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1 Introduction 

We consider 
scribed time 
of charge a t  

a single charge coupled to the Maxwell field and subject to pre- 
-independent external potentials. If q ( t )  E IFt3 denotes the position 
time t ,  then the coupled Maxwell-Lorentz equations read 

Here and below all derivatives are understood in the sense of distributions. 
The last line is the Lorentz force equation and the first two lines are the 
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560 KOMECH AND SPOHN I 
I 

inhomogeneous Maxwell equations. E (x ,  t ) ,  B(x ,  t )  is the Maxwell field. E,, = 
-V$es, Be= = rot A,, are prescribed, time-independent external fields. p is 
the charge distribution of the particle. We use units such that the velocity of 
light c = 1, E O  = 1, and the mechanical rest mass of the particle mo = 1. 

For a wealth of physical applications it suffices to split Eqs. (1.1) into 
two parts: Either one regards q(t) as given and determines the Maxwell field 
El B as the solution of an inhomogeneous wave equation. Or one considers the 
electromagnetic fields as given and solves for the motion of the charge. In both 
cases one may take the point charge limit and substitute p(x - q) by eb(x - q). 

The perhaps most basic physical phenomenon where such a decoupling is no 
longer possible is radiative damping: an accelerated charge generates electro- 
magnetic fields and thereby looses energy and momentum through radiation. 
Thus in the long-time limit the particle will either come to rest or, if permitted 
by the external potentials, move with uniform velocity. The main goal of our 
paper is to deduce such a qualitative behavior from Eqs. (1.1). 

In the standard discussions of radiative damping one employs the Lorentz- 
Dirac equation, where the damping effects due to radiation are globally sum- 
marized through a sort of friction term. To allow a uniform motion it must 
be proportional to 9 (t) rather than q(t). Thereby unphysical, so-called run- 
away, solutions appear which are eliminated through appropriate asymptotic 
conditions a t  t = f KI. At present we regard the precise relationship between 
the Lorentz-Dirac equation and Eqs. (1.1) as an open problem. We refer to 
[7, 13, 18, 211 for an exhaustive treatment and only add one point to the dis- 
cussion: It is argued that the Lorentz-Dirac equation is the point charge limit 
of Eqs. (1.1) [13, 211. In this limit the electromagnetic mass of the charge 
tends to SKI. To compensate, the (bare) mechanical rest mass mo tends to 
-m. However, even before taking any limits, if the rest mass mo < 0, then 
Eqs. (1.1) have already solutions increasing exponentially in time [4]. Thus 
the proposed limiting procedure is questionable. 

Eqs. (1.1) are not Lorentz invariant, since we adopted a rigid charge dis- 
tribution (the so-called Abraham model). It remains to be seen whether our 
techniques also apply to the Lorentz model, where the charge distribution is 
the same in each rest frame. A further obvious limitation is the restriction 
to a single charge. Since basically we exploit the conservation of energy, in 
the case of several particles only some qualitative information on the center of 
mass can be extracted, but not on the motion of individual particles. 

We consider finite energy solutions to the Eqs. (1.1). The appropriate 
phase space will be introduced below, but first we note that the energy integral 

is conserved along solution trajectories of (1.1). It is then natural to  choose 
as phase space the set of all states with finite 3C. In fact, (1.1) could be put 
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COUPLED MAXWELL-LORENTZ EQUATIONS 561 

into Hamiltonian form. In the canonical coordinates 7-l takes then the role 
of the Hamiltonian of the system. We will not make use of the Hamiltonian 
structure, here. 

For later convenience we state our assumptions on 4,,, A,,, and p. The 
external potentials satisfy 

Alternatively, we will also use the following conditions 

The charge distribution p is smooth, radially symmetric, and of compact sup- 
port, 

As noted in [lo] a further important assumption is the Wiener condition 

P(k) = / d3x eikzp(x) # 0 for k E R' . (w 
It ensures that all modes of the Maxwell field couple to the charge. In particular 
the total charge j?~ = P(O) # 0. Charge distributions satisfying both (W) and 
(C) have been constructed in [ lo,  $101. Finally we state the condition 

To study the long-time behavior of the finite energy solutions to (1.1)) 
clearly, the first step is to determine stationary solutions. For every q E R3 
we define the state S, = (E,, B ,  q,p) by 

Let Z = { q  E IR3 : Vd,,(q) = 0) be the set of points for which the external 
electrostatic force vanishes. The set of stationary solutions is simply given by 

S =  {S,: q E  2). (1.4) 

A second set of asymptotic solutions corresponds to the charge traveling 
with uniform velocity, v ,  when E,, = 0 = Be,. They are of the form 
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562 KOMECH AND SPOHN 

with q E IR3 and arbitrary velocity v E V = {v E IR3 : Ivl < I ) ,  where 

EV(x)  = -V$"(x) + v V AV(x) , Bv(x) = rot AV(x) , 
$" (x) = / dsyp(y) (4 r ) - l ( ( l -  v2) (y - 2)' + (v . (y - x ) ) ~ ) - ' / ~  

2 -112 AV(x)=v$"(x),  p v = ( l - v )  v .  

With these preliminaries we can summarize our main results, the precise 
theorems to  be stated in the following section. Since only a finite amount 
of energy can be dissipated to infinity, we have q(t) + 0 as t + co. This 
is a crucial point of our asymptotic analysis. It follows that the fields are 
asymptotically Coulombic traveling waves in the sense 

(E(q(t)  + x ,  t ) ,  B(q(t) + x, t))  - (E"(~)(x), B'(~)(x)) + 0 as t + cm, 
where v(t) = q(t). Since energy is conserved, the convergence here is in the 
sense of suitable local norms, cf. Section 2. To go further, several cases should 
be distinguished. 

(i) The external fields decay a t  infinity and Iq(t)l is unbounded. In this case one 
expects that limt,, q(t) = v together with comoving Coulombic fields. For 
a scalar field such kind of asymptotics was studied in [9]. For the Maxwell- 
Lorentz system (1.1) some additional considerations are required which will 
not be touched upon here. 
(ii) If Iq(t)l remains bounded, then the solution to (1.1) is attracted by the set 
S. One would expect that  the solution in fact converges to one specific S,. To 
prove such a strengthned asymptotics we need 
(iii) Jq(t)J  is bounded and S is a discrete set. Then by continuity a definite 
stationary state S, has to be approached as t + co. 

To guarantee, a priori, that Iq(t)l is bounded, an energy estimate can be 
used. Thus either P, or a suitably small initial energy are sufficient conditions. 
If no such energy estimate is available, our method seems to fail. One example 
is a constant magnetic field, B,,(x) = Bo, E,,(x) = 0. The magnetic field 
confines and we expect the particle to come to rest as t + m at  some position 
q E IR3. A similar example, only one with a discrete set S, is a bounded 
space-periodic potential &,, together with a sufficiently large initial energy. 
Again we expect convergence to some definite S,, but cannot prove that  q(t) 
remains bounded. 

Despite their physical importance the coupled Maxwell-Lorentz equation 
have received only little mathematical attention. In [4] the existence and 
smoothness of solutions are studied and in [2, 31 some aspects of the long- 
time asymptotics. Equations of a similar structure are the Maxwell-Vlasov 
equations, where the Lorentz force equation is replaced by the Vlasov equation. 
Its global existence theory is regarded as an outstanding open problem [5, 12). 
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COUPLED MAXWELL-LORENTZ EQUATIONS 563 

The attraction to a set of stationary states as t -+ co is a familiar and 
widespread phenomenon. For dissipative systems energy is locally dissipated. 
This implies a stronger convergence than proved here, typically in some global 
energy norm [I]. However the convergence is only in the forward time direction, 
t -+ +co, whereas for the Maxwell-Lorentz equations both time directions are 
on equal footing. For Hamiltonian systems, as the one studied here, energy 
can be transported to infinity. This mechanism has been first exploited for 
Hamiltonian linear wave equations [ll, 19, 201 and later on for relativistic 
nonlinear wave equations either with a unique "zero" stationary solution [15, 
171 or with small initial data [6, 81. In all these cases the attractor consists only 
of the zero solution. In [ lo,  91 we study the long-time behavior of a particle 
coupled to a scalar wave field. While the general strategy is comparable to  the 
one employed here, the details differ considerably, since the Maxwell-Lorentz 
equations are evolution equations with a constraint. 

2 Main results 

We first define a suitable phase space. A point in phase space is referred to  as 
state. Let L2 denote the real Hilbert space L ~ ( I R ~ ,  EL3) with the norm I  . 1 .  We 
introduce the Hilbert spaces 3 = L2 $ L2 and C = 3 $ lR3 $ lR3 with finite 
norms 

C is the space of finite energy states , e.g. S, E C. The energy functional 7-L is 
continuous on the space L. On 3 and C we define the local energy seminorms 
by 

for every R > 0, where I . I R  is the norm in L2(BR),  BR the ball {x E lR3 : 
1x1 < R) .  Let us denote by FF, CF the spaces 3, C equipped with the FrCchet 
topology induced by these seminorms. Note that the spaces C and CF, FP are 
metrisable, but CF, FF are not complete. 

The system (1.1) is overdetermined. Therefore its actual phase space is a 
nonlinear submanifold of the linear space C. 

Definition 2.1 (i) The phase space M for Maxwell-Lorentz equations (1.1) 
is the metric space of states (E(x) ,  B(x) ,  q,p)  E C satisfying the constraints, 

divE(x)  = p(x - q) and divB(x)  = 0 f o r  x E lR3. (2.3) 
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564 KOMECH AND SPOHN 

The metric on M is induced through the embedding M C L. 
(ii) M u  for 0 5 a 5 1 is the set of the states ( E ( x ) ,  B(x) ,q ,p)  E M such 

that V E ( x ) , V B ( x )  are LCc outside the ball BRo with some R0 = R O ( Y )  > 0 
and 

IE(x)l + IB(z)l + I X I ( ~ V E ( X ) ~  + I V B ( X ) I )  5 COlx/-'-" for 1x1 > RO. (2.4) 

(iii) M F  denotes the space M endowed with Fre'chet topology induced 
through the embedding M C CF.  

Remarks  (i) We denote by 3 and 3 the convergence in the Frkchet topol- 
ogy of the spaces FF and M F  respectively. 
(ii) M is a complete metric space, a nonlinear submanifold of L. The spaces 
M ,  M F  are metrisable. 
(iii) All stationary states S,  E M 1  and M 1  is dense in M by Lemma A.4. On 
the other hand, since the total charge p = P ( O )  # 0, M u  = 0 for a > 1 because 
of Gauss theorem. By the same reason supp E ( x )  cannot be a compact set in 
contrast to supp B(x ) .  

Let us write the system (1.1) as a dynamical equation on M 

Y ( t )  = F ( Y ( t ) )  for t E R, (2.5) 

Definition 2.2 S = { S  E M : F ( S )  = 0 )  is the set of all finite energy 
stationary states of the system (1.1). 

Proposi t ion  2.3 Let (Pmi,) and (C)  hold and Y o  = ( E O ( x ) ,  BO(x ) ,  E 
M .  Then 
(i) The system (1.1) has a unique solution Y ( t )  = ( E ( x ,  t ) ,  B ( x ,  t ) ,  q ( t ) ,p ( t ) )  E 
C(IR, M )  with Y ( 0 )  = Y o .  
(ii) The energy is conserved, i.e. 

? f ( Y ( t ) )  = % ( y o )  for t E R .  (2.6) 

(iii) If in addition, the external potential &(x)  is confining, i.e. if (P,) holds, 
then ( Q )  holds. 
(zv) The set S is given b y  (1.4). 

We refer to the Appendix where also some uniform bounds for Iq(t)l, lq(t)l 
and ( 9 ( t ) (  are established. 

Let 7 be a subset of a topological space G ,  and Y ( t )  E 7 for t E R. 
The convergence Y ( t )  7 as t -+ m means by definition that for every 
neighborhood U ( 7 )  of 7 in G there exist a to > 0 such that Y ( t )  E U ( 7 )  for 
t > to.  
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COUPLED MAXWELL-LORENTZ EQUATIONS 565 

Definition 2.4 7 is a trapping subset in  9 ,  if for every continuous curve 
Y(t) E C(0,co;  G )  with a precompact orbit O(Y) = {Y(t) E Q : t E IR) the 
convergence Y(t) -% 7 as t -+ co implies the convergence Y(t)  -% T as 
t 4 co to some point T E 7. 

For example every discrete set in lR3 (i.e. a subset which does not have limit 
points in lR3) is a trapping set in lR3. 

Our main result is the long-time asyrnptotics of the finite energy solutions 
to (1.1) in the FrCchet topology. 

Theorem 2.5 Let (P,i,), (C), ( W )  hold. Let Y(t) E C(IR, M )  be the solution 
of the Maxwell-Lorentz equations (1.1) with initial state Yo E M a  for some 
a > 112. W e  have 
(i) If either (P,,,) or (Q) holds, then 

q ( t )  -+ o as t -+ co, (2.7) 

(E(q(t)  + 2 ,  t ) ,  B(q(t)  + x ,  t ))  - (E ' ( ' ) (x ) ,  B " ( ~ ) ( Z ) )  2 0 as  t -+ co, (2.8) 
(ii) If (Q) holds, in addition to (2.7) and (2.8),  the orbit O(Y) is precompact 
in  M F  and 

~ ( t )  2 s  as  t +co. (2.9) 
(iii) If in  addition to (Q): Z is a trapping set in  IR3, then there exist a sta- 
tionary state S E S depending on Yo such that 

I ' ( t )  2 S as t -+ co. (2.10) 

Remarks (i) The convergence holds also for t -+ -co. 
(ii) The convergence (2.10) and (1.2) imply 

X ( S )  5 7t(Y(t))  r 7 t (Y0) ,  t E IR, (2.11) 

by the theorem of Fatou, similarly to a well known property of weak conver- 
gence in Hilbert and Banach spaces. 
(iii) The convergence (2.9) and (2.10) cannot hold in the global norm of M,  
in general, because of energy conservation (2.6) and because the energy func- 
tional 3t is continuous on M. 
(iv) Let 4, = lim inflqI,, &(q). If %(Yo) < 1 + $,, then (Q) holds by 
conservation of energy. For instance, (P,) implies then (Q). 
(v) The assumption (C)  can be weakened to finite differentiability and some 
decay of p(x)  at  infinity. 

As an input to our proof we establish in Section 3 a bound on the energy 
escaping to infinity and in Section 4 the asymptotics of the Maxwell field 
along the light cone. In Section 5 the limit (2.7) is then derived using a Wiener 
Tauberian theorem and in Section 6 the properties (2.8)-(2.10) are established. 
In the Appendices we collect existence theorems, integral representations, and 
a priori bounds for linear and nonlinear Maxwell dynamics. 
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566 KOMECH AND SPOHN 

3 Energy radiated to infinity 

In this section we establish a lower bound on the total energy radiated to 
infinity in terms of the energy dissipation integral (3.2). Since the energy is 
bounded a priori, this integral has to be finite. 

Let S2 denote the unit sphere in IFt3 with surface area element d2w. For 
w E S2 and z E IFt3 let us set a = wall + z l ,  where zll = w . z and z l lw ,  
- 
7- = t + Yll, 

Remark E(,)(w, t ) l w  for every w E S2 and t E R. 

Proposition 3.1 Let (Pmi,), (C) hold and let Y(t) E C(IR, M) be the solution 
to (1.1) with initial state Yo = Y (0) E M u ,  a > 112. Then 

Proof Step 1. The energy NR(t) at  time t E R in the ball BR with radius 
R > Iq(t)I + R, is defined by 

Let us fix T > 0 and consider the total energy IR(R,  R + T )  radiated from the 
ball BR during the time interval [R, R + T] with R >> T:  

IR(R,  R + T )  = %R(R) - %R(R + T) .  (3.4) 

This energy is bounded apriori, because g R ( R )  is bounded from above, while 
R R ( R  + T )  is bounded from below. Indeed, z R ( R )  5 %(Y (t)) = %(Yo) and 
X R ( R  + T )  lconst  by (P,i,). Thus, 

with a constant I not depending on T and R. 
Step 2. Let us assume EO(x) ,  BO(x) E Cm for the simplicity. Then integrating 
by parts as in (A.40) we obtain 
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COUPLED MAXWELL-LORENTZ EQUATIONS 567 

for t E [ R ,  R + TI and R >> T ,  where S is the Poynting vector, S ( x ,  t )  = 
E ( x ,  t )  A B ( x ,  t ) ,  w(x)  = x / j z ( ,  and d2x is the surface area element of ~ B R .  
Therefore (3.5) reads 

Remark We assume E G ( x ) ,  B O ( x )  E C w  everywhere in the rest of the proof. 
For general E o ( x ) ,  B O ( x )  E L2 the bound (3.2) follows by standard srnoothing 
reasons, since all constants in the proof are bounded for finite \ E O ( ,  IBOI, and 
CG from (2.4). 
Step 3. To analyze (3.7) in the limit R -+ m we need the asymptotics of the 
fields E ( x , t )  and B ( x , t )  along the light cone 1x1 t in the limit t -+ m. 
Let us identify for the moment E ( x ,  t )  and B ( x ,  t )  with the retarded fields 
E(,)(x,  t)  and B(,)(x,  t) .  We state the LiCnard-Wiechert type asymptotics in 
the following lemma, which will be proved in Section 4. 

Lemma 3.2 There exists a T, > 0 such that the following asyrnptotics hold 
uniformly in t E [T,, TI for every fixed T > T, 

If we set E = E(,), B = B(,), then 

since F(,)  (w, t ) ) l w .  (3.7) implies then 

It remains to take the limit R -+ m and subsequently T -+ CG to obtain (3.2). 

Remark E = E(,), B = B(,) is a solution to the linear Maxwell system ( A . l )  
iff the initial data E0 = Bo = 0. Such an initial state is however not in M. 

Step 4. To conclude the proof, we substitute in (3.7) E = E(,) + E(O), B = 
B(,) + B p )  as defined in (A.23) . Then D
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568 KOMECH AND SPOHN 

The retarded fields E(,), B(,) originate in the charge and current densities p(x- 
q(t)) and p(x - q(t))q(t), cf. (A.25), (A.26). On the other hand, Ep) ,  B(o) are 
due to the initial fields EO, BO, cf. (A.24), which are controlled by the bounds 
(2.4) as stated in following lemma, which will be proved also in Section 4. 

Lemma 3.3 Let (EO, BO, qO, E Mu with o > 112. Then there exzst I 0  < m 
and To > 0 such that for every R > 0 and T > To 

Using Cauchy-Schwarz in (3.12), this lemma together with (3.8), (3.9) im- 
ply that for every T > T = max(T,, To), 

with a constant II < cc not depending on T and R. 0 

Remark The asymptotics (3.8), (3.9) for a charge distribution generalizes the 
decomposition into far and near fields of the LiCnard-Wiechert potentials for 
a point charge and the leading term of the asymptotics (3.10) generalizes the 
Larmor-LiCnard expression for the power of radiation [16]. 

4 Libnard- Wiechert asymptotics along the 
light cone 

We prove Lemmas 3.2 and 3.3. Let us note that both lemmas provide the field 
asymptotics in the wave zone along the light cone 1x1 - t + m. 

Proof of Lemma 3.2 Step 1 . Let T, = JqO1 + R,. The integrands in (A.28) 
and (A.31) have bounded supports in y uniformly for bounded t - 1x1 because 
of the estimate (A.36). (A.28) implies then for bounded t - 1x1 > To 

wherer = t  - lx-yl  and n =  - - . Similarly (A.31) implies for bounded 
1 %  - 4  

t - 1x1 > Tr D
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COUPLED MAXWELL-LORENTZ EQUATIONS 5 69 

since n = w ( x )  + O(lx1-')  for bounded y. In (4 .15) ,  (4.16) we substitute 
1x1 + t instead of t .  Then these expressions are valid for t > T,. T becomes 
1x1 + t - Ix - yI and, uniformly in bounded t and lyl, 

Hence (4 .15) ,  (4.16) imply (3 .8 ) ,  (3.9) with 

To complete the proof of (3.8), (3 .9 )  we only have to identify this expression 
with (3 .1 )  through a partial integration. 
Step 2. For the partial integration we note 

since 5 = t + yll = t + w . y. Then the first summand in the integrand of (4.18) 
yields 

summing over repeated indices. Differentiating we obtain 

and (4.18) becomes 

. -,,. 
(4.21) 

which agrees with (3 .1) .  0 

Proof of Lemma 3.3 We prove (3.13) with To = R0 = RO(Yu) ,  cf. Defini- 
tion 2.1 (ii). The representations (A .24)  and the bounds ( A . 6 )  together with 
assumption (2 .4)  for Y o  imply that 
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5 70 KOMECH AND SPOHN 

for t > R0 + lxl, where St(x) = {y E R3 : ly - X I  = t ) .  We can always adjust 
a such that a + k # 1. Then, by explicit computation, a typical term reads 

I ,  t )  = dZy /y/-l-u-k = 2't ((t+lzl)l-u-k - 
/x1(1 - a - k) S t b )  

(4.23) 
Hence the contribution of the corresponding term to the left hand side of (3.13) 
can be majorized by 

We may adjust a slightly larger than 112. Then for k = 0, we have a + k 5 I 
and (4.24) implies 

For Ic = 1 the bound (4.24) implies 

ds s-'" 5 Jk < ca for R 2 0, T > RO. 

Remark The representations (A.24) and the bounds (A.6) together with (2.4) 
imply that for every R > 0 

man (~E(o)(x ,  t)l + ~B(o)(x ,  t ) ~ )  = O(t-I-') as t t ca. (4.25) 
IzlSR 

5 Relaxation of the particle acceleration and 
velocity 

In this section we will deduce from Proposition 3.1 that q(t), q(t) t 0 as 
t t m provided we require in addition the Wiener condition (W) and either 
(Prnax) or ( Q ) .  

Either (P,,) or (Q) imply the bounds (A.36) and (A.37) of Proposition 
A.5 (v) and (vi). Hence, the function F(,)(w, t )  is globally Lipschitz continuous 
in w and t. Thus (3.2) implies 
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COUPLED MAXWELL-LORENTZ EQUATIONS 571 

uniformly in w E S2.  Let us analyze the structure of the integrand in (3.1). 
The main observation is that the integration over the planes yii = const can be 
performed, since 7 = t + yil = t + w . y depends on yll only. Therefore (3.1) can 
be rewritten as a one-dimensional convolution. Let r ( t )  = qli(t) E IR, s = yll, 

and pa(qi) = / dqldqz p(q1, q2, q3) Then r = t + s and (3.1) becomes 

with the substitution 0 = T - T(T),  which is a nondegenerate diffeomorphism 
since ( + I  < ql < 1 by (A.36), and with the definition 

Let us extend q(t) smoothly to zero for t < 0. Then p, * g, (t) is defined for 
all t arid agrees with E(,)(w, t )  for sufficiently large t.  Hence (5.1) reads as the 
convolution limit 

lim pa * g,(t) = 0. 
t+m (5.3) 

Note that (-4.36) and (A.37) with k = 2 , 3  imply that gL(8) is bounded. Hence 
(5.3) and (W) imply by Pitt 's extension to Wiener's Tauberian Theorem, 
cf. [14, Thm. 9.7(b)], 

gw(B) -+ o as e -t m. (5.4) 

Since B(t) -+ rn as t -t cm, we conclude 

Replacing w by -w we get (1 + qIl( t))ql( t)  - qll( t)ql( t)  -+ 0, and for the sum 
2ql(t) + 0. Since w E S2 is arbitrary, we have proved 

Lemma 5.1 Let the assumptions of Proposition 3.1 hold. If the Wiener con- 
dition (W) and either (P,,) or (Q) are satisfied, then 

lim q(t) = 0. 
t --) 00 (5.6) 

Remarks. (i) For a point charge p(x) = 6 ( x ) ,  (5.3) implies (5.4) directly. 
(ii) Parseval's identity, (5.2), and (3.2) yield 
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KOMECH AND SPOHN 

If lja(<)I 2 C > 0, then 1 d2w 1 dt Ig,(t)12 < m, and (5.4) would follow from 
the Lipschitz continuity of g,. Thus, the main difficuky results from the rapid 
decay of the Fourier transform ("symbol") fia, due to the smoothness of the 
kernel pa. 
(iii) The condition (W) seems to be necessary. If (W) is violated, then ja(v) = 
0 for some v E IR, w E S2, and with the choice g(t) = exp(ivt) we have 
pa * g(t) = 0 whereas g does not decay to  zero. 

Corollary 5.2 Let the assumptions of Theorem 2.5 and let (Q) hold. Then 

Proof Since Iq(t)l 5 qo by assumption (Q), (5.6) implies (5.7). 0 

6 Long-time asymptotics 

We prove Theorem 2.5. 

6.1 Attraction to the set of solitons 
We prove Theorem 2.5 (i). The relaxation of the acceleration (5.6) has been 
proved in Lemma 5.1. It remains to derive (2.8) for t + co. We use the 
integral representations (A.23)-(A.25) and (A.28), (A.31) for the solution 
(E(x ,  t ) ,  B(x,  t ))  and for the solitons (EV(x-vt), BV(x-vt)) from (1.5). Firstly, 
we substitute (EV,  B") in (A.28), (A.31) and obtain for v E V, 

d3y n 
E'(x) = J 4n1x - yl{m p(y - vT) + v . Vp(y - v7) [-n + v]), (6.1) 

p(y - UT)U + v . Vp(y - v7) v}, (6.2) 
lx-  Y l  

- 
and 7 = - /x - y /  These representations, together with where n = - 

1" - Y I  
(A.28) and (A.31) for (E, B) ,  imply by (5.6) 

(E(,) (q(t) + x,  t ) ,  B(,)(q(t) + x, t ) )  - (E'(~) (x), ~ " ( ~ ) ( z ) )  3 0 as t + co. (6.3) 

Therefore (2.8) would follow from 
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COUPLED MAXWELL-LORENTZ EQUATIONS 

By definition, this means that for every R > 0 

The estimates (4.22), (4.23) imply 

Sett,ing here q(t) + x instead of x and taking into account that lq(t)( 5 qlt + 
const with 0 < ql < 1, we get 

Therefore (6.5) follows. 

6.2  Attraction to  the set of stationary states 

SiVe prove Theorem 2.5 (ii). First we construct a compact attracting set A for 
the trajectory Y(t)  under consideration. 

Definition 6.1 Let A = {S, : q E I R ~ ,  /q/  5 qo), where S, and qo are defined 
in (1.3) and in (Q), respectively. 

Since A is homeomorphic to a closed ball in IR3, A is compact in .MF. 

Lemma 6.2  Let the assumptions of Theorem 2.5 hold. Then Y ( t )  3 A as 
t -+ 03. 

Proof. It suffices to verify that for every R > 0 

Let us estimate each term separately. 
(i) (5.7) implies Ip(t)l -+ 0 as t -+ m. 
(ii) Let us denote R, = qo + R,. Then the representations (A.31) imply 

for t  > R+R, and 1x1 < R. Therefore (2.7) and (5.7) imply that  l B [ , ) ( t ) l ~  -+ 
0 as t -+ m. Then also IB(t)IR -+ 0 by (A.23) and (4.25). 
(iii) (A.28) implies that for t > R + R, and 1x1 < R 
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5 74 KOMECH AND SPOHN 

The difference p(y - q(t - / x  - yl)) - p(y - q(t)) can be written as an integral 
depending only on q(r)  for r E [t - R - R,, t], which tends to zero as t --t m 
uniformly in x E BR by (5.7). Hence IE(,)(t) - Eq( t ) (~  -+ 0 as t --t CQ. 

Similarly, IE(t) - E,(t)lx -+ 0 by (A.23) and (4.25). 

Lemma 6.2 implies that the orbit O(Y) is precompact in MF. Therefore, 
the following lemma implies (2.9). We denote by R(Y) the omega-set of the 
trajectory Y(t) in the Frkchet topology of the space MF: y E R(Y) if and 
only if Y(tk) 9 7 for some sub-sequence tk -+ oo. 

Lemma 6.3 R(Y) is a subset of S .  

Proof R(Y) c A by Lemma 6.2. Moreover, the set R(Y) is invariant with 
respect to Wt, t E R ,  because of the continuity of Wt in MF. This means for 
every 7 E R(Y) there exists a C2-curve t I-, Q(t) E IR3 such that W t y  = SQ(~,. 
Thus SQ(~) is a solution to (1.1). Therefore ~ ( t )  = 0, i.e. Q(t)  - q E Z and - 
Y = S q E S .  0 

6.3 Attraction to stationary states 

We prove Theorem 2.5 (iii). The set Z is the image of the set S under the 
map I : (E,  B ,  q,p) c, q. As a map from MF to R3 it is continuous and an 
injection on S. Since Z is a trapping subset in IR3, S is a trapping subset in 
MF. Hence (2.9) implies (2.10). 0 

A Appendix. Existence of dynamics 

A. l  Linear Maxwell dynamics 

We state in an appropriate form a convolution representation for solutions to 
the Cauchy problem for the linear Maxwell system with prescribed charges 
and currents, 

div B(x,  t) = 0, rot B(x, t)  = E(X, t)  + j(x, t) ,  
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COUPLED MAXWELL-LORENTZ EQUATIONS 575 

We assume ( E O ( x ) ,  B O ( x ) )  E L2 $ L2,  where L2 = L' ( IR~,  IR3), pjx, t )  E 

C(IR, L2(IR3)), j ( x ,  t )  E C(IR, H )  and also ( E ( x ,  t ) ,  B ( x ,  t ) )  E C(IR, LL $ L2) .  
Then the system (A . l )  leads to the identities 

div EO ( x )  = p(x, 0)  and div B0 ( x )  = 0 for x E IR3, ( A 4  
p(x, t )  + div j ( x ,  t )  = 0 for x E R3, t E IR, (A.3) 

which are necessary constraints for the existence of solutions to the overde- 
termined system ( A . l ) .  Note that the charge and current densities in (1.1), 
p ( x l  t )  = p(x - q ( t ) ) ,  j ( x ,  t )  = p(x - q( t ) )q ( t ) ,  automatically satisfy the conti- 
nuity equation (A.3).  Let T be an arbitrary positive number. 

Definition A . l  Let CT = C ( 0 , T ;  L ' ( IR~) ) ,  cT = C ( 0 , T ;  L2) and DT = 
{ ( E O ,  BO,  p, j )  E L2 gi L2 $ CT $ ET : (A.2) and (A.3) hold for 0 5 t 5 T ) .  

Note that DT is a linear Banach space. 

Lemma A.2 Let E O ( x ) ,  B o ( x )  and p(x, t ) ,  j (x ,  t )  satisfy the constraints (A.2), 
(A.3). Then 
(i) The Cauchy problem ( A . l )  has a unique solution ( E ( x ,  t ) ,  B ( x :  t ) )  E 
C(IR, L~ $ ~ 2 ) .  
(ii) For every T > 0 the map ( E O ,  B O ,  p, j )  r-t ( E ( x ,  t ) ,  B ( x ,  t ) ! lo<t<~ is a 
linear continuous operator DT -+ CT $ cT with norm O ( T ) .  
(iii) The convolution representation holds 

( E(x'  t ,  ) = mt * ( 5: ) + ds gt-. * ( ;[$ ) f OT t E IR, (A.4) 
B ( x ,  t )  

where p(s) = p(x, s )  and j ( s )  = j ( x ,  s ) ,  and mt and gt are 6 x 6 -  and 6 x 4- 
matrix valued distributions concentrated on the sphere 1x1 = It/, 

m t ( x )  = 0 and gt(x) = 0 for 1x1 # It/. (~4.5)  

(iv) Let EO(y) ,  B O ( y )  be C 1  functions in a region { y  E IR3 : ( y l  > R O )  with 

some R0 > 0. Then the convolution mr * ( E: ) ( x )  is a continuous function 

in the region { x  E IR3 : 1x1 > R0 + It\) and the following bounds hold, 

Proof ad (i)  and (iz) We introduce the complex field C ( x ,  t )  = E ( x ,  t )+iB(x,  t )  
and rewrite ( A . l )  as 
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576 KOMECH AND SPOHN 

~ ( x ,  t)  = -2 rot C(x,t)  - j (z , t ) ,  CIt=~ = cO(x) ,  (-4.7) 
divC(x,t)  = p(x,t), ( A 4  

where CO(x) = EO(x)  + iBO(x). In general, we denote the Fourier transform 
of some function f by 

j(k) = (F f) (k) = / d3k exp(ik . x)f (x) . ('4.9) 

Then (A.7, (A.8 in Fourier space read 

~ ( k , t )  = m(k)C(k,t) - $(k,t), CJt=o = e O ( k ) ,  (A.10) 
-ik . ~ ( k ,  t) = j(k,  t), (A. 11) 

where m(k) denotes the 3 x 3 skew-adjoint matrix of the operator -kA in @. 
The solution &(k,t) is defined uniquely from the first equation (A.lO) of the 
overdetermined system (A.10), (A.11), 

t 
~ ( k ,  t) = exp(m(k) t )c(k)  - 1 ds exp(m(k) (t - s))j(k,  s) for k E JR3. 

(A. 12) 
We still have to show that (A.12) satisfies the constraints (A.11). Indeed, the 
Fourier transformed equations (A.2), (A.3) are 

-ik . cO(k)  = j(k, 0) for k E JR3, (A.13) 
j (k , t )  - i k . $ ( k , t )  = O  for k E JR3, t E lR. (A.14) 

With d(k, t)  = -ik - 6 ( k ,  t)  they imply 

d(k, 0) = -ik . C0(k) = j(k,  0) and d(k, t) = -ik . j(k, t) = b(k, t). (A.15) 

Since m(k) is a skew-adjoint matrix, 

1 exp(m(k)t)l = 1 for k E lR3 and t E IR. 

Therefore (i) and (ii) are a consequence of (A.12). 
ad  (iii) a n d  (iv) In order to check (A.5) and (A.6), we have to transform 

(A.12) back to position space. We have m = m(k) = - k ~ ,  m2 = -k2+Jk >< 
kl, m3 = -IkJ2m,. . .. Hence 

which yields by Euler's trick for the exponential 
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COUPLED MAXWELL-LORENTZ EQUATIONS 577 

sin lklt Ik >< k(  
= cos lklt + m- 

Ikl 
+ (1 - cos Jklt)--. 

lk12 

Denoting I(,(k) = sin (kl t / lk( ,  int(k) = ~ ~ ( k ) + m I ( ~ ( k )  and ~ t ( k )  = 1-cos lklt 
we obtain 

D t ( k )  
exp(m(k)t) = 7jZt(k) + Ik > 7 < k J .  (A.16) 

Ikl 
Inserting into (A.12) and using the constraints (A.13) and (A.14) 

which through integration by parts becomes 

Using D t ( k )  = lkj sin Ik(t = Ik12~t (k) ,  we get 

fit(.) = 3- '&(k)  = K ~ ( x )  - irot 0 Kt(.), (A.20) 

fit(x) = T 1 ( i l k  > ~ t ( k ) ,  -int(k)) = ( -VKt(x) ,  - f i t ( x ) ) .  (A.21) 

(A.19) implies then (A.4) in the "complex" form 

Here Kt(x)  denotes the Kirchhoff kernel 
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KOMECH AND SPOHN 

(A.4)-(A.6) follow now immediately. 

Remark (A.25) coincides with standard representation of the "retarded" fields 
E(,)(x, t )  and B(,)(x, t )  through the Kirchhoff retarded potentials [16] 

where T = t - 1x - yl. We emphasize, that (E(,), B(,)) is not a solution to 
Maxwell equations (A.1) with prescribed p and j, since E(,)lt=0 = 0 and hence 
div E = p is not satisfied at  t = 0. For the same reason, (E(O), B(0)) is not a 
solution to the Maxwell equations (A.l)  with p = 0, j = 0. 

A.2 Lienard- Wiechert representations 

Let us consider a solution Y ( t )  = (E(x ,  t ) ,  B(x ,  t ) ,  q(t),p(t)) E C(IR, M )  to 
the Maxwell-Lorentz system (1.1) with an initial state Yo = (EO(x) ,  BO(x) ,  
qO,pO)  E EM. Then (E(x ,  t ) ,  B(x ,  t ) )  E C(IR, H @ H) is a solution to the 
Maxwell system (A.1) with p ( y ,  T )  = p (y  - q ( ~ ) )  and j ( y ,  T )  = p ( y  - q ( ~ ) ) q ( ~ )  
and q(t) E C(1R). Since the constraints (A.2) and (A.3) are satisfied, all 
assumptions of Lemma A.2 hold. The uniqueness from Lemma A.2 (i) implies 
then the representations (A.23)-(A.25). Therefore (A.27) implies the standard 
Lihard-Wiechert representations [16] for the corresponding "retarded" fields 
E(,) and B(,) in the region t - 1x1 > T, = lqO1 + R,, 

where T = t - )x - yl and n = - - ' . Evidently 
12- Y I  

and V,T = -n. Then (A.29) becomes 
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COUPLED MAXWELL-LORENTZ EQUATIONS 579 

Remark By a partial integration in (A.28) the integrands in (A.28) and (A.31) 
can be transformed to satisfy the standard identity {. . . I B  = n A {. . . I E .  

A.3 Smooth approximations to transverse fields 

Definition A.3 M ,  is the subspace o f t h e  states ( E ( x ) ,  B (x ) ,  q,p) E M with 
E(x) ,  B (x )  E ( c ~ ( I R ~ ) ) ~  and satisfying the estimates 

with every a  = ( a l ,  cr2, a3 ) ,  aj = 0,1,2, .  . .. 

Lemma A.4 M ,  is  a dense subspace of M .  

Proof By Definition 2.1, for ( E ( x ) ,  B(x) ,q,p)  E M the constraints (2.3) are 
satisfied. The bounds (-4.32) hold for the field Eq(x)  = -V#q(x)  from (1.3) 
and this example shows that 2  + la1 is the optimal degree in (A.32). Thus 
the problem is to smoothly approximate purely transverse fields E ( x )  - E,(x) 
and B(x ) .  We will carry this out for the magnetic field B ( x ) ,  say. Fourier 
transformed the transversality condition is k  . ~ ( k )  = 0  for k E I R ~ .  TO 
approximate B(x)  we first define for E > 0 

B E ( k )  = { f ( k )  f o r € <  Ikl < I / & ,  
otherwise. 

(A .  33) 

Then BE E L2 n (C"(lR3))3 and IB - B,J + 0  as E -+ 0. To provide a 
rapid decay at  infinity we smoothen out ~ , ( k )  respecting its transversality. 
(A.33) implies that the support of ~ , ( k )  can be covered by a finite number 
of the sets diffeomorphic to a cube through the polar coordinate mapping 
k e = (w ,  r )  = (k / lk ( ,  Ikl). Then the vector field ~ , ( k ) ,  transformed under 
this mapping, lies in the planes T = const .  Hence averaging with a smooth 6- 
sequence in the k-coordinates preserves such a property. It remains transform 
this averaged vector field back to k = wr. 

A.4 Maxwell-Lorentz dynamics 

We prove Proposition 2.3. For Y ( t )  = ( E ( x l  t ) ,  B (x ,  t ) ,  q( t) ,p( t))  E C(lR, M )  
the Maxwell-Lorentz equations (1.1) can be written as a dynamical system 

E = rot B - p(x - q)Q, B = -rot El  
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580 KOMECH AND SPOHN 

where all derivatives are understood in the sense of distributions. Let us write 
the Cauchy problem for the system in the form (2.5) 

~ ( t )  = F(Y( t ) ) ,  t E IR, Y (0) = Y O ,  (A.35) 

where Y o  E M .  

Proposition A.5 Let (C) and (Pmi,) hold, and Y o  = (EO,  BO, q O ,  pO) E M .  
Then 
(i) The Cauchy problem (A.35) has a unique solution Y ( t )  E C(IR, M ) .  
(ii) For every t E IR the map Wt : Y o  I-+ Y ( t )  is continuous both on M and 
M F .  
(iii) The energy conservation (2.6) holds. 
(iv) The speed is bounded, 

lq(t)l I ql < 1 f o r t  E IR. (A.36) 

(v) If (Q) holds, then there are constants qk  > 0, k = 2,3 depending only on 
the initial data, such that 

(vi) (P,,) implies (A.37). 
(vii) (P,) implies (Q) .  

This Proposition is established by the traditional contraction mapping rea- 
soning, eliminating the "unbounded" Maxwellian part of the dynamics by 
Lemma A.2. A similar proposition is proved in [lo] for (1.1) with a scalar 
field instead of the Maxwell field. 

Proof of Proposition A.5 ad (i)-(iiz) Let us fix an arbitrary b > 0 and prove 
first the existence and uniqueness of Y ( t )  E C(-E,  E ;  M )  satisfying (i)-(iii) for 
(IYO(I, 5 b and It1 5 E = ~ ( b )  with some sufficiently small E = ~ ( b )  > 0. 
Step 1. There exists a unique Y ( t )  E C(-E, E ;  M )  satisfying (i) and (ii). 

Lemma A.2 implies that the Maxwell-Lorentz system (1:l)  for Y ( t )  E 
C(IR, M )  is equivalent to the equations for the particle 

together with the expressions (A.4) for E(x,  t ) ,  B(x ,  t ) ,  where p(x, t )  = p(x - 
q(t)) and j(x, t )  = p(x - q(t))q(t). Inserting these expressions for E ,  B into 
(A.38) we reduce the Cauchy problem (A.35) to 
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where u(t) = (q(t) ,p(t)) ,  u0 = (qolpO) and Itu means the restriction of the 
function u(t) to  the interval [0, t]. Lemma A.2 (ii) and (P,i,) imply that  the 
map I tu  H f t ( I tu)  is locally Lipschitz continuous in the space C(0,  T; IR6) 
for every T > 0. Hence, by the contraction mapping principle, the Cauchy 
problem (A.39) has a unique local solution u(.) = (q(.),p(.)) E C(-E, E; IR6) 
with E > 0 depending only on b. It  remains to define Y (t) = (E(x ,  t ), B(x,  t) ,  
q(t), p(t)) where E(x ,  t)  and B(x,  t)  are given by (A.4) with p(x, t )  = p(x-q(t)) 
and j(x,  t )  = p(x - q(t))q(t). Thus, (A.35) has a unique local solution Y(.) E 
C([-E, E], M )  with E > 0 depending only on b. 

Step 2. Wt is a continuous map in M and in MF. 
The continuity of the map Wt : Yo e Y(t)  in M for It1 < E and 5 b 

follows from the continuity of wt : uO c, u(t) and from Lemma A.2 (ii). To 
prove continuity of Wt in MF, let us consider Picard's successive approxima- 
tion scheme 

uN(t)  = u0 + ds fs(lsuN-I) ,  N = 1 , 2 , .  . . I' 
The equation for qN in this system implies lqN(t)l < 1 and therefore jq(t)l < 

+ It\. We fix now t E IR. Then from the integral representation (A.4) we 
conclude that every Picard's approximation uN(t)  and hence the solution u(t)  
depends only on the initialdata (EO(x'), BO(x'), qO,  pO) with lx'-qO( < (t(+R,. 
Therefore (A.4) implies that  the fields E(x ,  t ) ,  B(x ,  t) in a neighborhood of 
a point (x,t) depend only on the initial data (EO(x'), BO(x'), q O ,  with 
/x l /  < 21tl + RP + (qO/ ,  (xl - x (  < It(. Thus the continuity of Wt in MF follows 
from the continuity in M .  

Step 3. The energy conservation (2.6) holds. 
Energy conservation is provided first for a dense subset of smooth Yo E 

M ,  (Definition A.3 and Lemma A.4) and afterwards extended to  all of Yo E 
M by density and continuity. The system (A.34) for Y(t)  E C(-E, E ;  M )  
implies a convolution representation (A.4). Then (A.5) and the bounds (A.6), 
(A.32) imply that E (x ,  t), B (x ,  t )  E C1(]&, E[XIR~) and IE(x, t)l + IB(x, t)l 
/ x ( - ~ .  Therefore (2.6) follows by partial integration: 

Step 4. The global solution exists. 
For It\ < E ,  we have 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
i
b
l
i
o
t
h
e
k
 
d
e
r
 
T
U
 
M
u
e
n
c
h
e
n
]
 
A
t
:
 
1
2
:
3
4
 
2
5
 
O
c
t
o
b
e
r
 
2
0
0
9



5 82 KOMECH AND SPOHN 

Therefore (Pmin) implies the apriori estimate 

with X depending only on the initial data Yo. This apriori estimate implies 
that the properties (i)-(iii) for arbitrary t E IR follow from the same properties 
for small It[. 

ad (iv) (A.41) implies Ip(t)) < po < co. Hence 

which yields Iq(t)l 5 ql < 1. 
ad (v) The last equation in (A.34) and (Q), (Pmin), (A.36) imply (A.37) 

for q. Differentiating the last equation in (A.34) and using Iq(k)(t)( 5 qk with 
k = 0,1,2,  and (Pmin) again, we finally obtain I 9 (t)l 5 q3 < co for t E IR. 

ad (vi) (P,,,,) and the last equation in (A.34) provides (A.37) as above. 
ad (vii) (P,) implies (Q) by (A.40). 0 
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