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Abstract We consider the Harniltonian system consisting of scalar wave field 
and a single particle coupled in a translation invariant manner. The point 
particle is subject to a confining external potential. The stationary solutions 
of the system are a Coulomb type wave field centered at those particle positions 
for which the external force vanishes. We prove that solutions of finite energy 
converge, in suitable local energy seminorms, to the set of stationary solutions 
in the long time limit t f oo. The rate of relaxation to a stable stationary 
solution is determined by spatial decay of initial data. 
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KOMECH, SPOHN, AND KUNZE 

1 Introduction and Main Results 

We consider the Harniltonian system consisting of a real scalar field 4(x), x E 
R3, and a point particle with position q E R3. The field is governed by the 
standard linear wave equation. The point particle is subject to an external 
potential, V, which is confining in the sense that V(q) -r ca as Iql + oo. 
The interaction between the particle and the scalar field is local, translation 
invariant, and linear in the field. We would like to understand the long-time 
behavior of the coupled system. On a physical level one argues that the force 
due to the potential V accelerates the particle. Thereby energy is transferred 
to the wave field a part of which is eventually transported to infinity. Thus 
the particle feels a sort of friction and we expect that as t + ca it will come to 
rest at some critical point q* of V, where VV(q*) = 0. Our main achievement 
here is to give this argument a precise mathematical setting. 

The by far most important physical realization of our system is the elec- 
tromagnetic field governed by Maxwell's equations and coupled to charges by 
the Lorentz force. The physical mechanism just described is then known as  
radiation damping, an ubiquituous phenomenon. There is a huge literature 
on this subject [3, 5, 19, 24, 31, 321. Somewhat surprisingly, there is however 
little mathematical work, notable exceptions being [I, 21. In our paper we sim- 
plify somewhat by ignoring the vector character of the electromagnetic field 
and hope to come back to the full coupled Maxwell-Lorentz equations at some 
later time. 

Let ~ ( x )  be the canonically conjugate field to 4(x) and let p be the mo- 
mentum of the particle. The Hamiltonian (energy functional) reads then 

The mass of the particle and the propagation speed for 4 have been set equal 
to 1. A relativistic kinetic energy has been chosen only to ensure that Jql < 1. 
In spirit the interaction term is simply #(q). This would result however in 
an energy which is not bounded from below. Therefore we smoothen out the 
coupling by the function p(x), which is assumed to be radial and to have 
compact support. In analogy to the Maxwell-Lorentz equations we call p(x) 
the "charge distribution". Taking formally variational derivatives in (1.1), the 
coupled dynamics becomes 

The stationary solutions for (1.2) are easily determined. We define for 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 309 

Let S = {q* E I R ~  : VV(q*) = 0) be the set of critical points for V. Then the 
set of stationary solutions, S, is given by 

One natural goal is to investigate the domain of attraction for S and in par- 
ticular to prove that a solution of (1.2) converges to some stationary state 
Yq* = (4,. , q*, 0,O) E S in the long time limit t + w. Since the total energy is 
conserved, the only meaningful notion of convergence is a locd comparison, i.e. 
a comparison between the true time-dependent solution and the asymptotic 
stationary solution in suitable local norms. 

More arnbituously one would like to estimate the rate of convergence to Y,.. 
As a preliminary step one linearizes (1.2) at some stationary state Yq+ , q* E S. 
One observes that the stability of Yq. is in correspondence with the "stability" 
of the potential V(q) at the point q*. In fact, if d2V(q*) > 0 as a quadratic 
form, then on the linearized level the relaxation to Yq* is exponentially fast. 
For small deviation from Y,. the linearized part should dominate the nonlinear 
part of (1.2) and one expects a full neighborhood of Y,. to be contracted to 
Yq. at an exponential rate in time. This should still hold if the initial data 
have an exponential decay in space. For a power decay of initial data in space 
one cannot hope for more than a power rate of contraction. On the other 
hand if dLV(q*) has some negative eigenvalues then Y,* is linearly unstable. 
An interesting case is when d2V(q*) 1 0 including a zero eigenvalue, which 
however will not be discussed here. 

To state our main results we need some assumptions on V and p. The 
potential is in fact fairly arbitrary. We only need 

V E c2(lR3), lim V(q) = co. 
Iql-)= 

(PI 

For the charge distribution p we assume that 

However, as to be explained, we also need that all "modes" of the wave field 
couple to the particle. This is formalized by the Wiener condition 

P(k) = / d3r e'"p(x) # 0 for k E IR3. ( w )  

In particular the total charge j(O) does not vanish. If (W) is violated, then on 
the linearized level one can construct periodic solutions provided the coupling 
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310 KOMECH, SPOHN, AND KUNZE 

strength is adjusted to the zeros of 8. If such a periodic solution would persist 
for the full nonlinear equations (1.2), then global convergence to S would fail. 
In the Appendix we will construct examples of charge distributions satisfying 
both (C) and (W). 

Next we must have a little closer look at  (1.2). This means we have to 
introduce a suitable phase space and have to establish existence and uniqueness 
of solutions. A point in phase space is referred to as state. Let L2 be the real 
Hilbert space L ~ ( I R ~ )  with norm 1. I and scalar product (., .), and let D1f2 be the 
completion of real space C r ( R 3 )  with norm 114(x)11 = 1V4(x)1. Equivalently, 
using Sobolev's embedding theorem, D1v2 = {4(x) E L ~ ( I R ~ )  : IV$(x)I E L2) 
(see [20]). Let 141~ denote the norm in L 2 ( B ~ )  for R > 0, where BR = {x E 
IR3 : 1x1 5 R). Then the seminorms l l # j l l ~  = 1 V 4 1 ~  + I q 5 1 ~  are continuous on 
D1s2. 

We denote by E the Hilbert space $ IR3 @ L2 @ IR3 with finite norm 

For smooth q5(x) vanishing at infinity we have 

Therefore E is the space of finite energy states and in particular l l & l l ~  < oo. 
Let us note that D112 is not contained in L2 and for instance 14q1 = oo. The 
lower bound in (1.4) implies that the energy (1.1) is bounded from below. In 
the point charge limit this lower bound tends to -a. We define the local 
energy seminorms by 

for every R > 0, and denote by EF the phase space & equipped with the Frechet 
topology induced by these local energy seminorrns. Let d i s t ~  denote the di- 
stance in the seminorm (1.5). Note that the spaces EF and E are metrisable. 

Proposition 1.1 For every Yo = (~O,qO,~rro,pO) E E the Hamiltonian sy- 
stem (1.2) has a unique solution Y(t) = (4(t), q(t), n(t),p(t)) E C(IR, &) with 
Y(0) = YO. 

We refer to Section 2 where also the precise notion of solution is explained. 
From physical intuition one is tempted to conjecture that every solution 

Y(t) of finite energy will converge to some stationary state Y,. as t --+ oo. 
We do not achieve such a global result. First of all, the decay of initial fields 
at  infinity should be as required by finite energy but with some additional 
smoothness. Secondly the set S need not be discrete. In this case Y(t) may 
never settle to a definite Y,. but wander around to approach S only as a set. 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 311 

Theorem 1.2 Let (P), (C), (W) hold. Let the initial state Yo = (do, qo, xO, pO) 
E & have the following decay at infinity: For some & > 0 the functions 
$JO(x),xO(x) are C2,C1-differentiable respectively outside the ball BR, and for 
1x1 -+ co 

with some a > 112. Then for the solution Y(t) E C(IR,E) to (1.2) with 
Y(0) = YO 
(i) Y (t) converges as t -+ co in Fre'chet topology of the space &F to the set S ,  
i.e. for every R > 0 

lim distR(Y(t), S )  = 0 .  
t-w (1.7) 

(ii) If the set S is discrete, then there exists a point q' E S such that 

Remarks. (i) Since the Hamiltonian system (1.2) is invariant under time- 
reversal, our results also hold for t -+ - m. 
(ii) The assumption (C) can be weakened to finite differentiability and some 
decay of p(x) at  infinity. 

To prove Theorem 1.2 we will estimate the energy dissipation by decom- 
posing $J into a near and far field. Energy is dissipated in the far field. Since 
energy is bounded from below, such dissipation cannot go on forever and a 
certain energy dissipation functional has to be bounded. This dissipation 
functional can be written as a convolution. By a Tauberian theorem of Wie- 
ner, using (W), we conclude that limt,, q(t) = 0, and also limt,, q(t) = 0 
since [q(t)l is bounded by some qo < co due to (P). This implies that 
A = {(&, q, 0,O) : JqI 5 90)) is a compact attracting set. Relaxation and 
compactness reduce A to S as a minimal attractor. 

To establish the rate of convergence in Theorem 1.2 the point q* E S must 
be stable in the following sense. 

Definition 1.3 A point q' E S is said to be stable if d2V(q') > 0 as a qva- 
dratic form. 

Even for a stable q* E S, the slow decay of the initial fields in space will 
transform into a slow decay in time. 

Theorem 1.4 Let all assumptions of Theorem 1.2 hold, V E c3(1Ft3) and let 
Y(t) E C(IR, E) be a solution of the system (1.2) converging to Y,. as in (1.8) 
with the stable point q' E S. Then 
i) for every R, E > 0 

IIY(t)-Yq.llR=U(t-u+E) as  t d m .  (1.9) 
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312 KOMECH, SPOHN, AND KUNZE 

ii) Let additionally 

with some a > 0. Then there exists a y' = y(q*)  > 0 such that for every R > 0 

with /3 = a if a < 7' and with arbitrary /3 < 7* if a 2 y*. 

We will prove Theorem 1.4 in Sections 6 to 9 by controlling the nonlinear 
part of (1.2) by the linearized equation. For the linearized equation expo- 
nential convergence can be established by Paley-Wiener technics for complex 
Fourier transforms (231. As a byproduct in Theorem 6.1 we will also establish 
exponential convergence for initial states not covered by Theorem 1.4. 

Before entering into the proofs it may be useful to put our results in the 
context of related works. We establish here that solutions of a Hamiltonian 
system converge to an attractor, possibly consisting of an infinite number of 
points, in the long time limit. Such a behavior is familiar from dissipative 
systems. The mechanism is however completely different. For a dissipative 
system there is a local loss of "energy", whereas here energy is propagated to 
infinity. If the wave field in (1.2) would be enclosed in some finite volume, then 
Theorem 1.2 would not be valid. Propagation of energy to infinity is also the 
essence of scattering theory for Hamiltonian linear wave equations [17, 18, 211, 
[28]-[30] and for Hamiltonian nonlinear wave equations either with a unique 
"zero" stationary solution 14, 7, 8 ,  9 ,  22, 26, 271 or with small initial data 
[ l o ,  111. Note that the attractor consists then only of the zero solution in 
contrast to the case considered here. 

Somewhat closer to our investigation are [12]-1141 where a one dimensional 
version of (1.2) is studied: the particle is coupled to an infinite string and moves 
only transversally subject to some confining external potential. The interaction 
with the string generates then a linear friction term for the dynamics of the 
particle and the attraction to stationary states can be studied by ordinary 
differential equation methods. [15] considers several such oscillators coupled 
to a string. In this case the effects of retarded interaction have to be controlled. 
For wave equations with local nonlinear terms a result similar to Theorem 1.4 
is proved in [16]. 

2 Existence of dynamics, a priori estimates 

We consider the Cauchy problem for the Hamiltonian system (1 .2) ,  which we 
write as 

~ ( t )  = F o ( Y ( t ) )  + F l ( Y ( t ) ) ,  t E IR, Y ( 0 )  = YO. (2.1) 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 313 

All derivatives are understood in the sense of distributions. Here Y(t) = 
(4(t) ,  d t ) ,  d t ) , ~ ( t ) ) ,  Yo = (4°,q0,.rro,~o) E &, and FO : Y ( ~ ~ 0 ,  A4,O). 
One is interested also in situations where the particle is allowed to travel 
to infinity, e.g. when the external potential V(q) vanishes identically. The 
existence of dynamics and the relaxation of the acceleration q(t) are in fact 
true under such more general conditions. We state then as a weaker form of 
(P)l 

Vo := inf V(q) > -m. 
q€R3 

Lemma 2.1 Let (C) and (Pmin) hold. Then 
(i) For every Yo E E the Cauchy problem (2.1) has a unique solution Y(t) E 
C ( R  
(ii) For every t E lR the map Wt : Yo ++ Y(t) is continuous both on & and on 
&F . 
(iii) The energy is conserved, i. e. 

(iv) The energy is bounded from below, and 

(v) The speed is bounded, 

(wi) If ( P )  holds, then the time derivatives q(k)(t), k = 0,2,3, also are uni- 
formly bounded, i.e. there are constants qk > 0, depending only on the initial 
data, such that 

Proof Let us fix an arbitrary b > 0 and prove (i)-(iii) for llYOllE 5 b and 
It1 5 E = ~ ( b )  for some sufficiently small ~ ( b )  > 0. 
ad ( I )  Fourier transform provides the existence and uniqueness of solution 
Yo(t) E C ( R ,  E) to the linear problem (2.1) with Fl = 0. Let WP : Yo H Yo(t) 
be the corresponding strongly continuous group of bounded linear operators on 
&. Then uniqueness of solution to the (inhomogeneous) linear problem implies 
that (2.1) for Y (t) E C(IR, &) is equivalent to D
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3 14 KOMECH, SPOHN, AND KUNZE 

because Fl(Y(.)) E C(IR, E) in this case. The latter follows from a local 
Lipschitz continuity of the map Fl in E: for each b > 0 there exist a n = 
n(b) > 0 such that for all Y, Z E E with IIYlle, llzllE 5 b 

For example, we have 

Moreover, by the contraction mapping principle, (2.6) has a unique local solu- 
tion Y(.) E C([-&,&I,&) with E > 0 depending only on b. 
ad (ii) The map Wt : Yo H Y(t) is continuous in the norm 11 . for It1 5 t: and 
llYOll 5 b. To prove continuity of Wt in EF, let us consider Picard's successive 
approximation scheme 

The third equation in this system implies IqN(t)l < 1 and therefore Iq(t)l < 
lqOl + Itl. Now we fm t E IR and choose R > l qOl  + It1 + Rp with Rp 
from (C). E'rom the explicit solution of the free wave equation W:YO we 
conclude that every Picard's approximation YN(t) and hence the solution 
Y(t) = (+(x, t), q(t), T(X,  t),p(t)) for 1x1 < R depends only on the initial data 
(+O(x), qO, rO(x) ,  with 1x1 < R+ It 1 .  Thus the continuity of Wt in EF follows 
from the continuity in E. 
ad (iii) For k = 0,1,.  . . denote by Ci(R3) the space of functions d(x) E 
Ck(IR3) with compact support. For initial data (h, TO) E C3(R3) x c2(JR3) 
the solution 4 = 4(x,t) satisfies 4 E C2(R3 x R).  Indeed, this is well known 
for the solution WfYO of the linear wave equation. The integral representation 
(2.6) then implies the same property for 4. In addition, let Yo have compact 
support as in (1.10). Since Iq(t)l < lqOl + It(, (2.6) implies 

Thus, for such initial data energy conservation can be shown by integration 
by parts. Hence (iii) follows from the continuity of Wt and the fact that 
C;(IR3) $ lR3 $ C;(IR3) $ IR3 is dense in E. 
ad (2v) The lower bound from (1.4) implies 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 315 

Since the infimum is attained for Y = (#,,q,0,0) in the limit as V ( q )  -+ I/o, 
we have shown (2.3). 

We use now energy conservation to ensure the existence of a global solution 
and its continuity. As in (2.8) we have 

and by energy conservation, for It1 I E ,  

Therefore (P,i,) implies the a priori estimate 

with B depending only on the norm llYoll, of the initial data. Properties (i)- 
(iii) for arbitrary t E IR now follow from the same properties for small It1 and 
from the a priori bound (2.10). 
ad (w} Note first that (2.10) implies Ip(t)l < po < oo. Hence 

which yields 1q(t)l 5 ql < 1. 
ad (ui) (P) and (2.9) imply (2.5) with k = 0. Since Iq(t)l < qo and Iq(t)l 5 
ql < 1, the last equation in (1.2) implies lq(t)l _< q2 < m. Differentiating the 
last equation in (1.2) and using (q(k)(t)( 5 qk with k = 0,1,2, we finally obtain 
(q(3)(t)l 5 q3 < m for t E R. 

3 Energy dissipation functional 

In this section we establish a lower bound on the total energy radiated to 
infinity in terms of the energy dissipation integral (3.1). Since the energy is 
bounded a priori, this integral has to be finite, which is then our main input 
for proving Theorem 1.2. 

Let S2 denote the unit sphere Iwl = 1 in IFt3 with surface element area d2w. 

Proposition 3.1 Let (Pmi,), (C) hold and let Y(t) E C(IFt,E) be a solution 
to (1.2) with initial state Yo = Y(0) E & satisfying (1.6). Then D
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316 KOMECH, SPOHN, AND KUNZE 

Proof Step 1. For R > Jq(t)l + R, the energy E R ( ~ )  in the ball BR at time 
t > 0 is defined by 

- Let us denote w(x) = x/lxI, d2x the surface area element of ~ B R  and 
RO = max(&, (qO1 + R,). Let AR = [E + R, (R - %)/ql]. Since 0 < ql < 1, 
AR is a nonempty interval of the length 1 A R ~  - R(l  - ql)/ql for large R. 

(1.6) implies that the solution $(x, t) is C1-differentiable in the region t > 
& + 1x1. Moreover, the estimate (2.4) insures that Iq(t)l < lqOl +qlt for t > 0. 
Hence we get, similarly to (2.2)) 

d 
- E R ( ~ )  = d2x w(x) . Vm(x,t) ~ ( x ,  t )  for t E An. (3.3) 
dt ~ B R  

The differentiability follows from the integral representation of the solution. 
Namely, 

+(x, t )  = &(x, t )  + +o(x, t) for x E I R ~ ,  t > 0, (3.4) 
where 4,(x, t) is the retarded potential and 40(x, t) is the Kirchhoff integral, 

St(x) denotes here the sphere {y : ly - X I  = t). 
Step 2. We have, V+(x, t )  = V&(x, t )  + V$o(x, t) and T(X, t )  = r r (x ,  t) + 

K ~ ( Z , ~ ) ,  where r ,(x,t)  = $,(x,t) and 7~o(x,t) = $o(x,t). Hence (3.3) reads 

'ER(~) dt = LBR d2x w(x). ( ~ 6  r r  + G + oh T, + for t E A R. 

We separate the first term which turns out to be negatively definite from the 
remainder which is controlled simply by Cauchy-Schwarz. We have 

for t E AR. Integrating in t we obtain for % < T < TR = (R - %)/ql - R - 
R(1 - ql)/ql D
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 317 

Step 3. The radiated energy must be bounded from below. Indeed, by 
conservation of energy, ER(% + R) 5 H(Y ( t ) )  = H(&). On the other hand, 
the local energy ER(T + R) is bounded from below since 

cf. (2.8) and (2.9). Hence 

ER(T + R) - ER(& + R) 2 -I 

with a constant I < m not depending on R,T. Therefore, (3.7) implies 

Step 4. In order to finish the proof we have to show that in the limit R -+ co 
and subsequently T -, co, the left hand side dominates the dissipation integral 
(3.1), while the right hand side remains bounded. This follows from next two 
lemmas. 

Lemma 3.2 For every &ed T > & 

Vmr(x,t)  = -rr(x , t )  W ( X )  + 0(1x1-~) in the region i?~ < t - 1x1 < T.  (3.9) 

Lemma 3.3 There &st lo < co such that 

Using Lemma 3.2 and 3.3 in (3.8), we obtain for every fixed T > 0 and suffi- 
ciently large R > RT - Tq1/(1 - 91) 

T+R 
+ t lBR d 2  In,(x, t)12 5 C ( I  + 10) + T O ( R - ~ ) .  

Hence, (3.5) implies 

where QT = { y  € R3 : lyl 5 maxp,~] Iq(t)l + Rp}. Furthermore, uniformly in 
x € a B ~ a n d y € Q ~  

12--yl--R and t + R - 1 ~ - y ( = t + w . ~ + O ( ~ - ' ) ,  w=x/1~1.  
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318 KOMECH, SPOHN, AND KUNZE 

Thus taking the limit R -+ co in (3.11) we obtain 

Since this bound also holds in the limit T + co, we are left with rewriting the 
integrand as in (3.1). For this purpose we note that 

and 

Thus, by partial integration, and because of Iq(t)l < 1, we finally obtain 

which agrees with the integrand in (3.1). 0 

We still have to prove Lemma 3.2, 3.3. 

Proof of Lemma 3.2 The representation (3.5) implies for & < It1 - 1x1 < T 

with u(x, y) = (x - y)/Jx - yJ. For 1x1 = R, the second and third term are 
bounded by CR-'. (3.12) and (3.13) imply then (3.9). 

Proof of Lemma 3.3 We deduce (3.10) from Kirchhoff formula (3.6) and 
assumption (1.6). (3.6) implies the representation, for t > 8 + 1x1, 

Here all derivatives are understood in a classical sense, and the coefficients 
a,(.) and b,(.) are bounded. A similar representation holds for TO(X, t ) .  The 
coefficients are homogeneous functions of order zero and smooth outside the 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
i
b
l
i
o
t
h
e
k
 
d
e
r
 
T
U
 
M
u
e
n
c
h
e
n
]
 
A
t
:
 
1
2
:
3
7
 
2
5
 
O
c
t
o
b
e
r
 
2
0
0
9



CLASSICAL PARTICLE AND SCALAR WAVE FIELD 319 

origin. Hence, taking into account our assumption (1 .6) ,  we obtain from (3.14) 
for t > % + 1x1 

We can always adjust a such that a + k # 2. Then by explicit computation a 
typical term reads, 

I*(x ,  t )  := / d l y  lyl - ' -k  = 
2iTt 

( ( t  + lx1)2-"-* - 
st(=) Ixl(2 - a - k )  

Hence the contribution of the corresponding term from (3.14) in the left hand 
side of (3.10) can be majorized by 

We may adjust a slightly larger than 112. Then for la1 5 1 ,  we have a+ la1 5 2 
and (3.16) implies 

B& 5 ~ L d t  (R+t) -2u  5 B' < m for R,T 2 0. 

For la1 = 2 the bound (3.16) implies 

All contributions of other terms from (3.14) can be majorized in a similar 
fashion, correspondingly for rO(x ,  t )  on the left hand side of (3.10). 0 

Remark The representations (3.6), (3.14) and the corresponding representation 
for .rro(x, t )  together with (1.6) imply for every R > 0 

max (l(bo(x, t)l + t l ~ o ( x ,  t)l + t l v&(x , t ) l )  = O(t -7  as t + mi (3.17) 
l 4 l R  

where the derivatives are understood in a classical sense. 

4 Relaxation of the particle velocity 

In this section we will deduce from Proposition 3.1 that q(t) ,  q(t) + 0 as 
t -, m provided we add the assumptions (W) and (P). 
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320 KOMECH, SPOHN, AND KUNZE 

Assumption ( P )  implies the bounds (2.4) and (2.5) with k = 2 , 3  due to 
Lemma 2.1 (vi). Hence, the function 

is globally Lipschitz continuous in w and t. Thus by Proposition 3.1 

lim &(t) = 0 
t+w 

uniformly in w E S2. Let r ( t )  = w . q(t) E R, s = w . y, and pa(qs) = 
$ dqldq2p(q1, 92, q3). In (4.1) we decompose the y-integration along and trans- 
versal to w.  Then 

Here we substituted 6 = d ( r )  = T - r ( r ) ,  which is a nondegenerate diffeomor- 
phism since lil 5 q1 < 1 due to (2.4), and we set 

Let us extend q(t) smoothly to zero for t < 0. Then pa * g, (t) is defined 
for all t and agrees with L ( t )  for sufficiently large t .  Hence (4.2) reads as a 
convolution limit 

lim pa * g,(t) = 0. 
t-oo (4.4) 

Now note that (2.4) and (2.5) with k = 2 ,3  imply that gL(6) is bounded. 
Hence (4.4) and (W) imply by Pitt's extension to Wiener's Tauberian T h e e  
rem, cf. [25, Thm. 9.7(b)], 

lim 9,(6) = 0. 
6-00 

(4.5) 

Because w E S2 is arbitrary and d(t)  -, oo as t -, oo, we have proved 

Lemma 4.1 Let all assumptions of Proposition 3.1 hold, and the potential V 
satisfy ( P ) .  If ( W )  holds, then 

lim q(t) = 0. 
t-ao 
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Remarlcs. (i) For a point charge p(x) = 6(x), (4.4) implies (4.5) directly. 
(ii) Parseval's identity, (4.3) and (3.1) give 

If Iba(E)I 1 C > 0, then Jd2wJd191~,(19)1~ < oo, and (4.5) would follow from 
the Lipschitz continuity of gw. Thus, the main difficulty results from the rapid 
decay of the Fourier transform ("symbol") pa, due to the smoothness of the 
kernel pa. 
(iii) Condition (W) is necessary. Indeed, if (W) is violated, then = 0 
for some E E IR, and with the choice g(19) = exp(ifl9) we have pa * g(19) = 0 
whereas g does not decay to zero. 

Corollary 4.2 Let all assumptions of Theorem 1.2 hold. Then 

lim q(t) = 0. 
t-m (4.7) 

P r o o f  Since Iq(t)l 5 qo due to (2.5) with k = 0, (4.6) implies (4.7). 0 

Remark Lemma 4.1 holds even under an assumption on the potential, weaker 
than (P ) ,  

V E C2(IR3), inf V(q) > -oo, sup ldaV(q)l < oo for (a1 = 1 and 2. (P,) 
q€R3 q€R3 

The proof of Lemma 4.1 with (P,) instead of (P) remains unchanged. Firstly, 
(P,) includes (Pd,), hence it provides (3.1) and (2.4). Secondly, (P,) implies 
the bounds (2.5) with k = 2,3  similarly to (P)  in Lemma 2.1 (vi). 

5 A compact attracting set, proof of Theo- 
rem 1.2 

Definition 5.1 Let A = {Y, : q E R3, Iql 5 go), where Y ,  is defined in (1.3). 

Since A is homeomorphic to a closed ball in lR3, A is compact in EF. 

L e m m a  5.2 Let all assumptions of Theorem 1.2 hold. Then Y(t) -+ A in EF 
as t -+ CQ. 

Proof.  For every R > 0 
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322 KOMECH, SPOHN, AND KUNZE 

Let us estimate each term separately. 
i) (4.7) implies Ip(t)l -+ 0 as t + oo. 
ii) Let us denote R, = qo + R,. Then (3.12) implies for t > R + R, and 
1x1 < R 

The integral is bounded uniformly in t > R + %, and x E BR, and therefore 
(4.7) implies Ixr(t)lR 4 0 as t --+ m. Then also Jn(t)lR --, 0 due to (3.4) and 
(3.17). 
iii) To estimate the infimum over q in (5.1), we may substitute q(t) for q. Then 
the last term vanishes, and (3.5) implies for t > R + R, and 1x1 < R 

The difference p(y - q(t - lx - yl)) - p(y - q(t)) may be written as an integral 
depending only on q(r) for r E [t - R - R, , t], which tends to zero as t 4 co 
uniformly in x E BR due to (4.7). Hence I&(t) - dq(t)lR + 0 as t co. Then 
similarly, Jd(t) - #q(t)JR -' 0 due to (3.4) and (3.17). This proves the claim, 
since IV($(t) - &(t))lR may be estimated in a similar way. 0 

Proof of Theorem 1.2 ad (2) For a solution Y(-) let R be the set of all points - 
Y E E such that for some sequence tk -+ 00 we have Y(tk) + P in EF. Then 
by continuity of Wt in EF, also WtY(tk) -, WtP in EF, hence WtP E R for 
arbitrary t E IR, i.e. R is an invariant set. We first prove 

Lemma 5.3 R is a subset of S. 

Proof Since A is an attracting set, clearly R c A. This means for P E R 
there exists a C2-curve t H Q(t) E lR3 such that WtY = YQ(t), according to 
Definition 5.1. For YQ(q to be a solution of (1.2) we must have ~ ( t )  = 0, hence 
Q(t) = q* with VV(q*) = 0. Therefore 7 = Y,* with q* E S. 

We prove now (1.7) by contradiction. So let us assume that dist~(Y(tk), 
5) >_ E > 0 for some R,E  > 0 and a sequence tk -+ w. Then Lemma 5.2 and 
the compactness of A imply that, for a suitable subsequence, Y(tp) -, P in 
EF, where 7 E A. Then P E R by definition. Since distR(y,S) 2 E > 0 we 
obtain a contradiction to R c S. 
ad (22) Lemma 5.2 together with (1.7) imply that Y(t) -+ A fl S in EF as 
t 4 m. If the set S of critical points of V is discrete, then the set S is discrete 
in EF. Moreover, the set S is closed in EF. Hence, the intersection A n  S is a 
finite set, as the intersection of a compact set and of a closed discrete set. In 
(1.7) the states Y(t) approach the finite subset A n  S in the metrisable space 
EF. Therefore the continuity of Y(t) implies (1.8). 
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6 Linearization around a stationary state 

If the particle is close to a stable minimum of V ,  we expect the nonlinear 
evolution to be dominated by the linearized dynamics. As to be explained in 
Section 7 the linearized dynamics has exponentially fast convergence provided 
the initial fields have compact support. For the nonlinear dynamics this corre- 
sponds to an initial state of the form Yp* plus perturbation of compact support. 
In such a situation we expect then exponential convergence to Y,+. The pre- 
cise estimate is given in Theorem 6.1 below. In Theorem 1.4 the support of 
the perturbation in general is not a compact set. Thus it still requires some 
effort to prove Theorem 1.4, which is deferred to Section 9. In this section we 
establish the required estimate. 

Theorem 6.1 Let ( C ) ,  ( W )  hold, and V E C3(lR3). Let q* E S be a stable 
point and let the initial state Y o  E E be such that 

~ O ( X ) = ~ ~ * ( X ) ,  xO(x)=O fur 1x12 M (6.1) 

with some M > 0. Let Y ( t )  E C(lR, E )  be corresponding solution to (1.2) with 
Y ( 0 )  = Y o .  Then there exist a 6 = 6 ( M )  > 0 and a y* = y(q*) > 0, such that 
i f  [ [ Y o  - Yp* [ I E  5 6, the bounds hold for every R > 0 and every y < y* 

I[Y(t)  - 5 CRe-7t, t 2 0 

with some suitable constant CR = CR(M,  y) > 0. 

For notational simplicity we also assume isotropy in the sense that 

d;diV(q*) = w&, i, j = 1,2,3, wo > 0 .  

Without loss of generality we take q* = 0. Let Yp* = Yo = (b, O , O , O )  be the 
stationary state of (1.2) corresponding to q* = 0,  and Y o  = ( 4 O ,  go ,  rO,pO) E E 
be an arbitrary state satisfying (6.1). We denote by Y ( t )  = ( 4 ( x ,  t ) ,  q( t ) ,  x ( x ,  t ) ,  
p ( t ) )  E E the solution to (1.2) with Y ( 0 )  = Yo. 

To linearize (1.2) at Yo,  we set $(x ,  t )  = 4 ( x ,  t )  -4o(x). Then (1.2) becomes 

We define the linearization by 

$ ( x ,  t )  = I l (x ,  t ) ,  f i (x ,  t )  = A s ( x ,  t )  + V p ( x )  . Q ( t ) ,  
&( t )  = P ( t ) ,  ~ ( t )  = -(w: + w:)Q(t) + j d3x Q ( x ,  t ) V p ( x )  . (6 .5 )  
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324 KOMECH, SPOHN, AND KUNZE 

where the factor 113 is due to a spherical symmetry of p(x) (see ( C ) ) .  We 
rewrite (6.5) as 

i ( t )  = A Z ( ~ ) ,  t E IR. (6.7) 

Here Z ( t )  = (Q (. , t )  , Q ( t ) ,  n(. , t ) ,  P ( t ) )  and A is the linear operator defined by 

where w2 = W: + w:. (6.7) is a formal Harniltonian system with the quadratic 
Hamiltonian 

which is the formal Taylor expansion of H(&+ Z )  up to second order at 2 = 0. 
Introducing X ( t )  = Y ( t )  - Yo = (@( t ) ,q ( t ) , n ( t ) , p ( t ) )  E C(IR,E) ,  we re- 

write the nonlinear system (6.4) in the form 

Due to (6.6) the nonlinear part is given by 

for X = ($, q,  R ,P)  E E. This definition immediately implies 

Lemma 6.2 Let (C)  hold, V E C3(IR3), and b > 0 be some f ied number. 
Then for Iql I b 
(2) with notations (6.1 O), 

$ J 1 ( x )  = r l ( x )  = 0 for 1x1 > Rp + b ; (6.11) 

(ii) for every R > 0 

I I B ( X ) I I ~  5 Cb llx!i,+b. (6.12) 

Let us consider the Cauchy problem for the linear equation (6.7) with initial 
condition 

ZJt,o = 2". (6.13) 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 325 

Lemma 6.3 Let ( C )  hold. Then 
(i) For every Z0 E E the Cauchy probtem (6.7), (6.13) has a unique solution 
Z ( . )  E C(IR, 8). 
(ii) For every t E IR the map U ( t )  : Z0 H Z ( t )  is continuous both on E and 
on Ep. 
(iii) For Z 0  E E the energy Ho is finite and conserved, i.e. 

Ho(Z( t ) )  = HO(ZO) for t E IR. (6.14) 

iv) For Z 0  E E 

IIZ(t)ll& 5 B for t E IR (6.15) 

with B depending only on the norm l l Z O l l ~  of the initial state. 

The proof of this lemma is almost identical with the proof of the Lemma 2.1. 
In fact, for the linearized system the Hamiltonian is nonnegative, since (6.8) 
with the definition (6.6) implies 

Thus (6.15) follows from (6.14) because of wo > 0. 0 

7 Decay estimates for the linearized system 

We prove the local decay of solutions Z ( t )  to the linearized system (6.7). 

Proposition 7.1 Let ( C )  and ( W )  hold, and wo > 0. Let Z ( t )  E C(IR,E) 
be a solution to the Cauchy problem (6.7), (6.13) and the initial state Z0 = 
(\kO, QO, no, PO) E E have compact support, 

q O ( x )  = I IO (x )  = 0 for 1x1 2 M (7.1) 

with some M > 0. Then there mzst a y* > 0 such that for every R > 0 and 
evenj y < y* 

l I Z ( t ) l l ~  5 C R ~ - ~ ~ I I Z O I I E  for t L 0 (7.2) 

with suitable CR = CR(M, y )  > 0 .  

To prove this proposition we solve the Cauchy problem (6.7), (6.13) explicitly 
through Laplace transform 
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326 KOMECH, SPOHN, AND KUNZE 

Note that, by the bound (6.15), Z(X) is an analytic function in complex right 
half plane C+ = {A  E C : ReX > 0) with values in the Hilbert space E. We 
have 

+(A) = (-A + x 2 ) - I  ( N O  + no) + (-A + A ~ ) - ~ ( V ~ ( X ) .  Q ( x ) ) ,  
Q = (a(r) ) - l  (XQO + PO (7.3) 

+ I d3y [(-A + X 2 ) - I  (XQO + no)] ( y )  U p ( y ) )  

provided ReX > 0. Here a(X) is a matrix aij(X) = a(X)6ij with i , j  = 1,2,3, 

aij(X) = ( X 2  + W: + w:)S;~ + ((-A + X2)-'dip, d jp)  

= ( ~ ~ [ l + t ( ( - A + A ~ ) - l p , p ) ]  + ~ : ) & ~ = a ( X ) 6 , ~  for R e h > O  
(7.4) 

due to (6.6). In order to estimate the decay of Z ( t )  we first have to investigate 
the zeros of a(X) .  Denote Cp = { A  E C : Re X > p )  for p E R .  

Lemma 7.2 Let a be defined by (7.4) for X E C with ReX > 0 and let (C) 
hold. Then 

(i) a has an analytic continuation to C. 

(ii) For every /3 < 0 there mists dp > 0 such that la(X)I 2 1Xl2/2 for X E 
with (A( l dp . 

(iii) If the Wiener condition ( W )  holds, then there exists y > 0 such that 
a(X) # 0 for X E C-, . 

Proof ad (i) (7.4) and (-A + P) (e-A1"1/(4nlx/)) = 6 ( x )  imply 

The right-hand side of this expression is defined and analytic in all of and 
is thus an analytic continuation of a .  
ad (ii) The assertion follows from (7.5), because 

(7.6) 
ad (zzz) Since a(X)  # 0 for ReX > 0 due to (7.3) and (6.15), we only have 
to exclude that a(X)  has zeros on the imaginary axis. For this the Wiener 
condition (W) will be needed. For X = i y ,  y E R, we obtain from (7.4) D
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Clearly, a(0) = wt > 0. Let y # 0 and define 

Because of (W) 

Furthermore, because of (C), g(u) E Cm([O,oo)) and m a x o < ~ < ~  Ig(v)l(l + 
u p )  < oo for every p > 0. Therefore by the Plemelj formula [6] 

and Im D(y) # 0. Then (7.7) implies that Ima(iy) # 0. 

Remarks. (i) For p = 0 the zeros of a are at f iwo. If p = ~ p o  with some fixed 
po satisfying (C), we can follow perturbatively how these zeros move to the 
left of the imaginary axis as the coupling strength E is turned on. 
(ii) If (W) does not hold, then g and thus the imaginary part of D vanish at 
isolated points. To make also the real part of D vanish at some of these points 
we need to  vary a t  most "one parameter" in p. In this sense, for a(X) to have 
some zeros on the imaginary axis is a codimension one property in the space 
of p's. 

Definition 7.3 For a stable q* E S denote by &(A) the function defined in 
(7.5) and (6.3), b y  A(q*) the set of zeros {A E a :  a(A) = 01, and b y  

y* = y(q*) = - max Re A. 
X E N q * )  

To prove the exponential decay of Y(t), we need the following lemma about 
the inverse Laplace transform of l/a(A) given for arbitrary y < y* by 

1 ext 
h(t) = - / d~ - for t > 0. 

2x & A = - 7  a(A) 

Lemma 7.4 For j = 0 , 1 , 2 , .  . . and every y < y* 

Proof By Lemma 7.2 (ii) and (iii), the bound on h follows. To prove the same 
bound for the derivatives h( j ) ( t ) ,  we consider corresponding Laplace transforms 
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XJ/cr(X). For large M = 1 :  2 , 3 , .  . . we are g o i ~ ~ g  to establish t.ltirt 

where - oo as N -. oo. 'I'his i~nplies then 

for large A: and (7.9) follows. 
To prove (7. lo) ,  we not.e t,hat, a(X) = X2(1 + I (X) /3  t di /X2).  Hence 

1/(X2a(X)) can be expanded due to (7.6) as a power series i n  [(A) and 1/X for 
Re X = -y with large IXI. Therefore it suffices to establish the bounds of type 
(7.10) for I (X) ,  

where -+ oo as A; -4 m. These estimates follow from the representation 
(7.6) of the function [ ( A ) .  0 

Proof of Proposition 7.1 Using Lemma 7.3 we estimate the decay of Z( t )  
in the local energv seminnrms. From (7.3) we obtain 

Here \k l  is the solution of the homogeneous wave equation with initial data 
(QO. ffO), Q2 the solution with initial data (QO. Vp, P". Vp), and 9 3  the solu- 
tion with initial data (0, V p ) .  Due to the strong Huygens principle IQl(. ,  t) lR, 
1\k2(., t ) lR,  (Q3(.; t ) lR  and (Vp, 9 l ( t ) )  vanish for sufficiently large t .  Therefore. 
the claimed estiniate (7.2) follows from energy estimate (6.15) for the solutions 
\111,2.3 and from bounds (7.9) with j = 0, 1,2. [3 

8 Proof of Theorem 6.1 

In essence we follow [16]. \Ve assume (6.3) and a stable q' = 0. 

Let us note that (6.1) implies that X(0)  = Y (0) -Yo has a compact support, 
i.e. the property (7.1) holds for Z0 = X(0).  So we have to prove for the solution 
X ( t )  = Y ( t )  - I$ E C(lR,&) of (6.9) with initial values of compact support 
a i ~ d  with slnall I IX(O)[~E, 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 

I I X ( ~ ) ~ ~ R  5 C R ~ - ~ '  for t > 0. (8.1 ) 

Let us note that B(X(t)) E C(IR,E) for such X(t) because of (6.12). Therefore 
the integrated version of (6.9) holds 

Let us fix an arbitrary number b > 0. We restrict ourselves to 0 I t < tb, 
where tb = sup{t 2 0 : Iq(t)l 5 b )  > 0 for small IIX(O)~~E. Then Lemma 6.2 
(ii) implies for all R > 0 

IIB(X(t))ll~ 5 Cb 11~(~)1l;+b < tb. 

Hence, Proposition 7.1, (6.11), and (8.2) imply the integral inequality 

t 
Ilx(t) [ I R  4 CR(M, b) ( e - ' t ~ ~ ~ ( ~ ) ~ ~ &  + 1 ds e -1 ( t -8 )~~~( s ) l~~ ,+a )  for t < tb- 

(8.3) 
Therefore, it suffices to prove that for sufficiently small 6 = IIX(O)ll& 

(a) tb = w, i.e. Iq(t)l < b for all t 2 0, and 
(b) (8.1) with R = R(b) = R, + b. 
For this purpose we denote n(t) = eqtllX(t)llR(b). Then (8.3) with R = R(b) 

implies that 

n(t) 4 C(M, b) (6 + It ds e-?a n2(s)) for t < tb. 
0 

(8.4) 

Further we denote m(t) = maxo5,~t n(s) for t 2 0. Then (8.4) implies the 
quadratic inequality 

Let us choose 6 > 0 so small that the quadratic equation 

has two positive roots ml < mz. We may assume C(M, b, 7) 3 1. Then 
m(0) = 6 4 ml,  hence the quadratic inequality (8.5) implies m(t) 5 ml for all 
t < tb by continuity. Moreover, ml --+ 0 as 6 -+ 0, hence Iq(t)l 5 m(t) I ml < 
b holds for all t < tb, provided 6 be sufficiently small. Then (a) follows, and 
hence m(t) 5 ml for all t 1 0, which implies (b). 

9 Proof of Theorem 1.4 

Let us consider a solution Y(t) converging to some limit stationary state Y,. 
with stable q*. We prove i) because ii) follows similarly. We assume that the 
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330 KOMECH, SPOHN, AND KUNZE 

initial state Y o  satisfies (1.6), and set q* = 0,  as above. 
Let M,  be a fmed number, M,  > 3R, + 1. 

Lemma 9.1 For arbitrary 6 > 0 there exzst t ,  > 0 and a solution 

Y*( t )  = ($*(x, t ) ,  q * ( t ) , ~ * ( x ,  t ) , ~ : ( t ) )  E C([ t* ,  m), E )  

to the system (1.2) such that 
(2) Y , ( t )  coincides unth Y ( t )  zn some future cone, 

@ * ( x , t )  = d ( x , t )  for 1x1 < t - t* ,  
q*(t)  = q( t )  for t > t * .  (9.1) 

(12) Y,(t,) admzts a decomposition Y,( t , )  = Yo + W 0  + ZO,  where Z0 = 
(QO , Q0 , 11° , PO) satzsfies 

e O ( x )  = = 0 for I X (  M* , (9.2) 

l l ~ O 1 l E  5 6. (9.3) 

W 0  satzsfies for every R > 0 and every y < y(q') 

l lU (~)W~l l~~C~( ( l t .+~1+1) - '+e- " ( l t . l+1 ) - ' )  for T > O ,  (9.4) 

where C R  = CR(Y)  does not depend on 6 .  

This lemma leads to 

Proof of Theorem 1.4 (1.9) follows from (9.1) provided we establish that 
for every R ,  E > 0 

We generalise the integral inequality method used in the proof of Theorem 6.1 
of the previous Section. We set X ( T )  = Y,(t, + T )  -Yo. Then X ( 0 )  = W 0  + Z0 
and (8.2) reads 

since U ( T )  is a linear operator. (9.4) implies an integral inequality similar to 
(8.3))  

Here C R  = CR(M, ,  b) ,  b > 0 is an arbitrary fixed number and r b  = sup{r 2 
0 : Iq(t, + T )  5 b )  > 0 for sufficiently large t ,  due to (1.8). Denoting 
F ( T )  = (171 + I)-'+€ and n(r) = I I X ( T ) I I R ( ~ ) / ~ ( T )  with R(b) = Rp + b, we 
rewrite (9.7) as 
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CLASSICAL PARTICLE AND SCALAR WAVE FlELD 

We use now the basic inequality in [16] 

A further remark is that for every E ,  y > 0 

Finally, let us denote by m(r) = m a x ~ ~ ~ ~ ~  n ( s )  and let us choose 0 < E < 
a - 112, 0 < y < y(q*),  and t ,  sufficiently large. Then (9.8)-(9.10) lead to 
a quadratic inequality of the form (8.5) and the proof can be continued as in 
Section 8. 0 

Proof of Lemma 9.1 The convergence (1.8) with q* = 0 implies that for 
every E > 0 there exist t,  such that 

Iq(t)l+1q(t)l < E  for t >t,. (9.11) 

Let us denote 

Then there exist a function q E ( . )  E C1(IR) such that 

q ( t ) ,  t > tLE1 
q ~ ( t )  = { 0 ,  t < to,,, for all t E IR (9.13) 

by suitable interpolation. Further, we use Kirchhoff formula (3.4)-(3.6) to 
define the modification & ( x ,  t )  of the solution (3.4), 

where 

Then & ( x ,  t) is a solution to the wave equation 

& ( x ,  t )  = Aq5,(x,t) - p(x - qE( t ) )  for t > 0 . (9.16) 

By (9.15), (3.5), and (9.13) we have 
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332 KOMECH, SPOHN, AND KUNZE 

Moreover, @,,(., .) E C'(lR4) and (9.13) implies 

Let us define 

It is easy to check that t ,  and Y,(t), WO, Z0 satisfy all requirements of Lemma 
9.1, provided E > 0 be sufficiently small. 

Firstly, Y,(t) is a solution of the system (1.2) for t > t,. Indeed, (9.17) and 
(9.12) imply 

q5,(x, t )  = $(x, t )  for 1x1 < E + RP and t > ts,,. 

Hence, Y,(t) together with Y(t) is a solution to the system (1.2) in the region 
1x1 < E + R,. On the other hand, (9.11) implies 

p(x - q(t)) = 0 for 1x1 > E + R, and t > t,. 

Hence, Y,(t) satisfies the equations (1.2) in the region 1x1 > E + R, by (9.16). 
In addition, 
ad (2) (9.1) follows from (9.17) and (9.20). 
ad (ii) (9.2) for M, = 3R, + 2~ + 1 follows from (9.18). (9.3) follows from (9.2) 
and (9.19). We deduce (9.4) from the bounds (3.17) and the representation 
(7.11) for the linearized dynamics U(T). 

Denote by U(T) W0 = (Q(x, T), Q(T), n (x ,  T), P(T)) and let us prove the 
bounds of the type (9.4) for (Q(r),Q(r)),  for instance. Let us rewrite the 
representation (7.11) for Q(x, r )  in the form 

( x ,  T) = I ,  T) + J h - s)h(r, s) + Q1,3(~, r )  
0 

and consider every term separately. At first, (Ql(x, r ) ,  \kl(x, T)) = w:(&(., t,), 
A(., t,)) where w!? is a dynamical group of the free wave equation. On the 
other hand (#o(., t,), $o(., t,)) = w;,(@O, no) due to the Kirchhoff formula (3.6). 
Therefore (Ql(x, T), \kl(x, 7)) = w:,+,(#', no) and the bound C ~ ( l t ,  + T I  + 
for IIQl(x, r ) 1 1 ~  + l\kl(x, T ) ~ R  follows from (3.17). 

Secondly, ( Q ~ ( x ,  T) ,  \k2(x, 7)) = w;(O, 0) = 0. Finally, (Q3(x, T), \k3(x, T)) = 
w;(O, Vp(x)) and then IlQs(x, T)IIR = 0 for I T )  > R + R,. Therefore the repre- 
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CLASSICAL PARTICLE AND SCALAR WAVE FIELD 333 

sentation (7.11) of the term Q ~ , ~ ( x , T )  with @3(x,s1), together with (7.9) and 
bounds for Q1, imply the bound 

with y < 7 < y(q*). 0 

Acknowledgement. A.K. thanks Yu.E.Egorov for pointing out the argument 
in the proof to Lemma 5.3. H.S. thanks M.Kiessling for comments on a previous 
version of this paper. 

10 Appendix: Densities of Wiener type 

It is not completely evident that (C) and (W) can be satisfied simultaneously. 
To construct a generic example fix a real cp E C,"(IR) with cp(s) $0.  Then $3 
may be extended as an analytic function to the whole complex plane and there 
exists an a E IR such that $(< + i a )  # 0 for all < E IR. By replacing cp(s) with 
cp(s)exp(as) we may assume that a = 0. Clearly d(x1)$(x2)d(x3) satisfies 
(W) and (C) except for rotation invariance. Since by rotational averaging we 
could pick up a zero, we first let pl = cp * $J with $(s) = cp(-s). Then again 
p1 E Cr(IR) and $I(<) = /@(<)12 > 0 for all < E IR. Let p be the rotational 
average of pl(x1)pl(x2)~1(~3).  Then p satisfies both (C) and (W). 
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