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In the present paper, we consider a system of equations that describes the
interaction of a nonlinear oscillator with an infinite string. The main result is the
stabilization: roughly speaking, each finite energy solution to the system tends to
a stationary solution as + — +x (and similarly as 1 — —x). The proof uses the
description of a reversible system by an irreversible. The limit stationary solutions
corresponding to ¢ = *o may be different and arbitrary. The result gives a mathe-
matical model of transitions to stationary states in reversible systems; these transi-
tions are similar to Bohr ones. Such transitions are impossible for finite-dimen-
sional Hamiltonian systems and for linear autonomous Shrodinger equations. The
paper contains the complete exposition and an extension of the author’s recent
results.  © 1995 Academic Press, [nc.

INTRODUCTION
Mathematically, the problem is to solve the wave equation
wpit(x, 1) = Tu"(x, 1), xRN0, t ER, ()
with the following splicing conditions:
w0+, 1) = u(0—, 1), teR, )

my(t) = F(y(t)) + Tlu'(0+, 1) — u'(0—, 1)]. 3)
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Here
y)y=u0x,1),u, T>0, m=0; h=-—,u"=—, etc.

Physically, the problem (1)-(3) describes small crosswise oscillations
of an infinite string stretched parallel to the Ox-axis; a ball of mass m =
0 is attached to the string at the point x = 0; w is the line density of
the string; T is its tension; F(y) is an external (nonlinear) force field
perpendicular to Ox; and the field subjects the ball, see Fig. 1.

The objective of the present paper is to study asymptotics of solutions
u(x, t) for (1)-(3) as t — *oc, Our main result is Theorem 2.1. Roughly
speaking, if the external force ficld F(y) of the oscillator satisfies conditions
(4)—(6) (see below), then any finite energy solution u(x, f) to system (1)—(3)
tends to some stationary solutions locally uniformly in x as 1 — *x,

Such stabilization of all solutions to different stationary states is a typical
behaviour for dissipative systems [1, 5, 12]. The system (1)-(3) is an
infinite-dimensional Hamiltonian system without dissipation of the energy
(see Theorem 1.1). However, there exists in the system a scattering of
the waves at infinity, discovered initially in linear and nonlinear scattering
theories. It plays the role of a dissipation and provides the stabilization.
Namely, there are known results [7, 8, 10, 11, 13] on the ‘‘local energy
decay’’ of all finite energy solutions to multidimensional linear and nonlin-
ear scattering problems. Thus the results mean the stabilization to a single
(zero) stationary solution. Note that for problems considered in these
articles there exists only one stationary solution, and this solution is
identically zero. Stabilization of solutions to nonlinear wave equations in
the cases when there exist nonzero stationary solutions was not considered
previously. However, the absence of stabilization to zero for some nonlin-
ear wave equations was discovered in [9].

Note that the system (1)-(3) also is formally equivalent to the one-
dimensional nonlinear wave equation with the simplest nonlinear term
&(x)F(u) concentrated at the single point x = 0. However, we consider
the general case of an arbitrary function F(u) satisfying assumptions

FIGURE 1
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(4)-(6). With these assumptions, the system (1)-(3) may have (infinitely)
many stationary solutions of finite energy. Stationary finite energy solu-
tions to (1)—(3) are the functions u(x) = b, where F(b) = 0.

We prove (Theorem 7.1) that for each two stationary solutions u.(x)
of finite energy there exists a solution u(x, t) of finite energy that connects
them when the time varies from —oc to +o. Such a ‘‘transitivity’’ of
transitions to stationary states is a purely nonlinear effect, which is impos-
sible for linear autonomous equations similar to Schrodinger equations.

In the linear case when F(y) = —ky, the system (1)-(3) has a unique
stationary (zero) solution. In this case the stabilization to zero was consid-
ered in [6].

Let us describe more precisely assumptions on external force F(y) and
solution u(x, t).

Denote by V(y) = — f F(y) dy the potential energy of the external field:

Fiy)=-V'(y), y€R. 4
We suppose that
F(y) € CY(R), hence V(y) € C*(R); 5
besides,
Viy)—»=  as|y|—e, (6)
SO
Viyyz= 'V, forally € R 6")

for a certain V, € R.

Let us introduce a class € of functions u(x, t); we shall consider solutions
of this class for the system (1)-(3). Roughly speaking, the class contains
the functions of the Sobolev space H}, (R?) that are constant for large |x|
for any fixed ¢.

DEFINITION 1. A function u(x, t) belongs to € if
() u€CRY,

(2) i, u' € Li.(R?), where the derivatives are understood in the
sense of distributions,

(3) Vr>0foracertain A >0
ux,t)=C, forltj<rand x> A4, 7

where C., € R (see Fig. 1).
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System (1)-(3) for the functions u(x, t) € € is understood as follows.

The meaning of Eq. (2) for all ¥ € € C C(R?) is evident.

Equation (1) for u € C(R?) is understood in the sense of distributions
in the region (x, t) € R2, x # 0.

We now explain Eq. (3). It is known that for « € D’(R?) Eq. (1) is
equivalent to the d’Alembert decomposition

ux,y=f.(x—at) +g.(x+ ar), x>0, 8)

where a = VT/u, and f., g. € D'(R). Then the condition u € C(R?) is
equivalent to

f 8. ECR. &)
Further, (8) implies

i=—af' (x—at)y+ag.(x+ar), w=f.(x—at)+g.lx+at),
(10)

for =x > 0, where all the derivatives are understood in the sense of
distributions. This implies the following remark.

Remark 1. Condition (2) of Definition 1 is equivalent to
[, 8L E L [R). (n

DEerFINITION 2. In Eq. (3), for « € ¢ satisfying (1), put
w' (0%, 1) = fi(—at) + g.(ar) € LL(R), (12)

while the derivative y(t) of y(r) = u(0=x, t) € C(R) (or of y(1) € L} .(R))
is understood in the sense of distributions.

Note that the functions f. and g. in (8) are unique up to an additive
constant. Hence definition (12) is unambiguous.

Remark 2. Let m # 0. Then from (3), (5), (12) it follows that
y() = (0%, ) € LL(R) > y(r) EC'(R) (13)

for any solution u € % of system (1)—(3).

To set up the Cauchy problem for the system (1)-(3), we need the
following definition.
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DEerFINITION 3.  The derivatives (-, t) and «’'(-, t) for solutions u € €
of system (1)—(3) are defined by (10) V¢ € R.

Then by virtue of (11) and (7), (10) implies
u(-, 0, u' (-, 1) € LAR), Vi e R. (14)

This fact yields the finiteness of energy for solutions «# € € of system
(1)-(3) (see (1.4) below).

1. SoLVABILITY OF THE CAUCHY PROBLEM FOR (1)-(3)

Theorems 1.1 and 1.2 below describe all the solutions of (1)-(3) of the
class € for m > 0 and m = 0, respectively, and show that there are
sufficiently many of them.

1.1. First we consider the case m > 0. In this case we study the
Cauchy problem for system (1)—(3) with the following initial conditions:

wl, o= o), it = u, (), xER; o=y (1.1
Remark 1.1. The meaning of these conditions for solutions # € € of
(H-(3) is explained by Definition 3 and (13).

Let us introduce the phase space E for the system (1)-(3) so that € is
the corresponding space of trajectories.

DEefFINITION 1.1. E is the set of triples (uy(x), u,(x), y,), where

(n y eR,

(2) u,(x) € LAR),

(3) uyx) € CR), uj(x) € L*(R),
(4) for acertain A = 0,

ugx) =C.and u,(x) =0 fortx> A, (1.2)

where C. € R,

The space E is a normed space with the norm

Ggs sy D= llawgll + eyl + 1C -+ 1C [ + Iy (1.3)

where |-|| is the norm in L*(R).
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THEOREM 1.1. (1) Let m > 0. Then for any triple (uy, u,, y,) € E
the class € contains a unique solution u of (1)-(3), (1.1).
(2) Vi € Rthe map S, taking (uy, uy, y,) to (u(:, t), i(-, 1), y(t) is
a continuous map from E to E.
(3) The energy conservation law is valid for any solution u of (1)-(3)
of the class é:

e . 2 ' 2 Y
f [M(u(xz, 1)) U (“; 1) ]dx + mlzzLZ + V(@)

= const., teR, (1.9

where y(t) = u(0=x, t) as in (3).

Proof. (1) First we prove the uniqueness of the solution « € ¢ of
(1)-(3), (1.1), provided such a solution exists. Simultaneously we get a
method for constructing a solution; thus, in fact, the existence will be
proved as well.

According to the d’Alembert method, we substitute decomposition (8)
into conditions (1.1). We get a well-known formula for f.(z) and g.(z) in
the region =z > 0:

”Q(Z) 1 (= '
= - +CL, +z>0,
f:(Z) D) 24 0 ”l(y) d_) C_ Z 0

(1.5)

_ 1y(2) e o
@ ="5" 45 [ wmdy-CL. =z>0,

where C’, are arbitrary constants. Since f, and g. in (8) are defined up
to a constant, we may assume that C, = 0.

Remark 1.2. Since (uqy, u,, y,) € E, it follows from (1.5) that
f-(2), g.( € CR.), and  fL(2),g.(@ €L} R.), (1.6

where R, = {x E R: = x > 0}.
By (1.5), the usual d’Alembert formula (see [1]) is valid for |x| = al1],
- at + + t x+at
uix, 1) = Ug(x —at) + up(x + a )+ _l_j u,(y) dy. (1.7)

2 2a)c o

Thus the solution u(x, t) in the region |x| = a|f| is defined uniquely. It
remains to prove the uniqueness in the region |x| < alt].
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Consider the case ¢ > 0. Let |x| < at; the unknown functions in (8) are
Sf.(x — ar) for x > 0 and g_(x + at) for x < 0. Therefore, the unknown
functions are f,(z) for z < 0and g_(z) forz > 0 (f . (z) for z > 0 and g_(2)
for z < 0 are defined in (1.5)). To find these unknown functions, we use
the splicing conditions (2), (3) for 1 > 0: we substitute (8) in (2), (3), and
by (12) we get

fol—aty + g.(at) = f_(~at) + g_(at) = y(1), >0, (1.8)
my(t)y = F(y() + T[f ' (—at) + g’ (at) t>0.
~fl(~at) — g’ (at)], (1.9)

This is a system of two equations with two unknown functions f, and g _.
By (1.8) we express f, and g _ by means of y, and after taking derivatives in
t we get

—af' (—ar)=y(t) — ag' (at), ag' (at) = y(t) + af (—at), >0
(1.10)

Substitute these formulae in (1.9) to obtain

mS’=F()’(t))+2T[g'+(at)—f'.(—at)-%)"(‘)], t>0. (11D

Now we find y(r) for ¢+ > 0 uniquely, then we find f, and g_ uniquely
by (1.8).

By (1.6), the functions in (1.11) known from (1.5) will certainly satisfy
the conditions f"(—at), g’.{at) € L2(R,) and F(-) € C(R). On the other
hand, by (13) the assumed existence of the solution « € € implies ¥(r) €
L .(R,). By Definition 2, the derivative y in (1.11) is understood in the
sense of distributions. Hence by the Lebesgue theorem we conclude that
Eq. (1.11) is equivalent to the same identity for almost all 1 > 0. Hence
for any fixed initial data y(0+) and y(0+) the solution y(z) of Eq. (1.11)
is unique on a certain interval ¢ € [0, £), where £ > 0. This can be proved
easily by the contraction mapping principle if we rewrite (1.11) in the
equivalent integral form

myo = [ ([ Fomnar) as+ 2L [ (g ) + (a9 - v
0 \o a o
+Co+Ct, >0, (1.11")
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where
Cy=my(0+) and

c, = _,Za_T[g+(o+) +£2(0=) —y(0+)] + mp(0+).

Thus y(¢) is determined uniquely on [0, &) for a certain £ > 0. Since
vy € C'(R,) by (13), y(¢) is determined uniquely for all # > 0 for any fixed
y(0+) and y(0+).

It remains to describe exactly the choice of y(0+) and y(0+). First,
form (1.1) we get

y(0+)=y,. (1.12)
Next, since u is continuous for |x| = at, by (1.6) we see that f, (x — at)

is continuous for x = at, and g _(x + at) is continuous for x = ~at. Hence
by (1.5) we get

Fi0-)=£,(0+) = “"2(0),
(1.13)
{g_(0+) =g.(0-) E“—"z(-o—).
These two conditions together are equivalent to
.Y(0+) =f:(0_)+gt(0+)=ll0(0) (1]3’)

As a result, y(0+) and y(0+) are determined uniquely, hence y(¢) is
determined uniquely for # > 0 as well. Then f, and g_ are determined
uniquely by (1.8). So the uniqueness of the solution u € € is proved for
t > 0. The uniqueness for r =< 0 can be proved in the same way.

We now prove the existence of a solution # € ¢ of (1)-(3), (1.1). First
of all we define « in the region |x| = a|t| by the d’Alembert formula (1.7).
Then by (1.2) we see that « satisfies condition (7) of Definition 1 (of the
class ). Conditions (1) and (2) of this definition for |x| = a|t| follow
from (1.6).

We now construct a solution in the region ¢ > 0, |x| < ar: we define u
by formula (8), where f, and g_ are determined from (1.8) with the help
of the function y(z). Here y(?) is the solution of (1.11) with initial conditions
(1.12), (1.13").

LEMMA 1.1. For any y(0+) and y(0+), Eq. (1.11) has a solution for
all t > 0, moreover,
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MOIRENMOIERE (1.14)
where A is bounded for bounded |(uq, uy, y))|g.

Proof. Let us get an a priori estimate for y(¢). To do this we multiply
(1.11) by y(¢) for almost all r > 0, and by (4) we obtain

, .
%m y 2(” = L Vo) + 27 [g;(at) —f'(—at) - éy(t)]y(t)

(1.15)

for almost all 7 > 0. Let us integrate this equality. By (1.6), the Lebesgue
theorem, and the Cauchy inequality, we obtain

o2
m—y—2(12+ Viy)<B, >0, (1.15")

where B is bounded for bounded |y,!, |lg%|l,,and | f"|_; here ||-||. is the

norm in L%(R.). Finally, by (6’) we obtain
Y1) =C, >0,

where C is bounded if the norm ||(u,, u,, y,)| ¢ is bounded. This estimate
implies the existence and uniqueness of the global solution of (1.11) for
any y(0+) and y(0+), as well as estimate (1.14) and the following fact:

J(ECR,). (1.16)

The lemma is proved.

Thus we have defined f, and g_ by (1.8) in terms of the function y(t)
we have constructed. Then from (1.16), (1.6), and (1.10) it follows that

fleli.®), g (eLL.®,). 1.17)

Hence the solution «(x, ¢) defined by (8) for ¢ > 0 satisfies conditions (1),
(2) of Definition 1 in the region |x| < at. From (1.13") and (1.13), it follows
that u(x, t) satisfies conditions (1), (2) of Definition 1 for all t > 0 as well.

We construct the solution « in the region ¢t < 0 in a similar way. From
(1.7) it follows that the constructed function « is continuous for ¢t = 0;
hence u € €.

It remains to check that the function u is a solution of (1)-(3), (1.1).
We obtain by (8) that u satisfies Eq. (1). From (1.7) and (1.12) it follows
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that « fits initial conditions (1.1). By the construction of f, and g_ we see
that u satisfies (2) for ¢+ > 0, similarly for r < 0. Equation (1.11) for ¢ >
0, a similar equation for 7 < 0, the equality y(0+) = y, = y(0—), and the
inclusion y(¢t) € LL.(R.) (the latter follows from (1.11), (1.16), (1.6)) all
together imply (3). Hence the first assertion of Theorem 1.1 is proved.

(2) The second assertion of Theorem 1.1 follows from the above con-
struction as well. It suffices to prove the following lemma. The lemma
states that solutions of (1.11), (1.16) depend continuously on initial data
in (1.1).

LEMMA 1.2, Let y,(t) and y,(t) be the solutions of (1.11) with the
initial data (u}, u,y%), i = 1, 2, respectively. Then for any T > 0 there
exists a constant Cg such that Cg is bounded for bounded
liCaet, i, YDl and

sup [y1(t) = 2} = Call(ug — ug, uj — wi, yi = yDlle.  (1.18)
L

To prove this estimate we subtract Eq. (1.117) for y, from the same
equation for y, and use the Gronwall inequality. We also use the a priori
estimate (1.14).

Subtracting Eq. (1.11) for y, from the same equation for y, and using
estimates (1.18) and (1.14) for y,, y, in the right-hand side, we get

19:(6) = 320Nl 20.7) = Chll(eg — u, ui — ui, y1 = yDllg VI >0,
(1.19)

where C! is bounded for bounded ||(z}, u}, y)lg, i = 1, 2.

From this estimate it follows that the operator S, from E to E is con-
tinuous.

(3) First we prove the energy conservation law (1.4) in the simpler case
when (uy, iy, y,) € Eand uy(x) € C3(R\0), u,(x) € C'(R\0), and, moreover,
the limits uy(0x), ui(0x), u,(0%) exist.

Remark 1.3. The above smoother initial data form an everywhere
dense set in the space E with the norm (1.3).

From the above construction of the solution u(x, ¢) it follows that u €
C(R?) for these initial conditions, and all the first and second classical
partial derivatives of u exist and are locally bounded for x # 0 and x #
*at. Moreover, for any t € R the left-hand and right-hand limits of #(x,
t)and u'(x, t) as x — 0= and x— ar =0 exist, and

e+ au')|seqeo = Gt + ate')| _awg V1 #0. (1.20)
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This follows from the d'Alembert decomposition (8). Indeed, both sides
of (1.20) vanish for the functions f.(x — at), while the functions g.(x +
at) are continuously differentiable for x = ar # 0. Similary,

(it — au' - o= (it = @' o_peo VI#0. (1.21)

Consider the ‘‘energy integral’’

w=[" [M(”“x’ D)7, gl ’))2] dx (1.22)

2 2
for t > 0. We express it as the sum of the integrals over the intervals

(—o, —at), (—at, 0), (0, ar), and (at, ). Then we differentiate each of
these summands in ¢ and get

'O =T_0, )220+ Tu'ie|320 + T.(x, 1)

P (1.23)
where

.2 r2
[.(x,t)=*a [u%—+ T-u—z—] + Tu'it = iy'z—a[il +au'l’

Here we use the fact that Eq. (1.1) is valid for « in the classical sense,
provided x # 0 and x # *at. Relations (1.20) and (1.21) imply

I.jizzacs=o. (1.24)
Finally, we get by (3)
x=0- d .2
Tu'i| = =3my+ V(o)== [mlz— + V(y(t))], 1> 0.
x =0+ t
(1.25)
So by (1.23) we have
, di 3’ _
I+ 2| mS+ Vo) =0, 1>0. (1.26)

Hence, (1.4) is true for r > 0. By taking the limit as 1t — 0+ we get (1.4)
for t = 0 as well. For t = 0 we can prove (1.4) in a similar way. Thus the
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equality (1.4) is proved for an everywhere dense set of initial data belonging
to E. It remains to use the second assertion of Theorem 1.1.

1.2. Now consider the case m = 0. In this case we need not take into
account the condition ¥(0) = y, in (2.1). So the phase space E is replaced
by E,.

DEFINITION 1.2. E,is the set of pairs (uy(x), u,(x)), where the functions
uy and u, are the same as in Definition 1.1.

The norm in the space £, is similar to (1.3):
I(uo, ullg, = llugll + eyl + 1C |+ |C . (1.27)

E, can be identified with the subspace of E such that y, = 0.

THEOREM 1.2. (1) Let m = 0. Then for any pair (uy, u,) € E, there
exists a unigue solution u € € of (1)~(3) with initial data

ul,mg = ug(x), it|mg =1, (x),  xER. (1.28)

(2) For any t € R the operator S° that maps (uy, u,) to (u(-, 1)) is
continuous from Eg to E;.

(3) The energy conservation law (1.4) (with m = 0) is true for solu-
tions u of (1)-(3) belonging to €.

The proof of this theorem coincides with that of Theorem 1.1, except
for the investigation of (1.11) leading to estimate (1.19).

We point out the necessary corrections in (1.11)-(1.19) in the case
m = 0.

When m = 0, Eq. (1.11) has the form

y(t) = :—Za—TF(y(t)) +alg'(at) - f_(—at)]  foralmostall > 0.
(1.29)

For any y(0+) there exists a unique solution of (1.29) on a certain
interval r € [0, &), where € > 0. This can be proved by the contraction
mapping principle. Since (1.13) is valid for y(0+), the uniqueness of y(t)
and of the solution u € € is proved.

To construct a global solution we take into account that the a priori
estimate (1.15') holds with m = 0. Then from (6) it follows that y(¢) is
bounded for ¢t > 0.

Since y(0+) fits condition (1.13’), y(¢) is determined uniquely for all
t > 0. We construct u(x, ¢) by means of y(t), then u(x, ) € € and condi-
tions (1)-(3), (1.28) are satisfied.
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So the first assertion of Theorem 1.2 is proved.
(2) If m = 0, we need the following estimate instead of (1.18):

Illgaj?ly;(t) — v, (0] = Cyll(uf — uf, u} ~ udllg, VI >0, (1.30)

where Cj is bounded for bounded ||(u}, ullg,, i = 1, 2. We get (1.30)
from (1.29) by the aid of the Gronwall inequality and the a priori estimate
(1.15'). Relations (1.30), (1.29), (1.15") imply the estimate

13¢5 = 2Ol 20.5) = CHlleeg — g, ui = “f))”fo V7 >0, (13D

where € is bounded for bounded ||(uf, u)|lg,. i = 1, 2.
Equation (1.31) implies the second assertion of Theorem 1.2.
The third assertion of Theorem 1.2 follows from that of Theorem 1.1
Theorem 1.2 is proved.

2. STATIONARY SOLUTIONS AND STABILIZATION

It is easy to find all the stationary solutions of (1)-(3), i.e., the solutions
u € € which do not depend on time: u(x, ¢) = u(x). Indeed, substitute
the latter function in (1) to get 0 = u"(x). Hence

ux)=a.x+b. for +x > 0. 2.1

It follows from (7) that a. = 0, and b, = b _, since u(x) is continuous. Fi-
nally,

u(x) = const = b, x€eR. 2.2)

Then (3) implies
0= F(b). (2.3)
Conversely, (2.3) implies that «(x) = b is a stationary solution for (1)-(3)

of class €.

COROLLARY 2.1. There is a bijection between the set of all stationary
solutions for (1)-(3) of class € and the set of all zeros of the function F.

DEFINITION 2.1. Let S be the set of all zeros of the function F: § =
{b € R: F(b) = 0}.

The main result of the present paper is the following.
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THEOREM 2.1. Let u(x, t) be an arbitrary solution for (1)-(3) of class
€. Then there exists b, € S such that for any B > 0

ulx,t)=2b, for|x| <Bast—> +x. (2.4)
Moreover, for any a, B € N U {0} such that 0 < a + 8 = 2, we have
0%9fu(x,1)=30 for [x| < Bast— +x. (2.5

Similar statements are true for t — —x.

The main idea of the proof is the following. By (1.2) and (1.5), for a
certain A > 0 (A depends on the initial data u(x, 0), &(x, 0)) we have

fox)=C forx< —A, g.(x)=C"forx>A. (2.6)
Then (1.11) implies
. 2T,
my(t) = F(y(1)) — —a—y(t) forat > A. 2.7

Since a = VT/u, we rewrite (2.7) as
my(t) = Fiy(t)) = 2V Tumy(t), t>Ala=t,. (2.8)

The proof of Theorem 2.1 is based on examining this equation. By (1.8)
and (2.6) we get

yt)=f(—at) + C*=C~ + g_(ar) for at > A. (2.9)
From (8) and (2.6) it follows that

filx—at)y+ C*, x>0,
u(x,t)= _ forar> A. (2.10)
C +g_(x+an,x<0

Then
u(x, 1) =y(t - |x|/a) forar> A + |x|. .11
We call (2.8) the reduced equation of the oscillator.

In view of (2.11), Theorem 2.1 follows from the following lemma. We
suppose that F(y) fits conditions (4)—(6), i, T > 0, and m = 0.



398 ALEXANDER 1. KOMECH

LEMMA 2.1. (1) For any solution of the reduced equation (2.8), there
exists a number b, € R such that

y(t)— b, ast— +x; (2.12)

(2) moreover, F(b,) = 0; and
3) ¥)—0,3(t)—>0ast— +x

Remark 2.1. (1) The description of the reversible system (1)-(3) by
means of irreversible equations (2.7), (1.11) seems to be paradoxical. The
solution of the paradox is the following: together with (1.11), a similar
equation with the “‘negative’” friction holds, but with ‘‘outgoing’” waves
on the right-hand side instead of ‘‘ingoing’’ waves involving the right-
hand side of (1.11). Hence, these equations transfer one to the other under
the inversion of time. Roughly speaking, the irreversible equation (1.11)
is related to the reversible system (1)-(3) by a ‘‘covariant” way with
respect to the time inversion.

(2) Forthe proof of the asymptotics of solutions to the system (1)-(3)
as t— +x it is necessary to use precisely the equation (1.11) with positive
friction and with ingoing waves. Indeed, we obtain the ingoing waves
directly from initial data, unlike the outgoing waves.!

Remark 2.2. Theorem 2.1 shows that the set
A={bh,0,0)EE:bE S} (2.13)

is a “‘point’” attractor for the system (1)—(3) in the sense of convergence
(2.4), (2.9). In [1, 5, 12] attractors for nonlinear dissipative systems are
constructed. System (1)-(3) has no dissipation of energy according to the
energy conservation law (1.4). Therefore the results [1, 5, 12] cannot be
applied directly to prove (2.4). On the other hand, the reduced equation
(2.8) involves the dissipative term and thus we can apply the results cited.
It follows from them that for any solution y(t) of (2.8) the point (y(¢), ¥(¢))
tends to the set of stationary points of (2.8) in the phase plane (y, y). Note
that (2.12) contains more information in the cases, when the set § is
not discrete.

Remark 2.3. Note that unlike the cases considered in [1, §, 12], trajec-
tories of (1)-(3) do not tend to the attractor (2.14) in the phase space
metric (the metric (1.3) of the space E in our case). Roughly speaking the
convergence occurs in the weak topology on E only.

I Professor J. Lebowitz kindly told me that the connection between Eq. (1.11) and the
system (1)-(3) was also discussed from a similar viewpoint in {2).
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Remark 2.4. The proof of Lemma 2.1 is trivial in the case m = 0.
Indeed, Eq. (2.8) transforms to

2VTuy(t) = =V'(y).

Hence the function V(y(t)) decreases along the trajectories. By (6), any
trajectory is bounded for ¢ > 0. Since y(¢) does not change its sign, any
trajectory y(t) is monotone. Thus Lemma 2.1 is proved for m = 0, as well
as Theorem 2.1.

Taking into account Remark 2.4, we assume in what follows m > 0
while proving LLemma 2.1 and Theorem 2.1.
3. PHASE PORTRAIT OF THE REDUCED EQUATION: EXAMPLES

First consider the case m > 0. In the phase plane (y, y) the orbits of
the reduced equation (2.8) are determined by the following system:

{ y(0) = o),
(3.1

mi(t) =F(y(1)) = 2VTuo(t), t>1,.

We consider this system as a perturbation of the system with 7 = 0:

y=u,
{mo F(y). 3-2)

Let us establish some simple relationships between phase portraits of
these two systems.

Remark 3.1. (1) ltis clear that these systems have the same station-
ary points.
(2) The vertical component of the phase velocity vector (i.e., ¥) of
(3.1) is less than that of (3.2) if v > 0 and is greater if v < 0. The horizontal
components of these vectors are equal; see Fig. 2.

(y,»)
l( »,F(y))
l
I( 3 F(y)2fTuv)
fo v

FIGURE 2
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FIGURE 3

(3) Hence the orbits of (3.1) intersects those of (3.2) from the top
in the halfplane v > 0 and from the bottom in the halfplane v < 0.

Consider a typical example of a potential

yER. (3.3)

It satisfies conditions (5), (6). First let m > 0. Then the orbits of (3.2) are
the following:

» closed curves corresponding to periodic solutions,

* two separatrices both leaving and entering the point (0, 0),

» three stationary points: a saddle at the point (0, 0) and two centers
at the points (=1, 0); see Fig. 3.

Taking into account item (3) of Remark 3.1, we see that for the system
(3.1) with potential (3.3):

» the points (£1, 0) are stable foci for small Ty > 0 (stable nodes for
large T > 0), and
s the point (0, 0) is a saddle for all Tu = 0; see Fig. 4.
Now let us consider the case m = 0. For the potential (3.3), the orbits

of (2.8) are the rays y < —1, y > 1, the intervals (-1, 0), (0, +1), and the
three stationary points (stable points * [ and unstable point 0); see Fig. 5.

FiGURE 4
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g
€

FIGURE 5

Remark 3.2. For the examples (potential (3.3) for m > 0 and m = 0)
the conditions of Lemma 2.1 are satisfied, so its statements are true. In
particular, all the orbits enter some stationary point as r — +x, Note that
this limit point can be unstable, e.g. the saddle (0, 0) on Fig. 4 (here two
separatrices enter the saddle).

4. DISSIPATION INTEGRAL AND STABILIZATION FOR SOLUTIONS
OF THE REDUCED EQUATION
It follows from (5) that any solution y(¢) of the reduced equation (2.8)

belongs to C3 for at > A. Let us multiply (2.8) by 3(¢) and integrate over
t from ty = A/a to t > t,. Since F(y) = —V'(y), we obtain

mxz(ﬁ +Viy(t) = E,—2VTu f'yz(r)dr, t> 1y, 4.1

where

Ey=m>29 4 iyt

o)
“

is the oscillator’s energy at the moment ¢,

Remark 4.1. We see by (4.1) that the oscillator’s Hamiltonian H =
m(y*(t)/2 + V(y(t)) decreases along any trajectory of system (3.1) and is
constant just for the stationary solution. In terms of (1] we can say that
H is a “*Lyapunov function' of system (3.1).

Remark4.2. We see by (2.8) that the string’s tension creates ‘‘friction”’
for the oscillator with coefficient 2V Tu. According to (4.1), the oscillator
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loses energy; by the conservation law (1.4) it is transformed to the energy

of the string. Thus we can say that the friction in (2.8) is an ‘‘emissive
friction.”’

Remark 4.3. At the moment 7, = A/a the waves f_(x — at) and g, (x
+ at) falling on the oscillator at the point x = 0 become constant (we can
assume that the constant is equal to zero).

We now come to a principal point: let us use the condition (6’) for the
potential of the oscillator. From (4.1} and (6") it follows that

— 1
2\/mj VU dr<E,—V, fort=1t,. 4.2)
‘o

We proceed to the limit as r — +o and obtain that the following *‘dissipa-
tion integral’’ is finite (compare [1]):

J= 2\/ﬁj1y2(7) dr < . (4.3)

This is the main analytic instrument to prove Lemma 2.1.
COROLLARY 4.1. It follows from (4.1) and (4.3) that
mzlz(ﬁ +Viy)—Ey—J  ast— +x. 4.4)

Let us sketch the proof of Lemma 2.1. First we prove (2.12). Further,
by (4.4) we obtain

52
my_é(_fl_, E,—J-V(b.,) ast—s +x. 4.5)

So () tends to a limit as t — +x= and by (2.12) the limit equals zero. By
(2.8) we have

my(t)— F(b.) ast— +o, (4.6)

Again by (2.12), the limit F(b,) equals zero (if we differentiate (2.8) in ¢,
we also obtain y®(r) — 0). So it is sufficient to prove (2.12) alone. The
proof is contained in Sections 3, 6; see below. The proofs are different
in the cases of degenerate and nondegenerate potentials V(y).
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DEFINITION 4.1. A potential V(y) is called nondegenerate if
V(y) # const on each nonempty interval b, <y < b,, 4.7)

and degenerate otherwise.

5. STABILIZATION IN THE CASE OF A NON-DEGENERATE POTENTIAL

Let V(y) be a nondegenerate potential. We know that it is sufficient to
prove (2.12). Let us assume the converse: y(¢) has no limit as t — +x.
Note that by (4.1)

Viy(t) = E, fort>1,. (5.1

Then from (6) it follows that for a certain B < x,

ly(t) =B  fort>t,. (5.2

PrROPOSITION 5.1. Suppose y(t) has no limit as t — +x. Then there
exist points b* € [—B, B], b~ < b", and sequences t; — +x such that

yig)y=»5b", k=1,2,3,..., (5.3)
and

¥y #0 ifb=y@)elb b, t>1,. (5.4)

Proof. We need only check (5.4). It follows from (5.3) that for any
b € (b™, b™) there exists a sequence r, — o such that ¢, > ¢, and

y(t) = b. (5.5)

By (4.1) we have for 1, > t > ¢,

-

y-;rk) . y-2(t> - NVTa f " 52r) dr <0, (5.6)

m

Indeed, suppose the last integral equals zero. Then y*(r) = 0 for 7 €
(t, t,). By the uniqueness theorem for (3.1), we have y(r) = const for
t € (¢, ). This contradicts our assumption. At last, by (5.6) we get

|7l < |3, (5.7)

which implies (5.4).
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Let us use Propositions 5.1 to obtain (2.12). By (5.4) we can assume
that 17 <t/ , and the function y(¢) is monotone increasing on every segment
A, = [t;,t{]. Hence ylak has the inverse function t,(y) on the segment
B = [b", b7]. Let us define the following functions:

vy =y(y) foryeg. (5.8)
By (5.7) we have for any k,

0 < (y)<uly) (5.9

for y € B (see Fig. 6).
Then

v(¥)— v.(y) VyEBask— =, (5.10)

Besides, since the dissipation integral (4.3) is finite, we obtain
bt 1y
f v(y) dy=j PO dt—0  ask— . (5.11)
b~ n
From (5.9)—(5.11) and the Lebesgue theorem, it follows that

b+
fb_ v.(y) dy = 0. (5.12)

Since v..(y) = 0 for all y € B, we get
v (y)=0 for almost all y € 8. (5.13)

On the other hand, by (4.3) we can rewrite (4.1) as

2 — i)
mE%L)-F V(y)=15(,—2\/Tp,fA $Ur) dr— E,—J  Vy€ER.
fo k—x

(5.14)

<y

FIGURE 6
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Then from (5.13) and (5.10) it follows that
Viny=E,—-J for almost all y € 8. (5.15)
But V(y) is a continuous function, so (5.15) is true for all y € 8. This
contradicts the fact that the potential V is nondegenerate.

So we have proved (2.12) and Lemma 2.1, and thus Theorem 2.1 in the
case of nondegenerate potential.

6. STABILIZATION IN THE CASE OF A DEGENERATE
PoTENTIAL: EXAMPLES

Prior to proving Lemma 2.1 in the general case of degenerate potential,
let us consider a typical example. The example is provided by the follow-
ing potential:

k(_').)_:_[_):’ ySb‘,

2
Viy)= 0, b"=y=b", (6.1)
)2
k(_).i_zb*)ﬁ’ b=y,

where k > 0 and b~ < b*.
In the region b~ =< y < b", the phase curves are determined by Eq.
(2.8) with F = 0, i.e., by

my = —2\/?;:5).
So
y:CI—i—Cze_‘“’ aEg_l&_
m
The corresponding system is
v = v,
Y dv = —q. (6.2)

mo=~2VTuv~ dy

Then the orbits in the region b~ < y < b™ are defined by

v=—ay+ const. (6.3)



406 ALEXANDER I. KOMECH

——\\

A

A A

FIGURE 7

In particular, for T = 0 the orbits are line segments parallel to the y-axis.
Taking the above into account, we obtain the phase portraits of the
system (3.1) for the potential (6.1).

(1) For T = 0; we have Fig. 7.

We see from the picture that in case (1) both the condition 7 > ( and
the statement of Lemma 2.1 are not true. The oscillator moves periodically
as t— +«,

(2) For 0 < Tu < km; we have Fig. 8.

In case (2) (as well as for Ty = km) the statement of Lemma 2.1 is true:
all the solutions have limits as r — +. Note that potential (6.1) does not
fit condition (5} but fits (6).

We now complete the proof of Lemma 2.1 in the general case.

Let us assume the converse, as in Section 5 (see the Proof of Proposition
1), and find a nonempty interval (b, b*) on which V(y) = const. From
(5.10) and (5.13) it follows that for almost all y, € (b7, b™),

v(ys)—0 ask— <, (6.4)

FIGURE 8
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The point (y,, v,(y,)) of the phase plane (y, v) belongs to an orbit of
type (6.3); the equation of the orbit is

v u(y) = —aly — yo). 6.5

This line intersects the interval (57, ") of the Oy-axis at a point b, if
v, (yo) is sufficiently small (v.(y,) > 0 according to (5.9)):

0<u(y) <a(b®™ — y,). (6.6)

By (6.4), this condition is satisfied for large k. Then (2.12) is true; this
contradicts our assumption.
Lemma 2.1 and Theorem 2.1 are proved.

7. TRANSITIVITY OF THE STRING-OSCILLATOR SYSTEM

By Theorem 2.1, any solution u of (1)-(3) of class € provides the
transition of the string-oscillator system from a state b_ € § to a state
b, € S in the following sense:

u(x,)—b. ast—> xoo, (7.1
where the convergence is understood in the sense of (2.4), (2.5).

Let us show that the transition exists for any b. € §.

THEOREM 7.1. For any b. € S there exists a solution u of (1)-(3) of
class € such that b_and b, are connected in the sense (7.1).

Proof. ltis possible to provide the transition b_ — b, indifferent ways.
We choose one of them, which is possibly the most obvious. Namely, we
construct a solution u € € of (1)-(3) such that

b_ fort=—1,

)’(t) = U(Oi, t) N {b+ forr=1. (72)

To do this, we extend y(z) for t € (—1, 1) arbitrarily so that y € C*(R)
(y € C*(R) is sufficient). Then we put g, = b_ and determine f_ by (1.11);

my(t) = F(y(#) + 2T(f. (—at) - :1- ¥(9), teR. (7.3)

Then f”.(z) € C'(R). Since F(b.) = 0, we get
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fl(—at)=0 fort=—landforz=1. (7.4)

To determine f_ uniquely, we may require that
f(—at)y=b_ forr=—1. 7.5)

Then the reflected waves g_ and f, are determined by (1.8).

Since y(2), f_(—at) and g, (ar) are constant for large 1|, f, (—a?), g_(at)
are also constant for large |f|. Thus solution (8) belongs to ¢ and satis-
fies (7.1).

Remark 7.1. The constructed solution means that the oscillator is in
the stationary point »_ for ¢ = —1; then the wave f_(x — at) falls on the
oscillator and takes it to the state b, by r = 1; moreover, for t > —1 it
generates a pair of reflected waves; g_(x + af) for x < 0 and f, (x — af)
for x > 0.

Remark 7.2. Physically, the inequality b, # b_ means the capture of
radiation by the oscillator if V(b,) > V(b_), or the emission of radiation
by the oscillator if V(b,) < V(b_). Note that for linear autonomous
systems (e.g. the Schrédinger linear equation with potential) there are no
transitions between bound states, i.e. different asymptotics of a solution
as t — ==, Indeed, Schrodinger equation is equivalent to a system of
independent oscillators with equal amplitudes of bound states as t — +x
and t — —o. Thus, system (1)-(3) is an example of a system with a ‘‘non-
trivial scattering of bound states.”’
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