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Abstract

We consider the long-time asymptotics of solutions to one-dimensional non-
linear wave equations, which are infinite-dimensional Hamiltonian systems. We
assume that the nonlinear term is concentrated at a finite segment of the line. We
prove long-time convergence to stationary states for all finite-energy solutions in
the Fréchet topology defined by local energy seminorms. This means that the set of
stationary states is a point attractor for the systems in the Fréchet topology. The in-
vestigation is inspired by N. Bohr’s postulate on the transitions between stationary
states in quantum systems.

1. Introduction

We consider the long-time asymptotics of the solutions to the Cauchy problem

ü(x, t) = u′′(x, t) + f (x, u(x, t)), x ∈ R, t ∈ R, (1.1)

u|t=0 = u0(x), u̇|t=0 = v0(x). (1.2)

The solutions u(x, t) take values in R
d with d = 1, and all the derivatives in (1.1)

and everywhere below are understood in the sense of distribution. Physically, the
equation (1.1) describes small crosswise oscillations of a string interacting with
an elastic nonlinear medium. We assume that f (x, u) = 0 for |x| = a with some
a > 0, and

f (x, u) = χ(x)F (u), F ∈ C1(Rd , R
d), χ(x) ∈ C(R), (1.3)

F(u) = −∇V (u), V (u) → +∞ as |u| → ∞, (1.4)

χ(x) = 0, χ(x) |≡ 0, χ(x) = 0 for |x| = a. (1.5)

We introduce the “configuration space” Q and the phase space E of finite-
energy states for the system (1.1). We denote by L2 the Hilbert space L2(R, R

d)

with the norm ||| · |||, and we denote by ||| · |||R the norm in L2(−R, R; R
d) for R > 0.
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Definition 1.1. i) Q is the Hilbert space {u(x) ∈ C(R, R
d) : u′(x) ∈ L2} with

the norm

‖u‖Q = |||u′||| + |u(0)|. (1.6)

ii) E = Q ⊕ L2 is the Hilbert space of the pairs (u(x), v(x)), with the norm

‖(u, v)‖E = ‖u‖Q + |||v|||. (1.7)

iii) EF is the space E endowed with the Fréchet topology defined by the seminorms

‖(u, v)‖R ≡ |||u′|||R + |u(0)| + |||v|||R, R > 0. (1.8)

Note that both spaces E and EF are metrisable and that EF is not a complete
space.

We denote by V (x, u) = χ(x)V (u) the potential of the nonlinear force. With
the assumptions (1.3)–(1.5), the equation (1.1) is formally a Hamiltonian system
with the phase space E and the Hamiltonian functional

H (u, v) =
∫

R

[
1
2 |v(x)|2 + 1

2 |u′(x)|2 + V (x, u(x))
]
dx (1.9)

for (u, v) ∈ E . We consider the solutionsu(x, t) such thatY (t) = (u(·, t), u̇(·, t)) ∈
C(R, E ) and we write the Cauchy problem (1.1), (1.2) in the form

Ẏ (t) = V (Y (t)) for t ∈ R, Y (0) = Y0, (1.10)

where Y0 = (u0, v0).

Proposition 1.2. Let d = 1 and let the assumptions (1.3)–(1.5) be fulfilled. Then

i) For every Y0 ∈ E the Cauchy problem (1.10) has a unique solution Y (t) ∈
C(R, E ).

ii) The mapping Wt : Y0 7→ Y (t) is continuous in E and EF for all t ∈ R.
ii) The energy is conserved:

H (Y (t)) = H (Y0) for t ∈ R. (1.11)

We denote by S the set of all stationary states S = (s(x), 0) ∈ E for the
system (1.10). We establish the long-time convergence in the Fréchet topology

Y (t)
EF−→ S as t → ±∞ (1.12)

for finite-energy solutions Y (t). By definition the convergence means that for every
neighborhood O (S ) of S in EF there exist T > 0 such that Y (t) ∈ O (S ) for
|t | > T . Thus, the set S is the point attractor of the system (1.10) in the Fréchet
topology of the space EF . Let us denote S h = {S ∈ S : H (S) 5 h} for h ∈ R.
Then (1.3)–(1.5) and (1.9) imply that S h is a closed bounded set in E :

sup
S∈S h

‖S‖E < ∞ ∀ h ∈ R. (1.13)
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Proposition 1.3. Let assumptions (1.3)–(1.5) be fulfilled and, moreover, let d = 1
and let the function F(u) be real-analytic on R. Then S h is a finite set for every
h ∈ R.

For a function Y (t) ∈ C(R, E ) we denote by O(Y) the orbit {Y (t) : t ∈ R} ⊂
E .

Theorem 1.4. Let all the assumptions of Proposition 1.2 hold and let an initial
state Y0 ∈ E . Then

i) For the solution Y (t) ∈ C(R, E ) to the Cauchy problem (1.10) the orbit O(Y)

is precompact in EF and (1.12) holds.
ii) Moreover, let d = 1 and the function F(u) be real-analytic on R. Then there

exist some stationary states S± ∈ S depending on the solution Y (t) such that

Y (t)
EF−→ S± as t → ±∞. (1.14)

Below we consider only the cases d = 1, because all the results for d = 1
follow without any modifications.

Remarks. i) The convergence (1.14) means a “transition”

S− 7→ S+ (1.15)

when the time varies from −∞ to +∞. So the convergence gives a mathematical
model of N. Bohr’s transitions between stationary states in quantum systems [2].

ii) The convergence (1.14) and (1.3)–(1.9) imply by Fatou’s theorem that

H (S±) 5 H (Y (t)) ≡ H (Y0), t ∈ R, (1.16)

which is similar to a well-known property of the weak convergence in Hilbert and
Banach spaces.

iii) For d = 1 the analyticity of F(u) provides that S is a discrete subset of the
phase space EF . The convergence (1.12) implies (1.14) if the attractor S is a
discrete subset of the phase space EF , since the orbit O(Y) is precompact in EF .
On the other hand, (1.14) can fail if the attractor S is not discrete. For example,
(1.14) fails for the solution

u(x, t) = sin log[(x − t)2 + 1]

of the equation (1.1) with f (x, u) ≡ 0 for |u| 5 1. However, (1.12) holds for the
solution.

iv) We assume that f (x, u) = χ(x)F (u) for the simplicity of exposition. All results
of this paper can be extended easily to f (x, u) without this assumption and with
suitable generalization of the conditions (1.3)–(1.5) (see [17]).
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As a trivial example we can consider f (x, u) ≡ 0. Then the equation (1.1)
becomes the d’Alembert equation and the assumptions (1.4), (1.5) fail. Accordingly,
for the solutions Y (t) ∈ C(R, E ) the orbit O(Y) generally is not precompact in EF

and the convergence (1.14) generally does not hold. In this case the convergence
(1.12) holds for every solution Y (t) ∈ C(R, E ) and the convergence (1.14) holds
if u0(x) = C± and v0(x) = 0 for |x| =const. This follows evidently from the
d’Alembert formula for the solution to the Cauchy problem.

Before entering into the proofs it may be useful to put our results in the context
of related works. We establish here that all finite-energy solutions of a Hamiltonian
system converge to an attractor, possibly consisting of an infinite number of points,
in the long time limit. Such behavior is familiar from dissipative systems, however,
as t → +∞ only [1, 9, 24, 37]. Moreover, the mechanism is completely different.
For a dissipative system there is a local loss of “energy”, whereas here energy
is propagated to infinity. This scattering of energy to infinity plays the role of a
dissipation and provides the convergence (1.12) and (1.14). The convergence in
general fails for Hamiltonian wave equations in finite regions due to the reflections
of the waves from the boundary.

For the dissipative systems the convergences (1.12) and (1.14) hold in the
“global” energy metric of corresponding phase space E for all finite-energy solu-
tions. On the other hand, for the Hamiltonian equation (1.1) the convergence (1.14)
in general is impossible in the “global” energy metric of the space E , because of en-
ergy conservation. Indeed, if ‖Y (t) − S±‖E → 0 as t → ±∞, then (1.11) implies
that H (S±) = H (Y (t)), because the Hamiltonian functional H is continuous
on E . Therefore, the convergence in E of all finite-energy solutions would imply
that H (E ) ⊂ H (S ). However, this is impossible for any nontrivial Hamiltonian
system, if the set S is discrete. Similarly, the convergence (1.14) of all solutions
is impossible for any nontrivial finite-dimensional Hamiltonian system.

Propagation of energy to infinity is also the essence of scattering theory for
Hamiltonian linear wave equations [26, 27, 30, 38–41] and for Hamiltonian rela-
tivistic-invariant nonlinear wave equations either with a unique “zero” stationary
solution [3, 5–7, 31, 34, 35] (see also the surveys [32, 36]) or with small initial
data [10, 12]. Note that the attractor consists then only of the zero state in contrast
to the case considered here. Long-time asymptotics of solutions to nonlinear wave
equations with a set of stationary solutions different from a point were not consid-
ered previously. However, the absence of local energy decay for solutions to some
equations was observed in [33] and in [4].

The transitions to stationary states (1.12) and (1.14) in some infinite-dimensio-
nal Hamiltonian systems are established in [13–21] (see the survey [22]). The results
of [13–16] concern Lamb’s system [25, 11], i.e., the equation (1.1) with f (x, u) =
δ(x)F (u), while the results of [17] concern the equation (1.1) with f (x, u) =∑N

1 δ(x − xk)Fk(u). The results [18, 19, 21] concern the three-dimensional scalar
wave equation coupled to a particle, and the results [20] concern the three-dimen-
sional Maxwell-Lorentz system with a charge [29]. A Liapunov-type criterion of
asymptotic stability is established in [23] for stationary solutions to general
n-dimensional equations and systems (1.1) with space-localized nonlinear terms,
i.e., with f (x, u) = 0 for |x| > const.
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2. Existence of Dynamics and A Priori Estimates

We prove Proposition 1.2 by the contraction-mapping principle. Let W 0
t be

the dynamical group corresponding to the linear equation (1.1) with f (x, u) ≡ 0.
Then the Cauchy problem (1.10) for Y (t) ∈ C(R, E ) is equivalent to the integral
equation

Y (t) = W 0
t Y0 +

∫ t

0
W 0

t−τ (0, f (·, u(·, τ )))dτ. (2.1)

Therefore the contraction-mapping principle implies the existence and uniqueness
of a local solution Y (t) ∈ C(−ε, ε; E ) with some ε > 0. The continuity of Wt

in E and EF follows for small |t | from this construction due to corresponding
properties of W 0

t .
To prove the energy conservation, let us assume for a moment that u0(x) ∈

C2(R), v0(x) ∈ C1(R) and

u0(x) = v0(x) = 0 for |x| = R0. (2.2)

Then the integral representation (2.1) implies that u(x, t) ∈ C2(R × (−ε, ε)) and

u(x, t) = 0 for |x| = R̄ + |t |, R̄ = max(R0, a). (2.3)

Hence we get conservation (1.11) by partial integration for small |t |. For arbitrary
(u0, v0) ∈ E the energy conservation follows from density and continuity reasons.

Now the energy conservation (1.11) and the existence of the local solution imply
the existence of global solution Y (t) ∈ C(R, E ) and all the properties claimed for
every t ∈ R. ut

We need however a finer characterization of the properties of the solution.

Proposition 2.1. Let the assumptions (1.3)–(1.5) be fulfilled. Then

i) The mapping Wt : Y0 7→ Y (t) is Lipschitz continuous in EF , i.e., for every
R, T > 0,

‖WtY1 − WtY2‖R 5 LT ‖Y1 − Y2‖R+T for |t | 5 T , (2.4)

where LT is bounded for bounded norms ‖Y1‖R+T , ‖Y2‖R+T .

ii) The a priori estimate

|u(x, t)| 5 α + β
√|x| ≡ b(x) for x ∈ R, t ∈ R, (2.5)

holds, where α and β are bounded for bounded energy H (Y0).

iii) u(x, ·) ∈ C(R, H 1
loc(R)) and u′(x, ·) ∈ C(R, L2

loc(R)).

iv) For a.a. x ∈ R

∫ t+1

t

(|u̇(x, s)|2 + |u′(x, s)|2 + |u(x, s)|2)ds 5 e(x) < ∞ f or t ∈ R,

(2.6)

where e(x) may depend on x and H (Y0), and does not depend on t ∈ R.
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Proof. i) The Lipschitz continuity (2.4) follows for small T > 0 from the con-
struction of Wt by the contraction-mapping principle due to corresponding proper-
ties of W 0

t . The extension to arbitrary T > 0 follows.

ii) The energy conservation (1.11) and (1.4), (1.5) imply that

D = sup
t∈R

∫
|u′(x, t)|2dx < ∞, (2.7)

and D is bounded for bounded energy H (Y0). Therefore by the Cauchy-Schwarz
inequality,

|u(x, t) − u(x0, t)| =
∣∣∣
∫ x

x0

u′(y, t)dy

∣∣∣ 5
√

D
√|x − x0| for x, x0, t ∈ R.

(2.8)

Let us choose x0 such that χ(x0) > 0. Then (1.11) and (1.4), (1.5) imply that
supt∈R |u(x0, t)| < ∞. Therefore (2.8) implies (2.5).

iii) Let us use the integral representation (2.1). The claimed properties hold for
the first summand in the right-hand side of (2.1) and the same is true for the integral
summand due to u(x, t) ∈ C(R2).

iv) The estimate (2.6) follows from (1.11), (2.5) and from integral representation
of type (2.1):

Y (s) = W 0
s−t Y (t) +

∫ s−t

0
W 0

θ (0, f (·, u(·, t + θ))dθ, (2.9)

which holds due to the uniqueness of the solution. Namely, the estimates of type
(2.6) hold for the first summand in the right-hand side of (2.9) due to the bounds
(1.11) uniform in t for Y (t). The same holds for the second summand due to the
estimates (2.5) uniform in t . ut

Remark. The conditions (1.3)–(1.5) imply that the Hamiltonian functional H is
Fréchet differentiable in E and

δH
δv(x)

= v(x),
δH
δu(x)

= −u′′(x) − f (x, u(x)). (2.10)

So equation (1.1) can be written in a Hamiltonian form:

u̇ = δH
δv

, v̇ = −δH
δu

. (2.11)
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3. Stationary States

We prove Proposition 1.3. To find all the stationary solutions, we substitute
u(x, t) = s(x) to (1.1). Then (1.3) and (1.5) imply that

s′′(x) + f (x, s(x)) = 0 for x ∈ [−a, a],
s(x) = s(±a) for ± x = a

(3.1)

since s′(x) ∈ L2(R). Therefore the continuous map I : EF → R defined by
I (u(x), v(x)) = u(−a) is an injection on S . Hence Proposition 1.3 follows from
the next lemma.

Lemma 3.1. Zh ≡ IS h is a finite set for every h ∈ R.

Proof. S h is a compact subset in EF due to (1.13) and (3.1). Hence, Zh is a closed
bounded subset in R. It remains to prove that Zh has no limit points. Let us assume
to the contrary that

zk ∈ Zh and zk → z̄ ∈ Zh as k → ∞. (3.2)

Let us denote by sλ(x) the solution to the problem

s′′
λ(x) + f (x, sλ(x)) = 0 for x ∈ [−a, a],

s′
λ(−a) = 0, sλ(−a) = λ,

(3.3)

if the solution exists, and let Λ denote the set of all λ ∈ R such that the solution
sλ(x) exists. We extend sλ(x) to |x| > a by constants:

sλ = sλ(±a) for ± x > a. (3.4)

Then Sλ = (sλ(x), 0) ∈ E for every λ ∈ Λ. Let us define the map T : Λ → R by

T : λ 7→ s′
λ(a − 0). (3.5)

Then Zh = {λ ∈ Λ : T (λ) = 0, H ((sλ(x), 0)) 5 h}. Λ is an open set, whence

Λ = ∪∞
1 Λj, Λj = (λ−

j , λ+
j ) |= ∅, λ±

j 6∈ Λ. (3.6)

Of course, z̄ ∈ Λl with some l. We show that

|λ±
l | < ∞, λ±

l ∈ Λ. (3.7)

This contradicts (3.6) and completes the proof of Lemma 3.1.
At first, the map T : Λ → R is real-analytic and T (z) = 0 for z ∈ Z. Therefore

(3.2) implies that T (λ) = 0 for all λ ∈ Λl , i.e.,

(sλ(x), 0) ∈ S ∀ λ ∈ Λl. (3.8)

Denote by U the potential-energy functional in the configuration space Q :

U(u) ≡ H (u, 0) =
∫ ∞

−∞
( 1

2 |u′(x)|2 + V (x, u(x))
)
dx for u ∈ Q . (3.9)
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Then (3.1) is equivalent to the identity

δU(s) = 0 (3.10)

(following also from (2.11)), where δU is the Fréchet differential of U in the
space Q . Therefore (3.8) implies that

d

dλ
U(sλ) =

〈
δU(sλ),

d

dλ
sλ

〉
= 0 for λ ∈ Λl; (3.11)

hence the function λ 7→ U(sλ) is constant on Λl . Therefore as in (2.5) the a priori
estimate

|sλ(x)| 5 α1 + β1
√

a for |x| 5 a and λ ∈ Λl (3.12)

holds with some α1 and β1 not depending on λ ∈ Λl . For instance, the interval Λl

is bounded because sλ(−a) = λ. On the other hand, the uniform bounds (3.12) and
the equation (3.3) imply that the set of functions {sλ(x) : λ ∈ Λl} is precompact
in Q , and therefore λ±

l ∈ Λl . ut

Proposition 1.3 is proved. ut

4. Long-Time Asymptotics

We prove the Theorem 1.4.

4.1. Compact Attracting Set

Let us construct a compact attracting set A for the trajectory Y (t). Let ᾱ, β̄

denote some positive constants to be chosen later.

Definition 4.1. A = Aᾱβ̄ = {Sλ = (sλ(x), 0) ∈ E : λ ∈ Λ, |sλ(x)| 5
ᾱ + β̄

√
x for |x| 5 a}.

A is a compact set in EF due to equation (3.1). We prove the next lemma in
the following section.

Lemma 4.2. Let all assumptions of Theorem 1.4 hold. Then

Y (t)
EF−→ A = Aᾱβ̄ as t → ±∞, (4.1)

if the constants ᾱ and β̄ are sufficiently large.
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4.2. Proof of Theorem 1.3

i) Lemma 4.2 implies that the orbit O(Y) is precompact in EF . Therefore,
the next lemma implies (1.12). We denote by Ω(Y) the omega-limit set of the
trajectory Y (t) in the Fréchet topology of the space EF : Ȳ ∈ Ω(Y) if and only if

Y (tk)
EF−→ Ȳ for some sequence tk → ±∞.

Lemma 4.3. Ω(Y) is a subset of S .

Proof. �(Y) ⊂ A, since A is an attracting set. Moreover, the set Ω(Y) is
invariant with respect to Wt , t ∈ R, due to the continuity of Wt in EF . Hence, for
every Ȳ ∈ Ω(Y) there exists a C2-curve t 7→ λ(t) ∈ R such that WtȲ = Sλ(t).
Then Sλ(t) is the solution to (1.2). Therefore, λ(t) ≡ λ and Ȳ = Sλ ∈ S .

ii) Ω(Y) ⊂ S h follows with h = H (Y0) as in (1.16). Hence, Y (t)
EF−→ S h

due to (1.12). However, S h is a finite set by Proposition 1.3. Therefore, (1.14)
follows by the continuity of Y (t). ut

5. Attraction to a Compact Set

We deduce Lemma 4.2 from the following lemma on “attraction in the mean”,
which we prove in the next section. For R > 0 let us denote

ρR(t) = inf
S∈A

‖Y (t) − S‖R for t ∈ R. (5.1)

Lemma 5.1. For every R > 0,

∫ ∞

0
ρ2

R(t) dt < ∞. (5.2)

Let us fix a metric ρ(·, ·) on E , defining the topology of EF . We prove (4.1) ad
absurdum: Let us assume that there exist ε > 0 and a sequence tk → ∞, such that

ρ(Y (tk), A) = ε for all k = 1, 2, . . . . (5.3)

We show that this is impossible and thus complete the proof of Lemma 4.2. We
may assume that tk +1 < tk+1 for every k. Then (5.2) implies by the Fatou theorem
that

∫ 1

0
σR(θ) dθ < ∞, where σR(θ) =

∞∑
1

ρ2
R(tk + θ). (5.4)

Therefore, σR(θ) < ∞ for every θ ∈ Θ(R) ⊂ [0, 1], and
∫
Θ(R)

dx = 1. Then for
every R > 0,

ρR(tk + θ) → 0 as k → ∞ for θ ∈ Θ = ∩∞
R∈N

Θ(R). (5.5)



222 A. Komech

Hence Y (tk + θ)
EF−→ A as k → ∞ for every θ ∈ Θ ⊂ [0, 1], and

∫
Θ

dx = 1.
Then for every θ ∈ Θ the compactness of A in EF implies that for some sequence
k(θ) → ∞,

Y (tk(θ) + θ)
EF−→ Ȳ (θ) ∈ A as k(θ) → ∞ for θ ∈ Θ. (5.6)

Then the continuity of the map W−θ in EF also implies that

Y (tk(θ))
EF−→ W−θ Ȳ (θ) as k(θ) → ∞ for θ ∈ Θ. (5.7)

On the other hand, the compactness of A in EF implies that there exists a sequence
θj ∈ Θ such that θj → 0 as j → ∞ and

Ȳ (θj )
EF−→ Y ∗ ∈ A as j → ∞. (5.8)

Now the uniform Lipschitz continuity (2.4) of W−θ with θ ∈ [0, 1] and the conver-

gence W−θj Y
∗ EF−→ Y ∗ as j → ∞ imply

W−θj Ȳ (θj )
EF−→ Y ∗ as j → ∞. (5.9)

However this convergence together with (5.7) for θ = θj contradict (5.3). ut

6. Attraction in the Mean

We prove Lemma 5.1. It suffices to construct for sufficiently large ᾱ, β̄, T̄ > 0
a function Sλ(t) ∈ A defined for t = T̄ such that for every R > 0

∫ ∞

T̄

‖Y (t) − Sλ(t)‖2
R dt < ∞. (6.1)

We establish this inequality with λ(t) = u(−a, n) for n 5 t < n+1, n = 0, 1, . . . .
We may replace the seminorm ‖ · ‖R from (1.8) with an equivalent seminorm with
|u(−a)| instead of |u(0)|. Then (6.1) means for R > a that

∫ ∞

T̄

( ∫
|x|<a

(|u′(x, t) − s′
λ(t)(x)|2 + |u̇(x, t)|2) dx + |u(−a, t) − λ(t)|2

+
∫

a<|x|<R

(|u′(x, t)|2 + |u̇(x, t)|2) dx

)
dt < ∞. (6.2)
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6.1. Energy Scattering to Infinity

Lemma 6.1. For the functions y±(t) = u(±a, t) and z±(t) = u′(±a, t) the fol-
lowing bound holds:∫ ∞

0
(|ẏ−(t)|2 + |z−(t)|2 + |ẏ+(t)|2 + |z+(t)|2) dt < ∞. (6.3)

Proof. This follows from the d’Alembert representation

u(x, t) = f±(t − x) + g±(t + x), ±x > a, t ∈ R, (6.4)

and from the finiteness of the energy flow to infinity. Namely, the d’Alembert
representations (6.4) imply that (6.3) is equivalent to∫ ∞

0
(|f ′−(t + a)|2 + |g′−(t − a)|2 + |f ′+(t − a)|2 + |g′+(t + a)|2) dt < ∞.

(6.5)

The integrals for f ′−, g′+ are finite due to the d’Alembert formulas

f−(−x) = 1
2u0(x) − 1

2

∫ x

−a

v0(s) ds for − x < −a,

g+(x) = 1
2u0(x) + 1

2

∫ x

a

v0(s) ds for x > a

and due to the fact that (u0, v0) ∈ E . To derive (6.5) for g′−, f ′+ we introduce the
energy functional on the segment ∆ = [−a, a] for Y = (u(x), v(x)) ∈ E ,

H∆(Y ) =
∫

∆

[
1
2 |v(x)|2 + 1

2 |u′(x)|2 + V (x, u(x))
]

dx. (6.6)

Then we consider the energy flow from ∆ at first for smooth initial data (u0, v0).
Then (1.1) and (6.4) imply, that

d

dt
H∆(Y (t)) = u̇u′

∣∣∣x=a+0

x=−a−0
(6.7)

= |f ′−(t + a)|2 − |g′−(t − a)|2 + |g′+(t + a)|2 − |f ′+(t − a)|2

for a.a. t ∈ R.

Integrating this equation, we get the energy identity

H∆(Y (t)) +
∫ t

0
(|g′−(s − a)|2 + |f ′+(s − a)|2) dt

= H∆(Y (0)) +
∫ t

0
(|f ′−(s + a)|2 + |g′+(t + a)|2) dt for t ∈ R. (6.8)

For general initial data (u0, v0) ∈ E the same identity follows by density and
continuity reasons. Finally, (6.5) for g′−, f ′+ follows from (6.8) and from (6.5) for
f ′−, g′+, because H∆(Y (t)) = const due to (1.3)–(1.5). ut
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6.2. Nonlinear Goursat Problem

We consider the Goursat problem for the wave equation (1.1) with Cauchy data
on the lines x = const:

ü(x, t) = u′′(x, t) + f (x, u(x, t)),

u|x=r = y(t), u′|x=r = z(t), t ∈ R.
(6.9)

We establish the continuity of the map Gr,x : (y(·), z(·)) 7→ (u(x, ·), u′(x, ·)) and
then we deduce (6.2) from (6.3) by this continuity in the next subsection.

Remark. Our assumptions (1.4), (1.5) ensure that the Cauchy problem (1.1), (1.2)
is well posed globally in t . The Goursat problem (6.9) generally is not well posed
globally in x ∈ R. However, the Goursat problem is well posed locally in x and
this is sufficient for our purposes. To deduce (6.1) from (6.3) we need to prove the
continuity of the map Gb,x for b = −a and for bounded x ∈ [−R, R] only. The
continuity holds “for large t” and “along” the global solution u(x, t) considered.

Let σ denote an arbitrary segment in R of length |σ |.
Definition 6.2. E (σ ) is the Hilbert space of functions (y(t), z(t)) ∈ H 1(σ ) ⊕
L2(σ ), such that

‖(y, z)‖E (σ ) = |||ẏ|||σ + |||y|||σ + |||z|||σ < ∞, (6.10)

where ||| · |||σ is the norm in L2(σ ).

Definition 6.3. ¯E denotes the space of functions (y(t), z(t)) ∈ H 2
loc(R) ⊕ L2(R),

such that

‖(y, z)‖ ¯E = sup
|σ |=1

‖(y, z)‖E (σ )√|σ | < ∞. (6.11)

Remark. Propositions 2.1 iii), iv) imply that (u, u′)|x=r ∈ ¯E for every r ∈ R and,
moreover, that ‖(u, u′)|x=r‖ ¯E 5 2e(r).

We consider the solutions u(x, t) to the Goursat problem (6.9) with (y, z) ∈ ¯E
such that (u, u′) ∈ C(r − ε, r + ε; ¯E ) with some ε > 0. For such solutions the
Goursat problem is equivalent to the integral identity

Z(x) = W 0
x−rZr −

∫ x

r

W 0
x−s(0, f (s, u(s, ·)) ds, (6.12)

which is similar to (2.1), where Z(x) = (u(x, ·), u′(x, ·)) and Zr = (y(·), z(·)).
Lemma 6.4. Let assumptions (1.3)–(1.5) be fulfilled, and let Zr ∈ ¯E . Then

i) The Goursat problem (6.9) has a unique solution

Z(x) =: Gr,xZr ∈ C(r − ε, r + ε; ¯E )

with some ε > 0.
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ii) Here ε = ε(R, B) > 0 depends only on R and B for r 5 R and ‖Zr‖ ¯E 5 B.

iii) For every R, B > 0, |r| 5 R, ‖Zr‖Ē 5 B, |x − r| < ε(R, B) and every
segment σ ⊂ R the function Z(x, ·)|σ depends on Zr |Σ only, where Σ is a
δ-neighborhood of the segment σ in R with δ = |x − r|.

iv) The map Gr,x : Zr |Σ 7→ Z(x, ·)|σ for ‖Zr‖ ¯E 5 B is Lipschitz continuous
from E (Σ) to E (σ ), and

‖Gr,xZ
1
r − Gr,xZ

2
r ‖E (σ ) 5 L(R, B)‖Z1

r − Z2
r ‖E (Σ)

for |r| 5 R and δ = |x − r| 5 ε(R, B)
(6.13)

for every Z
j
r ∈ ¯E , j = 1, 2. The Lipschitz constant L(R, B) does not depend

on the segment σ .

Proof. The contraction-mapping principle implies the existence and uniqueness
of the solution Z(x) to (6.12) such that Z(x) ∈ C(r − ε, r + ε; E (σ )) for every
segment σ ⊂ R. The crucial point is that ε = ε(R, B) > 0 does not depend on the
segment σ due to the uniform bounds for ‖Zr‖E (σ ) with bounded |σ | = 1, and to
the homogenuity of the problem in t .

The properties (iii) and (iv) follow from the same properties of the succes-
sive Picard approximations due to the corresponding properties of the operators
W 0

x−s . ut

6.3. Proof of the Attraction in the Mean

We deduce (6.2) from (6.3) and (6.13). We choose λ(t) = y−(n) ≡ u(−a, n)

for n 5 t < n + 1, n = 0, 1, . . . .

Step 1. The bounds (6.3) and the d’Alembert representation (6.4) imply the con-
vergence of the integral

∫ ∞̄
T

∫
a<|x|<R

. . . in (6.2).

Step 2. The integral
∫ ∞

0 |u(−a, t) − λ(t)|2 dt also converges, because it is equal
to ∞∑

0

∫ n+1

n

|y−(t) − y−(n)|2 dt 5
∫ ∞

0
|ẏ−(t)|2 dt < ∞.

Step 3. Let us verify the bound
∞∑

n=N̄

∫ n+1

n

( ∫ a

−a

(|u′(x, t) − s′
λ(n)(x)|2 + |u̇(x, t)|2) dx

)
dt < ∞ (6.14)

for sufficiently large N̄ . Proposition 2.1 iv) means that the solution Z(x) = (u(x, ·),
u′(x, ·)) = G−a,x(y−(·), z−(·)) to the equation (6.12) satisfies

‖Z(r)‖ ¯E 5 B̄ = 2e(a) for r ∈ [−a, a]. (6.15)

On the other hand, the function Sn(x) = (sλ(n)(x), 0) = G−a,x(y−(n), 0) is also a
solution to the equation (6.12) for every n = 0, 1, . . . . Therefore, we can apply the
Lipschitz continuity from Lemma 6.4 (iv) to estimate the difference between these
two solutions.
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Lemma 6.5. For sufficiently large n = N̄ there exists the solution Sn(x) =
G−a,x(y−(n), 0) to the equation (6.12) and for every x = −a + δ ∈ [−a, a],

‖Z(x) − Sn(x)‖2
E ([n,n+1]) 5 L̄

∫ n+1+δ

n−δ

(|z−(t)|2 + |ẏ−(t)|2) dt for n = N̄ .

(6.16)

We prove this lemma below. Summing (6.16) over n = N̄ and integrating the sum
over x ∈ [−a, a], we get (6.14) due to (6.3).

Step 4. Sn(x) ∈ Aᾱβ̄ for sufficiently large ᾱ, β̄ > 0. Indeed, (6.14) and bounds

(2.7) imply for sufficiently large N̄ , that

D̄ = sup
n=N̄

∫
|s′

λ(n)(x)|2dx < ∞. (6.17)

Moreover, (2.5) with x = −a implies

d̄ = sup
n=0

|sλ(n)(−a)| < ∞. (6.18)

Hence, (as with (2.8)) (6.17) implies that

sup
n=0

|sλ(n)(x)| 5 ᾱ + β̄
√

x for |x| 5 a, (6.19)

for sufficiently large ᾱ and β̄. ut

Proof of Lemma 6.5. Let us denote ε̄ = ε(a, B̄) and prove the existence of the
solution Sn(x) = G−a,x(y−(n), 0) and the bounds (6.16) for −a + (k − 1)ε̄ 5
x 5 −a + kε̄ by induction in k = 1, 2, . . . with k 5 2a/ε̄ + 1.

k = 1. For −a 5 x 5 −a + ε̄ the existence of the solution

Sn(x) = G−a,x(y−(n), 0)

and the bounds (6.16) for all n = 0 follow directly from (6.13) with r = −a for
two solutions Z(x) and Sn(x), because Z(−a)−Sn(−a) = (y−(·)−y−(n), z−(·))
and

‖Z(−a) − Sn(−a)‖2
E ([n−δ,n+1+δ]) 5 C(δ)

∫ n+1+δ

n−δ

(|z−(t)|2 + |ẏ−(t)|2) dt.

(6.20)

The bounds (6.13) holds for the solutions because of (6.15) with r = −a and
because of a similar estimate for Sn(−a) = (y−(n), 0).

k = 2. For −a + ε̄ 5 x 5 −a + 2ε̄ the existence of the solution Sn(x) =
G−a,x(y−(n), 0) = G−a+ε̄,xSn(−a + ε̄) and the bounds (6.16) follow by double
application of (6.13) for sufficiently large n = N1, provided that

‖Sn(−a + ε̄)‖ ¯E 5 B̄ for n = N1. (6.21)
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Such an N1 < ∞ exists due to (6.15) and the bound (6.16) with x = −a+ ε̄ proved
above, because

∫ n+1+δ

n−δ
(|z−(t)|2 + |ẏ−(t)|2) dt → 0 as n → ∞ due to (6.3).

Induction in k completes the proof. ut
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