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Abstract. We justify an extension of the method of complex characteristics [6] for the
Helmholtz equation in nonconvex angles. For convex angles, the method was introduced
in [1] and developed in [6, 11].
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1. INTRODUCTION

This paper concerns a justification of the method of complex characteristics [1, 2, 6, 10, 11] for
elliptic equations in nonconvex angles. This method finds applications to diverse problems of math-
ematical physics both for convex angles [5, 12] and for nonconvex ones [7, 8, 13]. The crucial part of
the method is played by the connection equation on the Riemann surface of complex characteristics
of the given elliptic operator. The connection equation generalizes well-known relations on the real
characteristics of hyperbolic equations. A preliminary version of the paper was published in [4] in
a sketched form. Here we present a complete exposition.

The principal object of our investigation is the Helmholtz equation

(∆ + ω2)u(y) = 0, y ∈ Q, (1.1)

where Q is a nonconvex angle of magnitude α ∈ (π, 2π) and

ω := ω1 + iω2 ∈ C
+ := {z ∈ C : Im z > 0}.

In the polar coordinates (y1 = ρ cos θ, y2 = ρ sin θ), the angle Q is represented in the form

Q = {(ρ, θ) : β < θ < 2π}, β = 2π − α (see Fig. 1).
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Fig. 1. Nonconvex angle.
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Equation (1.1) with ω ∈ C
+ arises when applying the Fourier–Laplace transform to nonsta-

tionary scattering problems on a wedge. Analysis of the stationary equation (1.1) enabled us to
prove in [7, 8] the existence and uniqueness results and the principle of limiting amplitude for the
corresponding nonstationary scattering problem. The central role in the proofs is played by the
connection equation involving the Cauchy data of a given solution to (1.1). Note that the connec-
tion equation in the papers [7, 8] was applied to specific boundary-value conditions of Dirichlet
and Neumann. On the other hand, this connection equation enables one to extend the method
of complex characteristics [6] to equation (1.1) in nonconvex angles with general boundary-value
conditions.

The connection equation first was found in [1, 2, 6] for convex angles, where this equation
occurred as a direct consequence of the Paley–Wiener theorem. However, the extension of the
equation to nonconvex angles is not straightforward. For nonconvex angles, the connection equation
was stated for the first time in [4] for ω = i and α = πi/2. In the present paper, we state and
justify the connection equation for general values of ω ∈ C

+ and α ∈ (π, 2π). We prove that the
connection equation is a necessary condition for the existence of solutions in the class of tempered
distributions.

The connection equation is an algebraic equation on the Riemann surface of complex character-
istics of equation (1.1). The justification of the connection equation is the main goal of the present
paper. Namely, let u0(y) be the extension by zero of a solution u(y) from y ∈ Q to y ∈ R

2. Then
we have (in the sense of distributions)

(∆ + ω2)u0(y) = v1(y) + v2(y), y ∈ R
2, (1.2)

where v1 and v2 stand for tempered distributions supported by different sides of the angle Q, which
can be expressed in the Cauchy data of u(y). The Fourier transform of (1.2) gives (1.3),

(−z2 + ω2)û0(z) = v̂1(z) + v̂2(z), z ∈ R
2. (1.3)

First let us consider the case of a convex angle Q corresponding to α < π. Then, by the Paley–
Wiener theorem, identity (1.2) can be extended to complex values of

z ∈ CQ∗ := {z ∈ C
2 : Im z · y > 0, y ∈ Q},

and û0(z), v̂1(z), v̂2(z) are analytic on CQ∗. Write V = {z ∈ CQ∗ : −z2 + ω2 = 0}, which is the
Riemann surface of complex characteristics of the Helmholtz equation ∆ + ω2. Then (1.3) implies
the “connection equation” (1.4),

v̂1(z) + v̂2(z) = 0, z ∈ V ∗, (1.4)

where V ∗ := V ∩ CQ∗.
On the other hand, in diffraction problems with α > π, the angle Q is not convex. Hence, the

set CQ∗ is empty, and therefore (1.4) is meaningless. Now W := R
2 \Q and W− := −W are convex

angles. Therefore, the Paley–Wiener theorem implies that the functions v̂1(z) and v̂2(z) are analytic
on CW ∗ but does not imply their analyticity on CW ∗

−. The main result of the present paper states
that, for a nonconvex angle Q, the connection equation (1.4) holds with V ∗ = V ∩ CW ∗

− for the
analytic continuations of v̂1 and v̂2 along the Riemann surface V .

The boundary value problems in convex angles were treated by Sobolev [16] and Shilov [15]. In
the last paper, some necessary relations between the Cauchy data were found. The relations coincide
with our connection equation on a curve lying on the Riemann surface. In Sobolev’s paper [16],
some necessary conditions on the Cauchy data were also suggested.

The connection equation for convex angles was applied in [6, 12] to solve the Ursell problem on
the completeness of trapping modes on a sloping beach. The connection equation for nonconvex
angles was applied in [7, 8, 13] to justify and generalize the Sommerfeld–Malyuzhinets-type repre-
sentation for solutions to diffraction problems on wedges. The representation plays an important
role in [7, 8] when proving the uniqueness and existence results and the limiting amplitude principle
for diffraction problems.
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RELATION BETWEEN CAUCHY DATA 281

The paper is organized as follows. In Sections 1–6, we present the basis of the general method of
complex characteristics [1, 6]. In Section 7, we obtain an integral equation for the complex Fourier
transform of the Cauchy data. In Section 8, we reduce the integral equation to the Riemann
surface of the complex characteristics. In Section 9, we construct a special class of test functions.
In Section 10, we construct a Cauchy kernel on a Riemann surface. In Sections 11–14, we reduce
the integral equation to the connection equation, which is algebraic, by using analytic continuation
on the Riemann surface. In the appendix, we construct a class of Schwartz functions with a special
property (see [14]).

2. REDUCTION TO THE FIRST QUADRANT

The method of complex characteristics requires several steps. Our first goal is to extend equa-
tion (1.1) to R

2.

In this section, we reduce equation (1.1) to the equation in the complement of the first quadrant.
Make a linear change of variables

x1 = x+ y cotα, x2 = − y

sinα
(see Fig. 2)

which transforms Q to K− := {(x1, x2) ∈ R
2 : x1 < 0 or x2 < 0}.
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Fig. 2.

Represent the operator ∆ + ω2 in the variables (x1, x2),

(∆ + ω2) =
1

sin2 α

( ∂2

∂x2
1

+
∂2

∂x2
2

− 2
∂2

∂x1∂x2
cosα

)

+ ω2.

Equation (1.1) is now equivalent to

(

∆ − 2
∂2

∂x1∂x2
cosα+ ω2 sin2 α

)

u(x) = 0, x ∈ K−. (2.1)

The solution is sought in the class S′(K−) of tempered distributions on K−, which is the space of
restrictions of the tempered distributions in R

2 to K−.

Everywhere below, denote the operator (2.1) as

H = ∆ − 2
∂2

∂x1∂x2
cosα+ ω2 sin2 α. (2.2)

3. EXTENSION TO THE PLANE

We state two lemmas concerning nonconvex angles Q. The proof is similar to the case of convex
angles Q, which was treated in [6].
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Lemma 3.1. Let u(x) ∈ S′(K−) be a solution to (2.1). Then the following assertions hold.

i) There is a distribution u0(x) ∈ S′(R) such that

u0(x) :=

{

u(x), x ∈ K−,

0, x /∈ K−.
(3.1)

ii) The traces

u0
1(x1) := u(x1,−0), x1 > 0; u0

2(x2) := u(0,−x2), x2 > 0;

u1
1(x1) := ∂2u(x1,−0), x1 > 0; u1

2(x2) := ∂1u(−0, x2), x2 > 0,

exist in the sense of distributions with respect to x1 > 0, x2 > 0.

Now we apply the operator H to the function u0(x) in the sense of S′(R2).

Lemma 3.2. Let u ∈ S′(K−) be a solution to (2.1). Then the following assertions hold.

i) There is an u0(x) ∈ S′(R2) satisfying (3.1), and

Hu0(x) = d0(x), x ∈ R
2, (3.2)

in the sense of distributions, where

d0(x1, x2) = −δ(x1)v
1
2(x2) − δ(x2)v

1
1(x1) − δ′(x1)v

0
2(x2) − δ′(x2)v

1
1(x1)

+ 2 cosα · δ(x1)∂2v
0
2(x2) + 2 cosα · δ(x2)∂1v

0
1(x1). (3.3)

ii) The distributions vβ
l (xl) with respect to xl ∈ R are tempered, and

vβ
l (xl) = uβ

l (xl), xl > 0

vβ
l (xl) = 0, xl < 0

∣

∣

∣

∣

∣

l = 1, 2; β = 0, 1.

4. COMPLEX FOURIER TRANSFORM

4.1. Fourier Transform

Now let us apply the Fourier transform to (3.2),

Ĥ(ξ) · û0(ξ) = d̂0(ξ), ξ ∈ R
2. (4.1)

Here Ĥ(ξ) is the symbol,

Ĥ(ξ1, ξ2) = −ξ21 − ξ22 + 2ξ1ξ2 cosα+ ω2 sin2 α, (ξ1, ξ2) ∈ R
2, (4.2)

of the differential operator H given by (2.2), and

d̂0(ξ1, ξ2) = v̂0
1(ξ1)(iξ2 − 2iξ1 cosα) − v̂1

1(ξ1) + v̂0
2(ξ2)(iξ1 − 2iξ2 cosα) − v̂1

2(ξ2), ξ ∈ R
2,

by (3.3). For any ω ∈ C
+, there exists a δ∗ = δ∗(ω) > 0 such that

|Ĥ(z)| > C, z ∈ C
2, | Im zk| < δ∗, k = 1, 2, (4.3)

for some C = C(ω) > 0. Without loss of generality, we can assume that

δ∗ < ω2 := Imω. (4.4)
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4.2. Paley–Wiener Argument

As is well known, the real characteristics of a differential operator provide relations between
the Cauchy data of solutions. In our case, the operator H has no real characteristics, according to
(4.3). On the other hand, any polynomial has some complex zeros and, in particular, the symbol Ĥ
vanishes on a Riemann surface in C

2 . We claim that the complex characteristics of the operator
H provide the “connection equation” for analytic continuations of the Cauchy data of solutions.

Proposition 4.1. i) The function d̃0(z) := 〈d0(x), e
ixz〉 is analytic for z ∈ CK∗

+.

ii) The following bound holds:

|d̃0(z)| 6 C(1 + |z|)µρ−ν , z ∈ CK∗
+, (4.5)

where ρ := min(τ1, τ2) and τ = Im z ∈ K+.

iii) The distribution d̂0(ξ) is a trace of an analytic function, i.e.,

d̃0(ξ + iτ) −→ d̂0(ξ), τ −→ 0, (4.6)

where τ ∈ K+, and the convergence holds in the sense of tempered distributions with respect
to ξ ∈ R

2.

Proof. Let us prove assertions i) and iii). By Lemma 3.2 and the Paley–Wiener theorem, the

distributions v̂β
l (ξl) ∈ S′(R+) are the traces of the functions ṽβ

l (zl) analytic on zl ∈ C+, and

|ṽβ
l (zl)| 6 C(1 + |zl|)µτ−ν

l , τl = Im zl > 0, (4.7)

where µ, ν > 0. Therefore, the function d̂0(ξ1, ξ2) is the trace of the following analytic function on
the domain CK∗

+ = R
2 ⊕ iK+ :

d̃0(z1, z2) = ṽ0
1(z1)(iz2 − 2iz1 cosα)− ṽ1

1(z1)+ ṽ0
2(z2)(iz1 − 2iz2 cosα)− ṽ1

2(z2), (z1, z2) ∈ CK∗
+.

(4.8)

ii) The bounds (4.7) imply the corresponding bound (4.5) for d̃0(z1, z2).

Note that
d̃0(z) = ṽ1(z) + ṽ2(z), z ∈ CK∗

+, (4.9)

where

ṽ1(z) = ṽ0
1(z1)(iz2 − 2iz1 cosα) − ṽ1

1(z1), z ∈ C
+ × C, (4.10)

ṽ2(z) = ṽ0
2(z2)(iz1 − 2iz2 cosα) − ṽ1

2(z2), z ∈ C × C
+. (4.11)

The functions ṽ1(z) and ṽ2(z) satisfy the bounds

|ṽ1(z)| 6 C(1 + |z|)µ|τ1|−ν , z ∈ C
+ × C, (4.12)

|ṽ2(z)| 6 C(1 + |z|)µ|τ2|−ν , z ∈ C × C
+, (4.13)

where µ, ν > 0, l = 1, 2.
The main goal of present paper is to prove that the function ṽ1(z) is analytic continuation of

−ṽ2(z) along the Riemann surface of complex characteristics of the operator H.
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5. RIEMANN SURFACE OF COMPLEX CHARACTERISTICS

Denote by V = V (ω) the set of the complex zeros of symbol Ĥ (see (4.2))

V (ω) = {(z1, z2) ∈ C
2 : Ĥ(z) = −z2

1 − z2
2 + 2z1z2 cosα+ ω2 sin2 α = 0}. (5.1)

The Riemann surface V is isomorphic to a cylinder [6]. Therefore, the universal covering V̌ of the
surface V is isomorphic to C. Note that

(z1 sinα)2 + (z2 − z1 cosα)2 = z2
1 + z2

2 − 2 cosαz1z2 = ω2 sin2 α, (z1, z2) ∈ V,

for (z1, z2) ∈ V . This suggests the idea to introduce the parametrization of the universal covering
surface V̌ ,

z1 := ω sinϕ, z2 − z1 cosα := ω sinα cosϕ, ϕ ∈ C.

Make the change of the variable ϕ→ w = iϕ. Then

z1(w) = −iω sinhw, z2(w) = −iω sinh(w + iα). (5.2)

Thus, we have the following parametrization of V̌ :

z1(w) := −iω sinhw, z2(w) := −iω sinh(w + iα), w ∈ C. (5.3)

Denote by p the projection p : V̌ −→ V defined by

p(w) := (z1(w), z2(w)). (5.4)

Moreover, consider the projections pl : V̌ −→ C defined by

pl(w) = zl(w), l = 1, 2.

Let us “lift” the functions ṽβ
l (zl) to V̌ by the projections (5.4). Since the domain of ṽβ

l (zl) is C
+,

we introduce the corresponding domains on V̌ ,

V̌+
l := p−1

l (C+) = {w ∈ C : Im zl > 0}, l = 1, 2.

Let V̌ +
1 be the connected component of V̌+

1 which contains the point w = iπ/2 and let V̌ +
2 be the

connected component of V̌+
2 which contains the point w = i(π/2 − α). We can readily see that

V̌ +
1 = {w ∈ C : −π/2 < Imw < 3π/2, Im z1(w) > 0},
V̌ +

2 = {w ∈ C : −π/2 − α < Imw < 3π/2 − α, Im z2(w) > 0},
(5.5)

and ∂V̌ +
l = Γ̌+

l ∪ Γ̌−
l for l = 1, 2, where

Γ̌+
1 = {w ∈ C : Im z1(w) = 0, π/2 < Imw < 3π/2},

Γ̌−
1 = {w ∈ C : Im z1(w) = 0, −π/2 < Imw < π/2},

Γ̌+
2 = {w ∈ C : Im z2(w) = 0, −π/2 − α < Imw < π/2 − α},

Γ̌−
2 = {w ∈ C : Im z2(w) = 0, π/2 − α < Imw < 3πi/2 − α}.

We also introduce the domains

V̌−
l := p−1

l (C−) = {w ∈ C : Im zl < 0}, l = 1, 2.
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Fig. 3. Domains on the Riemann surface.

Let V̌ −
l be the connected component of V̌−

l which contains the point w = −im with m :=
min(π/2, π − α) for l = 1, 2. Similarly to (5.5), one can see that

V̌ −
1 = {w ∈ C : −3π/2 < Imw < π/2, Im z1(w) < 0},
V̌ −

2 = {w ∈ C : π/2 − α < Imw < 5π/2 − α, Im z2(w) < 0}.
Write

V̌ − := V̌ −
1 ∩ V̌ −

2 .

For w = w1 + iw2 and ω = ω1 + iω2, we have

Im[z1(w)] = ω2 coshw1 sinw2 − ω1 sinhw1 cosw2

by (5.2). Hence, Im[z1(w1 + iw2)] = 0 if and only if tanw2 = ω1
ω2

tanhw1, and thus

Γ̌−
1 =

{

w = w1 + iw2

∣

∣

∣
w1, w2 ∈ R, w2 = arctan

(ω1

ω2
tanhw1

)}

.
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The contours can be obtained from one another by translations,

Γ̌+
1 = Γ̌−

1 + πi, Γ̌+
2 = Γ̌−

1 − iα, Γ̌−
2 = Γ̌+

2 + πi. (5.6)

For ν ∈ R, we define the contour
γ(ν) := Γ̌−

1 + iν.

In this case, the contours (5.6) can be represented as follows:

Γ̌+
1 = γ(π), Γ̌−

1 = γ(0), Γ̌+
2 = γ(−α), Γ̌−

2 = γ(π − α).

Write V̌Σ := V̌ +
1 ∪ V̌ − ∪ V̌ +

2 (see Fig. 3, which corresponds to the case of Reω > 0).

Using the definitions of V̌ −
l , V̌ +

l , V̌ −, and V̌Σ, we represent the boundaries of the domains as
follows:

∂V̌ +
1 = γ(0) ∪ γ(π), ∂V̌ +

2 = γ(−α) ∪ γ(π − α)),

∂V̌ −
1 = γ(π − α) ∪ γ(0), ∂V̌ −

2 = γ(π − α) ∪ γ(2π − α),

∂V̌ − = γ(π − α) ∪ γ(0), ∂V̌Σ = γ(−α) ∪ γ(π).

6. CONNECTION EQUATION

In this section, we write out the connection equation, which is a relation between the functions

v̌β
l on the universal covering V̌ .

Denote by H(Ω) the set of analytic functions on an open set Ω ⊂ C
n. Let v(zl) ∈ H(C+),

l = 1, 2. Define a lifting v̌(w) of the function v̌(zl) as the composition:

v̌(w) = v(zl(w)),

where the functions zl(w) are defined by (5.3). The analyticity of the functions ṽβ
l on C

+ implies

the analyticity of the functions v̌β
l on V̌ +

l ,

v̌β
l (w) ∈ H(V̌ +

l ), l = 1, 2, β = 0, 1.

Using (5.2), we obtain the expressions

v̌1(w) = −v̌1
1(w) − ω sinh(w − iα) v̌0

1(w), w ∈ V̌ +
1 ,

v̌2(w) = −v̌1
2(w) − ω sinh(w + 2iα) v̌0

2(w), w ∈ V̌ +
2 ,

(6.1)

from (4.10) and (4.11). Obviously,

v̌l(w) ∈ H(V̌ +
l ), l = 1, 2. (6.2)

6.1. Convex Angles

Recall the connection equation in the case of a convex angle (with α < π). In this case, the
connection equation can be obtained by using the Paley–Wiener theorem [1, 2, 6, 10]. Namely,
consider the Helmholtz equation

H(D)u(x) = 0, x ∈ K+,

for the solutions u(x) ∈ C∞(K+). Then, denoting by u0(x) the extension of u by zero outside K+,
we obtain

H(D)u0(x) = −d0(x), x ∈ R
2,

where d0(x) is expressed in terms of the Cauchy data of u(x) by formula (3.3). Paley–Wiener
theorem yields now that

Ĥ(z)ũ0(z) = −d̃0(z), z ∈ CK∗
+,

which is an identity for analytic functions. Since Ĥ(z) = 0 for z ∈ V ∩ CK∗
+, we obtain the

connection equation
d̃0(z) = 0, z ∈ V ∩ CK∗

+,

which is a relation between the Cauchy data (by formula (3.3) for d0(x)).
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6.2. Nonconvex Angles

In the case of α > π, the situation is more complicated since the Paley–Wiener theorem is
no longer applicable. Namely, denote by v̌Σ

l (w) the analytic extension of v̌l(w) to the complex

domain V̌Σ if such an extension exists (see Fig. 3). The main goal of the paper is to establish the
following connection equation.

Let u(x, y) ∈ S′(Q) be a solution to equation (1.1) with ω ∈ C
+. We also assume that the

functions v̌1 and v̌2 are defined by (6.1).

Theorem 6.1 (on the connection equation). i) The function v̌1(w) admits the analytic contin-
uation v̌Σ

1 from V̌ +
1 to V̌Σ, and the function v̌2(w) admits the analytic continuation v̌Σ

2 from V̌ +
2

to V̌Σ.
ii) The following identity holds for these analytic continuations:

v̌Σ
1 (w) + v̌Σ

2 (w) = 0, w ∈ V̌Σ.

We prove the theorem in the remaining part of the paper. It suffices to prove the theorem for
ω2 = 1 (since the proof is similar for an arbitrary ω2 > 0). In this case, (4.4) reads

δ∗ < 1. (6.3)

7. INTEGRAL CONNECTION EQUATION

In this section, we obtain the connection equation in an integral form. Dividing (4.1) by Ĥ(ξ),
we see that

û0(ξ) =
d̂0(ξ)

Ĥ(ξ)
, ξ ∈ R

2, (7.1)

where the division is well defined in the sense of tempered distributions by (4.3). We are going to
obtain the connection equation for d0(x) by using the fact that

u0(x) = 0 for x ∈ K+.

Let us introduce an appropriate class of test functions supported by K+.

Definition 7.1. Let
S(K+) := {ψ ∈ S(R2) : suppψ ⊂ K+}.

Let us introduce a subspace of the space S(K+). For a δ > 0, write

C
+
δ := {z ∈ C : Im z > −δ}, C

−
δ := −C

+
δ .

Definition 7.2. For δ > 0, denote by Sδ(K+) the set of functions ψ ∈ S(K+) such that the

Fourier transform ψ̂(ξ) admits an analytic continuation ψ̃(z) to the domain C
+
δ × C

+
δ and satisfies

the estimate
|ψ̃(z)| 6 CN (1 + |z|)−N , Im zl > −δ, l = 1, 2, (7.2)

for any N ∈ N.

Equivalently, ψ(x) ∈ Sδ(K+) if ψ ∈ S(K+) and

|ψ(α)(x)| 6 Cαe
−δ′x1−δ′x2 ∀α = (α1, α2)

for every δ′ < δ.
For ε, δ > 0, write

Γε := {(z1, z2) ∈ C
2 : Im z1 = Im z2 = ε} and Zδ := {z ∈ C

2 : Im zl ∈ (0, δ), l = 1, 2}.
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Lemma 7.3. Let û(ξ) be the Fourier transform of a distribution u(x) ∈ S′(R2) with the fol-
lowing properties.

i) The function û(ξ) is the trace (in the sense of (4.6)) of an analytic function ũ(z) in the domain
Zδ with some δ > 0.

ii) The function admits the following bound in Zδ for some µ, ν > 0:

|ũ(z)| 6 C(1 + |z|)µρ−ν , z ∈ Zδ,

where ρ := min(Im z1, Im z2).

iii) Let us additionally assume that ψ ∈ Sδ(K+). In this case,

〈u(x), ψ(x)〉 = 〈û(ξ), ψ̂(−ξ)〉 =

∫

Γε

ũ(z)ψ̃(−z)dz1dz2 (7.3)

for any ε ∈ (0, δ).

Proof. The lemma follows from the Parseval identity.

Let us return to the Helmholtz equation (3.2) and consider a test function ψ ∈ Sδ(K+). Since
suppu0 ⊂ K− and suppψ ⊂ K+, we have

〈u0(x), ψ(x)〉 = 0.

By the Parseval identity and by (7.1), this implies that

〈û0(ξ), ψ̂(−ξ)〉 =
〈 d̂0(ξ)

Ĥ(ξ)
, ψ̂(−ξ)

〉

= 0. (7.4)

Recall that the Fourier transform d̂0(ξ) is the trace of the analytic function defined by (4.8) in the
domain CK∗

+. Apply identity (7.3) to equation (7.4).

Proposition 7.4. Let ψ ∈ Sδ(K+) with some δ ∈ (0, δ∗), where δ∗ is as in (4.3). Then we have

∫

Γε

d̃0(z)ψ̃(−z)
Ĥ(z1, z2)

dz1dz2 = 0 (7.5)

for any ε, 0 < ε < δ.

Proof. By (4.3) and Proposition 4.1, the function d̂0(ξ)/Ĥ(ξ), ξ ∈ R
2, is the trace of the analytic

function d̃0(z)/Ĥ(z) in the domain Zδ∗ , and this function admits the bound

∣

∣

∣

∣

∣

d̃0(z)

Ĥ(z)

∣

∣

∣

∣

∣

6 C(1 + |z|)µρ−ν , z ∈ Zδ∗ ,

for some µ, ν > 0. Let us now apply Lemma 7.3. All the assumptions of this lemma are satisfied

for any û(ξ) = d̂0(ξ)/Ĥ(ξ) and ψ ∈ Sδ(K+). Therefore, (7.5) follows from (7.4) and (7.3).

Remark 7.5. We refer to (7.5) as the integral connection equation, since d̂0(ξ) can be expressed
by means of the Cauchy data (see (4.8)).
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8. REDUCTION TO THE RIEMANN SURFACE

Here we reduce (7.5) to an equation on the Riemann surface. Substituting (4.9) into (7.5) and
representing the integral thus obtained as a sum of two terms, we obtain

I1(ψ) + I2(ψ) = 0 for any ψ ∈ Sδ(K+), (8.1)

where

I1(ψ) =

∫

Γε

ṽ1(z)

Ĥ(z)
ψ̃(−z1,−z2)dz1dz2, I2(ψ) =

∫

Γε

ṽ1(z)

Ĥ(z)
ψ̃(−z1,−z2)dz1dz2, ε ∈ (0, δ).

(8.2)
At the next step, we restrict these integrals to the Riemann surface V (defined by (5.1)) by using
the Cauchy residue theorem. The integrand of the first integral is meromorphic with respect to
z2 (for any fixed z1 ) for Im z2 < ε, and the integrand of the second integral is meromorphic for
Im z1 < ε. The point (z1, z2) corresponding to these poles belongs to V because the zeros of the

symbol Ĥ belong to the Riemann surface V . Therefore, I1(ψ) and I2(ψ) can be represented as
integrals over the Riemann surface V.

To obtain this representation, introduce the pair of contours L1 := {ω + ir, r > 0} ⊂ C
+ and

L2 := {−ω − ir, r > 0} ⊂ C
−. Let us factorize the symbol Ĥ(z1, z2),

z2
1 +z2

2 −2z1z2 cosα−ω2 sin2 α = (z2−z+
2 (z1))(z2−z−2 (z1)) = (z1−z+

1 (z2))(z1−z−1 (z2)), z ∈ C
2.

Here

z±2 (z1) = z1 cosα∓ sinα
√

ω2 − z2
1 , z±1 (z2) = z2 cosα∓ sinα

√

ω2 − z2
2 , (8.3)

and the branch of the root in (8.3) is such that
√
ω2 − z2 is analytic on C\(L1 ∪ L2) and

√
ω2 = ω.

Condition (6.3) implies that z±2 (z1) are well defined for Im z1 = ε < δ < δ∗, and

Im z±2 (z1) → ±∞ as Im z1 = ε and |Re z1| → ∞.

Hence, (8.2) yields

I1(ψ) =

∫

Im z1=ε

[
∫

Im z2=ε

ṽ1(z)ψ̃(−z1,−z2)
[z2 − z+

2 (z1)][z2 − z−2 (z1)]
dz2

]

dz1. (8.4)

By (4.3), we can assume that

Im z+
2 (z1) > δ and Im z−2 (z1) < −δ for Im z1 = ε ∈ (0, δ).

Let us evaluate the inner integral in (8.4) for Im z1 = ε ∈ (0, δ) by closing the contour Im z2 = ε.

Taking into account that z−2 (z1) − z+
2 (z1) = 2 sinα

√

ω2 − z2
1 , we can see by the Cauchy residue

theorem that
∫

Im z2=ε

ṽ1(z)ψ̃(−z1,−z2)
[z2 − z+

2 (z1)][z2 − z−2 (z1)]
dz2 = − πi

sinα

ṽ1(z)ψ̃(−z)
√

ω2 − z2
1

.

Then, by (8.4), we have

I1(ψ) = − πi

sinα

∫

Γ−
1,ε

ṽ1(z)ψ̃
−(z)dz1

√

ω2 − z2
1

, (8.5)

where ψ̃−(z) stands for the restriction of ψ̃(−z) to V and

Γ−
1,ε := {z ∈ V : Im z1 = ε, Im z2 < 0}
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is the contour on the Riemann surface oriented in the positive direction of Re z1. Similarly, we see
that

I2(ψ) = − πi

sinα

∫

Γ−
2,ε

ṽ2(z)ψ̃
−(z)dz1

√

ω2 − z2
2

, (8.6)

where Γ−
2,ε := {z ∈ V : Im z2 = ε, Im z1 < 0} is oriented in the positive direction of Re z2.

Substituting (8.5) and (8.6) into (8.1), we obtain an equivalent integral equation on the Riemann
surface,

∫

Γ−
1,ε

ṽ1(z)ψ̃
−(z)dz1

√

ω2 − z2
1

+

∫

Γ−
2,ε

ṽ2(z)ψ̃
−(z)dz2

√

ω2 − z2
2

= 0, ψ ∈ Sδ(K+). (8.7)

Let us lift this equation to V̌ . Fisrt, we identify the lifting contours of integration Γ−
1,ε and Γ−

2,ε

with the corresponding contours

Γ̌−
1,ε := {w ∈ V̌ +

1 : z(w) ∈ Γ−
1,ε}, Γ̌−

2,ε := {w ∈ V̌ +
2 : z(w) ∈ Γ−

2,ε}. (8.8)

The directions of these contours correspond to the directions of Γl,ε (see Fig. 4).

For ε > 0, denote by V̌ −
ε the domain bounded by Γ̌−

2,ε and Γ̌−
1,ε.

The definitions in (8.3) and (8.8) yield

√

ω2 − z2
1(w) = ω coshw, w ∈ Γ̌−

1,ε;
√

ω2 − z2
2(w) = −ω cosh(w + iα), w ∈ Γ̌−

2,ε.

Hence, changing the variables in (8.7) according to (5.2), we obtain the following equivalent integral
equation:

∫

Γ̌−
1,ε

v̌1(w)ψ̌−(w)dw −
∫

Γ̌−
2,ε

v̌2(w)ψ̌−(w)dw = 0, ψ ∈ Sδ(K+). (8.9)

Theorem 8.1. i) The integral equation (8.9) holds for any ψ ∈ Sδ(K+) with δ < δ∗, where δ∗
is defined by (4.3).

ii) The following bound holds:

|v̌l(w)| 6 Ceκ|w|ρ−ν(w, ∂V̂l), w ∈ V̌ +
l , (8.10)

where κ, ν ∈ R, and ρ(w, ∂V̌l) is the distance from w to ∂V̌l, l = 1, 2.

Proof. Assertion i) was already proved above, and ii) follows from (4.12) and (4.13) and from
the estimate

Im zl(w) > Ce|w|ρ(w, ∂V +
l ), l = 1, 2.

Let us note that the integral over Γ̌−
l,ε with l = 1, 2 in (8.9) is equal to the integral over Γ̌−

l,ε + iε

for sufficiently small values of ε > 0 by the Cauchy theorem and by the bounds (8.10) and (7.2).
Hence, we can represent relation (8.9) in the form

∫

Γ̌−
1

+iε

v̌1(w)ψ̌−(w)dw −
∫

Γ̌−
2
−iε

v̌2(w)ψ̌−(w)dw = 0, ψ ∈ Sδ(K+), (8.11)

for sufficiently small ε > 0. Write

v̌(w) :=

{

v̌1(w), w ∈ V̌ +
1 ,

−v̌2(w), w ∈ V̌ +
2 .
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Fig. 4. Contours of integration.

Then the equation (8.9) becomes

∫

∂V̌ −
ε

v̌(w)ψ̌−(w)dw = 0, ψ ∈ Sδ(K+), (8.12)

where V̌ −
ε is the domain between the contours Γ̌2 − iε and Γ̌−

1 + iε which is placed to the right of
∂V −

ε = (Γ̌−
1 + iε) ∪ (Γ̌−

2 − iε).

Let us note that each of the functions v̌l(w) is analytic on one of the sides of the contour Γ̌−
l ,

and its trace on Γ̌−
l is a distribution, due to estimates (8.10).
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Definition 8.2. For ψ ∈ Sδ(K+), write

D

∫

Γ̌−
1

v̌1(w)dw :=

∫

Γ̌−
1

+iε

v̌1(w)dw, D

∫

Γ̌−
2

v̌1(w)dw =

∫

Γ̌−
2
−iε

v̌1(w)dw.

We can now represent (8.11) and (8.12) formally as

D

∫

Γ̌−
1

v̌1(w)ψ̌−(w)dw −D

∫

Γ̌−
2

v̌2(w)ψ̌−(w)dw = 0, ψ ∈ Sδ(K+), (8.13)

and

D

∫

∂V̌

v̌ψ̌− = 0, ψ− ∈ Sδ, (8.14)

where V̌ − is the domain between the contours Γ̌−
2 and Γ̌−

1 which is placed to the right of
∂V̌ − = Γ̌−

1 ∪ Γ̌−
2 . We systematically use Definition 8.2 in our calculations below.

In the remaining part of the paper, we derive our main theorem, Theorem 6.1, from Theorem 8.1.
Let us describe an example illustrating our main theorem (Theorem 6.1) in a model situation.

Namely, let γ1 (γ2) be the upper (the lower) semicircle |z| = 1, Im z > 0 (|z| = 1, Im z 6 0,
respectively) which is oriented clockwise. Let v1(z) (v2(z)) be a continuous function on γ1 (γ2),
and let

∫

γ1

v1(z)ψ(z)dz −
∫

γ2

v2(z)ψ(z)dz = 0 (8.15)

for every function ψ(z) which is analytic on the circle |z| < 1 and continuous for |z| 6 1. Identity
(8.15) is an analog of (8.9). We can also rewrite (8.15) in the form of (8.12), namely,

∫

|z|=1

v(z)ψ(z) = 0, (8.16)

where v(z) := v1(z) for z ∈ γ1 and v(z) := −v2(z) for z ∈ γ2. Now an analog of our main theorem,
Theorem 6.1, would be the claim that the function v(z) is analytic for |z| 6 1. This fact readily
follows from (8.16) if we take

ψ(z) := K(z′, z) =
1

2πi

1

z − z′
for |z′| > 1.

Indeed, the function

f(z′) :=
1

2πi

∫

|z|=1

v(z)

z − z′
dz (8.17)

is analytic for |z′| 6= 1, and the Plemelj formula yields

f(z′ + 0z′) − f(z′ − 0z′) = v(z′) for |z′| = 1. (8.18)

It remains to note that f(z′) vanishes for |z′| > 1, according to the integral equation (8.16). Hence,
(8.18) becomes

−f(z′ − 0z′) = v(z′) for |z′| = 1.

Therefore, v(z′) is analytic for |z| < 1.

Our proof of Theorem 6.1 is technically different, though the main idea is to use the Plemelj
formula for the Cauchy integrals of the type of (8.17). One of the main problems in this program
is to construct an analog of the Cauchy kernel K(z′, z). We construct the kernels in the following
two sections.
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9. A SPECIAL CLASS OF TEST FUNCTIONS

Below we refer to the functions in the space Sδ(K+) with δ > 0 as the test functions. Here we
introduce a special class of test functions ψ(x) ∈ Sδ(K+). Define a distribution by the rule

Rλ,θ(x1, x2) := eiλ(x1 cos θ+sin θx2)Θ(x1 cos θ + x2 sin θ)δ(−x1 sin θ + x2 cos θ), (x1, x2) ∈ R
2.

Obviously, Rλ,θ(x1, x2) ∈ S′(R2) for λ ∈ C
+ and θ ∈ [0, π/2]. The Fourier–Laplace transform

of Rλ,θ is

R̃λ,θ(z1, z2) =
i

λ+ z1 cos θ + z2 sin θ
, z ∈ CK∗

+.

Write
ψλ,θ(x1, x2) := (−iRλ,θ ∗ Ψ)(x1, x2), (9.1)

where Ψ(x1, x2) is defined by (15.4). The Fourier–Laplace transform of ψλ,θ is

ψ̃λ,θ(z1, z2) =
Ψ̃(z1, z2)

λ+ z1 cos θ + z2 sin θ
, (z1, z2) ∈ CK∗

+. (9.2)

Note that
Ψ̃(z1, z2) ∈ H(C+

1 × C
+
1 ) (9.3)

by (6.3) and by (15.1) and (15.5).

Remark 9.1. Note that

λ+ z1 cos θ + z2 sin θ 6≡ 0, z ∈ V,

since the symbol (4.2) is an irreducible polynomial.

Proposition 9.2. Consider a λ ∈ C
+ and a θ ∈ [0, π/2]. Then the following assertions hold.

i) ψλ,θ(x1, x2) ∈ C∞(R2).

ii) suppψλ,θ ⊂ K+.

iii) The function ψ̃λ,θ is meromorphic on C
+
1 × C

+
1 and analytic on the subdomain

Imλ+ Im z · (cos θ, sin θ) > 0 containing CK∗
+.

iv) For any N > 0 and τ ′ > 0, the following bound holds:

∣

∣ψ̃λ,θ(z1, z2)
∣

∣ 6 CN,τ ′(1 + |z|)−N , Imλ+ Im z · (cos θ, sin θ) > τ ′, Im zl > −1 + τ ′, l = 1, 2.
(9.4)

Proof. i) The convolution (9.1) is a smooth function of x1, x2 because Ψ ∈ S(R2). Assertion ii)
follows from (9.1) because suppRλ,θ ⊂ K+ and suppΨ ⊂ K+.

Assertion iii) follows from (9.2) and (15.5). The bound (9.4) follows immediately from (9.2) and
(15.6).

Corollary 9.3. For any θ ∈ [0, π/2], the function ψλ,θ(x) belongs to the space Sδ(K+) of the
test functions for δ ∈ (0, 1) and Imλ > δ(cos θ + sin θ).

Proof. First, note that Im(λ+z1 cos θ+z2 sin θ) > 0 if Im zl > −δ, l = 1, 2. Moreover, Ψ̃(z1, z2)
is analytic on C

+
δ × C

+
δ by (9.3) since δ < 1. Hence, the function (9.2) is analytic on C

+
δ × C

+
δ .

Moreover, estimate (7.2) holds in this domain by (9.4).

Since δ∗ < 1 by (6.3), Theorem 8.1 and Corollary 9.3 imply the following assertion.
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Corollary 9.4. Let δ ∈ (0, δ∗) and λ ∈ C
+ be such that Imλ > δ(cos θ + sin θ), and let

θ ∈ [0, π/2]. Then the integral connection equation in the forms (8.13) and (8.14) holds for ψ̌−
λ,θ(w),

namely,

D

∫

Γ̌−
1

v̌1(w)ψ̌−
λ,θ(w)dw −D

∫

Γ̌−
2

v̌2(w)ψ̌−
λ,θ(w)dw = 0. (9.5)

Proof. This follows from Corollary 9.3 and from (6.3).

Specifically, we shall prove our main theorem, Theorem 6.1, in the case of

ω = i, α = 3π/2. (9.6)

The proof for general values of ω ∈ C
+ and α ∈ [π, 2π] is similar. In the case of (9.6), formulas

(5.3) become
z1(w) := sinhw, z2(w) := −i coshw, w ∈ C. (9.7)

Remark 9.5. In the case of (9.6), the curves Γ̌±
l are straight lines and the curves Γ̌−

1 and Γ̌−
2

are symmetric with respect to the point −πi/4 (see Fig. 5).

10. CAUCHY KERNEL ON THE RIEMANN SURFACE

In the previous section, we have introduced a special class of test functions. In the present
section, we construct the Cauchy kernels by using the function ψ̌−

λ,θ(w). By Proposition 9.2 iii), the

function ψ̃λ,θ(−z) is meromorphic on C
−
1 ×C

−
1 and analytic for Im z · (cos θ, sin θ) < Imλ. Consider

the restriction of this function to the Riemann surface V and the lifting ψ̌−
λ,θ(w) of this restriction

to the universal covering V̌ . Denote by Π := Π(−π, π/2) the strip −π < Imw < π/2.

Lemma 10.1. The function ψ̌−
λ,θ(w) is meromorphic on w ∈ Π, analytic at the points with

Im sin(w − iθ) < Imλ, and continuous at the points w ∈ ∂Π with λ 6= sinh(w − iθ).

Proof. By (9.2),

ψ̃λ,θ(−z1,−z2) =
Ψ̃(−z1,−z2)

λ− z1 cos θ − z2 sin θ
, (z1, z2) ∈ (C−

1 × C
−
1 ). (10.1)

First, let us consider the lifting of the function Ψ̃(−z1,−z2). For ω = i, we have

Ψ̃(−z1,−z2) = Λ̃(−z1)Λ̃(−z2) = e−
4
√
−z1+i− 4

√
−z2+i, (z1, z2) ∈ (C−

1 × C
−
1 ),

by (15.5). By Remark 15.1, the function Λ̃1(z1) admits an analytic continuation to C \ L and is
continuous on each of the sides of L. The function −z1(w) is a two-sheeted mapping of the strip
Π1 := Π(−3π/2, π/2)) onto C \ L−, where L− := −L, and is continuous up to ∂Π1. Therefore,

the function Λ−
1 (w) := Λ̃(−z1(w)) is analytic on Π1 and continuous on Π1. Similarly, the function

Λ−
2 (w) = Λ̃(−z2(w)) is analytic on Π2 := Π(−π, π) and continuous on Π2. By (15.5) and (15.7),

Ψ̌−(w) := Ψ̃(−z1(w),−z2(w)) = Λ−
1 (w)Λ−

2 (w).

Therefore, the function Ψ̌−(w) is analytic on Π := Π1 ∩Π2 and continuous in Π. Substituting (9.7)
into (10.1), we obtain

ψ̌−
λ,θ(w) =

Ψ̌−(w)

λ− sinh(w − iθ)
,

Ψ̌−(w) = Λ̃(−z1(w))Λ̃(−z2(w)) = e−
4
√
− sinh w+i− 4

√
i cosh w+i, w ∈ Π.

This implies the assertion of the lemma.

We can now construct a special class of Cauchy kernels. Write

λ = sinh(w′ − iθ), w′ ∈ C. (10.2)

Note that Imλ > 0 for w′ − iθ ∈ V̌ +
1 .
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Definition 10.2. For (w′, w) ∈ Π × Π and θ ∈ [0, π/2], write

Kθ(w
′, w) := −Mθ(w

′)ψ̌−
λ,θ(w) = Mθ(w

′)
Ψ̌−(w)

sinh(w − iθ) − sinh(w′ − iθ)
, (10.3)

where

Mθ(w
′) :=

cosh(w′ − iθ)

Ψ̌−(w′)
. (10.4)

Proposition 10.3. i) For any θ ∈ [0, π/2], the function Kθ(w
′, w) is meromorphic on Π × Π

and continuous at every point (w′, w) ∈ Π × Π with sinh(w′ − iθ) 6= sinh(w − iθ).

ii) Kθ(w
′, w) is analytic for w′ 6= w and w′ 6= Sθw

′, where Sθw := −w−πi+2iθ is the symmetry
with respect to w = −πi/2 + iθ.

iii) The residue at w = w′ is equal to one,

resw=w′ Kθ(w
′, w) = 1.

iv) For (w′, w) ∈ Π × Π with |Rew| > C(w′), the following bound holds:

|Kθ(w
′, w)| 6 C(w′)e−σ exp 1

4
|Re w| for σ > 0. (10.5)

Proof. Step 1. Lemma 10.1 implies that ψ̌sinh(w′−iθ),θ(w) is meromorphic in Π and continuous
at every point w ∈ ∂Π with sinh(w′− iθ) 6= sin(w− iθ) by (10.2). Therefore, assertions i), iii) follow
from (10.3) and (10.4) since

e−
4
√
− sinh w′+i− 4

√
i cosh w′+i 6= 0 for w′ ∈ C.

Step 2. The function Mθ(w
′) is analytic on w′ ∈ Π, and Ψ̌−(w) is analytic on Π. Hence, assertion

ii) follows from the identity

sinh(w − iθ) − sinh(w′ − iθ) = 2 sinh
w − w′

2
cosh

w + w′ − 2iθ

2
.

The bound (10.5) follows now from (10.3) and (15.11). This completes the proof of the proposition.

11. ANALYTIC CONTINUATION

We are going to construct an analytic continuation of the function v̌1(w) (of v̌2(w)) to w ∈ V̌1

(to w ∈ V̌2, respectively).

To construct an analytic continuation of v̌1, denote by K1(w
′, w) the function Kθ(w

′, w) with
θ = 0. Then definitions (10.3) and (10.4) imply that

K1(w
′, w) =

coshw′

sinhw − sinhw′
Ψ̌−(w)

Ψ̌−(w′)
. (11.1)

It follows from Proposition 10.3 that K1(w
′, w) is meromorphic on Π × Π and analytic for w′ 6= w

and w′ 6= S1w, where S1w := −w−πi. Obviously, S1w is the symmetry with center at w = −πi/2.
Introduce the contour γ1 := γ(π/2) with the direction from the right to the left and take the

strip V̌ −
2 := Π(−π/2, 0) (see Fig. 5).
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π
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r π
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?
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?
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?
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6

?
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6

?
T1

6

?

Π2(ε)

6

?

T2

6

?

Π

Fig. 5. Domain of analyticity for v̌1(w).

To construct an analytic continuation of v̌2, we set θ = π/2 and K2 := Kθ(w
′, w). Then defini-

tions (10.3) and (10.4) yield

K2(w
′, w) =

sinhw′

coshw − coshw′
Ψ̌−(w)

Ψ̌−(w′)
. (11.2)

Proposition 10.3 implies that K2 is meromorphic on Π× Π and analytic for w 6= w′ and w 6= −w′.
Introduce the contour γ2 := γ(−π) with the direction from the left to the right and take the strip
V̌ −

1 := Π(−π, 0) (see Fig. 5).

Proposition 11.1. i) The function v1(w
′) admits an analytic continuation to V̌ −

2 , and the
continuation is given by the formula

v̌1(w
′) :=

1

2πi

(

∫

γ1

v̌1(w)K1(w
′, w)dw +D

∫

Γ̌−
2

v̌2(w)K1(w
′, w)dw

)

, w′ ∈ V̌ −
2 . (11.3)
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ii) The function v2(w
′) admits an analytic continuation to V̌ −

1 , and the continuation is given by
the formula

v̌2(w
′) :=

1

2πi

(

D

∫

Γ̌−
1

v̌1(w)K2(w
′, w)dw +

∫

γ2

v̌2(w)K2(w
′, w)dw

)

, w′ ∈ V̌ −
1 . (11.4)

Proof. Let us prove assertion i) (assertion ii) can be proved in a similar way).

I. First, let us prove (11.3) for w′ ∈ γ(π/4), where Imw′ = π/4.

Step 1. By Proposition 10.3, the function K1(w
′, w) with w ∈ Π(0, π/2) ⊂ Π has a unique pole

at w = w′ with the residue 1 and admits the bounds (10.5). On the other hand, the function v̌1(w)
is analytic on Π(0, π/2) ⊂ V̌ +

1 by (6.2) and admits the bounds

|v̌1(w)| 6 C(ε)eκ|Re w|, w ∈ Π(ε, π/2) (11.5)

for any ε > 0 by (8.10). Hence,

1

2πi

(

∫

γ1

v̌1(w)K1(w
′, w)dw +D

∫

Γ̌−
1

v̌1(w)K1(w
′, w)dw

)

= v̌1(w
′), w′ ∈ Π(0, π/2), (11.6)

by the Cauchy residue theorem and by Definition 8.2. In fact, the Cauchy theorem implies (11.6)
with the contour Γ̌−

1 replaced by Γ̌−
1 + iε with ε < Imw′. Hence, (11.6) also follows from Defini-

tion 8.2 since ε > 0 can be taken to be arbitrarily small.

Step 2. Now let us apply the integral connection equation (9.5). We have Imλ = Im sinhw′ >
δ := 0.5. because Imw′ = π/4. Thus, ψλ,0(x) ∈ Sδ(K+) by Corollary 9.3 because θ = 0. Hence,

relation (9.5) holds for K1(w
′, w) with Imw′ = π/4 because K1(w

′, w) = C(w′)ψ̌λ,0(w) by (11.1).

Therefore, in (11.6), we can replace the contour Γ̌−
1 by Γ̌−

2 and the function v̌1 by v̌2 and obtain
relation (11.3) for w′ ∈ γ(π/4).

II. We extend now relation (11.3) from w′ ∈ γ(π/4) to all w′ ∈ V̌ −
2 . It suffices to prove that the

right-hand side of (11.3) is analytic on V̌ −
2 because the function v̌1(w) is analytic on V̌ +

1 ⊃ γ(π/4)
(see (6.2)).

For w′ ∈ V̌ −
2 , the kernel K1(w

′, w) is continuous for w ∈ γ1 ∪ Γ̌−
2 by Proposition 10.3 i) since

sinhw′ 6= sinhw for these w′, w. Hence, all “integrals” in (11.3) are well defined by estimates (10.5)
and (8.10). It remains to prove that this function is differentiable with respect to w′ ∈ V̌ −

2 . This
follows from the expression

∂

∂w′K1(w
′, w) = Ψ̌−(w)

M ′
0(w

′)(sinhw′ − sinhw) −M0(w
′) coshw′

(sinhw − sinhw′)2
,

which admits estimates (10.5) for w′ ∈ V̌ −
2 ⊂ Π and w ∈ γ1 ∪ Γ̌−

2 .

12. UNIVERSAL CAUCHY KERNEL

We have established the representations (11.3) and (11.4) for vl ∈ V̌ − with l = 1, 2, respectively.
These representations contain different kernelsKθ with θ = 0 and θ = π/2, respectively, which gives
us no possibility to identify v̌1 with −v̌2 on V̌ −. In this section, we construct representations which
use a universal kernel for both the functions. These representations, together with the analyticity
of v̌−l on V̌ −, enables us to prove the main theorem.

Consider the kernel Kθ(w
′, w) defined by (10.3) and (10.4) with θ = π/4 and λ := sinh(w′−π/4),

K(w′, w) =
cosh(w′ − πi/4)

sinh(w − πi/4) − sinh(w′ − πi/4)

Ψ̌−(w)

Ψ̌−(w′)
. (12.1)
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By Proposition 10.3, this function admits a meromorphic continuation to Π×Π, and it is analytic
at the points (w′, w) ∈ Π × Π with sinh(w − πi/4) 6= sinh(w′ − πi/4) and continuous for all pairs
(w′, w) ∈ ∂(Π × Π) with sinh(w − πi/4) 6= sinh(w′ − πi/4).

In what follows, we use the fact that

Imλ = Im sinh(w′ − πi/4) > 0 for w′ ∈ Π
(π

4
, π

)

since we have there w′ − πi
4 ∈ V̌ +

1 . Therefore, we have K(w′, ·) ∈ Sδ for any sufficiently small δ > 0
(the interval for δ depends on w′ by Corollary 9.3).

Just as in Proposition 11.1, we obtain representations of type (11.3) and (11.4) for v̌1 and v̌2
with the universal kernel (12.1). Write T1 := Π(0, π/2) and T2 := Π(−π,−π/2).

Proposition 12.1. i) The function v1(w
′) on the domain T1 can be represented by the formula

v̌1(w
′) :=

1

2πi

(

∫

γ1

v̌1(w)K(w′, w)dw +D

∫

Γ̌−
2

v̌2(w)K(w′, w)dw
)

, w′ ∈ T1. (12.2)

ii) The function v2(w
′) on the domain T2 can be represented by the formula

v̌2(w
′) :=

1

2πi

(

D

∫

Γ̌−
1

v̌1(w)K(w′, w)dw +

∫

γ2

v̌2(w)K(w′, w)dw
)

, w′ ∈ T2. (12.3)

Proof. Let us prove assertion i) (assertion ii) can be proved in a similar way).

I. First, let us prove (12.2) for w′ ∈ γ(3π/8), where Imw′ = 3π/8.

Step 1. Repeating the arguments of Step 1 in the proof of Proposition 11.1, we obtain the
representation (11.6) with K instead of K1.

Step 2. Let us apply now the integral connection equation (9.5). For δ < sin(π/8)/
√

2, we have

Imλ = Im sinh(w′ − πi/4) = sin(π/8) > δ(cos(π/4) + sin(π/4))

since Imw′ = 3π/8. Thus,
ψλ,π/4(x) ∈ Sδ(K+)

by Corollary 9.3 for such δ. Hence, (12.2) follows for w′ ∈ γ(3π/8) similarly to Step 2 in Proposi-
tion 11.1.

II. Now we extend (12.2) from w′ ∈ γ(3π/4) to all w′ ∈ T1. It suffices to prove that the right-hand
side of (11.3) is analytic on Ť1 since the function v̌1(w) is analytic on V̌ +

1 ⊃ γ(3π/4) (see (6.2)).

For w′ ∈ T1, the kernel K(w′, w) is continuous for w ∈ γ1 ∪ Γ̌−
2 by Proposition 10.3 i) since

sinh(w′ −πi/4) 6= sinh(w−πi/4) for these (w′, w). Thus, repeating the arguments of Part II in the
proof of Proposition 11.1, we obtain (12.2).

13. BOUNDS FOR THE ANALYTIC CONTINUATION

Let us choose a sufficiently small ε > 0. In this section, we obtain important estimates for the
function v̌1 on the set Π1(ε) (which is the closure of Π(−π/4, ε)) and for the function v̌2 on the set
Π2(ε) (which is the closure of Π(−π/2 − ε,−π/4)).

Lemma 13.1. For any sufficiently small ε > 0, there exists a C(ε) > 0 such that

| sinhw′ − sinhw| > Ce|Re w′|, w ∈ γ1 ∪ Γ̌−
2 , w′ ∈ Π1(ε), (13.1)

| coshw′ − coshw| > Ce|Re w′|, w ∈ γ2 ∪ Γ̌−
1 , w′ ∈ Π2(ε). (13.2)
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Proof. Let us prove inequality (13.1) (inequality (13.2) can be proved in a similar way).

Step I. Let us first consider a point w ∈ γ1, in which case we have w2 := Imw = π/2. Then

−3π

8
6
w′

2 − w2

2
6
ε

2
− π

4

for w′ ∈ Π1(ε). Hence,
∣

∣

∣
sinh

w′ − w

2

∣

∣

∣
> Ce|

w
′−w

2
|, w′ ∈ Π1(ε), w ∈ γ1. (13.3)

Second, let us consider w ∈ Γ̌−
2 , in which case we have w2 = −π/2. Then

π

8
6
w′

2 − w2

2
6
a

2
+
π

4

for w′ ∈ Π1(ε). Hence, (13.3) also holds in this case. Therefore,
∣

∣

∣
sinh

w′ − w

2

∣

∣

∣
> Ce|

w
′−w

2
|, w′ ∈ Π1(ε), w ∈ γ1 ∪ Γ̌−

2 , C > 0. (13.4)

Step II. Let us first consider points w ∈ γ1 and w′ ∈ Π1(ε). Then

π

8
6
w2 +w′

2

2
6
π

4
+
ε

2
.

Second, let us consider points w ∈ Γ̌−
2 and w′ ∈ Π1(ε). Then

−3π

8
6
w2 + w′

2

2
6 −π

4
+
ε

2
.

Hence,
∣

∣

∣
cosh

w′ + w

2

∣

∣

∣
> Ce|

w+w
′

2
|, w′ ∈ Π1(ε), w ∈ γ1 ∪ Γ̌−

2 , C > 0. (13.5)

Step III. Therefore, it follows from (13.4) and (13.5) that

| sinhw′ − sinhw| = 2
∣

∣

∣
sinh

(w′ −w

2

)

cosh
(w′ + w

2

)
∣

∣

∣
> Ce|

w
′−w

2
|+|w

′+w

2
|
> Ce|w

′
1|,

w ∈ γ1 ∪ Γ̌−
2 , C > 0.

Corollary 13.2. By (13.1) and (13.2), the functions Kl(w
′, w) defined by (11.1) and (11.2)

admit the estimates

|K1(w
′, w)| 6 C(ε)

∣

∣

∣

Ψ̌−(w)

Ψ̌−(w′)

∣

∣

∣
, w ∈ γ1 ∪ Γ̌−

2 , w′ ∈ Π1(ε), (13.6)

|K2(w
′, w)| 6 C(ε)

∣

∣

∣

∣

Ψ̌−(w)

Ψ̌−(w′)

∣

∣

∣

∣

, w ∈ γ2 ∪ Γ̌−
1 , w′ ∈ Π2(ε),

for all sufficiently small ε < 0 and for some C(ε) <∞.

Proof. The bound (13.6) follows from (11.1) because
∣

∣

∣

coshw′

sinhw − sinhw′

∣

∣

∣
6 C, w ∈ γ1 ∪ Γ̌−

2 , w′ ∈ Π1(ε),

by Lemma 13.1. For l = 2, the bound follows similarly from the representation (11.2).

Corollary 13.3. For all sufficiently small ε > 0, the functions v̌l(w) admit the bounds

|v̌l(w)| 6 C(ε)|Ψ̌−(w)|−1, w ∈ Πl(ε), (13.7)

for some C(ε) <∞, l = 1, 2.

Proof. The assertion follows from (11.3), (11.4), (11.5), and (13.6).
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14. SINGULAR INTEGRAL EQUATION

In the previous section, we have obtained the representations (12.2) and (12.3) which make use
of the universal kernel. However, the contours of integration are different, and the closures of the
domains of validity, T1 and T2, are disjoint because the strip V̌ − lies between T1 and T2.

Therefore, a straightforward application of (12.2) and (12.3) gives no possibility to immediately
identify the functions v̌1 and −v̌2 to prove the main theorem. Hence, it is natural to replace all
contours of integration in (12.2) and (12.3) by the contour γm.

Proposition 14.1. The following identities hold :

∫

γm

[v̌1(w) + v̌2(w)]K(w′, w)dw = 0, w′ ∈ Π
(

−π
4
,
π

2

)

; (14.1)

∫

γm

[v̌1(w) + v̌2(w)]K(w′, w)dw = 0, w′ ∈ Π
(

−π,−π
4

)

. (14.2)

Remark 14.2. i) This proposition implies our main theorem, Theorem 6.1, by the Plemelj
formula.

ii) We shall derive the proposition from the representations (12.2) and (12.3) with the Cauchy
kernel K. However, the proof heavily depends on the analyticity of v̌1 and v̌2 on the domain V̌ −.

iii) The desired analyticity on V̌ − follows by Proposition 11.1 from the representations (11.3) and
(11.4) with the Cauchy kernels K1 and K2. On the other hand, the analyticity cannot be derived
from the representations (12.2) and (12.3) by the method of Proposition 11.1. This is related to
the fact that the function K(w′, w) for w ∈ Γ̌−

2 has a pole at w′ = −w − πi ∈ Γ̌−
1 .

iv) For this reason, we need all three representations for v̌1 and v̌2 (with the Cauchy kernels K,
K1, and K2).

Proof of Proposition 14.1. Step 1. Let us first prove (14.1) for w′ ∈ T1 = Π(0, π/2). We shall
replace the contours in (12.2) by using the analyticity of the function v̌2(w) on V̌ −

1 (see Proposition
11.1) and estimates (13.7).

I. Let us lift the contour of integration Γ̌−
2 up to γm in (12.2).

1. We replace first the formal integral over the contour Γ̌−
2 in (13.5) to the integral over Γ̌−

2 − iε
by using Definition 8.2 (for a small ε > 0).

2. Second, we lift the contour Γ̌−
2 − iε up to γm and obtain

v̌1(w
′) =

1

2πi

(

∫

γ1

v̌1(w)K(w′, w)dw +

∫

γm

v̌2(w)K(w′, w)dw
)

, w′ ∈ Π
(

0,
π

2

)

. (14.3)

This follows from the Cauchy theorem. In fact, a) the contours Γ̌−
2 − iε and γm bound the strip

Π2(ε), b) the function v̌2(w) is analytic on w ∈ V̌ −
1 ⊃ Π2(ε) by Proposition 11.1, and c) the function

K(w′, w) is analytic with respect to w ∈ Π(−π/2,−π/4) for w′ ∈ Π(0, π/2) by Proposition 10.3 ii)
with θ = π/4. Finally, the integrand v̌2(w)K(w′, w) admits the bound

|v̌2(w)K(w′, w)| 6 C(w′)e−|w|, w ∈ Π2(ε), (14.4)

which follows from estimates (13.7) and from the representation (12.1).

II. We move down the contour γ1 in formula (14.3). Let us make this movement in two steps.
Recall that w′ ∈ T1.

First, let us deform the contour γ1 to the contour γ(ε) for a small 0 < ε < Imw′ by using the
Cauchy residue theorem and the “standard” bound (8.10) for l = 1. Then we replace the contour
γ(ε) by γm (using the bound (10.5)).
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Let us equip the contour γ(ε) with the direction of the contour γ1, i.e., from the right to the

left. Since w′ ∈ V̌ +
1 , the bound (8.10) for l = 1 holds on the strip Π(ε, π/2). Hence,

∫

γ1

v̌1(w)K(w′, w)dw =

∫

γ(ε)

v̌1(w)K(w′, w)dw + v̌1(w
′). (14.5)

Replace now the contour γ(ε) by γm in the second integral in (14.5). Namely, we again apply
the bound (13.7) for l = 1 to the function v̌1(w)K(w′, w). The representation (12.1) implies that
v̌1(w)K(w′, w) admits a bound similar to the bound in (14.4) of the strip Π1(ε). Therefore,

∫

γ(ε)

v̌1(w)K(w′, w)dw =

∫

γm

v̌1(w)K(w′, w)dw (14.6)

because the function v̌1 is analytic on V̌ −
2 and the function K(w′, w) is analytic on the strip Π1(ε)

by the Cauchy theorem (taking into account the directions of the contours γ(ε) and γm). Hence,
substituting first the expression in (14.6) into (14.5) and then the expression in (14.5) into (14.3),
we obtain

v1(w
′) = v1(w

′) +
1

2πi

(

∫

γm

v̌1(w)K(w′, w)dw +

∫

γm

v̌2(w)K(w′, w)dw
)

, w′ ∈ T1. (14.7)

Further, relation (14.7) yields
∫

γm

[v̌1(w) + v̌2(w)]K(w′, w)dw = 0, w′ ∈ T1.

Step 2. It remains to extend this identity to any point w′ ∈ Π(−π/4, π/2). This follows from the
analyticity of the left-hand side of (14.1) on the strip Π(−π/4, π/2).

Identity (14.2) can be proved in a similar way.

Proof of the main theorem (Theorem 6.1). It suffices to show that

v̌1(w) + v̌2(w) ≡ 0, w ∈ γm.

Write

I(w′) :=

∫

γm

[v̌1(w) + v̌2(w)]K(w′, w)dw, w′ ∈ V̌ − \ γm.

By (14.1) and (14.2), we have

I(w′) ≡ 0, w′ ∈ V̌ − \ γm.

Hence, by the Plemelj theorem,

[v̌1(w) + v̌2(w)] = I(w′ + i0) − I(w′ − i0) = 0, w′ ∈ γm.

15. APPENDIX. ON A CLASS OF SCHWARTZ FUNCTIONS

For ω2 > 0, denote by Λ(x), x ∈ R, the tempered distribution with respect to x ∈ R with the
Fourier transform

Λ̃(z) = e−
4
√

z+iω2 , z ∈ R, (15.1)

where 4
√
z is analytic outside the cut L := [0,−i∞) and we have Re 4

√
z > 0 and Im 4

√
z > 0

for z ∈ C
+.

Remark 15.1. The function Λ̃(z) admits an analytic continuation from the points z ∈ R to
all points z ∈ C \ L(ω2), and this function is continuous on each side of the ray L(ω2), where
L(ω2) = {−iω2 − ir : r > 0}.
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Lemma 15.2. i) The uniform bounds

∣

∣

∣
Λ̃(k)(ξ + iτ)

∣

∣

∣
6 Ce−|ξ|/4, ξ ∈ R, τ > τ ′, (15.2)

hold for any k = 0, 1, 2, . . . and τ ′ > −ω2.

ii) The function Λ̃(z), z ∈ C
+, is the Fourier–Laplace transform of the function Λ(x) ∈ S(R)

with suppΛ ⊂ R+.

Proof. i) We have Λ̃ ∈ C∞(R) because Λ̃(z) is analytic on C
+

by (15.1). The bound (15.2)
follows from the inequality

Re 4
√
z + iω2 > Cω2

|z|1/4 − 1, z ∈ C. (15.3)

ii) The bound (15.2) implies that Λ̃(ξ) ∈ S(R). Hence,

Λ := F−1Λ̃ ∈ S(R).

Finally, by the Paley–Wiener theorem, we have suppΛ(x) ⊂ R+ (because the function Λ̃ is analytic
on C

+ and the bound (15.2) holds). This completes the proof of the lemma.

Definition 15.3. Write

Ψ(x) := Ψ(x1, x2) := Λ(x1)Λ(x2) for x = (x1, x2) ∈ R
2. (15.4)

By Lemma 15.2,

Ψ(x) ∈ S(R2), suppΨ ⊂ K+, Ψ̃(z1, z2) ∈ H(C+
ω2

× C
+
ω2

);

Ψ̃(z1, z2) = Λ̃(z1)Λ̃(z2) = e−
4
√

z1+ω2i− 4
√

z2+ω2i, (z1, z2) ∈ (C+
ω2

× C
+
ω2

). (15.5)

It follows from the bound (15.2) that the function Ψ̃(z) satisfies the following inequality:

∣

∣

∣

∂k1+k2

∂zk1

1 ∂zk2

2

Ψ̃(ξ + iτ)
∣

∣

∣
6 Ck,τ ′,N (1 + |ξ1|)−N (1 + |ξ2|)−N , τ1,2 > τ ′, (15.6)

for every τ ′ > −ω2.

Let us consider the restriction of the function Ψ̃(−z1,−z2) to the domain V and the lifting of
the restriction to the universal covering V̌ . Take ω2 = 1. By (9.7), the liftings of the restrictions

of Λ̃(−z1) and Λ̃(−z2) are of the form

Λ̌−
1 (w) := e−

4
√
− sinh w+i, w ∈ V̌ +

1 ; Λ̌−
2 (w) := e−

4
√

i cosh w+i, w ∈ V̌ +
2 . (15.7)

Lemma 15.4. For w ∈ Π(−3π/2, π/2), the following bounds hold :

K1e
−C1 exp

|w1|

4 6 |Λ−
1 (w)| 6 K2e

−C2 exp
|w1|

4 . (15.8)

For w ∈ Π(−π, π), the following bounds hold :

K1e
−C1 exp

|w1|

4 6 |Λ−
2 (w)| 6 K2e

−C2 exp
|w1|

4 . (15.9)

Here C1,2 and K1,2 stand for some positive constants.
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Proof. For w ∈ Π(−3π/2, π/2), consider the function

Λ̌−
1 (w) := Λ̃(−z1(w)) = Λ̃(− sinhw) = e−

4
√
− sinh w+i. (15.10)

Since w ∈ Π(−3π/2, π/2) only if z1 ∈ C, it follows that

Re 4
√

−z1(w) + i > C|z1(w)|1/4 − 1

by (15.3). Hence, the second inequality in (15.8) follows by virtue of (15.10). The first inequality is
obvious. Inequalities (15.9) can be proved in a similar way.

Finally, let us consider the lifting Ψ̌−(w) of the function Ψ̃(−z1,−z2) to the universal covering V̌ .
By (15.5) and (15.7), we have

Ψ̌−(w) = Λ̃(−z1(w))Λ̃(−z2(w)) = e−
4
√
− sinh w+i− 4

√
i cosh w+i, w ∈ Π.

Corollary 15.5. The function Ψ̌−(w) admits the bound

K1e
−C1 exp

|w1|

4 6 |Ψ̌−(w)| 6 K2e
−C2 exp

|w1|

4 , w ∈ Π, (15.11)

with some C1,2 > 0 and K1,2 > 0.
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