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Abstract

We consider the convergence to stationary states of all finite energy solutions to nonlinear wave equations without
dissipation in the long-time limits + — +oo. The investigation is inspired by Bohr’s postulate on the transitions between
stationary states, by de Broglie’s wave-particle duality, and by radiative damping in classical electrodynamics. © 1998

Published by Elsevier Science B.V.

1. Introduction. Stabilization in conservative
wave equations

It is very surprising that the stationary states play
an outstanding role in many phenomena described by
reversible conservative wave equations. The perma-
nent reproduction of the stationary states suggests the
convergence

Y(t) —» §%, ast— +oo (1.1)

of all finite energy solutions Y(¢) to some stationary
states ST, depending on the solution Y(¢). We call
such a long-time behavior stabilization. It means that
the set S of all stationary states is a point attractor of
the corresponding wave equation,

Y(t) - S, ast— too. (12)

On the other hand, such a convergence seems to be
very paradoxical and non-compatible with the re-
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versibility and the conservativeness of the dynamics.
The problems of such type that have been known for
a long time are, for instance, the radiative damping in
classical electrodynamics [ 15,24], Bohr’s transitions
between stationary states [6], de Broglie’s wave-
particle duality {7] in quantum theory, the stability
of the shock waves in gas and fluid dynamics, and so
on. Moreover, Schrodinger [45] relates the paradox
of the reproduction of genes to the “Heitler~London
theory,” which is the theory of Bohr’s transitions of
molecules to the stationary states.

We establish the stabilization (1.1) and (1.2) for
1D nonlinear wave equations on the real line R with
a space-localized nonlinear term, for the scalar field
coupled to a particle in three-dimensional space R?,
and for the Maxwell-Lorentz system of the Maxwell
field coupled to a particle in R3. The results for the
field—particle systems lead, for instance, to the solu-
tion of the problem of the radiative damping for one
particle.

Let us note that the convergence of type (1.1) and
(1.2) to stationary states is one of the main results
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of the theory of attractors for the dissipative nonlin-
ear partial derivative equations [2,21,51]. The con-
vergence holds then in the global energy norm (for
t — o0 only).

We consider Hamiltonian wave equations without
dissipation and restrict our attention to the finite energy
solutions. Then the convergence (1.1) and (1.2) in
the global energy norm is in general impossible due
to the energy conservation, and the vital question is
to find the topology in the phase space in which the
convergence holds. This is one of the main results of
our investigation (very surprising and quite natural
at the same time) that an appropriate topology is the
Fréchet topology defined by local energy seminorms;
this topology seems to be optimal.

The linearization followed by the perturbation ad-
Justments is a powerful method for the analysis of non-
linear problems. However, the problems of the long-
time behavior cannot be solved in this way if the tra-
jectory is not close to a known solution; in general, the
latter is the case in the cases of the problems of Bohr’s
transitions, of the wave—-particle duality, and of the ra-
diative damping. Then a nonperturbative approach to
the problems is necessary [23]. The key role here is
played by the scattering of the energy to infinity, dis-
covered initially in linear and nonlinear scattering the-
ory [9,18,19,22,25,35,36,40,42,46,49,50,52,53]. The
scattering plays the role of dissipation and provides the
convergence (1.1) and (1.2). The convergence fails
in general for the problems in a bounded region due
to the reflections of the waves from the boundary.

We do not consider the solutions with infinite en-
ergy. Their long-time asymptotics essentially depend
on the behavior of the initial data at infinity. Let us note
that space-periodic ingoing electromagnetic waves re-
sult in time-periodic radiations in the photoeffect and
in the Compton effect.

In the next section we discuss the physical prob-
lems which have inspired our investigation, and list
previously known results. In the last section we state
our recent results on the stabilization.

2. Related physical problems and known results
2.1. Bohr’s transitions between stationary states

Bohr’s postulate [6] says that the quantum system
is almost always in a stationary state and sometimes
makes “jumps” between two such states,

S™— St (2.1)

The postulate suggests the asymptotics of type (1.1)
with a short time of relaxation, and the definition of
quantum stationary states as long-time asymptotics of
the solutions to the dynamical equations. Let us note
that the quantum stationary states in the Schrodinger—
Dirac theory are the “eigenfunctions,” i.e. the solu-
tions of type (¢(x),exp(iwt)y(x)) to the coupled
Maxwell-Dirac system, [11,44] (the existence of
the solutions is proved in Ref. [13]). Hence, more
precisely, the transitions (2.1) suggest the long-time
asymptotics similar to (1.1),

((x,0), ¥ (x,1)) — (¢%(x),explioTt)y® (x))
— 0, ast— *oco. (2.2)

Such asymptotics seem to be related to the global
gauge group U(1) of the Maxwell-Dirac system (they
have not been proved yet for any actual quantum sys-
tem).

The Yang-Mills system of the strong interaction
is invariant with respect to the symmetry group
SU(2) [57] or to SU(3) [17], the system of the
electro-weak interaction with respect to the group
SU(2) x U(1) (see Ref. [54] and others). Gen-
erally, for such systems with symmetry there ex-
ist solitary waves [20], i.e. solutions of the form
exp(if2)¥ (x), where £ is an element of the Lie
algebra of the corresponding symmetry group. For
instance, the eigenfunction (¢(x),exp(iwt)y(x))
is such a solitary wave, and the corresponding matrix
2 has the eigenvalues w and zero. For the solitary
wave exp(if2)¥ (x) the asymptotics (2.2) do not
hold if the matrix £2 has distinct nonzero eigenval-
ues @y # ws. The solitary waves probably play the
role of the Schridinger eigenfunctions in the asymp-
totics (2.2) for the solutions to the systems with the
symmetry groups. This is in accordance with the ex-
perimentally known relations between the elementary
particles and the Lie algebras [17].
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Our investigation is inspired by these relations of the
quantum problems to the long-time asymptotics. There
are still no results on the asymptotics of type (2.2)
for the equations with nontrivial symmetry groups,
even with the Abelian group U(1). Our results on the
stabilization (1.1) correspond to the case of the trivial
symmetry group G = {e}.

Previously known results on the stabilization (1.1)
and (1.2) in the Fréchet topology concern relativistic-
invariant nonlinear wave equations

i(x, 1) = Au(x, 1) —mPu(x, 1) + flu(x, 1)),

xeR", reR. (2.3)
The nonlinear term f(u) satisfies f(0) = f(0) =0
and the “stability” assumption

u- f(u) <0 forueR. (2.4)

This assumption and some power estimates on | f(u) |
provide the local energy decay

(0, a0 z= [ (ax, 0
[xI<R

+ | Vux, ) + lu(x, 0)[*) d*x — 0, (2.5)

ast — too, VR>0.
This justifies the stabilization (1.1) and (1.2), since
S = {0} due to (2.4). The decay (2.5) was es-
tablished at first in the scattering theory for linear
problems, [35,36,52,53] and it was extended in
Refs. [9,18,19,40,42,46,49,50] to the nonlinear equa-
tions (2.3) satisfying the assumption (2.4). The
decay is established in Refs. {22,25] for small initial
data without the assumption (2.4) on nonlinear term.
The long-time asymptotics of all finite energy so-
lutions to nonlinear wave equations without the as-
sumption (2.4) or with S # {0} were not considered
previously. However, the absence of the local energy
decay for some solutions to the equations without the
assumption (2.4) was observed in Refs. [10,43]. We
prove the asymptotics (1.1) and (1.2) for the wave
equations and systems with the set S containing arbi-
trary finite or infinite number of stationary points or
containing continuous components.

2.2. De Broglie’s wave-particle duality

Wave-particle duality [7] and the Davisson-
Germer effect suggest soliton-like asymptotics,

N
u(x,t) NZsf(x—vft), as t — Foo, (2.6)
1

of all finite energy solutions u( x, t) to the translation-
invariant wave equations. For the relativistic-invariant
equations the soliton becomes a stationary state in the
moving frame. The soliton-like asymptotics would
then follow automatically from the stabilization in
these equations, giving a better description of the
long-time behavior of solutions. Such asymptotics are
still not proved for any relativistic-invariant nonlinear
wave equation with nontrivial solitons.

Soliton-like asymptotics similar to (2.6) are proved
in Ref. [39] for some translation-invariant 1D com-
pletely integrable equations and in Ref. [16] for
translation-invariant and U(1)-invariant 1D nonlin-
ear reaction systems. The asymptotics of type (2.6)
with N =1 are established for the solutions close to
a soliton to a 1D nonlinear Schrodinger equation [8]
and for 2D and 3D nonlinear Schrédinger equa-
tions {47], [48]. We prove the soliton-like asymp-
totics of type (2.6) with N =1 for the scalar field
coupled to a single particle; this system is translation
invariant, but not relativistic invariant.

2.3. Radiative damping

Soliton-like asymptotics also arise in the translation-
invariant coupled field-particle systems, as a result
of nonlinear interaction. If the particle moves with
an acceleration, the energy is transferred to the wave
field, and its part is eventually transported to infinity.
Thus, the particle feels a sort of friction, and one
expects the relaxation of the acceleration,

G(t) —» 0, ast— Foo, (2.7)

and the convergence of the field around the particle
to a comoving Coulombian form, [23]. The veloc-
ity converges to zero if the trajectory is bounded. We
establish such a long-time behavior for one classical
particle coupled to a scalar field or to the Maxwell
field according to Abraham’s model, when there is a
given form of the “charge density” associated to the
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particle. For a scalar field we prove that the limits of
the velocity exist if the external force vanishes,

g(t) — vE, ast— too. (2.8)
This implies the soliton-like asymptotics of type (2.6),
with N = 1. The radiative damping is important be-
cause it is observable in crucial physical phenom-
ena, X-ray emission, synchrotron radiation, and so
on. It has been widely considered in physics letters,
see Refs. [1,4,12,14,15,24,38,55] and the references
thereafter. However, an exact mathematical statement
of the phenomenon is missing up to now for differ-
ent reasons; one of them is treating particles as hav-
ing the “point” charge density {4,12,14,15,55]. On
the other hand, Abraham and Lorentz [ 1,38] consider
“distributed” charge density for the particle; let us note
that all known elementary particles are considered as
distributed, with nonzero cross-sections.

The main difficulty in the theoretical description
of the radiative damping is the essential nonlinear-
ity of the field-particle interaction, the particle gen-
erates the field, while the field acts on the particle.
This “self-action” of a particle cannot be understood
as the consecutive processes of such type, described
by linear wave problem and finite-dimensional New-
tonian equation, respectively. For instance, for a point
particle, the proper energy and the energy of the inter-
action are infinite and the self-action does not allow
the correct description, while the both processes do.
This implies in particular that the perturbation theory
is not applicable in this situation. This is why Abra-
ham smoothened out the coupling by the charge den-
sity p(x), providing the finiteness of the proper en-
ergy [1]. The energy of the interaction is then also
finite. The corresponding dynamics was analyzed by
Lorentz [38]. To take into account the self-action of
the “distributed” particle, Lorentz expands the particle
trajectory g(¢) into the Taylor series. This leads to the
infinite order differential equation for g(¢) [15,38]
that has never been investigated rigorously. The cut-
off of the Taylor series at the term with ¢ (¢) leads
to a non-reversible equation, which allowed to ex-
plain the energy radiation for periodic particle mo-
tion [ 15,24]. However, this did not give an exact result
and led to some new questions on “runaway” solu-
tions [4,12,15,24]. We give a solution to the problem
of the radiative damping for the case of one particle

coupled to a scalar or to the Maxwell field.

For the classical Maxwell-Lorentz system the
problem of the long-time behavior is discussed in
Refs. {3,4,12,14,38,55].

Below we state our three recent results on the stabi-
lization for the nonlinear wave equations and systems.
The results for the systems are obtained in accordance
with Spohn and Kiinze [33] and with Spohn [31].

3. Results on the stabilization
3.1. One-dimensional wave equations

We consider the long-time asymptotics of the solu-
tions to the Cauchy problem

i(x, ) =u"(x, 1) + f(x,u(x,1)), (3.1)
xeR, teR,
Ul=o = uo(x), t|=0 = vo(x). (3.2)

The solutions u( x, t) take the values in R? with d > 1.
All the derivatives in (3.1) and everywhere below are
understood in the sense of distributions. Physically,
Eq. (3.1) describes small crosswise oscillations of a
string interacting with an elastic nonlinear medium.
We assume f(x,u) =0 for |x| > a with some a > 0,
and

flx,u) = x(x)F(u), (3.3)
FeC'(RLRY), x(x)eC(R),

F(u) =-VV(u) and V(u) — +oo, (3.4)
as |u] — oo,

X(x) =20, x(x)#0 and y(x) =0, (3.5)
for |x| > a.

We introduce the “configuration space” Q and the
phase space £ of finite energy states for the system
(3.1). We denote by L? the Hilbert space L2(R, R?)
with the norm | - |, and we denote by | - |z the norm
in L2(—R, R;R4) for R > 0.

Definition 3.1. Q is the Hilbert space {u(x) €
C(R,R?) : u'(x) € L?} with the norm |jug =
[#'] + [4(0)]. € = Q & L? is the Hilbert space of
the pairs (u(x),v(x)), with the norm ||(u,v)||¢ =
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llull@+|v]. EF is the space £ endowed with the Fréchet
topology defined by the seminorms |[(u,v)|zx =
[t/'|r + |[#(0)| + |v]r, R > O.

Note that both the space £ and & are metrizable
and that £f is not complete.

We denote by V(x,u) = y(x)V(u) the potential
of the nonlinear force. With the assumptions (3.3)-
(3.5), Eq. (3.1) is formally a Hamiltonian system
with the phase space £ and the Hamiltonian functional

H(u,v) = /<%|v<x)|2 + 4 ()2
+ Vix,u(x)))dx (3.6)

for (u,v) € £. We consider solutions u(x,t) such
that Y (1) = (u(-, t),u(-,t)) € C(R, &) and we write
the Cauchy problem (3.1)-(3.2) in the form

Y(0)=Y, (3.7)

Y(1) =V(Y (1)), forteR,

where Yy = (ug, o).

Proposition 3.2. Let d > 1 and let the assumptions
(3.3)-(3.5) be fulfilled. Then for every Y® € £ the
Cauchy problem (3.7) has the unique solution Y (¢) €
C (R, &). The mapping W, : Y — Y (1) is continuous
in £ and & for all r € R. The energy is conserved,

H(Y(2)) = H(Yy), forteR. (3.8)

We denote by S the set of all stationary states § =
((s(x),0) € & for the system (3.7). We establish the
long-time convergence in the Fréchet topology

Y(1) £5 S, ast— oo (3.9)

for finite energy solutions Y(¢). The convergence
means by definition that for every neighborhood
O(S) of S in Ex there exists a 7> 0 such that
Y(t) € O(S) for [t] > T. Thus, the set S is the point
attractor of the system (3.7) in the Fréchet topology
of the space Er.

Theorem 3.3. Let all the assumptions of proposition
3.2hold and the initial state Y° have a bounded norm
in £. Then

(i) the convergence (3.9) holds for the solution
Y(t) € C(R, &) to the Cauchy problem (3.7).

(i1) Let, moreover, d = 1 and let the function F ()
be real analytic on R. Then there exist some stationary

states Sy € S depending on the solution Y(#) such
that

Y(1) £5 5., ast— +oo. (3.10)

Remarks.
(i) The convergence (3.10) and (3.3)-(3.6) im-

ply, by the Fatoux theorem,

H(S+) < H(Y(1)) = H(Y),

teR, (3.11)

similarly to the well-known property of weak conver-
gence in Hilbert and Banach spaces.

(ii) Similar results are established in Refs. [27,28]
for f(x,u) = &(x)F(u) and in Ref. [29] for
flx,u) = Ef&(x——xk)Fk(u).We assume f(x,u) =
x(x)F(u) for the simplicity of our exposition. All
the results can easily be extended to f(x,u) satisfy-
ing the conditions from Ref. [29] generalized in a
suitable way.

As a trivial example let us consider f(x,u) = 0.
Then Eq. (3.1) becomes the d’ Alembert equation and
the assumptions (3.4)-(3.5) fail. For the solutions
Y(t) € C(R,E&) the convergence (3.10) generally
does not hold. Meanwhile, in that case the conver-
gence (3.9) holds for every solution ¥ (¢) € C(R, )
and the convergence (3.10) holds if up(x) = C+ and
vg(x) = 0 for x| > const. This evidently follows from
the d’ Alembert formula for the solution to the Cauchy
problem.

3.2. Scalar field coupled to a particle

We consider a scalar field ¢ (x) coupled to a particle
with a position g € R®. Let 7(x) be the canonically
conjugate field to ¢(x) and let p be the momentum
of the particle. The Hamiltonian (energy functional)
reads

H(d,q,mp)=(1+pH) 2+ V(g
+/<%|vr(x)|2+ Ve ()

+d(x)p(x - q)) &x.

The mass of the particle and the propagation speed for
¢ have been set equal to 1. The relativistic kinetic en-
ergy is chosen to insure that || < 1. The interaction
term of type ¢(g) would result in an energy which
is not bounded from below; therefore we smoothen

(3.12)
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out the coupling by the function p(x), which is as-
sumed to be radial and having compact support. In
analogy with the Maxwell-Lorentz equations we call
p(x) the “charge distribution.” Taking formally the
variational derivatives in Eq. (3.12), we derive the
following equations for the coupled dynamics,

d(x,1) =7(x.1),

r(x,t) =Ad(x,t) — p(x —q(1)),
g() =p()/(1+p* ()",

p(1) = =VV(q(1))

+/¢(x,t)\7p(x —q(1)) dx. (3.13)
We consider the long-time behavior of all finite energy
solutions to the system (3.13). The appropriate phase
space will be introduced below, but first we note that
the Hamiltonian functional (3.12) is conserved along
sufficiently smooth solution trajectories of Eq. (3.13).
It is then natural to choose as a phase space the set of
all finite energy states.

3.2.1. Notations and definitions
We have to state our assumptions on V,

V(x) € CX(R* and inf V(x) > —oo.

x€ER3

(Pmin)
We will also use the following conditions,

(Pmax) VV(x),VVV(x) € LOO(RB),
(Poo) | llim V(q) = o0,
g|—o0
(@) qo=suplg(t)| < oo.
teR

The charge distribution p is smooth, radially symmet-
ric, and compactly supported,

(C) peCERY, px)=p(x]),
p(x) =0, for|x| =R,

A further important assumption is the Wiener condi-
tion,

(W)  p(k) = Fp(k) =/e”‘"p(x)d3x # 0,

for k € R*.

It insures that all modes of the field are coupled to
the charge. In particular, the total charge 5 = 5(0) is
different from zero. We have constructed in Ref. [33]
some generic examples of the charge distributions sat-
isfying both (W) and (C).

We investigate the long-time behavior of all finite
energy solutions to Eq. (3.13). Clearly, the first step
is to determine stationary solutions. For every g € R?,
we define the state S, = (¢4, 4,7, p) by

Sq= (¢4, 4,0,0),

_ d’y
bq(x) = —/mp(}’ —4q).

Let Z = {g € R3 : VV(q) = 0} be the set of points for
which the external force vanishes. The set of stationary
solutions is simply given by

(3.14)

S={S,:q¢ Z}. (3.15)

The second set of asymptotic solutions corresponds to
the charge traveling with a uniform velocity, v, when
V(q) = 0. Up to a translation, they are of the form

T'(t) = (" (x —vt),vt, 7 (x — vt),p"),

with an arbitrary velocity v € V={v € R?: |v| < 1},
where

(3.16)

¢ (x) = — / &y p(y)
dmlo(y — x)y + A(y — x) 1| ’
m(x) = —v"(x),
o v
P= V107

Here A = V1 —v? and we set x = vx) + x1, where
xy €Randvlx; € R forx € R

We need to introduce a suitable phase space and
to establish existence and uniqueness of solutions to
(3.13). Let L? be the real Hilbert space L?(R?) with
norm | - | and scalar product {-,-), and let H' be
the completion of the real space C§°(R?) with norm
l@(x)|| = [Vé(x)]|. Equivalently, using the Sobolev
embedding theorem, H' = {¢(x) € L5(R?)
|[Vé(x)| € L?} (see Ref. [37]). Let |¢|x denote the
norm in L?(Bg) for R > 0, where Bg = {x € R? :
|x| < R}. Then the seminorms ||¢||z = |V@|r + |¢|r
are continuous on H'.

Definition 3.4.



A. Komech/Physics Letters A 241 (1998) 311-322 317

(i) F and & are the Hilbert spaces H' @ L? and
H' ®R* @ L? ® R? with finite norms
[ (¢, m)llg = ll#[l + |7| and
I¥lle = ll®ll + lgl + |7} + |p],
for Y=(¢,q,7.p).

(ii) £7 for ¢ = O is the set of states Y
(¢(x),q,m(x),p) € € such that for some R® =
R°(Y) > O the functions ¢(x),7(x) are C2, C!-
differentiable respectively outside the ball Bgo and

DY (x) = |(x)| + |x|(|[V(x)| + [m(x)])
+ [xP(VVS(x)| + |[Va(x)]) = O(|x|77),

as |x| — oo. (3.17)

(iit) Fr, Er are the spaces F, £ endowed with the
Fréchet topology defined by the local energy semi-
norms
(¢, m)|g = l#llg + |7|g and
1Yz =lle + lal + 17l + IPI,
VR > 0.

(3.18)
for Y=1(¢,q,m,p),

Note that the spaces Fr and £r are metrizable and
not complete; H' is not contained in L? and for in-
stance |¢,4| = co. On the other hand, S, € £ and §; €
&7 for every o > 1/2. For smooth ¢ (x) vanishing at
infinity we have

//;O(x).t>(y)d3xd3 1(
T 8w [x =y 2\

< 3V + ((x), p(x - q))
< Vel — 5(p. A7 p).

Therefore, £ is the space of finite energy states. The
Hamiltonian functional A is continuous on the space
£ and the lower bound in Eq. (3.19) implies that the
energy (3.12) is bounded from below. In the point
charge limit this lower bound tends to —oo.

Let us write the system (3.13) as a dynamical equa-
tion on functions in the space &,

A7 p)

(3.19)

Y(t) =V(Y(1)) forteR,
where Y(t) = ((x,1),q(t), m(x,t),p(1))) € £.

(3.20)

Definition 3.5. S = {S € £ : V(S) = 0} is the set of
all finite energy stationary states of the system (3.13).

Proposition 3.6. Let ( Pyin) and (C) hold and let Y° =
(6°(x),4°% 7°(x), p®) € £. Then the system (3.13)
has a unique solution ¥ (¢) = (¢(x,1),q(t),m(x,1),
p(t)) € C(R,&) with Y(0) = YO The energy
is conserved, i.e. Eq. (3.8) holds. If, in addition,
(P) holds, then (Q) holds. The set S is given by
Eq. (3.15). The following minimum value is attained,

min [(4V8(0 + (0p(x — ) &
PEH!

= 3{p,A7'p). (3.21)
3.2.2. Stabilization

From physical intuition one is tempted to conjec-
ture that every solution Y (¢) of finite energy would
converge to some stationary state S, as t — co. We do
not achieve such a global result. First of all, the be-
havior of initial fields at infinity, Eq. (3.17), should
not only be as required by finite energy, but also with
some additional smoothness. Secondly, the set Z is
not necessarily discrete; in this case Y(¢) may never
settle to a definite S, but could instead wander around,
only approaching S as a set.

We denote by 71, and 25 the convergence in the
Fréchet topology of the spaces Fr and &, respec-
tively. We establish three types of long-time asymp-
totics of the finite energy solutions in the Fréchet
topology.

Theorem 3.7. [33] Let (Puin), (C), and (W) hold.
Let Y(¢) € C(R,&) be the solution to the system
(3.13) with initial state ¥° € £7 with some o > 1/2.
We have the following.

(i) If either (Pyax) or (Q) holds, then

Gg(t) — 0, ast— +oo, (3.22)
(d(q(t) +x,8),m(q(t) + x,1))

— (¢l’(')(x),7rl’(f)(x))

Fr, 0, ast - toc. (3.23)

(it) If (@) holds, then in addition to Egs. (3.22)
and (3.23),
Y(r) 5 s,

as t — too. (3.24)
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(iii) If (Q) holds, and in addition Z is a discrete
set in R, then there exist stationary states Sy € S
depending on Y such that

Y(1) £ Sy, ast — too. (3.25)

Remarks.

(1) The convergence (3.25) and (3.12) imply
Eq. (3.11) by the Fatoux theorem.

(i) Let Voo = liminfy,_, V(q). If H(Y*)(I +
Voo + 3 < p.A™!p), then Eq. (3.21) implies (Q) by
the conservation of energy.

(ii1) The assumption (C) can be weakened to a fi-
nite differentiability and some decay of p(x) at infin-
ity.

(iv) Our method fails in the case of a bounded
space-periodic potential V together with a sufficiently
large initial energy and a discrete set Z. In this case
we expect convergence to some definite S,, but cannot
prove that g(¢) remains bounded.

(v) If the Wiener condition (W) is violated, then
on the linearized level one can construct periodic solu-
tions, provided the coupling strength is adjusted to the
zeros of p. The global convergence to S fails if such
a periodic solution would persist for the full nonlinear
equations (3.13).

To prove theorem 3.7 we will estimate the energy
scattering by decomposing ¢ into a near and far field.
The energy is scattered into the far field. Since the en-
ergy is bounded from below, such a scattering cannot
go on forever and a certain scattered energy functional
has to be bounded. This functional can be written as a
convolution. By the Tauberian theorem of Wiener, us-
ing (W), we conclude that lim,;_, §(#) = 0. There-
fore also lim; .o q(¢) = 0, due to (Q). This implies
that 4 = {S, : || < qo)} is a compact attracting set
for the trajectory Y(¢) . Relaxation and compactness
reduce A to S as a minimal attractor.

3.2.3. The rate of stabilization

To establish the rate of convergence to a stationary
state S, we have to assume that the point g € Z is
stable, in the following sense,

Definition 3.8. A point g € Z is said to be stable if
d*V(q) > 0 as a quadratic form.

Even for a stable g € Z, a slow decay of the initial
fields in space will result in a slow convergence in
time.

Theorem 3.9. [33] Let all assumptions of theorem 3.7
hold, V € C3(R?), and

Y(1) £ 8, ast— +oo, (3.26)
with a stable point ¢ € Z. Then
(i) for every R,e > 0,
(1Y(1) = Sllp=O(77"), ast— oo. (3.27)
(i1) Let additionally
DY%(x) = (’)(e_"[’('), as |x| — oo, (3.28)

with some @ > 0. Then there exists a y* = y*(g) > 0
such that for every R > 0
as t — 00,

[¥(2) = Syl = Oe™), (3.29)

with 8=« if a < y* and with arbitrary 8 < y* if
a2y,

We prove theorem 3.9 by controlling the nonlin-
ear part of Eq. (3.13) by the linearized equation. For
the linearized equation exponential convergence can
be established by Paley-Wiener techniques for com-
plex Fourier transforms [26,41]. As a byproduct we
also establish asymptotic stability of stationary states
S, with stable points g € Z. Let us note that for gen-
eral wave equations with local nonlinear terms a Lia-
punov type criterion of the asymptotic stability of the
stationary states is proved in Ref. [34].

3.2.4. Soliton-like asymptotics

We establish in Ref. [31] the soliton-like asymp-
totics for the system (3.13) with zero external po-
tential, V(g) =0. Then the system is translation-
invariant and admits soliton-like solutions (3.16)
with an arbitrary velocity v € V. On physical grounds
one is tempted to conjecture that every solution y(¢)
of finite energy will converge to some soliton-like
solution as t — co. We do not achieve such a global
result in two respects. The ¢ =0 fields are not only
required to decay at infinity so that they have a finite
energy, but also some additional smoothness require-
ment (3.17) is imposed. More severely, we do not
control the asymptotics for the position in the form
q(t) ~ vt+g. We only prove that g(¢) has a limit and
the field around particle converges to the comoving
Coulombian form.
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Theorem 3.10. [31] Let V(q) = 0, and let (C), (W)
hold. Let Y(¢t) € C(R,E) be the solution of the
system (3.13) with initial state Y0 € £7 with some
o > 1/2. Then there exists a velocity v € V such that
for every R > 0

lo(g(t) +-, 1) — () ir
+ |m(g(e) + -, t) — () |r + [g(1) — 0]

— 0, ast— oo.

(3.30)

Remark. Since the Hamiltonian system (3.13) is in-
variant under the reversal of time, our results also hold
fort — —o0.

3.3. Maxwell-Lorentz system

We consider a single charge, coupled to the Maxwell
field and subject to prescribed time-independent ex-
ternal potentials. If g(¢) € R® denotes the position of
charge at time ¢, then the coupled Maxwell-Lorentz
equations read

divE(x,t) = p(x — q(1)),
rotE(x,t) = —B(x,t), divB(x,t)=0,

rot B(x,1) = E(x,1) 4+ p(x — q(1))4(1), ]
p(t)

P
Y D)
(1) = /[E(x,t) +E(x) +4(0)

A(B(x,t) +B(x))p(x —q(n) dFx.  (331)

The last line is the Lorentz force equation and the
first two lines are the inhomogeneous Maxwell equa-
tions. E is the external electric field related to the elec-
trostatic potential ¢ by E = —V¢. Similarly, B is
the external magnetic field with B = rotA. (E(x,t),
B(x,t)) is the Maxwell field and (E + E, B+ B) is
the total electromagnetic field. g is the charge distribu-
tion of the particle, on which we will comment below.
We use units such that the velocity of light, g9, and the
mass of the particle are equal to 1. Despite their phys-
ical importance, the coupled Maxwell-Lorentz equa-
tions have received only little mathematical attention.
In Ref. [5] the existence and smoothness of the so-
lutions were studied, and in Ref. [3] the orbital sta-
bility of the solitary waves. We consider all finite en-

ergy solutions to Eqs. (3.31). The appropriate phase
space will be introduced below, but first we note that
the energy integral

H(E,B,q,p) = (1+pH)"? +V(q)

4 [UEP +BGOP) & (332)
is conserved along sufficiently smooth solution trajec-
tories of Eq. (3.31). Here, we denote

Vig) = /E(x)p(x —q) d*x.

It is then natural to choose as a phase space the set of
all finite energy states. In fact, Eq. (3.31) can be put
into Hamiltonian form. In the canonical coordinates
(depending on B) the energy H is then the Hamilto-
nian of the system.

Next we have to state our assumptions on @, A,
generalizing similar assumptions for the scalar field
above,

(Pmin)  &(x),A(x) € LZ(RY) and

inf V(x) > —o0.
x€R3

We will also use the following conditions,

(Pmax) E(x),B(x),VE(x),VB(x) € L(R%)
or V(x),A(x) € L®(R?).
(Px) lim V(g) = oo,

lgl—o00

(@) qo=suplg(t)| < co.
teR

For p we assume the same properties (C) and (W)
as for the scalar field above. The generic examples of
densities p satisfying both assumptions (C) and (W)
and, moreover, p(x) > 0, have been constructed in
Ref. [33]. Then the conditions ( Puin), (Pmax) and
(Ps) would hold if we there replaced V by ¢. In the
case p(x) < 0 we could replace V by —.

We investigate the long-time behavior of all finite
energy solutions to Eq. (3.31). Clearly, the first step is
to determine the stationary solutions. For every g € R?
we define the state S, = (£,,B,q.,p) by

Sq'_—(Eq,qu’O)’ Eq(x) ="'v¢’q(x)a
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¢»(x)~/ g (333)
i 47T|y—x|py - '
Let Z = {g € R} : VV(q) = 0} be the set of points
for which the external electrostatic force vanishes. The
set of stationary solutions is simply given by

S§={S8,:9€Z}. (3.34)

The second set of asymptotic solutions corresponds
to the charge traveling with a uniform velocity v, in
the case when E = 0 = B. Up to a translation, these
solutions are of the form

T(t) = (E'(x —vt),B"(x —vt),uvt,p"), (3.35)

with an arbitrary velocityv € V={v e R* : [v| < 1},
where

E'(x) = —V¢'(x),

#0= [ &y )
~J Amu(y - x) +/\(y—X)¢Ip ¥

A"(x) = ve"(x),

BY(x) =rotA"(x),
. v

b= VI—=v?

Here A = V1 —v?, and we set x = vxy + x1, where
xy €Randvix, € R forx e R

We define a suitable phase space. Let L? denote the
real Hilbert space L2(R3, R*) with the norm | - |. We
introduce the Hilbert spaces F = L2 @ L? and £ =
F ®R?* @ R? with finite norms

| (E(x),B(x))||; =|E| +|B| and

IYlz = |E] +|B] + |q] + |pl,
forY = (E(x),B(x),q,p) € L.

(3.36)

L is the space of finite energy states, e.g. S, € L. The
energy functional H is continuous on the space £. On
F and £ we define the local energy seminorms by

ICE(x), B(x)||r = |E|g + |B|lg and

¥l & = |Elz + |Blz + |q] + |p],
for Y = (E(x),B(x),q,p)

(3.37)

for every R > 0, where | - | is the norm in L?( Bg),
Bg the ball {x € R® : |x| < R}. Let us denote by
Fr, Lr the spaces F, L equipped with the Fréchet

topology induced by these seminorms. Note that the
spaces L and Lr, Fr are metrizable, but Lr, Fr are
not complete.

The system (3.31) is overdetermined. Therefore, its
actual phase space is a nonlinear submanifold of the
linear space L.

Definition 3.11.

(i) The phase space M for Maxwell-Lorentz
equations (3.31) is the metric space of states
(E(x),B(x),q. p) € L which satisfy the constraints

divE(x) = p(x —¢q) and

divB(x) =0, forxe R (3.38)

The metric on M is induced through the embedding
McC L.

(it) M7 for 0 € o <1 is the set of the states
(E(x),B(x),q,p) € M such that for some R° =
R°(Y) > Othe fields E(x),B(x) are C!-differentiable
outside the ball Bpo and

[E(x)| 4+ |B(x)| + |x|(|VE(x)| + |[VB(x)])

=0(x|7'7%), as |x| — oo. (3.39)

(iil) MF denotes the space M endowed with the
Fréchet topology induced through the embedding
M C Lp.

Remarks.

(i) M is a complete metric space, a nonlinear sub-
manifold of £. The spaces M, M are metrizable and
ME is not complete.

(ii) All stationary states S, belong to M!, and the
set M! is dense in M. On the other hand, since the to-
tal charge p = p(0) # 0, M? ={ for o > 1 because
of the Gauss theorem. For the same reason suppE(x)
cannot be a compact set (in contrast to suppB(x)).

Let us write the system (3.31) as a dynamical equa-
tion on the functions in the space M,

Y(1) =V(Y(1)),

fort € R, (3.40)

where Y (t) = (E(x,1),B(x,1),9(1),p(1))) € M.

Definition 3.12. S = {S € M : V(S) = 0} is the set of
all finite energy stationary states of the system (3.31).

Proposition 3.13. Let (Pnp) and (C) hold and
' = (E%x),B%x).¢%p%) € M. Then the
system (3.31) has the unique solution Y(t) =
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(E(x,t),B(x,t),q(t),p(t)) € C(R,M) with
Y(0) = Y. The energy is conserved, i.e. Eq. (3.8)
holds. If, in addition, (Ps) holds, then (Q) holds.
The set S is given by Eq. (3.34).

We denote by Zr, and 25 the convergence in the

Fréchet topology of the spaces Fr and M, respec-
tively. We establish three types of long-time asymp-
totics of finite energy solutions in the Fréchet topol-
ogy.
Theorem 3.14. [32] Let (Pyn), (C), and (W) hold.
LetY(t) € C(R, M) be the solution to the Maxwell-
Lorentz equations (3.31) with the initial state Y0 €
M? with some o > 1/2. We have

(1) If either (Pyax) or (@) holds, then

g(t) -0, ast— +oo, (3.41)
(E(q(t) +x,t),B(q(t) +x,1))
— (E'"(x), B (x)) Z5 0, (3.42)

as t — Foo.

(i) If (Q) holds, in addition to (3.41) and (3.42),
then

v() M5 S, ast— +oo. (3.43)

(iii) If, in addition to (Q), Z is a discrete set in R,
then there exist stationary states Sy € S depending
on Y? such that

Y(1) 25 5., ast — +oo. (3.44)

Remarks.

(i) The convergence (3.44) and (3.32) imply
Eq. (3.11) by the Fatoux theorem.

(ii) Let Voo = liminf|q|,,oo7(q). FHEY? <1+
Vs, then (Q) holds by the conservation of energy.

(iii) Our method fails in the case of a constant mag-
netic field, B(x) = By, E(x) = 0. A similar example
(only one with a discrete set Z) is a bounded space-
periodic potential @, together with a sufficiently large
initial energy. In both cases we expect convergence to
some definite S,, but cannot prove that |g(¢)| remains
bounded.

The general strategy of the proof here is parallel
to the scalar field above, though the algebraic details
are different. As an input of the proof, we establish
a bound on the energy scattering to infinity and the

Liénard-Wiechert asymptotics of the Maxwell field
along the light cone. Then we derive Eq. (3.41) by
the Wiener Tauberian theorem. This is a crucial point
of the proof. We deduce Egs. (3.42)-(3.44) from
Eq. (3.41).

We suggest that theorems 3.9 and 3.10 can be gen-
eralized for the Maxwell-Lorentz equations (3.31);
however, the generalizations are open problems. Sim-
ilarly, we suggest a generalization of theorem 3.9 for
translation-invariant systems (3.13) and (3.31) with
zero external fields.

References

{11 M. Abraham, Theorie der Elektrizitét,
Bd. 2, Elektromagnetische Theorie der Strahlung (Teubner,
Leipzig, 1905).

[2] A.V. Babin, M.1. Vishik, Attractors of Evolutionary Equa-
tions (North-Hoiland, Amsterdam, 1992).

[3] D. Bambusi, L. Galgani, Ann. Inst. H. Poincaré, Phys. Theor.
58 (1993) 155.

[4] A.O. Barut, Electrodynamics and Classical Theory of Fields
and Particles (Dover, New York, 1980).

[5] G. Bauer, D. Diirr, Global existence for the Maxwell-Lorentz
system of a rigid charge distribution, preprint (1997).

[6] N. Bohr, Phil. Mag. 26 (1913) 1, 476; 857.

[7] L. de Broglie, Ann. de Phys. 3 (1925) 22.

[8] V.S. Buslaev, G.S. Perelman, Amer. Math. Soc. Trans. 164
(1995) 75.

[9] G.M. Chadam, Ann. Scuola Norm. Sup. Pisa Fis. Mater. 26
(1972) 33; 67.

[10] G.M. Chadam, Arch. Rat. Mech. Anal. 54 (1974) 223.

[11] P.AM. Dirac, Proc. Roy. Soc. (London) 117 (1928) 610.

[12] P.A.M. Dirac, Proc. Roy. Soc. (London) A 167 (1938) 148.

[13] M. Esteban, V. Georgiev, E. Séré, Preprint No. 9514,
CEREMADE, 1995.

{14} R.P. Feynman, Phys. Rev. 74 (1948) 939.

{15]) R.P. Feynman, R.B. Leighton, M. Sands, The Feynman
Lectures on Physics. Vol. 2, Electrodynamics (Addison-
Wesley, Reading, MA, London, 1964).

[16] J. Fleckinger, A. Komech, Russian J. Math. Phys. 5 (1997)
25.

[17] M. Gell-Mann, Phys. Rev. 125 (1962) 1067.

[18] J. Ginibre, G. Velo, Ann. Inst. Henri Poincaré 43 (1985)
399.

[19] R.T. Glassey, W.A. Strauss, Comm. Math. Phys. 67 (1979)
S1.

[20] M. Grillakis, J. Shatah, W.A. Strauss, J. Func. Anal. 74
(1987) 160; 94 (1990) 308.

[21] J. Hale, Asymptotic Behavior of Dissipative Systems (AMS,
Providence, 1988).

[22] L. Hormander, in: Microlocal Analysis and Nonlinear Waves,
IMA Vol. Math. Appl., Vol. 30 (Springer, Berlin, 1991).

[23] M. Hiibner, H. Spohn, Rev. Math. Phys. 7 (1995) 363.



322 A. Komech/Physics Letters A 241 (1998) 311-322

[24} 1.D. Jackson, Classical Electrodynamics (Wiley, New York,
1975).

[25] S. Klainerman, Arch. Rat. Mech. Anal. 78 (1982) 73.

[26] A.l. Komech, in: Partial Differential Equations 1II,
Encyclopaedia of Mathematical Sciences, Vol. 31 (Springer,
Berlin, 1994).

[27] A.L Komech, J. Math. Anal. Appl. 196 (1995) 384.

[28] A.L. Komech, Doklady Mathematics 53 (1996) 208.

[29]) A.L Komech, Russ. J. Math. Phys. 3 (1995) 227.

[30] A.I. Komech, On transitions to stationary states in 1D
nonlinear wave equations, submitted to Arch. Rat. Mech.
Anal.

[31] A.L. Komech, H. Spohn, Soliton-like asymptotics for a
classical particle interacting with a scalar wave field, accepted
in Nonlin. Analysis.

[32] A.L. Komech, H. Spohn, Long-time asymptotics for the
coupled Maxwell-Lorentz equations, submitted to Rev. Math.
Phys.

[33] A.L. Komech, H. Spohn, M. Kunze, Comm. Partial Diff.
Equs. 22 (1997) 307.

[34] A.l. Komech, B.R. Vainberg, Arch. Rat. Mech. Anal. 134
(1996) 227.

[35] P.D. Lax, C.S. Morawetz, R.S. Phillips, Comm. Pure Appl.
Math. 16 (1963) 477.

[36] P.D. Lax, R.S. Phillips, Scatteriﬂg Theory (Academic Press,
New York, 1967).

|37] J.L. Lions, Problémes aux Limites dans les Equmions
aux Dérivées Partielles (Presses de 1I'Univ. de Montréal,
Montréal, 1962).

[38] H.A. Lorentz, Theory of Electrons, 2nd edition (1915),
reprinted by Dover, New York, 1952.

[39] S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, V.E. Zakharov,
Theory of Solitons (Consultants Bureau, 1984).

{40] C.S. Morawetz, W.A. Strauss, Comm. Pure Appl. Math.

25 (1972) 1.

[41] R. Paley, N. Wiener, Fourier Transforms in the Complex
Domain, Amer. Math. Soc. Colloqu. Publ., Vol. 19 (Amer.
Math. Soc., New York, 1934).

[42] M. Reed, Abstract Non-Linear Wave Equations, Lecture
Notes in Mathematics 507 (Springer, Berlin, 1976).

[43] E.H. Roffman, Bull. Amer. Math. Soc. 76 (1970) 70.

|44] E. Schrodinger, Ann. d. Phys. 79 (1926) 361, 489; 80
(1926) 437; 81 (1926) 109.

[45] E. Schrodinger, What Is Life? (Cambridge University Press,
New York, 1945).

[46] I. Segal, Ann. Sci. Ecole Norm. Sup. 1 (1968) 459.

[47] A. Soffer, M.I. Weinstein, Comm. Math. Phys. 133 (1990)
119.

[48| A. Soffer, M.I. Weinstein, J. Differential Equations 98
(1992) 376.

[49] W.A. Strauss, J. Funct. Anal. 2 (1968) 409.

[50] W.A. Strauss, Nonlinear Invariant Wave Equations, Lecture
Notes in Phys., Vol. 73 (Springer, Berlin, 1978).

[511 R. Temam, Infinite-Dimensional Dynamical Systems in
Mechanics and Physics, Appl. Mathematical Sciences
(Springer, Berlin, 1988).

[52] B.R. Vainberg, in: Partial Differential Equations V,
Encyclopaedia of Mathematical Sciences, Vol. 34 (Springer,
Berlin, 1991).

[53] B.R. Vainberg, Asymptotic Methods in Equations of
Mathematical Physics (Gordon and Breach, New York,
1989).

[54] S. Weinberg, Rev. Mod. Phys. 52 (1980) 515.

[55] J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17 (1945)
157.

[56] N. Wiener, Ann. Math. 33 (1932) 1.

[57] C.N. Yang, R.L. Mills, Phys. Rev. 96 (1954) 191.



