits the representation

û(x, t) = b̂(λ(x − vt), λ(t − vx)), (x, t) ∈ R
2, (2.25)

where |v| < 1, λ = 1/
√

1− v2, b̂(x, t) is a time-periodic weak solution to (1.1),
and

b̂(x, t) =
{
z1 − 0, x � x1(t),

z2 + 0, x � x2(t).
(2.26)

For the proof we generalize the methods of Section 3 and obtain the uniform
bound |ẋk(t)| � γ < 1, k = 1, 2. Equation (2.25) means that the solution û(x, t)

is the breather b̂(x, t) moving with speed v.
In the next theorem we assume (2.24) but we do not assume that û− = z1 − 0,

û+ = z2 + 0 as in (2.24). We denote by p the natural projection Î → R. The
following theorem is the main result of the paper.

Theorem 2.9. Let (2.21) and (2.22) hold with F2 > 0, and (û0, v0) ∈ M̂ . Then for
the weak solution û(x, t) ∈ M̂ to the Cauchy problem (1.1), (1.4), the asymptotics
(1.5) hold in the following sense: there exists a time t∗ > 0 such that

pû(x, t) = pb̂(λ(x − vt), λ(t − vx))+
∑
±

φ±(x ∓ t), x ∈ R, t � t∗, (2.27)

where |v| < 1, λ = 1/
√

1− v2, b̂(x, t) is a time-periodic weak solution to (1.1),
and (2.26) holds; φ±(x) ∈ C2

pw(R) and φ′±(x) ∈ L2(R). Similar asymptotics hold
for negative t � t∗.

For the proof we generalize the method of Section 6 and show that the line �1
or �2 intersects the characteristics x± t = C with C < x1(0) or C > x2(0) respec-
tively (see Proposition 8.1). This means that the effective speed of the propagation
for the segment [x1(t), x2(t)] is strictly less than 1. The bound is very natural phys-
ically for the relativistic equation (1.1) but its proof is not straightforward. This is
a central part of our arguments. The arguments use essentially the a priori bounds
which follow from the energy conservation for the weak solutions (see Corollary
8.2 and Lemma 8.3). Furthermore, the arguments rely on special features of the
potential (2.22) with F2 > 0.

Remarks. (i) We assume (2.23) for the simplicity of exposition. It is possible to
consider more general initial data, assuming sufficiently fast convergence

û(x)→ û±, v(x)→ 0, x →±∞. (2.28)

Then (2.27) holds asymptotically, as t →∞.
(ii) Let us emphasize that the breather b̂(x, t) is not a solution in the sense of Defi-
nition 2.3 since (2.26) contradicts (2.2).
(iii) We cannot ignore the weak solutions with the boundary values (2.26) since they
combine the attractor of (1.1): even if we start with an initial state (û0, v0) ∈ M̂

with the boundary values (2.23) where û− �= z1 − 0 and û+ �= z2 + 0, the limit
breather satisfies (2.26).
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Fig. 2.

In Sections 3, 4 we prove the existence and uniqueness of the solution to the
Cauchy problem. Section 5 concerns the weak solutions. In Sections 6 and 7 we
construct the breathers. Section 8 concerns the soliton-type asymptotics. Appendix
A concerns energy and momentum conservation. In Appendix B we prove the di-
chotomy of the roots of an algebraic equation, and in Appendix C we analyze the
Hamilton least-action priciple.

3. Uniqueness: reconstruction of solution

We prove the uniqueness of the solution inTheorem 2.6(i).The proof is construc-
tive and leads automatically to the existence. We consider t � 0 for concreteness.
Letu(x, t) ∈M be a solution to the Cauchy problem (1.1), (1.4) with (u0, v0) ∈ M .
Then for every fixed t ∈ R the function u(x, t) is a strong monotonic in x. Let us
assume for example that u0(x) is (strong) monotone increasing. Then by continuity
u(·, t) ∈ M is also a strong monotonically increasing function for every t ∈ R.
Note that xk(0) are determined uniquely by the initial datum u0(x). We will derive
below ordinary differential equations for the functions xk(t) defining the lines �k .

Now we start to reconstruct all functions fk(x), gk(x) and xk(t). For k =
1, . . . , N + 1 let us denote Xk(t) = (xk−1(t), xk(t)), t ∈ R, and let 0k be an open
“characteristic triangle” {(x, t) ∈ R

2 : (x − t, x + t) ⊂ Xk(0)}. Let us introduce
T0 = 1

2 min2�k�N |xk(0)− xk−1(0)|.

Step 1. Uniqueness in characteristic region
Let us substitute (2.19) into initial conditions (1.4). This leads to the standard

d’Alembert formulae: up to an additive constant, for k = 1, . . . , N + 1,

fk(x) = u0(x)

2
− 1

2

∫ x

xk(0)
v0(y)dy, gk(x) = u0(x)

2
+ 1

2

∫ x

xk(0)
v0(y)dy, (3.1)
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where x ∈ Xk(0). The formulas (2.19) and (3.1) define the solution u(x, t) uniquely
in the region 0k with any k = 1, . . . , N + 1.

Step 2. Proof of Lemma 2.7
Equations (3.1) and Definitions 2.1, 2.5 imply, for k = 1, . . . , N + 1,

fk, gk ∈ C(Xk(0)) ∩ C2
pw(Xk(0)), (3.2)

f ′k(x ± 0) > 0, g′k(x ± 0) > 0, x ± 0 ∈ Xk(0). (3.3)

Let us assume, contrary to (2.18), that |xk(t∗)− xk(s∗)| � |t∗ − s∗| for some k and
sufficiently close s∗, t∗ ∈ R, s∗ �= t∗. We may assume that s∗ = 0 < t∗ < T0, and
(xk(t∗), t∗) ∈ 0k for concreteness. Then

xk(0) � xk(t∗)− t∗ < xk(t∗)+ t∗ � xk+1(0). (3.4)

Moreover, we may assume that the interior of the open triangle ∗ with the vertices
(xk(t∗), t∗), (xk(t∗)± t∗, 0) does not contain any points of the line �k (see Fig. 2).
Then the d’Alembert representation (2.19) holds in  ∗. Therefore, (3.3) and (3.4)
imply

u(xk(t∗), t∗) = fk+1(xk(t∗)− t∗)+ gk+1(xk(t∗)+ t∗)
> fk+1(xk(0))+ gk+1(xk(0)) = u(xk(0), 0) = zk, (3.5)

which contradicts the assumption (xk(t∗), t∗) ∈ �k . !"
Corollary 3.1. For any k = 1, . . . , N , the line �k is time-like in the following weak
sense:

|ẋk(t ± 0)| � 1, t ∈ R. (3.6)

Step 3. Differential equation for �k

Now we are going to determine the lines �k in the strip 0 � t � T0. Namely,
we derive a system of ordinary differential equations for the functions xk(t) in
the interval [0, T0] using the splicing condition (SC) and (2.18). Let us denote
∇k = ∇k(T0) = {(x, t) ∈ R

2 : |x − xk(0)| � t � T0} (see Fig. 3). The inequality
(2.18) implies (xk(t), t) ∈ ∇k for t ∈ [0, T0].

The definition of xk(t) and the splicing condition (SC) imply the following
three identities for any k = 1, . . . , N :

u(xk(t)± 0, t) = zk, t ∈ R,

[ 1
2 |u̇|2 − 1

2 |u′|2 + V (u)]
∣∣∣(xk(t)+0,t)

(xk(t)−0,t)
= 0, a.e. t ∈ R.

(3.7)

Formula (3.2) implies fk(x), gk+1(x) ∈ C2(ω̄) for any interval ω ⊂ Xk \ Sk or
ω ⊂ Xk+1 \ Sk+1 respectively, where Sk, Sk+1 are some finite sets, k = 2, . . . , N .
Then fk(x−t), gk+1(x+t) ∈ C2(#̄) for any connected (open) subset# ⊂ ∇k \Sk ,
where Sk is a locally finite characteristic set {(x, t) ∈ ∇k : x − t ∈ Sk or x + t ∈
Sk+1}. For simplicity of exposition we assume for a moment that Sk = Sk+1 = ∅,
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hence Sk = ∅. Then substituting the representation (2.19) for u(x, t) into (3.7), we
get the system

fk(xk(t)− t)+ gk(xk(t)+ t) = zk,

fk+1(xk(t)− t)+ gk+1(xk(t)+ t) = zk,

∣∣∣∣∣ t ∈ [0, T0], (3.8)

f ′k(xk(t)−t)g′k(xk(t)+t)

−f ′k+1(xk(t)−t)g′k+1(xk(t)+t)− 1
2Fk=0, a.e. t ∈[0, T0]. (3.9)

We have used

[V (u)]
∣∣∣(xk(t)+0,t)

(xk(t)−0,t)
= −Fk ,

which follows from the fact that u(·, t) is strong increasing.
For (x, t) ∈ ∇k , the “ingoing” waves fk(x− t) and gk+1(x+ t) are known from

(3.1) since x − t ∈ Xk and x + t ∈ Xk+1 by the definition of T0. Hence from the
bound (3.6) it follows that in the system (3.8), (3.9) two functions fk(xk(t)− t) and
gk+1(xk(t)+ t) are known. Therefore, we may eliminate two unknown “reflected”
waves gk(xk(t) + t) and fk+1(xk(t) − t) to get an equation for xk(t). Later on,
when xk(t) is determined, we will derive the reflected waves gk(xk(t) + t) and
fk+1(xk(t) − t) from (3.8) in the interval 0 � t � T0. To eliminate gk and fk+1,
let us differentiate the identities (3.8) in t :

f ′k(xk(t)− t)(ẋk(t)− 1) + g′k(xk(t)+ t)(ẋk(t)+ 1) = 0

f ′k+1(xk(t)− t)(ẋk(t)− 1) + g′k+1(xk(t)+ t)(ẋk(t)+ 1) = 0

∣∣∣∣∣∣ t ∈[0, T0].

(3.10)

t

T0

τ2
k

τ1
k

0 xk (0) x

∇k(T0)

Gk

Fig. 3.
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Let us assume for a moment that ẋk(t) �= ±1. Then we get the derivatives of the
reflected waves:

g′k(xk(t)+ t) = −f ′k(xk(t)− t)
ẋk(t)− 1

ẋk(t)+ 1

f ′k+1(xk(t)− t) = g′k+1(xk(t)+ t)
ẋk(t)+ 1

ẋk(t)− 1

∣∣∣∣∣∣∣∣∣
t ∈[0, T0]. (3.11)

Substituting these expressions into the splicing condition (3.9), we get

−|f ′k(xk(t)−t)|2
ẋk(t)− 1

ẋk(t)+ 1
+|g′k+1(xk(t)+t)|2

ẋk(t)+ 1

ẋk(t)− 1
−Fk

2
= 0, a.e. t ∈[0, T0].

(3.12)
Therefore the differential equation holds

ak(xk(t), t)ẋ
2
k (t)−2bk(xk(t), t)ẋk(t)+ck(xk(t), t) = 0, a.e. t ∈[0, T0]. (3.13)

Here we denote

ak(x, t) = |f ′k(x − t)|2 − |g′k+1(x + t)|2 + Fk

2
bk(x, t) = |f ′k(x − t)|2 + |g′k+1(x + t)|2
ck(x, t) = |f ′k(x − t)|2 − |g′k+1(x + t)|2 − Fk

2

∣∣∣∣∣∣∣∣∣
(x, t)∈∇k . (3.14)

Obviously, (3.13) follows from (3.10) without the assumption ẋk(t) �= ±1.
Now we return to the general case when the sets Sk, Sk=1 and Sk are not empty.

Then (3.13) becomes

ak(xk(t), t)ẋ
2
k (t)− 2bk(xk(t), t)ẋk(t)+ ck(xk(t), t) = 0, a.e. t ∈[0, T0] \ Tk,

(3.15)

where Tk := {τ ∈ [0, T0] : (xk(τ ), τ ) ∈ Sk}: see Fig. 3. The set Tk = {τ 1
k , τ

2
k , . . .}

is finite by Lemma 2.7, and the coefficients (3.14) belong to C1(#̄) for any con-
nected (open) component # of the set ∇k \ Sk .

Step 4. Dichotomy for the roots
To express ẋk(t) from (3.15), we have to analyze the function vk(x, t) defined

by the algebraic equation

ak(x, t)v
2
k (x, t)− 2bk(x, t)vk(x, t)+ ck(x, t) = 0, (x, t) ∈ ∇k \ Sk . (3.16)

Furthermore, from the inequality (3.6) it follows that we have to choose the roots
vk(x, t) ∈ [−1, 1]. The following Lemma states the features of the roots and implies
the bound (2.16).

Lemma 3.2. Let (u0, v0) ∈ M . Then for any k = 1, . . . , N and (x, t) ∈ ∇k \ Sk

(i) there exists a unique solution v̄k(x, t) ∈ [−1, 1] to (3.16);
(ii) moreover, v̄k(x, t) ∈ (−1, 1);

(iii) v̄k(x, t) ∈ C1(#̄) for any connected (open) component # of the set ∇k \ Sk .
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Proof. Proof of (i) and (ii). For (x, t) ∈ ∇k \ Sk we have for the discriminant,

dk(x, t) ≡ b2
k(x, t)− ak(x, t)ck(x, t) = 4|g′k+1(x + t)|2|f ′k(x − t)|2 + 1

4F
2
k > 0.
(3.17)

Hence the roots of (3.16) are real and distinct,

vk(x, t) =



v±k (x, t) ≡

bk(x, t)±√dk(x, t)

ak(x, t)
if ak(x, t) �= 0,

v0
k (x, t) ≡

ck(x, t)

2bk(x, t)
, if ak(x, t) = 0.

(3.18)

Using (3.14) and (3.3) it is easy to check the following dichotomy for the roots (see
Appendix B),

|v−k (x, t)| < 1 and |v+k (x, t)| > 1 if ak(x, t) �= 0, (3.19)

|v0
k (x, t)| < 1 if ak(x, t) = 0. (3.20)

Hence,

vk(x, t) =
{
v−k (x, t) if ak(x, t) �= 0,

v0
k (x, t) if ak(x, t) = 0.

(3.21)

Proof of (iii). By (3.17) the functions ak(x, t), bk(x, t), ck(x, t) are C1 near the
points (x, t) ∈ #̄ with ak(x, t) �= 0. On the other hand, from (3.3) and (3.14) it
follows that for every k = 1, . . . , N

bk(x, t) � b > 0, (x, t) ∈ #̄. (3.22)

Therefore
√
dk(x, t) = bk(x, t)[1− ak(x, t)ck(x, t)/b

2
k(x, t)]1/2 admits an expan-

sion to a convergent series in ak(x, t)ck(x, t)/b
2
k(x, t) in the set (x, t) ∈ # with

small |ak(x, t)|. Therefore,

v̄k(x, t) = bk(x, t)
(

1− [1− ak(x, t)ck(x, t)/b
2
k(x, t)]1/2

)/
ak(x, t)

is also a C1 function in this set. !"

Step 5. Bounds and uniqueness for t ∈ [0, T0]
The equation (3.15) for t ∈ [0, T0] \ Tk , Lemma 3.2(i) and the inequality (3.6)

imply
ẋk(t) = vk(xk(t), t), t ∈ [0, T0] \ Tk. (3.23)

Therefore, xk(t) ∈ C[0, T0]∩C2
pw(0, T0) by Lemma 3.2(iii). Furthermore, Lemma

3.2(ii) implies
|ẋk(t ± 0)| < 1, t ∈ [0, T0]. (3.24)

Lemma 3.3. The function xk(t) is determined uniquely for 0 < t � T0 by (3.23)
and the initial point xk(0).
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Proof. Let us note that the function vk(x, t) generally is not Lipschitz continu-
ous in x, hence the uniqueness of xk(t) does not follow directly from the standard
theorem. Consider the finite sequence of times τ 1

k , τ
1
k , . . . ∈ Tk: τ 1

k = sup{t ∈
[0, T0] : (xk(s), s) �∈ Sk for s ∈ (0, t)}, τ 2

k = sup{t ∈ [τ 1
k , T0] : (xk(s), s) �∈

Sk for s ∈ (τ 1
k , t)}, etc. (see Fig. 3). We have τ 1

k > 0 due to (3.23), (3.24), and xk(t)
is defined uniquely for 0 � t � τ 1

k by Lemma 3.2(iii). If τ 1
k < T0, then repeating

this argument with the initial point xk(τ 1
k ) at the time t = τ 1

k , we determine xk(t)

uniquely for τ 1
k � t � τ 2

k and so on. By induction, we define xk(t) uniquely for all
t ∈ [0, T0] since the set Tk is finite. !"

Now we reconstruct u(x, t) for t ∈ [0, T0] and all x ∈ R. Let us define the
reflected waves fk+1(x − t), gk(x + t) from algebraic identities (3.8),

fk+1(xk(t)− t) = zk − gk+1(xk(t)+ t),

gk(xk(t)+ t) = zk − fk(xk(t)− t),
(3.25)

where 0 � t � T0. The functions gk(·), fk+1(·) are defined uniquely in the seg-
ments [xk(0), xk(T0)+T0] and [xk(T0)−T0, xk(0)] respectively because the maps
t %→ xk(t) ± t are invertible from [0, T0] to these segments by (3.24). Therefore,
u(x, t) is defined uniquely by (2.19) for all x ∈ R and t ∈ [0, T0].
Step 6. Bounds and uniqueness for all t � 0

We can repeat all the constructions described above with t = T0 instead of t = 0
and deduce the uniqueness of u(x, t) and bounds (2.16) for T0 < t < T0 + T1,
where the step T1 = 1

2 min2�k�N |xk(T0) − xk−1(T0)|. The induction implies the
uniqueness of u(x, t) and bounds (2.16) for all t > 0 because of the a priori bound
for the step

T (t) := 1

2
min

2�k�N
|xk(t)− xk−1(t)| � C

1+ t
, t > 0. (3.26)

The bound holds by the following lemma.

Lemma 3.4. Let (2.4) hold. Then

1
2

∫
[|u̇|2 + |u′|2]dx � C(u0, v0)+ 2V0|t | f or t ∈ R. (3.27)

Proof. Equation (2.12) implies

1
2

∫
[|u̇|2 + |u′|2]dx = H(u0, v0)−

∫
V (u)dx. (3.28)

On the other hand, (2.9) and (2.1), (2.2) imply

V (u(x, t)) = 0, ± x � a + |t | (3.29)

with an a ∈ R. Therefore, (2.4) implies∫
V (u(x, t))dx =

∫
|x|�a+|t |

V (u(x, t))dx � −2V0(a + |t |). !"
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This Lemma implies, by Cauchy-Schwarz inequality, that

|zk+1 − zk|2 = |u(xk+1(t), t)− u(xk(t), t)|2 (3.30)

�
∫ xk+1(t)

xk(t)

|u′(x, t)|2 dx |xk+1(t)− xk(t)|
� C(1+ |t |)|xk+1(t)− xk(t)|, t ∈ R. (3.31)

Then (3.26) follows. !"

4. Existence of global solution

The above proof of the uniqueness gives the explicit algorithm for constructing
the solution.

Step 1. Existence in characteristic region
We construct u(x, t) in the characteristic regions 0k as described in Step 1 of

the previous Section with fk, gk satisfying (3.2), (3.3) for k = 1, . . . , N + 1.

Step 2. Existence for 0 � t � T0
For k = 1, . . . , N we construct xk(t) and u(x, t) for 0 < t < T0 and all

x ∈ R as described in Step 4 of the previous Section. We define xk(t) as a solution
to (3.23) for 0 < t < T0 with initial value xk(0) defined by u0(x). The solu-
tion xk ∈ C(0, T0)∩C2

pw(0, T0) exists due to Lemma 3.2(iii). The inequality (3.24)
holds as above. Therefore, the formula (3.25) for the reflected waves implies gk(·) ∈
C([xk(0), xk(T0)+ T0])∩C2

pw([xk(0), xk(T0)+ T0]), and fk+1(·) ∈ C([xk(T0)−
T0, xk(0)]) ∩ C2

pw([xk(T0) − T0, xk(0)]). Hence, the d’Alembert representation
(2.19) defines u(x, t) ∈ C(R × [0, T0]): the continuity along the characteristics
x±t = xk(0) follows from (3.8) and the continuity of the initial functionu0(x). Fur-
ther,u(x, t) ∈ C2(#) for any connected (open) component of R×[0, T0]\(�0∪S0)

where �0 ≡ {(x, t) ∈ R× [0, T0] : u(x, t) ∈ Z} and S0 ⊂ R× [0, T0] is a locally
finite characteristic set. Let us check that (u(·, t), u̇(·, t)) ∈ M for t ∈ [0, T0]. It
suffices to verify that for all k = 2, . . . , N

f ′k(x − t ± 0) > 0, g′k(x + t ± 0) > 0, x ± 0 ∈ Xk(t). (4.1)

We prove (4.1) separately for x from every interval of the decomposition (see Fig. 4)

Xk(t) = [xk−1(t), xk−1(0)+t]∪[xk−1(0)+t, xk(0)−t]∪[xk(0)−t, xk(t)]. (4.2)

Inequalities (4.1) for x ∈ [xk−1(0) + t, xk(0) − t] follow from (3.3). The proofs
of (4.1) are identical for the two remaining segments in (4.2). Let us consider for
example, x ∈ [xk(0) − t, xk(t)]. Then (4.1) for f ′k follows from (3.3). Therefore,
(3.11) for g′k together with (3.24) imply

g′k(xk(t)+ t ± 0) > 0, t ∈ [0, T0]. (4.3)

Then (4.1) follows for g′k at x ± 0 ∈ [xk(0)− t, xk(t)].
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Step 3. Existence for all t � 0
We continue by induction and take into account a priori estimate (3.26) for

the step. Then (2.16) follows from (3.24), and the limits (2.9) follow by (2.5) and
(2.16). Hence, the global solution u(x, t) ∈M exists. Theorem 2.6 is proved. !"

5. Weak solutions

We generalize the definition of the solution to the case u± ∈ Z, see (2.2). To
do this we need to make a distinction between possible limit values zk ± 0 of the
solution u(x, t) to define V (u) correctly in (2.6), (2.8) and (2.10). Let us assume
for simplicity of exposition that the set Z is finite, #(Z) = N , and let us enumerate
all points z ∈ Z in ascending order of z1, . . . , zN ,

−∞ = z0 < z1 < · · · < zN < zN+1 = ∞. (5.1)

Let us denote 5k = [zk−1, zk] for k = 1, . . . , N + 1, and R̂ – a disjoint union of
the segments 5k . Define Ik : 5k → R̂ as the corresponding injection, p : R̂ → R

as the projection p|5k
= I−1

k . Set z−k = Ik−1(zk) and z+k = Ik(zk).

Remark. The points z±k represent the “limit values” zk ± 0.

Let us generalize Definitions 2.1–2.5 for the functions with the values in R̂.
Denote by B(R, R̂) the set of the Borel measurable maps R → R̂.

Definition 5.1. The function (û(x), v(x)) ∈ Ê if û(·) ∈ B(R, R̂) and (pû(x),

v(x)) ∈ E.

Let us define the potential V̂ in R̂ as

V̂ (û) =
{
V (pû) if pû �∈ Z,

V (zk ± 0) if û = z±k , k = 1, . . . N.
(5.2)

t
Gk–1

Gk

t

0 xk–1(0) xk–1(0)+t xk(0)–t xk(0) x

Fig. 4.
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Define the Hamiltonian functional and the total momentum for (û(x), v(x)) ∈ Ê

as

H(û, v) =
∫ (

1
2 |v(x)|2 + 1

2 |u′(x)|2 + V̂ (û(x))
)
dx, (5.3)

P(û, v) =
∫

u′(x) v(x) dx, (5.4)

where u(x) = pû(x) for x ∈ R. Let us generalize Definitions 2.2, 2.3 for the
function û(x, t) with the values in R̂. We need an adjustment for the definition of
the sets �k and �. Let us set

�̂k(û) = û−1(z−k ) ∩ û−1(z+k ),
�̂(û) = ∪k�̂k(û).

(5.5)

Definition 5.2. The trajectory û(x, t) ∈ Ê if u(x, t) ≡ pû(x, t) ∈ E satisfies all
conditions of Definition 2.2 with �̂(û) instead of �(u).

Definition 5.3. The trajectory û(x, t) ∈ Ê is a weak solution to (1.1) if (2.11) and
(SC) hold for u(x, t) = pû(x, t) with the set �̂(û) instead of �(u) and with V̂ (û)

instead of V (u).

Now we can omit the assumption (2.2) in Theorem 2.6. Let us fix an arbitrary
û± ∈ R̂ with

V̂ (û±) = 0. (5.6)

A potential V̂ (û) satisfying (5.6) exists if and only if an analog of (2.3) holds:

∑
k: {û−�z−k }&{ẑ+k �u+}

Fk = 0. (5.7)

Lemma 5.4. Let u(x, t) ∈ Ê be a solution to (1.1). Then

(i) if (5.6) holds, the energy is conserved:

H(û(·, t), u̇(·, t)) = const, t ∈ R, (5.8)

(ii) if (5.7) holds, the momentum is conserved:

P(û(·, t), u̇(·, t)) = const, t ∈ R. (5.9)

The proof coincides with that of Lemma 2.4 given in Appendix A.
For concreteness, we consider below the particular case when the interval

[pû−, pû+] contains only two points of the set Z (see (2.21)). Then (5.7) im-
plies F1 = −F2, and (2.22) holds with z1 − 0 ≡ z−1 and z2 + 0 ≡ z+2 . Define
u(x) = pû(x) and u(x, t) = pû(x, t) as above.
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Definition 5.5. We define

(i) M̂ as the set of states (û, v) ∈ Ê such that (2.23) holds with an R > 0, u(x) is
a monotone function, and (cf. (2.14))

|u′(x ± 0)| � |v(x ± 0)|, x ∈ R, (5.10)

|u′(x ± 0)| > |v(x ± 0)|, û(x ± 0) ∈ [z+1 , z−2 ]; (5.11)

(ii) and M̂ as the set of the functions û(x, t) ∈ Ê such that (û(·, t), u̇(·, t)) ∈ M ,
t ∈ R.

For a function û(x, t) ∈ M̂, we have �̂(û) = �̂1(û) ∪ �̂2(û) where �̂k(û) is
the trajectory x = xk(t), k = 1, 2.

Theorem 5.6. Let (2.21), (2.22) hold with F2 > 0, and (û0, v0) ∈ M̂ . Then there
exists a unique weak solution û(x, t) ∈ M̂ to the Cauchy problem (1.1), (1.4) such
that

|ẋk(t ± 0)| < 1, t ∈ R, k = 1, 2. (5.12)

Proof. The proof follows the same strategy as the proof of Theorem 2.6. However,
the inequality (5.10) is not strong in contrast to (2.14). In this regard, the proof
of Theorem 2.6 requires a little modification. For instance, Lemma 2.7 generally
does not hold for the weak solutions. This is why we include the bound (5.12) in
the statement to provide the uniqueness of the solution. Further, Lemma 3.2 now
becomes

Lemma 5.7. Let (u0, v0) ∈ M̂ . Then for k = 1, 2 and (x, t) ∈ ∇k \ Sk

(i) there exists a unique solution v̄k(x, t) ∈ (−1, 1) to (3.16);
(ii) vk(x, t) ∈ C1(#̄) for any connected (open) component # of the set ∇k \ Sk .

The proof of this lemma almost coincides with the proof of Lemma 3.2 but the
signs of F2 > 0 and F1 = −F2 < 0 are now important.

Remark. (i) The strong inequality in (5.10) does not hold by (2.23).
(ii) ForF2 < 0 the inequalities “<” in (3.19) and (3.20) generally become “�”, and

the solution xk(t) to (3.15) satisfying (5.12) generally does not exist. Likewise,
the solution û ∈ M̂ generally does not exist. However, a solution û ∈ Ê with
space-like trajectories �k (i.e., with |ẋk(t)| � 1) may exist.

6. Breathers

We prove Theorem 2.8 by a modification of the “d’Alembert” arguments of
Section 3 with another choice of the regions and taking into account the specific
features of the potential (2.22) with F2 > 0.
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Step 1. According to (2.24) and to the definitions of M̂ and of xk(t), we have

û(x, t) =
{
z−1 , x � x1(t),

z+2 , x � x2(t).
(6.1)

For k = 1, 2, 3 define the waves fk(x) and gk(x) by the formulas (3.1) in the inter-
vals X̄k(0). Then f1(x) = g1(x) = z−1 /2, x � x1(0), and f3(x) = g3(x) = z+2 /2,
x � x2(0) since v0(x) = 0 for x � x1(0) and x � x2(0) by (5.10).

Step 2. Next we start to reconstruct the lines�k , k = 1, 2, according to the differen-
tial equation of type (3.23) in the modified regions Qk instead of∇k . First, consider
k = 1. We can define the coefficients a1, b1, c1 by the expressions (3.14) in the strip
Q1 := {(x, t) ∈ R

2 : x− t � x1(0), x1(0) � x+ t � x2(0)} since f1(x) is known
for x � x1(0) and g2(x) is known for x1(0) � x � x2(0). The inequality (5.11)
implies that |g′2(x+ t)|2 � ε, x1(0) � x+ t � x2(0), with an ε > 0. Therefore, we
can apply Lemma 10.1 to p := |f ′1(x − t)|2, q := |g′2(x + t)|2 and r := F1 < 0.
Then we find that for (x, t) ∈ Q1 there exists a unique solution v1(x, t) ∈ (−1, 1)
to the algebraic equation (3.16), and the uniform bound holds:

|v1(x, t)| ≤ γ < 1, (x, t) ∈ Q1 . (6.2)

Hence, the differential equation of type (3.23) holds for x1(t) until (x1(t), t) ∈
Q1. The equation follows by the arguments of Section 3. As in Lemma 3.2(ii),
v1(x, t) ∈ C1(#̄) for any connected (open) component # of the set Q1 \S1, where
S1 is a locally finite characteristic set. Therefore, the differential equation (3.23)
defines the line x1(t) uniquely for t ∈ [0, t1

1 ], where t1
1 := sup{t > 0 : (x1(s), s) ∈

Q1 for s ∈ [0, t]}
Step 3. Further, the line �1 intersects the boundary of the strip Q1 at the point
(x1(0), 0) and cannot intersect the boundary in the points (x, t) with x± t = x1(0),
t > 0, by the bound (5.12). On the other hand, the uniform bound (6.2) implies
t1
1 <∞. Hence, the line �1 intersects the boundary line x + t = x2(0) of the strip
Q1 at the unique point (x(t1

1 ), t
1
1 ) with the t1

1 > 0:

x1(t
1
1 )+ t1

1 = x2(0). (6.3)

Similarly, the line �2 intersects the boundary line x − t = x1(0) of the strip
Q2 := {(x, t) ∈ R

2 : x + t � x2(0), x1(0) � x − t � x2(0)} at the unique point
(x(t1

2 ), t
1
2 ) with the t1

2 > 0:

x2(t
1
2 )− t1

2 = x1(0). (6.4)

Denote by �1
k the segment {(x, t) ∈ R

2 : x = xk(t), 0 � t � t1
k } of the line �k ,

k = 1, 2.

Step 4. Further, we define the reflected wave f2(x− t) at the points of �1
1 (i.e., for

x1(0) < x − t < x1(t
1
1 )− t1

1 ) from the first equation of (3.25) with k = 1:

f2(x1(t)− t) = z1 − g2(x1(t)+ t), t ∈ [0, t1
1 ]. (6.5)
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Similarly, we define the reflected wave g2(x + t) at the points of �1
2 (i.e., for

x2(0) < x + t < x2(t
1
2 )+ t1

2 ) from the second equation of (3.25) with k = 2:

g2(x1(t)+ t) = z2 − f2(x2(t)− t), t ∈ [0, t1
2 ]. (6.6)

Step 5. Next we construct the segment �2
k : x = xk(t), t

1
k � t � t2

k of the line �k

according to (3.23) with k = 1, 2. Here t2
k are defined (uniquely) by

x1(t
2
1 )+ t2

1 = x2(t
1
2 )+ t1

2 , x2(t
2
2 )− t2

2 = x1(t
1
1 )− t1

1 . (6.7)

The points A1
2 = (x2(t

1
2 ), t

1
2 ), A

2
1 = (x1(t

2
1 ), t

2
1 ) belong to the common character-

istic x − t =const; the points A1
1 = (x1(t

1
1 ), t

1
1 ), A

2
2 = (x2(t

2
2 ), t

2
2 ) belong to the

common characteristic x + t = const (see Fig. 5). The existence (and uniqueness)
of the moments t2

k follow as above, from the uniform bound of type (6.2). Further,
we define the reflected waves f2(x− t) and g2(x+ t) at the points of �2

1 and �2
2 re-

spectively. By induction we get the segments�n
k , n ∈ Z, of the lines�k : x = xk(t),

t ∈ R, and the waves f2(x − t), g2(x + t) with (x, t) ∈ R
2. Then the d’Alembert

representation (2.19) with k = 2 gives the solution in the strip (2 between the lines
�1 and �2. The solution is defined by (6.1) outside the strip. Now we can deduce
Theorem 2.8 from the following lemma which we prove in the next section.

Lemma 6.1.
(i) The segment �n

2 (�
n
1 ) is the translation of �n−1

1 (�n−1
2 ):

�n
2 = �n−1

1 + T1, �n
1 = �n−1

2 + T2, n ∈ Z, (6.8)

where T1 is the vector A0
1A

1
2 and where T2 is the vector A0

2A
1
1 (see Fig. 5).

(ii) The solution û(x, t) is a periodic function with the period T = (S, T ) :=
T1 + T2, i.e.,

û(x + S, t + T ) = û(x, t), (x, t) ∈ R
2. (6.9)

(iii) The period T is a time-like vector:

|S| < T. (6.10)

From this Lemma it follows that û(x, t) is time-periodic with the period T ,
if S = 0. Therefore, Theorem 2.8 is proved in this case. If S �= 0, we apply the
Lorentz transformation ;v with some v ∈ R, |v| < 1, to the function û(x, t)

b̂(x, t) = û(;v(x, t)), ;v(x, t)) = (λ(x + vt), λ(t + vx)), (x, t) ∈ R
2,

(6.11)
where λ = 1/

√
1− v2. The function b̂(x, t) is the weak solution to (1.1). This fol-

lows from the invariance of the d’Alembert equation (2.11) and of the expression
(2.10) with respect to the Lorentz transformations. From (6.9) it follows that the
function b(x, t) := pb̂(x, t) is periodic with the period

;−1
v T = (λ(S − vT ), λ(T − vS)). (6.12)

Choosing v = S/T we see that the function b̂ is time-periodic. This choice is
admissible since |v| < 1 by (6.10). At last, (6.11) implies (2.25). !"
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7. Proof of periodicity

We prove Lemma 6.1.

Step 1. Note that T1 := A0
1A

1
2 = (x2(t

1
2 )−x1(0), t1

2 ) = (t1
2 , t

1
2 ) and T2 := A0

2A
1
1 =

(x1(t
1
1 ) − x2(0), t1

1 ) = (−t1
1 , t

1
1 ), hence the sum T := T1 + T2 admits the repre-

sentation
T = (S, T ) = (t1

2 − t1
1 , t

1
2 + t1

1 ), (7.1)
which implies (6.10).

Step 2. It suffices to check (6.8) for n = 2 and the periodicity (6.9) for (x, t) in a
neighborhood of the segment {(x, 0) : x1(0) < x < x2(0)}. First let us construct
the segments�1

k of the lines�k , k = 1, 2 as in the previous section, and the reflected
(from �1

k ) waves by formulas (6.5), (6.6). Next we define the segments �2
k by the

translations (6.8) with n = 2 (see Fig. 5), and the reflected (from �2
k ) waves by the

“periodicity” up to an additive constant:

f2(x − t) = f2((x − S)− (t − T ))+ z1 − z2,

x1(0) < (x − S)− (t − T ) < x2(0), (7.2)

g2(x + t) = g2((x − S)+ (t − T ))+ z2 − z1,

x1(0) < (x − S)+ (t − T ) < x2(0). (7.3)

Next we will check the identity f2(x−t)+g2(x+t) = zk and the splicing condition
(SC) at the points of the segments �2

k , k = 1, 2. Then the arguments of Section 3
show that the line �1

k ∪ �2
k is a continuous solution to the differential equation

(3.23). Hence (6.8) for n = 2 follows by the uniqueness of the continuous solution
to (3.23) with the fixed xk(t

1
k ). Finally, for (x, t) in a neighborhood of the segment

{(x, 0) : x1(0) < x < x2(0)}, the periodicity (6.9) obviously follows from (7.2),
(7.3) by the d’Alembert representation (2.19).

Step 3. Consider k = 2 for example. By definition, each point (x, t) ∈ �2
2 is the

translation of the point (x, t)−T1 ∈ �1
1 by the vector T1 = (t1

2 , t
1
2 ): in other words,

x − t1
2 = x1(t − t1

2 ). Hence,

f2(x − t) = f2(x1(t − t1
2 )− (t − t1

2 ))

g2(x + t) = g2(x1(t − t1
2 )+ (t − t1

2 ))+ z2 − z1

∣∣∣∣∣ (x, t) ∈ �2
2 . (7.4)

The last identity follows by (7.3) since (x − S)+ (t − T ) = (x − t1
2 )+ (t − t1

2 ) by
(7.1). Now the d’Alembert representation (2.19) implies

u(x − 0, t) = u((x + 0, t)− T1)+ z2 − z1, (x, t) ∈ �2
2 . (7.5)

Therefore, the identity u(x − 0, t) = z2 at the points of �2
2 follows by the identity

u((x + 0, t)− T1) = z1 at the points of �1
1 (see (6.5)). Furthermore, (7.4) implies

the identities

u̇(x−0, t) = u̇((x+0, t)−T1) and u′(x−0, t) = u′((x+0, t)−T1), (x, t) ∈ �2
2

(7.6)
since the derivatives of z2− z1 are zero. Therefore, the condition (SC) at the points
of �2

2 follows from the same condition at the points of �1
1 by (6.1) and the identity

F1 = −F2. !"
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Fig. 5.

Remark. The conditionF2 > 0 is “necessary” because it provides (5.12), and there-
fore, the existence (and uniqueness) of the solution to the equations (6.3), (6.4). For
F2 � 0 the lines �k generally are not time-like and generally do not intersect the
corresponding characteristics. Then (6.3), (6.4) do not admit the solutions t1

1 , t
1
2 .

8. Soliton-type asymptotics

Theorem 2.9 follows by the d’Alembert method similarly to the proof of The-
orem 2.8 above. The main difficulty is to prove the following proposition:

Proposition 8.1. Let all the conditions of Theorem 2.9 hold. Then the line �1 in-
tersects each characteristic x ± t = C with C � x1(0), and the line �2 intersects
each characteristic x ± t = C with C � x2(0).

Proof of Theorem 2.9. By the definition (2.23) of the space M̂ , we have

û0(x) = û±, v0(x) = 0, ±x � R0 (8.1)

with some R0 > 0. We can assume that −R0 � x1(0) < x2(0) � R0. By Proposi-
tion 8.1 the characteristic x−t = −R0 intersects the line�1 at a point (x1(t

∗
1 ), t

∗
1 ) ∈

�1 with a t∗1 > 0, and the characteristic x + t = R0 intersects the line �2 at
a point (x2(t

∗
2 ), t

∗
2 ) ∈ �2 with a t∗2 > 0. By (5.12), the solution û(x, t) admits

the d’Alembert representation (2.19) with k = 1 and k = 3 in the strips (1 :=
{(x, t) : x < x1(t)} and (3 := {(x, t) : x > x3(t)}, respectively. From (8.1) it
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follows that the ingoing waves g3(x + t) and f1(x − t) are constant functions for
t � t∗ := max(t∗1 , t∗2 ). Hence, for t > t∗ the solution in the regions (1 and (3 is
given by outgoing waves that corresponds to the asymptotics (2.27). Furthermore,
the arguments of Sections 6 and 7 are based on the fact that the ingoing waves
g3(x + t) and f1(x − t) are constant functions. Hence, for t � t∗ the solution in
the strip (2 := {(x, t) : x1(t) < x < x2(t)} coincides with a moving breather of
type (2.25), and (2.26) holds. !"
Proof of Proposition 8.1.
Step 1. Let us analyze the a priori bounds that follow by energy conservation (5.8).
First, we have

r(t) := |x2(t)− x1(t)| = 1

F2

∫ x2(t)

x1(t)

V (û(x, t))dx � r∗ <∞, t ∈ R, (8.2)

|z2 − z1| =
∣∣∣∣∣
∫ x2(t)

x1(t)

u′(x, t)dx
∣∣∣∣∣ � C

√
r(t), t ∈ R (8.3)

since the potential (2.22) is nonnegative (cf (3.30)). Furthermore, (5.8) implies for
B > 0 by the Chebyshev inequality,

;({x ∈ [x1(t), x2(t)] : |f ′2(x − t)| + |g′2(x + t)| � B}) � a

B2 , t ∈ R (8.4)

where ; is the Lebesgue measure in R.

Corollary 8.2.
(i) By (8.3),

r(t) � r∗ > 0, t ∈ R. (8.5)

(ii) Hence (8.4) implies

;({x ∈ [x1(t), x2(t)] : |f ′2(x − t)| + |g′2(x + t)| � B}) � r∗ − a

B2 , t ∈ R.

(8.6)

Step 2. Let us prove Proposition 8.1 by contradiction. Assume for example that
there exists a characteristic x − t = m∗ with m∗ < x1(0) that does not intersect
�1. Consider the function s(t) := x1(t)− t , t ∈ R.

Lemma 8.3. For every δ > 0 there exists a Tδ > 0 such that Tδ →∞, δ→ 0, and

;({t > Tδ : |ẋ1(t)− 1| � δ}) � δ, t ∈ R. (8.7)

Proof. By our assumption, the function s(t) is bounded from below by m∗. On
the other hand, s(t) is monotone decreasing since ṡ(t) = ẋ1(t)− 1 < 0 by (5.12).
Therefore,

x1(t)− t → m, t →∞, (8.8)

with an m � m∗, and there exists a Tδ > 0 such that

s(T )−m = −
∫ ∞

T

(ẋ1(t)− 1)dt � δ2, T � Tδ . (8.9)

Now (8.7) follows by the Chebyshev inequality. !"
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Step 3. Next we combine the bounds (8.6) and (8.7) to Lemma 10.1. Namely, let
us choose B, δ > 0 such that r∗−a/B2 > 2δ. Then (8.6) and (8.7) imply that there
exists a set of a positive measure Bδ ⊂ [Tδ,∞) such that

|ẋ1(t)− 1| � δ, |g′2(x1(t)+ t)| � B, t ∈ Bδ .

On the other hand, we can also assume that |f ′1(x)| � B, x < x1(0). Therefore, we
can apply Lemma 10.1 to p := f ′1(x1(t)), q := g′2(x1(t)+ t) and r := F1/2 < 0,
t ∈ Bδ since the differential equation (3.23) holds with k = 1. Then we find that
|g′2(x1(t)+ t)| � ε(B, δ), t ∈ Bδ , where ε(B, δ)→ 0, δ→ 0.

Step 4. If δ > 0 is sufficiently small, then Tδ is large, and x1(Tδ)+ Tδ > x2(0) by
(8.8). Hence for t � Tδ there exists a unique τ > 0 such that x1(t)+ t = x2(τ )+τ .
Denote by B′δ the set of all τ > 0 corresponding to all t ∈ Bδ . Let us show that for
sufficiently small δ > 0, the splicing condition (SC) with k = 2 cannot hold at the
points (x2(τ ), τ ) ∈ �2 with τ ∈ B′δ , i.e., (see (3.9))

f ′2(x2(τ )−τ)g′2(x2(τ )+τ)−f ′3(x2(τ )−τ)g′3(x2(τ )+τ) �= 1
2F2, τ ∈ B′δ . (8.10)

This would contradict (SC) with k = 2 since the measure of the set B′δ is positive
by (5.12).

Step 5. It suffices to check that each product in the left-hand side of (8.10) tends
to zero as δ → 0, uniformly in τ ∈ B′δ . First, |g′2(x2(τ ) + τ)| � ε(B, δ), τ ∈ B′δ .
On the other hand, |f ′2(x2(τ )− τ)| is bounded for τ ∈ B′δ . Indeed, (8.5) and (8.8)
imply

φ−2 := lim
t→∞(x2(t)− t) � lim

t→∞(x1(t)− t)+ r∗ , (8.11)

where the existence of the first limit follows similarly to (8.8). From the inequality
(8.11) it follows that the intersection of �1 with the region {(x, t) ∈ R

2 : t �
0, x − t � φ−2 } is a bounded set. Hence, the ingoing wave f2(x2(τ ) − τ) for
τ ∈ B′δ can be determined by a finite number of reflections from the lines �1, �2:
this follows from the bound (3.26). Therefore, the derivative of the ingoing wave
is bounded for τ ∈ B′δ . Second, by (8.8) we have

x2(τ )+ τ = x1(t)+ t � R0

for τ ∈ B′δ with small δ > 0, hence the ingoing wave g′3(x2(τ )+τ) in the left-hand
side of (8.10) is zero by (8.1). !"

9. Appendix A. Energy and momentum conservation

We prove Lemma 2.4.

Energy conservation. The set �k is not empty only for a finite number of k ∈ Z.
Let us enumerate xk(0) in ascending order of k = 1, . . . , N . Then this order is
conserved for all t ∈ R by continuity,
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−∞ ≡ x0(t) < x1(t) < · · · < xN(t) < xN+1(t) ≡ +∞ for t ∈ R. (9.1)

For any k = 1, . . . , N

u(xk(t), t) ≡ zk, t ∈ R. (9.2)

Therefore we get after differentiation,

u′(xk(t), t)ẋk(t)+ u̇(xk(t), t) = 0, a.e. t ∈ R. (9.3)

By definition (2.6) and (2.1), (2.2), (2.5),

H(t) =
N−1∑
k=1

∫ xk+1(t)

xk(t)

[ 1
2 |u̇|2 + 1

2 |u′|2 + V (u)]dx. (9.4)

Let us assume that S(u) = ∅ for a moment (see Definition 2.2 (ii)). For a
function p(x, t) ∈ C(R2 \ (�(u) ∪ S(u))) let us define

0kp(t) = p(xk(t)+ 0, t)− p(xk(t)− 0, t), t ∈ R (9.5)

when the limits exist. Then (9.4) implies,

Ḣ (t) = −
N∑
k=1

0k[ 1
2 |u̇|2 + 1

2 |u′|2 + V (u)](t)ẋk(t) (9.6)

+
N−1∑
k=1

∫ xk+1(t)

xk(t)

[u̇ü+ u′u̇′]dx, a.e. t ∈ R.

Here ü = u′′ due to (2.11). Therefore rewriting u̇ü+ u′u̇′ = u̇u′′ + u′u̇′ = (u′u̇)′
and integrating by parts in every integral in (9.6), we get due to (9.3),

N−1∑
k=1

∫ xk+1(t)

xk(t)

[u̇ü+ u′u̇′]dx = −
N∑
k=1

0k(u̇u
′)(t) (9.7)

=
N∑
k=1

0k(|u′|2ẋk)(t), a.e. t ∈ R.

Hence, (9.6) implies due to (SC)

Ḣ (t) = −1

2

N∑
k=1

0k[|u̇|2 − |u′|2 + V (u)](t)ẋk(t) = 0, a.e. t ∈ R. (9.8)

Now let us omit the assumption S(u) = ∅. For example, let us assume that S(u)
contains only one segment of the characteristic x− t = c. Then the right-hand side
of (9.8) must be completed with an additional term

[ 1
2 |u̇|2 + 1

2 |u′|2 + u′u̇]|x=t+c−0
x=t+c+0 = 1

2 |u̇+ u′|2|x=t+c−0
x=t+c+0. (9.9)

This term is zero a.e. in a neighborhood of t if (t, t + c) �∈ � since then the d’Al-
embert representation u(x, t) = f (x − t)+ g(x + t) implies u̇(x, t)+ u′(x, t) =
2g′(x + t). Therefore, (3.2) implies again Ḣ (t) = 0 for a.e. t ∈ R. !"
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Momentum conservation. Assuming at first S(u) = ∅ as above we get

Ṗ (t) = −
N∑
k=1

0k(u
′u̇)(t)ẋj,k(t)+

N∑
k=0

∫ xk+1(t)

xk(t)

[u̇′u̇+u′ü]dx, a.e. t ∈ R. (9.10)

Let us substitute again ü = u′′ from (2.11), and rewrite u̇′u̇+ u′ü = u̇′u̇+ u′u′′ =
1
2 [|u̇|2 + |u′|2]′. Then (9.10) implies due to (9.3)

Ṗ (t) =
N∑
k=1

0k(|u̇|2)(t)− 1

2

N∑
k=1

0k[|u̇|2 + |u′|2](t) (9.11)

= 1

2

N∑
k=1

0k[|u̇|2 − |u′|2](t), a.e. t ∈ R.

Therefore, (SC) and (2.2), (2.3), (2.5) imply

Ṗ (t) = −
N∑
k=1

0k(V (u))(t) = −V (z+)+ V (z−) = 0, a.e. t ∈ R. (9.12)

Now let us assume for example that S(u) contains only one segment of the
characteristic x− t = c. Then the right-hand side of (9.10) must be completed with
the same zero term (9.9). !"

10. Appendix B. Dichotomy of the roots

We prove (3.19) and (3.20). The inequality (2.14) provides

p := |f ′k(x − t)|2 > 0, q := |g′k+1(x + t)|2 > 0, r := 1
2Fk �= 0. (10.1)

Then (3.14) becomes

ak = p − q + r, bk = p + q, ck = p − q − r. (10.2)

Proof of (3.20). Since ak = 0, we have ck = 2(p− q). Therefore v0
k = ck/2bk =

(p − q)/(p + q), hence (3.20) holds by (10.1). !"

Proof of (3.19). Equations (3.17), (3.18) and (10.2) imply

v±k =
p + q ±√4pq + r2

p − q + r
. (10.3)

We may assume a := p − q + r > 0 by symmetry. Then |v−k | < 1 means −a <

p + q −√4pq + r2 < a or equivalently, p + q + a >
√

4pq + (a − p + q)2 >

p+ q − a. This is true since squaring leads to ap > 0 > −aq. Similarly, |v+k | > 1

meansp+q+√4pq + r2 > a or equivalently,
√

4pq + (a − p + q)2 > a−p−q.
This is true since squaring leads to 0 > −ap − aq. !"
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The arguments above essentially use the fact that p, q > 0. More detailed anal-
ysis takes into account the sign of r and provides the following extension of (3.19),
(3.20) to the case p, q � 0 that we use in Sections 6 and 8:

Lemma 10.1. Let us fix arbitrary B, ε > 0 and assume that 0 � p, q � B. Con-
sider (i) p � 0, q � ε, r < 0 or (ii) p � ε, q � 0, r > 0. Then the following
uniform bounds hold for the the roots (10.3):

|v−k (x, t)| � γ and |v+k (x, t)| � 1 if a �= 0,

|v0
k (x, t)| � γ if a = 0,

(10.4)

where γ = γ (B, ε, r) < 1.

Proof. It suffices to consider the case (i). If p � ε1 > 0, then (10.4) follows
from the above proof. Hence, by the compactness arguments it remains to consider
p = 0. Then a = −q + r < 0 as r < 0. Finally, (10.3) for p = 0 becomes
v±k = q±|r|

−q+r that implies (10.4) as r < 0. !"

11. Appendix C. Least action principle

We derive (2.11) and (SC) from the least-action principle. For a T > 0 and a
trajectory u(x, t) ∈ E we define the action as follows:

ST =
∫

|t |<T

L(u(t), u̇(t))dt, (11.1)

where u(t) = u(·, t) and the Lagrangian L is defined according to (2.8). The
Hamilton least-action principle means that for all T > 0,

δST = 0 if δu|t=±T = 0 (11.2)

for a class of admissible variations δu. Let us define the class of admissible varia-
tions, that is a “tangent bundle” to E . Define I = (−1, 1).

Definition 11.1. The space T E is the set of the functions uε(x, t) = U(ε, x, t) on
I × R

2, such that

(i) U(·, ·, ·) ∈ C(I × R
2) and for some a > 0

uε(x, t) = u±, for ± x > a + |t |, ε ∈ I. (11.3)

(ii) The characteristic set S = S(uε) does not depend on ε ∈ I , U(ε, x, t) ∈
C2(I × R

2 \ (�̃(U) ∪ I × S) where �̃(U) = {(ε, x, t) ∈ I × R
2 : (x, t) ∈

�(uε)}, and

sup
(ε,x,t)∈#̃

|∂αx ∂βt ∂γε uε(x, t)| <∞, |α| + |β| + |γ | � 2 (11.4)

for any open bounded subset #̃ ⊂ I × R
2 \ (�̃(U) ∪ I × S);
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(iii) For any k ∈ Z the set �k(uε) (if non-empty) is the line x = xk(ε, t) with

xk(·, ·) ∈ C(I × R),
∂xk

∂ε
(·, t) is piecewise continuous in ε for any fixed t ,

and ẋk(ε, ·) is piecewise continuous in t for each fixed ε ∈ I .

Definition 11.2. The least-action principle (11.2) for u(x, t) ∈ E means that for
every U(ε, x, t) ∈ T E such that U(0, x, t) ≡ u(x, t), we have, for all T > 0,

d

dε
ST (U(ε, ·, ·))|ε=0 = 0 if U(ε, ·,±T ) = u(·,±T ) f or ε ∈ I. (11.5)

Lemma 11.3. The least-action principle for u(x, t) ∈ E is equivalent to the system
of the equation (2.11) and of the splicing condition (SC).

Proof. Let U(ε, x, t) ∈ T E be such that U(0, x, t) = u(x, t). We may assume
without loss of generality that the set�(uε) is a finite union of the lines x = xk(ε, t),
1 � k � N , where xk ∈ C1(I × R). Then for every k,

U(ε, xk(ε, t), t) ≡ zk for (ε, t) ∈ I × R, (11.6)

where zk ∈ Z. Therefore we get after differentiation in ε and t (cf. (9.3)),

U ′ ∂xk
∂ε

+ ∂U

∂ε
= 0 for x = xk(ε, t)± 0 and a.e. (ε, t) ∈ I × R, (11.7)

U ′ẋk + U̇ = 0 for x = xk(ε, t)± 0 and a.e. (ε, t) ∈ I × R. (11.8)

Let us arrange xk(0, 0) in increasing order. Then this order is conserved for all
(ε, t) ∈ I × R by continuity,

−∞ ≡ x0(ε, t) < x1(ε, t) < · · · < xN(ε, t) < xN+1(ε, t) (11.9)

≡ +∞ for (ε, t) ∈ I × R.

Then by definitions (2.8), (11.1)

ST (U(ε, ·, ·)) =
∫ T

0

(
N∑
k=0

∫ xk+1(ε,t)

xk(ε,t)

[ 1
2 U̇

2 − 1
2 |U ′|2 − V (U)]dx

)
dt (11.10)

For a function p(ε, x, t) ∈ C(I × R
2 \ (�̃ ∪ I × S)) let us define

0kp(ε, t) = p|x=xk(ε,t)+0
x=xk(ε,t)−0 for (ε, t) ∈ I × R, (11.11)

when this expression exists. Then (11.5) is equivalent to

0 = −
∫ T

0

(
N∑
k=1

0k[ 1
2 u̇

2 − 1
2 |u′|2 − V (u)](t) vk(t)

)
dt

+
∫ T

0

(
N∑
k=0

∫ xk+1(t)

xk(t)

[u̇ḣ− u′h′]dx
)
dt

(11.12)

where vk(t) = ∂xk
∂ε

(0, t) and h(x, t) = ∂U
∂ε

(0, x, t). Let us assume for a mo-
ment that each line x = xk(t) admits the global representation t = tk(x) with
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tk(·) ∈ C([xk(0), xk(T )]) and let us integrate by parts in the last integral in (11.12).
Then taking into account (11.3) and boundary values in (11.5), we get for the
integral the expression

N∑
k=1

(∫ xk(T )

xk(0)
(u̇h)|t=tk(x)−0

t=tk(x)+0|dx| +
∫ T

0
0k(u

′h)(t)dt
)

(11.13)

−
∫ T

0

(
N∑
k=0

∫ xk+1(t)

xk(t)

[ü− u′′]h dx

)
dt.

Let us take into account that h(xk(t)±0, t) = −u′(xk(t)±0, t)vk(t) due to (11.7),
and u′(xk(t)± 0, t)ẋk(t) = −u̇(xk(t)± 0, t) due to (11.8). Therefore,∫ xk(T )

xk(0)
(u̇h)|t=tk(x)−0

t=tk(x)+0|dx| =
∫ T

0
0k(u̇h)(t)ẋk(t) dt

= −
∫ T

0
0k(u̇u

′vk)(t)ẋk(t) dt

=
∫ T

0
0k(u̇

2)(t) vk(t) dt. (11.14)

Similarly,

∫ T

0
0k(u

′h)(t)dt = −
∫ T

0
0k(|u′|2)(t) vk(t) dt. (11.15)

Therefore, (11.12) becomes, due to (11.13)–(11.15),

0 =
∫ T

0

(
N∑
k=1

0k[ 1
2 |u̇|2 − 1

2 |u′|2 + V (u)](t) vk(t)
)
dt

−
∫ T

0

(
N∑
k=0

∫ xk+1(t)

xk(t)

[ü− u′′]h dx

)
dt. (11.16)

The same result can be obtained without assuming the global representation t =
tk(x) for the lines x = xk(t) since the local representations are sufficient. Finally,
(11.16) implies (2.11) because h can be chosen arbitrary in any compact subset
of R

2 \ �(u). Then the last integral in (11.16) is zero. Therefore (11.16) implies
also (SC) because vk(t) can be chosen arbitrarily in every compact subset of �k for
k = 1, . . . , N . !"
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