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Abstract: We establish the long time soliton asymptotics for the translation invariant
nonlinear system consisting of the Klein–Gordon equation coupled to a charged relativ-
istic particle. The coupled system has a six dimensional invariant manifold of the soliton
solutions. We show that in the large time approximation any finite energy solution, with
the initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave
which is a solution of the free Klein–Gordon equation. It is assumed that the charge
density satisfies the Wiener condition which is a version of the “Fermi Golden Rule”.
The proof is based on an extension of the general strategy introduced by Soffer and
Weinstein, Buslaev and Perelman, and others: symplectic projection in Hilbert space
onto the solitary manifold, modulation equations for the parameters of the projection,
and decay of the transversal component.

1. Introduction

Our paper concerns the problem of nonlinear field-particle interaction. A charged par-
ticle radiates a field which acts back on the particle. This interaction is responsible
for some crucial features of the dynamics: asymptotically uniform motion and stability
against small perturbations of the particle, increase of the particle’s mass and others
(see [1, 11, 26, 37]). The problem has many different appearances: a classical particle
coupled to a scalar or Maxwell field, and coupled Maxwell–Schrödinger or Maxwell–
Dirac equations, general translation invariant nonlinear hyperbolic PDEs. In all cases the
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goal is to reveal the distinguished role of the soliton solutions, i.e. traveling wave solu-
tions of finite energy. Let us note that the existence of the soliton solutions is proved for
nonlinear Klein–Gordon equations with a general nonlinear term [4], and for the coupled
Maxwell–Dirac equations [13].

One of the main goals of a mathematical investigation is to study soliton type as-
ymptotics and asymptotic stability of soliton solutions to the equations. First results in
this direction have been discovered for the KdV equation and other completely integra-
ble equations. For the KdV equation, any solution with sufficiently smooth and rapidly
decaying initial data converges to a finite sum of soliton solutions moving to the right,
and a dispersive wave moving to the left. A complete survey and proofs can be found in
[12].

For nonintegrable equations, the long time convergence of the solution to a soliton
part and dispersive wave was obtained first by Soffer and Weinstein in the context of
the U (1)-invariant Schrödinger equation [31–33]. The extension to translation invariant
equations was obtained by Buslaev and Perelman [5, 6] for the 1D Schrödinger equa-
tion, and by Miller, Pego and Weinstein for the 1D modified KdV and RLW equations,
[27–29]. The techniques introduced by Weinstein [41] play a fundamental role in the
proofs of all these results.

In [5, 6] the long time convergence is obtained for the 1D translation invariant and
U (1)-invariant nonlinear Schrödinger equation. It is shown there that the following as-
ymptotics hold for any finite-energy solution ψ(x, t) with initial data close to a soliton
ψv0(x − v0t − a0)eiω0t :

ψ(x, t) = ψv±(x − v±t − a±)eiω±t + W0(t)ψ± + r±(x, t), t →±∞. (1.1)

Here the first term on the right-hand side is a soliton with parameters v±, a±, ω± close
to v0, a0, ω0, the function W0(t)ψ± is a dispersive wave which is a solution to the free
Schrödinger equation, and the remainder r±(x, t) converges to zero in the global L2-
norm. Recently Cuccagna extended the asymptotics (1.1) to nD Schrödinger equations
with n ≥ 3, [9, 10].

We establish the asymptotics similar to (1.1) for a scalar real-valued Klein–Gordon
field ψ(x) in R

3 coupled to a relativistic particle with position q and momentum p
governed by

ψ̇(x, t) = π(x, t), π̇(x, t) = �ψ(x, t)− m2ψ(x, t)− ρ(x − q(t)), x ∈ R
3,

q̇(t) = p(t)/
√

1 + p2(t), ṗ(t) =
∫
ψ(x, t)∇ρ(x − q(t))dx,

(1.2)

where m > 0 (the case m = 0 is degenerate and will be considered elsewhere). This is
a Hamiltonian system with the Hamiltonian functional

H(ψ, π, q, p) = 1

2

∫ (
|π(x)|2 + |∇ψ(x)|2 + m2|ψ(x)|2

)
dx

+
∫
ψ(x)ρ(x − q)dx +

√
1 + p2. (1.3)

The first two equations for the fields are equivalent to the Klein–Gordon equation with
the source ρ(x − q). The form of the last two equations in (1.2) is determined by the
choice of the relativistic kinetic energy

√
1 + p2 in (1.3). Nevertheless, the system (1.2)

is not relativistic invariant.
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We have set the maximal speed of the particle equal to one, which is the speed of
wave propagation. This is in agreement with the principles of special relativity. Let us
also note that the first two equations of (1.2) admit the soliton solutions of finite energy,
ψv(x − vt − a), πv(x − vt − a), if and only if |v| < 1.

The case of a point particle corresponds to ρ(x) = δ(x) and then the interaction term
in the Hamiltonian is simply ψ(q). However, in this case the Hamiltonian is unbounded
from below which leads to the ill-posedness of the problem, also known as ultravio-
let divergence. Therefore we smooth the coupling by the function ρ(x) following the
“extended electron” strategy proposed by M. Abraham [1] for charges coupled to the
Maxwell field. In analogy to the Maxwell–Lorentz equations we call ρ the “charge
distribution”. Let us write the system (1.2) as

Ẏ (t) = F(Y (t)), t ∈ R, (1.4)

where Y (t) := (ψ(x, t), π(x, t), q(t), p(t)) (below we always deal with column vec-
tors but often write them as row vectors). The system (1.2) is translation-invariant and
admits the soliton solutions

Ya,v(t) = (ψv(x − vt − a), πv(x − vt − a), vt + a, pv), pv = v/
√

1− v2 (1.5)

for all a, v ∈ R
3 with |v| < 1 (see (2.7), (2.10)), where the functions ψv , πv decay

exponentially for m > 0 (the main difficulty of the case m = 0 is provided by very slow
decay of the functions). The states Sa,v := Ya,v(0) form the solitary manifold

S := {Sa,v : a, v ∈ R
3, |v| < 1}. (1.6)

Our main result is the soliton-type asymptotics of type (1.1) for t →±∞,

(ψ(x, t), π(x, t)) ∼ (ψv±(x − v±t − a±), πv±(x − v±t − a±)) + W0(t)�± (1.7)

for solutions to (1.2) with initial data close to the solitary manifold S. Here W0(t) is the
dynamical group of the free Klein–Gordon equation, �± are the corresponding asymp-
totic scattering states, and the remainder converges to zero in the global energy norm,
i.e. in the norm of the Sobolev space H1(R3)⊕ L2(R3). For the particle trajectory we
prove that

q̇(t)→ v±, q(t) ∼ v±t + a±. (1.8)

The results are established under the following conditions on the charge distribution:
ρ is a real valued function of the Sobolev class H2(R3), compactly supported, and
spherically symmetric, i.e.

ρ,∇ρ,∇∇ρ ∈ L2(R3), ρ(x) = 0 for |x | ≥ Rρ, ρ(x) = ρ1(|x |). (1.9)

We require that all “modes” of the wave field are coupled to the particle, which is
formalized by the Wiener condition

ρ̂(k) = (2π)−3/2
∫

eikxρ(x)dx 	= 0 for all k ∈ R
3 . (1.10)

It is an analogue of the “Fermi Golden Rule” [7–10, 30, 34, 35]: the coupling term
ρ(x − q) is not orthogonal to the eigenfunctions eikx of the continuous spectrum of the
linear part of the equation. As we will see, the Wiener condition (1.10) is very essen-
tial for our asymptotic analysis (see Remark 15.5). Generic examples of the coupling
function ρ satisfying (1.9) and (1.10) are given in [24].
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Remark 1.1. Physically, the Wiener condition means the strong coupling of the particle
to the field which leads to radiation of the particle. This radiation results in the relaxation
of the acceleration q̈(t)→ 0, t →±∞ which provides the asymptotics (1.7) and (1.8).
Note that the soliton solutions do not radiate, and the radiation of the particle manifests
itself in the decay of the deviation of the solution from the solitary manifold (see (1.18)
below).

The problem under investigation was studied earlier in the following two different
situations A and B:
A. The asymptotics

q̇(t)→ v±, (ψ(x, t), π(x, t)) ∼ (ψv±(x − q(t)), πv±(x − q(t))) (1.11)

were proved in [25] in the case m = 0, under the Wiener condition (1.10), for all finite
energy solutions, without the assumption that the initial data are close to S. This means
that the solitary manifold is a global attractor for the equations (1.2). However, the
asymptotics (1.11) were established only in local energy semi-norms centered at the
particle position q(t). This means that the remainder in (1.11) may contain a dispersive
term, similar to the middle term in the right hand side of (1.7), whose energy radiates
to infinity as t → ±∞ but does not converge to zero. A similar result is established in
[16] for coupled Maxwell-Lorentz equations.
B. The asymptotics (1.11), and an analogue of the asymptotics (1.7) in the global energy
norm, were established in [18] (resp., [15]) also for all finite energy solutions, in the
case m = 0 (resp., m > 0), under the smallness condition on the coupling function,
‖ρ‖L2(R3) � 1. The similar results are established in [17, 37] (resp., [19]) for the cou-
pled Maxwell-Lorentz equations with a moving (resp., rotating) charge. Let us stress
that the asymptotics (1.8) for the position was missing in the previous work.

Let us comment on the main difficulties in proving the asymptotic stability of the
invariant manifold S and justifying (1.7), (1.8). The method of [16, 25] is based on the
Wiener Tauberian Theorem, hence cannot provide a rate of convergence in the velocity
asymptotics of (1.8) which is needed to prove (1.7) and the position asymptotics of (1.8).
Also the methods of [15, 17–19] are applicable only for a small coupling function ρ(x),
and do not provide the position asymptotics in (1.8).

Our approach develops a general strategy introduced in [5, 6, 28, 29] for proving
the asymptotic stability of the invariant solitary manifold S. The strategy originates
from the techniques in [41] and their developments in [31–33] in the context of the
U (1)-invariant Schrödinger equation. The approach uses the symplectic geometry meth-
ods for the Hamiltonian systems in Hilbert spaces and spectral theory of nonselfadjoint
operators.

The invariant manifolds arise automatically for equations with a symmetry Lie group
[4, 13, 14]. In particular, our system (1.2) is invariant under translations in R

3. The
asymptotic stability of the solitary manifold is studied by a linearization of the dynamics
(1.4). The linearization will be made along a special curve on the solitary manifold,
S(t), which is the symplectic orthogonal projection of the solution. Then the linearized
equation reads

Ẋ(t) = A(t)X (t), t ∈ R, (1.12)

where the operator A(t) corresponds to the linearization at the soliton S(t). Further-
more, we consider the “frozen” linearized equation (1.12) with A(t1) instead of A(t).
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The operator A(t1) has zero eigenvalue, and the frozen linearized equation admits secu-
lar solutions linear in t (see (6.24)). The existence of these runaway solutions prohibits
the direct application of the Liapunov strategy and is responsible for the instability of the
nonlinear dynamics along the manifold S. One crucial observation is that the linearized
equation is stable in the symplectic orthogonal complement to the tangent space TS . The
complement is invariant under the linearized dynamics since the linearized dynamics is
Hamiltonian and leaves the symplectic structure invariant.

Our proofs are based on a suitable extension of the methods in [5, 6, 28, 29]. Let us
comment on the main steps.
I. First, we construct the symplectic orthogonal projection S(t) = �Y (t) of the trajec-
tory Y (t) onto the solitary manifold S. This means that S(t) ∈ S, and the complement
vector Z(t) := Y (t)− S(t) is symplectic orthogonal to the tangent space TS(t) for every
t ∈ R:

Z(t) � TS(t), t ∈ R. (1.13)

So, we get the splitting Y (t) = S(t) + Z(t) and we linearize the dynamics in the trans-
versal component Z(t) along the trajectory.

The soliton component S(t) = Sb(t),v(t) satisfies a modulation equation. Namely, in

the parametrization ξ(t) = (c(t), v(t)) with c(t) := b(t)−
∫ t

0
v(s)ds, we have

ξ̇ (t) = N1(ξ(t), Z(t)), |N1(ξ(t), Z(t))| ≤ C‖Z(t)‖2−β , (1.14)

where ‖ · ‖−β stands for an appropriate weighted Sobolev norm.
On the other hand, the transversal component satisfies the transversal equation

Ż(t) = A(t)Z(t) + N2(S(t), Z(t)), (1.15)

where A(t) = AS(t), and N2(S(t), Z(t)) is a nonlinear part:

‖N2(S(t), Z(t))‖β ≤ C‖Z(t)‖2−β, (1.16)

where ‖·‖β is defined similarly to ‖·‖−β . Let us note that the bound (1.16) is not a direct
consequence of the linearization, since the function S(t) generally is not a solution of
(1.4). The modulation equation and the bound (1.14) play a crucial role in the proof of
(1.16).
II. The linearized dynamics (1.12) is nonautonomous. First, let us fix t = t1 in A(t) and
consider the corresponding “frozen” linear autonomous equation with A(t1) instead of
A(t). We prove the decay

‖X (t)‖−β ≤ C‖X (0)‖β
(1 + |t |)3/2 , t ∈ R (1.17)

of the solutions X (t) to the frozen equation for any X (0) ∈ ZS1 , where S1 := S(t1),
and ZS1 is the space of vectors X which are symplectic orthogonal to the tangent space
TS1 . Let us stress that the decay holds only for the solutions symplectic orthogonal to
the tangent space. Basically, the reason for the decay is the fact that the spectrum of the
generator A(t1) restricted to the space ZS1 is purely continuous.
III. We combine the decay (1.17) with the bound (1.14) through the nonlinear equation
(1.15). This gives the time decay of the transversal component

‖Z(t)‖−β ≤ C(‖Z(0)‖β)
(1 + |t |)3/2 , t ∈ R, (1.18)
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Fig. 1. Wave – particle scattering

if the norm ‖Z(0)‖β is sufficiently small. One of the main difficulties in proving the
decay (1.18) is the non-autonomous character of the linear part of (1.15). We deduce the
decay from Eq. (1.15) written in the “frozen” form

Ż(t) = A(t1)Z(t) + [A(t)− A(t1)]Z(t) + N2(S(t), Z(t)), 0 ≤ t < t1, (1.19)

with arbitrary large t1 > 0.
IV. The decay (1.18) implies the soliton asymptotics (1.7) and (1.8) by the known

techniques of scattering theory.

Remarks 1.2. i) The asymptotic stability of the solitary manifold S is caused by the
radiation of energy to infinity which appears as the local energy decay for the trans-
versal component, (1.18).

ii) The asymptotics (1.7) can be interpreted as the collision of the incident soliton, with
a trajectory v−t + a−, with an incident wave W0(t)�−, which results in an outgoing
soliton with a new trajectory v+t + a+, and a new outgoing wave W0(t)�+. The col-
lision process can be represented by the diagram of Fig. 1. It suggests to introduce
the (nonlinear) scattering operator

S : (v−, a−,�−) 
→ (v+, a+,�+). (1.20)

However, the domain of the operator is an open problem as well as the question on
its asymptotic completeness (i.e. on its range).

Remarks 1.3. i) The strategy of [5, 6, 28, 29] was further developed in the papers [7–
10, 27, 34–36]. Let us stress that these papers contain several assumptions on the
discrete and continuous spectrum of the linearized problem. In our case a complete
investigation of the spectrum of the linearized problem is given under the Wiener
condition and there is no need for any a priori spectral assumptions.

ii) Note that the Wiener condition is indispensable for our proof of the decay (1.17), but
only in the proof of Lemma 15.3. Otherwise we use only the fact that the coupling
function ρ(x) is not identically zero. The other assumptions on ρ can be weakened:
the spherical symmetry is not necessary, and one can assume also that ρ belongs to
a weighted Sobolev space rather than having a compact support.

Our paper is organized as follows. In Sect. 2, we formulate the main result. In Sect. 3,
we introduce the symplectic projection onto the solitary manifold. The linearized equa-
tion is defined in Sect. 4. In Sect. 6, we split the dynamics in two components: along
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the solitary manifold and in the transversal directions, and we justify the estimate (1.14)
concerning the tangential component. The time decay of the transversal component is
established in Sects. 7–10 under an assumption on the time decay of the linearized
dynamics. In Sect. 11, we prove the main result. Sections 12–18 fill the gap concerning
the time decay of the linearized dynamics. In Appendices A and B we collect some
routine calculations.

2. Main Results

2.1. Existence of dynamics. To formulate our results precisely, we need some defini-
tions. We introduce a suitable phase space for the Cauchy problem corresponding to
(1.2) and (1.3). Let H0 = L2 be the real Hilbert space L2(R3) with scalar product 〈·, ·〉
and norm ‖ · ‖L2 , and let H1 be the Sobolev space H1 = {ψ ∈ L2 : |∇ψ | ∈ L2}
with the norm ‖ψ‖H1 = ‖∇ψ‖L2 + ‖ψ‖L2 . Let us introduce also the weighted Sobolev
spaces Hs

α , s = 0, 1, α ∈ R with the norms ‖ψ‖s,α := ‖(1 + |x |)αψ‖Hs .

Definition 2.1. i) The phase space E is the real Hilbert space H1 ⊕ L2 ⊕R
3 ⊕R

3 of
states Y = (ψ, π, q, p) with the finite norm

‖Y‖E = ‖ψ‖H1 + ‖π‖L2 + |q| + |p|.
ii) Eα is the space H1

α ⊕ H0
α ⊕ R

3 ⊕ R
3 with the norm

‖Y‖α = ‖ Y‖Eα = ‖ψ‖1,α + ‖π‖0,α + |q| + |p|. (2.1)

iii) F is the space H1 ⊕ L2 of fields F = (ψ, π) with the finite norm

‖F‖F = ‖ψ‖H1 + ‖π‖L2 .

Similarly, Fα is the space H1
α ⊕ H0

α with the norm

‖ F‖α = ‖ F‖Fα
= ‖ψ‖1,α + ‖π‖0,α. (2.2)

Note that we use the same notation for the norms in the space Fα as in the space Eα
defined in (2.1). We hope it will not create misunderstandings since Fα is equivalent
to the subspace of Eα which consists of elements of Eα with zero vector components :
q = p = 0. It will be always clear from the context if we deal with fields only, and
therefore with the space Fα , or with fields-particles, and therefore with elements of the
space Eα .

We consider the Cauchy problem for the Hamilton system (1.2) which we write as

Ẏ (t) = F(Y (t)), t ∈ R : Y (0) = Y0. (2.3)

Here Y (t) = (ψ(t), π(t), q(t), p(t)), Y0 = (ψ0, π0, q0, p0), and all derivatives are
understood in the sense of distributions.

Proposition 2.2 [15]. Let (1.9) hold. Then

i) For every Y0 ∈ E , the Cauchy problem (2.3) has a unique solution Y (t) ∈ C(R, E).
ii) For every t ∈ R, the map U (t) : Y0 
→ Y (t) is continuous on E .
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iii) The energy is conserved, i.e.

H(Y (t)) = H(Y0), t ∈ R, (2.4)

and the velocity is bounded,

|q̇(t)| ≤ v < 1, t ∈ R, (2.5)

where v = v(Y0).

The proof is based on a priori estimates provided by the fact that the Hamilton functional
(1.3) is bounded from below. The latter follows from the bounds

− 1

2m2 ‖ρ‖2
L2 ≤ m2

2
‖ψ‖2

L2 + 〈ψ, ρ(· − q)〉 ≤ m2 + 1

2
‖ψ‖2

L2 +
1

2
‖ρ‖2

L2 , (2.6)

which imply also that E is the space of finite energy states.

2.2. Solitary manifold and main result. Let us compute the solitons (1.5). The substitu-
tion to (1.2) gives the following stationary equations,

−v · ∇ψv(y) = πv(y), −v · ∇πv(y) = �ψv(y)− m2ψv(y)− ρ(y)

v = pv√
1 + p2

v

, 0 = −
∫
∇ψv(y)ρ(y) dy

∣
∣
∣
∣
∣
∣
∣
∣

. (2.7)

Then the first two equations imply

�ψv(y) := [−� + m2 + (v · ∇)2]ψv(y) = −ρ(y), y ∈ R
3. (2.8)

For |v| < 1 the operator� is an isomorphism H4(R3)→ H2(R3). Hence (1.9) implies
that

ψv(y) = −�−1ρ(y) ∈ H4(R3). (2.9)

If v is given and |v| < 1, then pv can be found from the third equation of (2.7). Further,
functions ρ and ψv are even by (1.9). Thus, ∇ψv is odd and the last equation of (2.7)
holds. Hence, the soliton solution (1.5) exists and is defined uniquely for any couple
(a, v) with |v| < 1.

The function ψv can be computed by the Fourier transform. The soliton is given by
the formulas

ψv(x) = − γ

4π

∫
e−m|γ (y−x)‖+(y−x)⊥|ρ(y)d3 y

|γ (y − x)‖ + (y − x)⊥|

πv(x) = −v · ∇ψv(x), pv = γ v = v√
1− v2

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.10)

Here we set γ = 1/
√

1− v2 and x = x‖ + x⊥, where x‖‖v and x⊥⊥v for x ∈ R
3.

Let us denote by V := {v ∈ R
3 : |v| < 1}.

Definition 2.3. A soliton state is S(σ ) := (ψv(x − b), πv(x − b), b, pv), where σ :=
(b, v) with b ∈ R

3 and v ∈ V .
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Obviously, the soliton solution admits the representation S(σ (t)), where

σ(t) = (b(t), v(t)) = (vt + a, v). (2.11)

Definition 2.4. A solitary manifold is the set S := {S(σ ) : σ ∈ � := R
3 × V }.

The main result of our paper is the following theorem.

Theorem 2.5. Let (1.9) and (1.10) hold. Let β > 3/2 and Y (t) be the solution to the
Cauchy problem (2.3) with the initial state Y0 which is sufficiently close to the solitary
manifold:

d0 := distEβ (Y0,S)� 1. (2.12)

Then the asymptotics hold for t →±∞,

q̇(t) = v± + O(|t |−2), q(t) = v±t + a± + O(|t |−3/2); (2.13)

(ψ(x, t), π(x, t̄))

= (ψv±(x − v±t − a±), πv±(x − v±t − a±)) + W0(t)�± + r±(x, t) (2.14)

with

‖r±(t)‖F = O(|t |−1/2). (2.15)

It suffices to prove the asymptotics (2.14), (2.13) for t → +∞ since system (1.2) is time
reversible.

3. Symplectic Projection

3.1. Symplectic structure and Hamilton form. The system (1.2) reads as the Hamilton
system

Ẏ = JDH(Y ), J :=
⎛

⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟
⎠ , Y = (ψ, π, q, p) ∈ E, (3.1)

where DH is the Fréchet derivative of the Hamilton functional (1.3). Let us identify the
tangent space of E , at every point, with the space E . Consider the symplectic form �

defined on E by the rule

� =
∫

dψ(x) ∧ dπ(x) dx + dq ∧ dp.

In other words,

�(Y1,Y2) = 〈Y1, JY2〉, Y1,Y2 ∈ E, (3.2)

where

〈Y1,Y2〉 := 〈ψ1, ψ2〉 + 〈π1, π2〉 + q1q2 + p1 p2

and 〈ψ1, ψ2〉 =
∫
ψ1(x)ψ2(x)dx etc. It is clear that the form � is non-degenerate, i.e.

�(Y1,Y2) = 0 for every Y2 ∈ E =⇒ Y1 = 0.

Definition 3.1. i) The symbol Y1 � Y2 means that Y1 ∈ E , Y2 ∈ E , and Y1 is symplectic
orthogonal to Y2, i.e. �(Y1,Y2) = 0.

ii) A projection operator P : E → E is said to be symplectic orthogonal if Y1 � Y2 for
Y1 ∈ Ker P and Y2 ∈ Im P .
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3.2. Symplectic projection onto solitary manifold. Let us consider the tangent space
TS(σ )S of the manifold S at a point S(σ ). The vectors τ j := ∂σ j S(σ ), where ∂σ j := ∂b j

and ∂σ j+3 := ∂v j with j = 1, 2, 3, form a basis in TσS. In detail,

τ j = τ j (v) := ∂b j S(σ ) = (−∂ jψv(y),−∂ jπv(y), e j , 0)
τ j+3 = τ j+3(v) := ∂v j S(σ ) = (∂v jψv(y), ∂v jπv(y), 0, ∂v j pv)

∣
∣
∣
∣ j = 1, 2, 3, (3.3)

where y := x − b is the “moving frame coordinate”, e1 = (1, 0, 0) etc. Let us stress
that the functions τ j are always regarded as functions of y rather than those of x .

Formulas (2.10) and conditions (1.9) imply that

τ j (v) ∈ Eα, v ∈ V, j = 1, . . . , 6, ∀α ∈ R. (3.4)

Lemma 3.2. The matrix with the elements �(τl(v), τ j (v)) is non-degenerate for any
v ∈ V .

Proof. The elements are computed in Appendix A. As the result, the matrix �(τl , τ j )

has the form

�(v) := (�(τl , τ j ))l, j=1,...,6 =
(

0 �+(v)

−�+(v) 0

)
, (3.5)

where the 3× 3-matrix �+(v) equals

�+(v) = K + (1− v2)−1/2 E + (1− v2)−3/2v ⊗ v. (3.6)

Here K is a symmetric 3× 3-matrix with the elements

Ki j =
∫

dk|ψ̂v(k)|2ki k j
k2 + m2 + 3(kv)2

k2 + m2 − (kv)2

=
∫

dk|ρ̂(k)|2ki k j
k2 + m2 + 3(kv)2

(k2 + m2 − (kv)2)3 , (3.7)

where the “hat” stands for the Fourier transform (cf. (1.10)). The matrix K is the integral
of the symmetric nonnegative definite matrix k ⊗ k = (ki k j ) with a positive weight.
Hence, the matrix K is also nonnegative definite. Since the identity matrix E is positive
definite and the matrix v⊗ v is nonnegative definite, the matrix�+(v) is symmetric and
positive definite, hence non-degenerate. Then the matrix �(τl , τ j ) is also non-degener-
ate. ��

Now we show that in a small neighborhood of the soliton manifold S a “symplectic
orthogonal projection” onto S is well-defined. Let us introduce the translations Ta :
(ψ(·), π(·), q, p) 
→ (ψ(· − a), π(· − a), q + a, p), a ∈ R

3. Note that the manifold S
is invariant with respect to the translations. Let us denote by v(p) := p/

√
1 + p2 for

p ∈ R
3.

Definition 3.3. i) For any α ∈ R and v < 1 denote by Eα(v) = {Y = (ψ, π, q, p) ∈
Eα : |v(p)| ≤ v}. We set E(v) := E0(v).

ii) For any ṽ < 1 denote by �(ṽ) = {σ = (b, v) : b ∈ R
3, |v| ≤ ṽ}.

Lemma 3.4. Let (1.9) hold, α ∈ R and v < 1. Then
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i) there exists a neighborhood Oα(S) of S in Eα and a mapping � : Oα(S)→ S such
that � is uniformly continuous on Oα(S) ∩ Eα(v) in the metric of Eα ,

�Y = Y for Y ∈ S, and Y − S � TSS, where S = �Y. (3.8)

ii) Oα(S) is invariant with respect to the translations Ta, and

�TaY = Ta�Y, for Y ∈ Oα(S) and a ∈ R
3. (3.9)

iii) For any v < 1 there exists a ṽ < 1 s.t. �Y = S(σ ) with σ ∈ �(ṽ) for Y ∈
Oα(S) ∩ Eα(v).

iv) For any ṽ < 1 there exists an rα(ṽ) > 0 s.t. S(σ ) + Z ∈ Oα(S) if σ ∈ �(ṽ) and
‖Z‖α < rα(ṽ).

Proof. We have to find σ = σ(Y ) such that S(σ ) = �Y and

�(Y − S(σ ), ∂σ j S(σ )) = 0, j = 1, . . . , 6. (3.10)

Let us fix an arbitrary σ 0 ∈ � and note that the system (3.10) involves only 6 smooth
scalar functions of Y . Then for Y close to S(σ 0), the existence of σ follows by the
standard finite dimensional implicit function theorem if we show that the 6 × 6 Jaco-
bian matrix with elements Ml j (Y ) = ∂σl�(Y − S(σ 0), ∂σ j S(σ 0)) is non-degenerate at
Y = S(σ 0). First note that all the derivatives exist by (3.4). The non-degeneracy holds
by Lemma 3.2 and the definition (3.3) since Ml j (S(σ 0)) = −�(∂σl S(σ 0), ∂σ j S(σ 0)).
Thus, there exists some neighborhood Oα(S(σ 0)) of S(σ 0), where � is well defined and
satisfies (3.8), and the same is true in the union O′α(S) = ∪σ 0∈�Oα(S(σ 0)). The identity
(3.9) holds for Y, TaY ∈ O′α(S), since the form� and the manifold S are invariant with
respect to the translations.

It remains to modify O′α(S) by the translations: we set Oα(S) = ∪b∈R3 TbO′α(S).
Then the second statement obviously holds.

The last two statements and the uniform continuity in the first statement follow by
translation invariance and compactness arguments. ��

We refer to � as symplectic orthogonal projection onto S.

Corollary 3.5. The condition (2.12) implies that Y0 = S+ Z0, where S = S(σ0) = �Y0,
and

‖Z0‖β � 1. (3.11)

Proof. Lemma 3.4 implies that �Y0 = S is well defined for small d0 > 0. Furthermore,
the condition (2.12) means that there exists a point S1 ∈ S such that ‖Y0 − S1‖β = d0.
Hence, Y0, S1 ∈ Oβ(S) ∩ Eβ(v) with some v < 1 which does not depend on d0
for sufficiently small d0. On the other hand, �S1 = S1, hence the uniform continu-
ity of the mapping � implies that ‖S1 − S‖β → 0 as d0 → 0. Therefore, finally,
‖Z0‖β = ‖Y0 − S‖β ≤ ‖Y0 − S1‖β + ‖S1 − S‖β ≤ d0 + o(1)� 1 for small d0. ��
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4. Linearization on the solitary manifold

Let us consider a solution to the system (1.2), and split it as the sum

Y (t) = S(σ (t)) + Z(t), (4.1)

where σ(t) = (b(t), v(t)) ∈ � is an arbitrary smooth function of t ∈ R. In detail, denote
Y = (ψ, π, q, p) and Z = (�,�, Q, P). Then (4.1) means that

ψ(x, t) = ψv(t)(x − b(t)) +�(x − b(t), t), q(t) = b(t) + Q(t)
π(x, t) = πv(t)(x − b(t)) +�(x − b(t), t), p(t) = pv(t) + P(t)

∣
∣
∣
∣ . (4.2)

Let us substitute (4.2) to (1.2), and linearize the equations in Z . Below we shall choose
S(σ (t)) = �Y (t), i.e. Z(t) is symplectic orthogonal to TS(σ (t))S. However, this orthog-
onality condition is not needed for the formal process of linearization. The orthogonality
condition will be important in Sect. 6, where we derive “modulation equations” for the
parameters σ(t).

Let us proceed to linearization. Setting y = x − b(t) which is the “moving frame
coordinate”, we obtain from (4.2) and (1.2) that

ψ̇ = v̇ · ∇vψv(y)− ḃ · ∇ψv(y) + �̇(y, t)− ḃ · ∇�(y, t)=πv(y) +�(y, t)

π̇ = v̇ · ∇vπv(y)− ḃ · ∇πv(y) + �̇(y, t)− ḃ · ∇�(y, t)

= �ψv(y)− m2ψv(y) +��(y, t)− m2�(y, t)− ρ(y − Q)

q̇ = ḃ + Q̇ = pv + P
√

1 + (pv + P)2

ṗ = v̇ · ∇v pv + Ṗ=−〈∇(ψv(y) +�(y, t)), ρ(y − Q)〉.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.3)

The equations are linear in � and �, hence it remains to extract the terms linear in Q
and P . First note that ρ(y − Q) = ρ(y) − Q · ∇ρ(y) − N2(Q), where −N2(Q) =
ρ(y − Q) − ρ(y) + Q · ∇ρ(y). The condition (1.9) implies that for N2(Q) the bound
holds,

‖N2(Q)‖0,β ≤ Cβ(Q)Q
2, (4.4)

uniformly in |Q| ≤ Q for any fixed Q, where β is the parameter in Theorem 2.5. Second,
the Taylor expansion gives

pv + P
√

1 + (pv + P)2
= v + ν(P − v(v · P)) + N3(v, P),

where ν := (1 + p2
v)
−1/2 = √1− v2, and

|N3(v, P)| ≤ C(ṽ)P2 (4.5)
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uniformly with respect to |v| ≤ ṽ < 1. Using Eqs. (2.7), we obtain from (4.3) the
following equations for the components of the vector Z(t):

�̇(y, t) = �(y, t) + ḃ · ∇�(y, t) + (ḃ − v) · ∇ψv(y)− v̇ · ∇vψv(y),

�̇(y, t) = ��(y, t)− m2�(y, t) + ḃ · ∇�(y, t) + Q · ∇ρ(y)
+ (ḃ − v) · ∇πv(y)− v̇ · ∇vπv(y) + N2,

Q̇(t) = ν(E − v ⊗ v)P + (v − ḃ) + N3,

Ṗ(t) = 〈�(y, t),∇ρ(y)〉 + 〈∇ψv(y), Q · ∇ρ(y)〉 − v̇ · ∇v pv + N4(v, Z),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.6)

where N4(v, Z) = 〈∇ψv, N2(Q)〉 + 〈∇�, Q · ∇ρ〉 + 〈∇�, N2(Q)〉. Clearly, N4(v, Z)
satisfies the following estimate:

|N4(v, Z)| ≤ Cβ(ρ, ṽ, Q)
[

Q2 + ‖�‖1,−β |Q|
]
, (4.7)

uniformly in |v| ≤ ṽ and |Q| ≤ Q for any fixed ṽ < 1. We can write Eqs. (4.6) as

Ż(t) = A(t)Z(t) + T (t) + N (t), t ∈ R. (4.8)

Here the operator A(t) = Av,w depends on two parameters, v = v(t), and w = ḃ(t)
and can be written in the form

Av,w

⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠ :=

⎛

⎜
⎝

w · ∇ 1 0 0
�− m2 w · ∇ ∇ρ· 0

0 0 0 Bv
〈·,∇ρ〉 0 〈∇ψv, ·∇ρ〉 0

⎞

⎟
⎠

⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠ , (4.9)

where Bv = ν(E − v ⊗ v). Furthermore, T (t) = Tv,w and N (t) = N (σ, Z) are given
by

Tv,w =
⎛

⎜
⎝

(w − v) · ∇ψv − v̇ · ∇vψv
(w − v) · ∇πv − v̇ · ∇vπv

v − w
−v̇ · ∇v pv

⎞

⎟
⎠ , N (σ, Z) =

⎛

⎜
⎝

0
N2(Z)

N3(v, Z)
N4(v, Z)

⎞

⎟
⎠ , (4.10)

where v = v(t), w = w(t), σ = σ(t) = (b(t), v(t)), and Z = Z(t). Estimates (4.4),
(4.5) and (4.7) imply that

‖N (σ, Z)‖β ≤ C(ṽ, Q)‖Z‖2−β, (4.11)

uniformly in σ ∈ �(ṽ) and ‖Z‖−β ≤ r−β(ṽ) for any fixed ṽ < 1.

Remarks 4.1. i) The term A(t)Z(t) in the right-hand side of Eq. (4.8) is linear in Z(t),
and N (t) is a high order term in Z(t). On the other hand, T (t) is a zero order term
which does not vanish at Z(t) = 0 since S(σ (t)) generally is not a soliton solution
if (2.11) fails to hold (though S(σ (t)) belongs to the solitary manifold).

ii) Formulas (3.3) and (4.10) imply:

T (t) = −
3∑

l=1

[(w − v)lτl + v̇lτl+3], (4.12)

and hence T (t) ∈ TS(σ (t))S, t ∈ R. This fact suggests an unstable character of the
nonlinear dynamics along the solitary manifold.
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5. Linearized equation

Here we collect some Hamiltonian and spectral properties of the operator (4.9). First,
let us consider the linear equation

Ẋ(t) = Av,wX (t), t ∈ R (5.1)

with arbitrary fixed v ∈ V = {v ∈ R
3 : |v| < 1} and w ∈ R

3. Let us define the space
E+ := H2(R3)⊕ H1(R3)⊕ R

3 ⊕ R
3.

Lemma 5.1. i) For any v ∈ V and w ∈ R
3, Eq. (5.1) can be represented as the

Hamiltonian system (cf. (3.1)),

Ẋ(t) = J DHv,w(X (t)), t ∈ R, (5.2)

where DHv,w is the Fréchet derivative of the Hamiltonian functional,

Hv,w(X) = 1

2

∫ [
|�|2 + |∇�|2 + m2|�|2

]
dy +

∫
�w · ∇�dy

+
∫
ρ(y)Q · ∇�dy +

1

2
P · BvP − 1

2
〈Q · ∇ψv(y), Q · ∇ρ(y)〉,

X = (�,�, Q, P) ∈ E . (5.3)

ii) The energy conservation law holds for the solutions X (t) ∈ C1(R, E+),

Hv,w(X (t)) = const, t ∈ R. (5.4)

iii) The skew-symmetry relation holds,

�(Av,wX1, X2) = −�(X1, Av,wX2), X1, X2 ∈ E . (5.5)

Proof. i) Equation (5.1) reads as follows:

d

dt

⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠ =

⎛

⎜
⎝

� + w · ∇�
�� − m2� + w · ∇� + Q · ∇ρ
BvP
−〈∇�, ρ〉 + 〈∇ψv, Q · ∇ρ〉

⎞

⎟
⎠ . (5.6)

The first three equations correspond to the Hamilton form since

� + w · ∇� = D�Hv,w, �� − m2� + w · ∇� + Q · ∇ρ = −D�Hv,w,

BvP = ∇PHv,w.

Let us check that the last equation has also the Hamilton form, i.e. −〈∇�, ρ〉 +

〈∇ψv, Q ·∇ρ〉 = −∇QHv,w. First we note that−〈∂ j�, ρ〉 = −∂Q j

∫
ρQ ·∇�dx .

It remains to show that

〈∂ jψv, Q · ∇ρ〉 = ∂Q j

1

2
〈Q · ∇ψv, Q · ∇ρ〉. (5.7)

Indeed,

∂Q j

1

2
〈Q · ∇ψv, Q · ∇ρ〉 = 1

2
〈∂ jψv, Q · ∇ρ〉 +

1

2
〈Q · ∇ψv, ∂ jρ〉

= 1

2
〈∂ jψv, Q · ∇ρ〉 +

1

2
〈∂ jψv, Q · ∇ρ〉, (5.8)

where we have integrated twice by parts. Then (5.7) follows.
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ii) The energy conservation law follows by (5.2) and the chain rule for the Fréchet
derivatives:

d

dt
Hv,w(X (t)) = 〈DHv,w(X (t)), Ẋ(t)〉

(5.9)= 〈DHv,w(X (t)), J DHv,w(X (t))〉 = 0, t ∈ R,

since the operator J is skew-symmetric by (3.1), and DHv,w(X (t)) ∈ E for X (t) ∈
E+.

iii) The skew-symmetry holds since Av,wX = J DHv,w(X), and the linear operator
X 
→ DHv,w(X) is symmetric as the Fréchet derivative of a quadratic form. ��

Remark 5.2. One can obtain (5.3) by expanding H(Sb,v + X) to a power series in X up
to second order terms. As a result, Hv,w(X) is the quadratic part of the Taylor series
complemented by the second integral on the right-hand side of (5.3) arising from the
left-hand side of (3.1).

Lemma 5.3. The operator Av,w acts on the tangent vectors τ j (v) to the solitary manifold
as follows:

Av,w[τ j (v)] = (w − v) · ∇τ j (v),

Av,w[τ j+3(v)] = (w − v) · ∇τ j+3(v) + τ j (v), j = 1, 2, 3. (5.10)

Proof. In detail, we have to show that

Av,w

⎛

⎜
⎝

−∂ jψv
−∂ jπv

e j
0

⎞

⎟
⎠ =

⎛

⎜
⎝

(v − w) · ∇∂ jψv
(v − w) · ∇∂ jπv

0
0

⎞

⎟
⎠ ,

Av,w

⎛

⎜
⎜
⎝

∂v jψv
∂v jπv

0
∂v j pv

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

(w − v) · ∇∂v jψv
(w − v) · ∇∂v jπv

0
0

⎞

⎟
⎠ +

⎛

⎜
⎝

−∂ jψv
−∂ jπv

e j
0

⎞

⎟
⎠ . (5.11)

Indeed, differentiate Eqs. (2.7) in b j and v j , and obtain that the derivatives of the soliton
state in parameters satisfy the following equations:

−v · ∇∂ jψv = ∂ jπv, −v · ∇∂ jπv = �∂ jψv − m2∂ jψv − ∂ jρ,

−∂ jψv−v · ∇∂v jψv=∂v jπv, −∂ jπv−v ·∇∂v jπv=�∂v jψv−m2∂v jψv,

∂v j pv = e j (1− v2)−1/2 + v
v j

(1− v2)3/2
, 0 = −〈∇∂v jψv, ρ〉,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(5.12)

for j = 1, 2, 3. Then (5.11) follows from (5.12) by definition of A in (4.9). ��
We shall apply Lemma 5.1 mainly to the operator Av,v corresponding to w = v. In

that case the linearized equation has the following additional specific features.

Lemma 5.4. Let us assume that w = v ∈ V . Then
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i) The tangent vectors τ j (v) with j = 1, 2, 3 are eigenvectors, and τ j+3(v) are root
vectors of the operator Av,v , that correspond to the zero eigenvalue, i.e.

Av,v[τ j (v)] = 0, Av,v[τ j+3(v)] = τ j (v), j = 1, 2, 3. (5.13)

ii) The Hamiltonian function (5.3) is nonnegative definite since

Hv,v(X)= 1

2

∫ [
|� + v · ∇�|2 + |�1/2�−�−1/2 Q · ∇ρ|2

]
dx +

1

2
P · BvP≥0.

(5.14)

Here� is the operator (2.8) which is symmetric and nonnegative definite in L2(R3)

for |v| < 1, and �1/2 is the nonnegative definite square root defined in the Fourier
representation.

Proof. The first statement follows from (5.10) with w = v. In order to prove ii) we
rewrite the integral in (5.14) as follows:

1

2
〈� + v · ∇�,� + v · ∇�〉 +

1

2
〈�1/2� −�−1/2 Q · ∇ρ,�1/2� −�−1/2 Q · ∇ρ〉

= 1

2
〈�,�〉 + 〈�, v · ∇�〉 +

1

2
〈v · ∇�, v · ∇�〉

+
1

2
〈��,�〉 − 〈�, Q · ∇ρ〉 +

1

2
〈�−1 Q · ∇ρ, Q · ∇ρ〉, (5.15)

since the operator �1/2 is symmetric in L2(R3). Now all the terms of the expression
(5.15) can be identified with the corresponding terms in (5.3) since

1

2
〈��,�〉 = 1

2
〈[−� + m2 + (v · ∇)2]�,�〉, �−1ρ = −ψv (5.16)

by (2.8) and (2.9). ��
Remark 5.5. In Sect. 14 we will apply Lemma 5.4 ii) together with energy conservation
(5.4) to prove the analyticity of the resolvent (Av,v − λ)−1 for Re λ > 0.

Remark 5.6. For a soliton solution of the system (1.2) we have ḃ = v, v̇ = 0, and hence
T (t) ≡ 0. Thus, Eq. (5.1) is the linearization of system (1.2) on a soliton solution. In
fact, we linearize (1.2) on a trajectory S(σ (t)), where σ(t) is nonlinear with respect to
t , rather than on a soliton solution. We shall show below that T (t) is quadratic in Z(t)
if we choose S(σ (t)) to be the symplectic orthogonal projection of Y (t). In this case,
(5.1) is a linearization of (1.2) again.

6. Symplectic decomposition of the dynamics

Here we decompose the dynamics in two components: along the manifold S and in
transversal directions. Equation (4.8) is obtained without any assumption on σ(t) in
(4.1). We are going to specify S(σ (t)) := �Y (t). However, in this case we must know
that

Y (t) ∈ Oα(S), t ∈ R, (6.1)
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with someOα(S)defined in Lemma 3.4. It is true for t = 0 by our main assumption (2.12)
with sufficiently small d0 > 0. Then S(σ (0)) = �Y (0) and Z(0) = Y (0) − S(σ (0))
are well defined. We shall prove below that (6.1) holds with α = −β if d0 is suffi-
ciently small. First, the a priori estimate (2.5) together with Lemma 3.4 iii) imply that
�Y (t) = S(σ (t)) with σ(t) = (b(t), v(t)), and

|v(t)| ≤ ṽ < 1, t ∈ R (6.2)

if Y (t) ∈ O−β(S). Denote by r−β(ṽ) the positive number in Lemma 3.4 iv) which
corresponds to α = −β. Then S(σ ) + Z ∈ O−β(S) if σ = (b, v) with |v| < ṽ and
‖Z‖−β < r−β(ṽ). Note that (2.5) implies ‖Z(0)‖−β < r−β(ṽ) if d0 is sufficiently small.
Therefore, S(σ (t)) = �Y (t) and Z(t) = Y (t)−S(σ (t)) are well defined for small times
t ≥ 0, such that ‖Z(t)‖−β < r−β(ṽ). This argument can be formalized by the following
standard definition.

Definition 6.1. Let t∗ be the “exit time”,

t∗ = sup{t > 0 : ‖Z(s)‖−β < r−β(ṽ), 0 ≤ s ≤ t}. (6.3)

One of our main goals is to prove that t∗ = ∞ if d0 is sufficiently small. This would
follow if we shall show that

‖Z(t)‖−β < r−β(ṽ)/2, 0 ≤ t < t∗. (6.4)

Note that

|Q(t)| ≤ Q := r−β(ṽ), 0 ≤ t < t∗. (6.5)

Now by (4.11), the term N (t) in (4.8) satisfies the following estimate:

‖N (t)‖β ≤ Cβ(ṽ)‖Z(t)‖2−β, 0 ≤ t < t∗. (6.6)

6.1. Longitudinal Dynamics: Modulation Equations. From now on we fix the decom-
position Y (t) = S(σ (t)) + Z(t) for 0 < t < t∗ by setting S(σ (t)) = �Y (t) which is
equivalent to the symplectic orthogonality condition of type (3.8),

Z(t) � TS(σ (t))S, 0 ≤ t < t∗. (6.7)

This enables us to drastically simplify the asymptotic analysis of the dynamical equation
(4.8) for the transversal component Z(t). As the first step, we derive the longitudinal
dynamics, i.e. find the “modulation equations” for the parameters σ(t). Let us derive
a system of ordinary differential equations for the vector σ(t). For this purpose, let us
write (6.7) in the form

�(Z(t), τ j (t)) = 0, j = 1, . . . , 6, 0 ≤ t < t∗, (6.8)

where the vectors τ j (t) = τ j (σ (t)) span the tangent space TS(σ (t))S. Note that σ(t) =
(b(t), v(t)), where

|v(t)| ≤ ṽ < 1, 0 ≤ t < t∗, (6.9)



338 V. Imaikin, A. Komech, B. Vainberg

by Lemma 3.4 iii). It would be convenient for us to use some other parameters (c, v)

instead of σ = (b, v), where c(t) = b(t)−
∫ t

0
v(τ)dτ and

ċ(t) = ḃ(t)− v(t) = w(t)− v(t), 0 ≤ t < t∗. (6.10)

We do not need an explicit form of the equations for (c, v) but rather the following
statement:

Lemma 6.2. Let Y (t) be a solution to the Cauchy problem (2.3), and (4.1), (6.8) hold.
Then (c(t), v(t)) satisfies the equation

(
ċ(t)
v̇(t)

)
= N (σ (t), Z(t)), 0 ≤ t < t∗, (6.11)

where

N (σ, Z) = O(‖Z‖2−β) (6.12)

uniformly in σ ∈ �(ṽ).
Proof. We differentiate the orthogonality conditions (6.8) in t , and obtain

0 = �(Ż , τ j ) +�(Z , τ̇ j ) = �(AZ + T + N , τ j ) +�(Z , τ̇ j ), 0 ≤ t < t∗. (6.13)

First, let us compute the principal (i.e. non-vanishing at Z = 0) term �(T, τ j ). For
j = 1, 2, 3 one has by (4.12), (3.5),

�(T, τ j ) = −
∑

l

(ċl�(τl , τ j ) + v̇l�(τl+3, τ j )) =
∑

l

�(τ j , τl+3)v̇l =
∑

l

�+
jl v̇l ,

where the matrix �+ is defined by (3.6). Similarly,

�(T, τ j+3) = −
∑

l

(ċl�(τl , τ j+3) + v̇l�(τl+3, τ j+3))

=
∑

l

�(τ j+3, τl)ċl = −
∑

l

�+
jl ċl .

As the result, we have by (3.5),

�(T, τ ) =
(

0 �+(v)

−�+(v) 0

) (
ċ
v̇

)
= �(v)

(
ċ
v̇

)
(6.14)

in the vector form.
Second, let us compute�(AZ , τ j ). The skew-symmetry (5.5) implies that�(AZ , τ j )

= −�(Z , Aτ j ). Then for j = 1, 2, 3, we have by (5.10),

�(AZ , τ j ) = −�(Z , ċ · ∇τ j ), (6.15)

and similarly,

�(AZ , τ j+3) = −�(Z , ċ · ∇τ j+3 + τ j ) = −�(Z , ċ · ∇τ j+3)−�(Z , τ j )

= −�(Z , ċ · ∇τ j+3), (6.16)
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since �(Z , τ j ) = 0.
Finally, let us compute the last term �(Z , τ̇ j ). For j = 1, . . . , 6 one has τ̇ j =

ḃ ·∇bτ j + v̇ ·∇vτ j = v̇ ·∇vτ j since the vectors τ j do not depend on b according to (3.3).
Hence,

�(Z , τ̇ j ) = �(Z , v̇ · ∇vτ j ). (6.17)

As the result, by (6.14)–(6.17), Eq. (6.13) becomes

0 = �(v)
(

ċ
v̇

)
+ M0(σ, Z)

(
ċ
v̇

)
+ N0(σ, Z), (6.18)

where the matrix M0(σ, Z) = O(‖Z‖−β), and N0(σ, Z) = O(‖Z‖2−β) uniformly in
σ ∈ �(ṽ) and ‖Z‖−β < r−β(ṽ). Then, since �(v) is invertible by Lemma 3.2, and
‖Z‖−β is small, we can resolve (6.18) with respect to the derivatives and obtain Eq. (6.11)
with N = O(‖Z‖2−β) uniformly in σ ∈ �(ṽ). ��
Remark 6.3. Equations (6.11), (6.12) imply that the soliton parameters c(t) and v(t) are
adiabatic invariants (see [3]).

6.2. Decay for the transversal dynamics. In Sect. 11 we shall show that our main The-
orem 2.5 can be derived from the following time decay of the transversal component
Z(t):

Proposition 6.4. Let all conditions of Theorem 2.5 hold. Then t∗ = ∞, and

‖Z(t)‖−β ≤ C(ρ, v, d0)

(1 + |t |)3/2 , t ≥ 0. (6.19)

We shall derive (6.19) in Sects. 7–11 from our Eq. (4.8) for the transversal component
Z(t). This equation can be specified by using Lemma 6.2. Indeed, the lemma implies
that

‖T (t)‖β ≤ C(ṽ)‖Z(t)‖2−β, 0 ≤ t < t∗, (6.20)

by (4.10) since w − v = ċ. Thus, Eq. (4.8) becomes

Ż(t) = A(t)Z(t) + Ñ (t), 0 ≤ t < t∗, (6.21)

where A(t) = Av(t),w(t), and Ñ (t) := T (t) + N (t) satisfies the estimate

‖Ñ (t)‖β ≤ C‖Z(t)‖2−β, 0 ≤ t < t∗. (6.22)

In the remaining part of our paper we mainly analyze the basic equation (6.21) to estab-
lish the decay (6.19). We are going to derive the decay using the bound (6.22) and the
orthogonality condition (6.7).

Let us comment on two main difficulties in proving (6.19). The difficulties are com-
mon for the problems studied in [5]. First, the linear part of the equation is
non-autonomous, hence we cannot apply directly known methods of scattering the-
ory. Similarly to the approach of [5], we reduce the problem to the analysis of the frozen
linear equation,

Ẋ(t) = A1 X (t), t ∈ R, (6.23)
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where A1 is the operator Av1,v1 defined by (4.9) with v1 = v(t1) for a fixed t1 ∈ [0, t∗).
Then we estimate the error by the method of majorants.

Second, even for the frozen equation (6.23), the decay of type (6.19) for all solu-
tions does not hold without the orthogonality condition of type (6.7). Namely, by (5.13)
Eq. (6.23) admits the secular solutions

X (t) =
3∑

1

C jτ j (v1) +
3∑

1

D j [τ j (v1)t + τ j+3(v1)]. (6.24)

The solutions lie in the tangent space TS(σ1)S with σ1 = (b1, v1) (for an arbitrary
b1 ∈ R) that suggests an unstable character of the nonlinear dynamics along the sol-
itary manifold (cf. Remark 4.1 ii)). Thus, the orthogonality condition (6.7) eliminates
the secular solutions. We shall apply the corresponding projection to kill the unstable
“longitudinal terms” in the basic equation (6.21).

Definition 6.5. i) For v ∈ V , denote by �v the symplectic orthogonal projection of E
onto the tangent space TS(σ )S, and write Pv = I−�v .

ii) Denote by Zv = PvE the space symplectic orthogonal to TS(σ )S with σ = (b, v)
(for an arbitrary b ∈ R).

Note that by the linearity,

�vZ =
∑

� jl(v)τ j (v)�(τl(v), Z), Z ∈ E, (6.25)

with some smooth coefficients � jl(v). Hence, the projector �v does not depend on b
(in the variable y = x − b), and this explains the choice of the subindex in �v and Pv .

We have now the symplectic orthogonal decomposition

E = TS(σ )S + Zv, σ = (b, v), (6.26)

and the symplectic orthogonality (6.7) can be represented in the following equivalent
forms,

�v(t)Z(t) = 0, Pv(t)Z(t) = Z(t), 0 ≤ t < t∗. (6.27)

Remark 6.6. The tangent space TS(σ )S is invariant under the operator Av,v by Lemma
5.4 i), hence the space Zv is also invariant by (5.5), namely: Av,vZ ∈ Zv on a dense
domain of Z ∈ Zv .

In Sects. 12–18 below we will prove the following proposition which is one of the
main ingredients to proving (6.19). Let us consider the Cauchy problem for Eq. (6.23)
with A = Av,v for a fixed v ∈ V . Recall that the parameter β > 3/2 is also fixed.

Proposition 6.7. Let (1.9) and (1.10) hold, |v| ≤ ṽ < 1, and X0 ∈ E . Then
i) Equation (6.23), with A1 = A = Av,v , admits a unique solution eAt X0 := X (t) ∈

C(R, E) with the initial condition X (0) = X0.
ii) For X0 ∈ Zv ∩ Eβ , the solution X (t) has the following decay:

‖eAt X0‖−β ≤ C(β, ṽ)

(1 + |t |)3/2 ‖X0‖β, t ∈ R. (6.28)

Remark 6.8. The decay is provided by two fundamental facts which we will establish
below:

i) the null root space of the generator A coincides with the tangent space TS(σ )S, where
σ = (b, v) (for an arbitrary b ∈ R), and

ii) the spectrum of A in the space Zv is purely continuous.
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7. Frozen Form of Transversal Dynamics

Now let us fix an arbitrary t1 ∈ [0, t∗), and rewrite Eq. (6.21) in a “frozen form”

Ż(t) = A1 Z(t) + (A(t)− A1)Z(t) + Ñ (t), 0 ≤ t < t∗, (7.1)

where A1 = Av(t1),v(t1) and

A(t)− A1

=
⎛

⎜
⎝

[w(t)−v(t1)] · ∇ 0 0 0
0 [w(t)−v(t1)] · ∇ 0 0
0 0 0 Bv(t)−Bv(t1)
0 0 〈∇(ψv(t)−ψv(t1)),∇ρ〉 0

⎞

⎟
⎠ .

The next trick is important since it enables us to kill the “bad terms” [w(t)−v(t1)] · ∇
in the operator A(t)− A1.

Definition 7.1. Let us change the variables (y, t) 
→ (y1, t) = (y + d1(t), t), where

d1(t) :=
∫ t

t1
(w(s)− v(t1))ds, 0 ≤ t ≤ t1. (7.2)

Next, let us write

Z1(t) = (�(y1 − d1(t), t),�(y1 − d1(t), t), Q(t), P(t)). (7.3)

Then we obtain the final form of the “frozen equation” for the transversal dynamics

Ż1(t) = A1 Z1(t) + B1(t)Z1(t) + N1(t), 0 ≤ t ≤ t1, (7.4)

where N1(t) = Ñ (t) expressed in terms of y = y1 − d1(t), and

B1(t) =
⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 Bv(t)−Bv(t1)
0 0 〈∇(ψv(t)−ψv(t1)),∇ρ〉 0

⎞

⎟
⎠ .

At the end of this section, we will derive appropriate bounds for the “remainder terms”
B1(t)Z1(t) and N1(t) in (7.4). First, note that we have by Lemma 6.2,

|Bv(t) − Bv(t1)| ≤ |
∫ t

t1
v̇(s) · ∇vBv(s)ds| ≤ C

∫ t1

t
‖Z(s)‖2−βds. (7.5)

Similarly,

|〈∇(ψv(t) − ψv(t1)),∇ρ〉| ≤ C
∫ t1

t
‖Z(s)‖2−βds. (7.6)

Let us recall the following well-known inequality: for any α ∈ R,

(1 + |y + x |)α ≤ (1 + |y|)α(1 + |x |)|α|, x, y ∈ R
3. (7.7)



342 V. Imaikin, A. Komech, B. Vainberg

Lemma 7.2. For (�,�, Q, P) ∈ Eα with any α ∈ R the following estimate holds:

‖(�(y1 − d1),�(y1 − d1), Q, P)‖α ≤ ‖(�,�, Q, P)‖α(1 + |d1|)|α|, d1 ∈ R
3.

(7.8)

Proof. Let us check the estimate only for one component, say, for �. One has by (7.7),

‖�(y1 − d1, t)‖2
0,α =

∫
|�(y1 − d1, t)|2(1 + |y1|)2αdy1

=
∫
|�(y, t)|2(1 + |y + d1|)2αdy

≤
∫
|�(y, t)|2(1 + |y|)2α(1 + |d1|)2|α|dy ≤ (1 + |d1|)2|α|‖�‖2

0,α ,

and the lemma is proved. ��
Corollary 7.3. The following bound holds:

‖N1(t)‖β ≤ (1 + |d1(t)|)β‖Z(t)‖2−β, 0 ≤ t ≤ t1. (7.9)

Indeed, applying the previous lemma, we obtain from (6.22) that

‖N1(t)‖β ≤ (1 + |d1(t)|)β‖Ñ (t, Z(t))‖β ≤ (1 + |d1(t)|)β‖Z(t)‖2−β.

Corollary 7.4. The following bound holds:

‖B1(t)Z1(t)‖β ≤ C‖Z(t)‖−β
∫ t1

t
‖Z(τ )‖2−βdτ, 0 ≤ t ≤ t1. (7.10)

For the proof we apply Lemma 7.2 to (7.5) and (7.6) and use the fact that B1(t)Z1(t)
depends only on the finite-dimensional components of Z1(t).

8. Integral Inequality

Equation (7.4) can be represented in the integral form:

Z1(t) = eA1t Z1(0) +
∫ t

0
eA1(t−s)[B1 Z1(s) + N1(s)]ds, 0 ≤ t ≤ t1. (8.1)

We apply the symplectic orthogonal projection P1 := Pv(t1) to both sides, and get

P1 Z1(t) = eA1t P1 Z1(0) +
∫ t

0
eA1(t−s)P1[B1 Z1(s) + N1(s)]ds.

We have used here that P1 commutes with the group eA1t since the space Z1 := P1E
is invariant with respect to eA1t by Remark 6.6. Applying (6.28) we obtain

‖P1 Z1(t)‖−β ≤ C

(1 + t)3/2
‖P1 Z1(0)‖β

+C
∫ t

0

1

(1 + |t − s|)3/2 ‖P1[B1 Z1(s) + N1(s)]‖βds. (8.2)
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The operator P1 = I −�1 is continuous in Eβ by (6.25). Hence, from (8.2) and (7.9),
(7.10), we obtain

‖P1 Z1(t)‖−β ≤ C(d1(0))

(1 + t)3/2
‖Z(0)‖β + C(d1(t))

∫ t

0

1

(1 + |t − s|)3/2

×
[
‖Z(s)‖−β

∫ t1

s
‖Z(τ )‖2−βdτ + ‖Z(s)‖2−β

]
ds, 0 ≤ t ≤ t1,

(8.3)

where d1(t) := sup0≤s≤t |d1(s)|.
Definition 8.1. Let t ′∗ be the exit time

t ′∗ = sup{t ∈ [0, t∗) : d1(s) ≤ 1, 0 ≤ s ≤ t}. (8.4)

Now (8.3) implies that for t1 < t ′∗,

‖P1 Z1(t)‖−β ≤ C

(1 + t)3/2
‖Z(0)‖β + C1

∫ t

0

1

(1 + |t − s|)3/2

×
[
‖Z(s)‖−β

∫ t1

s
‖Z(τ )‖2−βdτ + ‖Z(s)‖2−β

]
ds, 0 ≤ t ≤ t1.

(8.5)

9. Symplectic Orthogonality

Finally, we are going to change P1 Z1(t) by Z(t) in the left-hand side of (8.5). We shall
prove that this change is possible indeed by using again the smallness condition (2.12).
For the justification we reduce the exit time further. First, introduce the “majorant”

m(t) := sup
s∈[0,t]

(1 + s)3/2‖Z(s)‖−β, t ∈ [0, t∗). (9.1)

Denote by ε a fixed positive number (which will be specified below).

Definition 9.1. Let t ′′∗ be the exit time

t ′′∗ = sup{t ∈ [0, t ′∗) : m(s) ≤ ε, 0 ≤ s ≤ t}. (9.2)

The following important bound (9.3) enables us to change the norm of P1 Z1(t) on
the left-hand side of (8.5) by the norm of Z(t).

Lemma 9.2. For sufficiently small ε > 0, we have

‖Z(t)‖−β ≤ C‖P1 Z1(t)‖−β, 0 ≤ t ≤ t1, (9.3)

for any t1 < t ′′∗ , where C depends only on ρ and v.
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)1Z(t

Z(t)

Z(0)

S
Fig. 2. Symplectic orthogonality

Proof. The proof is based on the symplectic orthogonality (6.27), i.e.

�v(t)Z(t) = 0, t ∈ [0, t1], (9.4)

and on the fact that all the spaces Z(t) := Pv(t)E are almost parallel for all t (see Fig. 2).
Namely, we first note that ‖Z(t)‖−β ≤ C‖Z1(t)‖−β by Lemma 7.2, since |d1(t)| ≤ 1
for t ≤ t1 < t ′′∗ < t ′∗. Therefore, it suffices to prove that

‖Z1(t)‖−β ≤ 2‖P1 Z1(t)‖−β, 0 ≤ t ≤ t1. (9.5)

This estimate will follow from

‖�v(t1)Z1(t)‖−β ≤ 1

2
‖Z1(t)‖−β, 0 ≤ t ≤ t1 , (9.6)

since P1 Z1(t) = Z1(t)−�v(t1)Z1(t). To prove (9.6), we write (9.4) as

�v(t),1 Z1(t) = 0, t ∈ [0, t1], (9.7)

where �v(t),1 Z1(t) is �v(t)Z(t) expressed in terms of the variable y1 = y + d1(t).
Hence, (9.6) follows from (9.7) if the difference �v(t1) −�v(t),1 is small uniformly in
t , i.e.

‖�v(t1) −�v(t),1‖ < 1/2, 0 ≤ t ≤ t1. (9.8)

It remains to justify (9.8) for any sufficiently small ε > 0. We will need the formula
(6.25) and the following relation which follows from (6.25):

�v(t),1 Z1(t) =
∑

� jl(v(t))τ j,1(v(t))�(τl,1(v(t)), Z1(t)), (9.9)

where τ j,1(v(t)) are the vectors τ j (v(t)) expressed via the variables y1. In detail (cf.
(3.3)),

τ j,1(v) := (−∂ jψv(y1 − d1(t)),−∂ jπv(y1 − d1(t)), e j , 0),
τ j+3,1(v) := (∂v jψv(y1 − d1(t)), ∂v jπv(y1 − d1(t)), 0, ∂v j pv),

∣
∣
∣
∣ j = 1, 2, 3,

(9.10)

where v = v(t). Since |d1(t)| ≤ 1, and the functions ∇τ j are smooth and rapidly
decaying at infinity, Lemma 7.2 implies that

‖τ j,1(v(t))− τ j (v(t))‖β ≤ C |d1(t)|β, 0 ≤ t ≤ t1 (9.11)
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for all j = 1, 2, . . . , 6. Furthermore,

τ j (v(t))− τ j (v(t1)) =
∫ t1

t
v̇(s) · ∇vτ j (v(s))ds,

and therefore

‖τ j (v(t))− τ j (v(t1))‖β ≤ C
∫ t1

t
|v̇(s)|ds, 0 ≤ t ≤ t1. (9.12)

Similarly,

|� jl(v(t))−� jl(v(t1))| = |
∫ t1

t
v̇(s) · ∇v� jl(v(s))ds|

≤ C
∫ t1

t
|v̇(s)|ds, 0 ≤ t ≤ t1, (9.13)

since |∇v� jl(v(s))| is uniformly bounded by (6.9). Hence, the bounds (9.8) will follow
from (6.25), (9.9) and (9.11)–(9.13) if we shall prove that |d1(t)| and the integral on
the right-hand side of (9.12) can be made as small as desired by choosing a sufficiently
small ε > 0.

To estimate d1(t), note that

w(s)− v(t1) = w(s)− v(s) + v(s)− v(t1) = ċ(s) +
∫ t1

s
v̇(τ )dτ (9.14)

by (6.10). Hence, the definitions (7.2), (9.1), and Lemma 6.2 imply that

|d1(t)| = |
∫ t

t1
(w(s)− v(t1))ds| ≤

∫ t1

t

(
|ċ(s)| +

∫ t1

s
|v̇(τ )|dτ

)
ds

≤ Cm2(t1)
∫ t1

t

(
1

(1 + s)3
+

∫ t1

s

dτ

(1 + τ)3

)
ds ≤Cm2(t1) ≤ Cε2, 0≤ t ≤ t1,

(9.15)

since t1 < t ′′∗ . Similarly,
∫ t1

t
|v̇(s)|ds ≤ Cm2(t1)

∫ t1

t

ds

(1 + s)3
≤ Cε2, 0 ≤ t ≤ t1. (9.16)

The proof is completed. ��

10. Decay of Transversal Component

Here we prove Proposition 6.4.
Step i) We fix ε > 0 and t ′′∗ = t ′′∗ (ε) for which Lemma 9.2 holds. Then a bound of type
(8.5) holds with ‖P1 Z1(t)‖−β replaced by ‖Z(t)‖−β on the left-hand side:

‖Z(t)‖−β ≤ C

(1 + t)3/2
‖Z(0)‖β

+ C
∫ t

0

1

(1 + |t − s|)3/2
[
‖Z(s)‖−β

∫ t1

s
‖Z(τ )‖2−βdτ + ‖Z(s)‖2−β

]
ds, 0 ≤ t ≤ t1

(10.1)
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for t1 < t ′∗. This implies an integral inequality for the majorant

m(t) := sup
s∈[0,t]

(1 + s)3/2‖Z(s)‖−β .

Namely, multiplying (10.1) by (1 + t)3/2 and taking the supremum in t ∈ [0, t1], we get

m(t1) ≤ C‖Z(0)‖β + C sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t − s|)3/2

×
[

m(s)

(1 + s)3/2

∫ t1

s

m2(τ )dτ

(1 + τ)3
+

m2(s)

(1 + s)3

]
ds

for t1 < t ′′∗ . Taking into account that m(t) is a monotone increasing function, we get

m(t1) ≤ C‖Z(0)‖β + C[m3(t1) + m2(t1)]I (t1), t1 < t ′′∗ , (10.2)

where

I (t1) = sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t − s|)3/2
[

1

(1 + s)3/2

∫ t1

s

dτ

(1 + τ)3
+

1

(1 + s)3

]
ds ≤ I <∞,

t1 ≥ 0.

Therefore, (10.2) becomes

m(t1) ≤ C‖Z(0)‖β + C I [m3(t1) + m2(t1)], t1 < t ′′∗ . (10.3)

This inequality implies that m(t1) is bounded for t1 < t ′′∗ , and moreover,

m(t1) ≤ C1‖Z(0)‖β, t1 < t ′′∗ , (10.4)

since m(0) = ‖Z(0)‖β is sufficiently small by (3.11).
Step ii) The constant C1 in the estimate (10.4) does not depend on t∗, t ′∗ and t ′′∗ by Lemma
9.2. We choose a small d0 in (2.12) such that ‖Z(0)‖β < ε/(2C1). This is possible by
(3.11). Then the estimate (10.4) implies that t ′′∗ = t ′∗ , and therefore (10.4) holds for
all t1 < t ′∗. Then the bound (9.15) holds for all t < t ′∗. Choose a small ε such that the
right-hand side in (9.15) does not exceed one. Then t ′∗ = t∗. Therefore, (10.4) holds for
any t1 < t ′′∗ = t∗, hence (6.4) also holds if ‖Z(0)‖β is sufficiently small. Finally, this
implies that t∗ = ∞. Hence we also have t ′′∗ = t ′∗ = ∞, and (10.4) holds for any t1 > 0
if d0 is sufficiently small. ��

11. Soliton Asymptotics

Here we prove our main Theorem 2.5 under the assumption that the decay (6.19) holds.
Let us first prove the asymptotics (2.13) for the vector components, and then the asympt-
otics (2.14) for the fields.
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Asymptotics for the vector components. It follows from (4.3) that q̇ = ḃ + Q̇, and from
(6.21), (6.22), and (4.9) that Q̇ = Bv(t)P + O(‖Z‖2−β). Thus,

q̇ = ḃ + Q̇ = v(t) + ċ(t) + Bv(t)P(t) + O(‖Z‖2−β). (11.1)

Equation (6.11) together with estimates (6.12) and (6.19) imply that

|ċ(t)| + |v̇(t)| ≤ C1(ρ, v, d0)

(1 + t)3
, t ≥ 0. (11.2)

Therefore, c(t) = c+ + O(t−2) and v(t) = v+ + O(t−2), t →∞. Since |P| ≤ ‖Z‖−β ,
the estimate (6.19) together with relations (11.2) and (11.1) imply that

q̇(t) = v+ + O(t−3/2). (11.3)

Similarly,

b(t) = c(t) +
∫ t

0
v(s)ds = v+t + a+ + O(t−1), (11.4)

and hence the second part of (2.13) follows:

q(t) = b(t) + Q(t) = v+t + a+ + O(t−1), (11.5)

since Q(t) = O(t−3/2) by (6.19).

Asymptotics for the fields. We apply the approach developed in [18, 23]. For the field
part of the solution, F(t) = (ψ(x, t), π(x, t)), in the original variable x , let us define
the accompanying soliton field as Fv(t)(t) = (ψv(t)(x − q(t)), πv(t)(x − q(t))), where
we now set v(t) = q̇(t), cf. (11.1). Then for the difference Z(t) = F(t) − Fv(t)(t)
we obtain easily, from the first two equations of the system (1.2), the inhomogeneous
Klein–Gordon equation [23, (2.5)],

Ż(t) = A0 Z(t)− v̇ · ∇v Fv(t)(t), A0(ψ, π) = (π, (�− m2)ψ).

Then

Z(t) = W0(t)Z(0)−
∫ t

0
W0(t − s)[v̇(s) · ∇v Fv(s)(s)]ds, (11.6)

where W0(t) is the dynamical group of free Klein–Gordon equation. To obtain the as-
ymptotics (2.14) it suffices to prove that Z(t) = W0(t)�+ + r+(t) for some �+ ∈ F and
that ‖r+(t)‖F = O(t−1/2). This is equivalent to the asymptotics

W0(−t)Z(t) = �+ + r ′+(t), ‖r ′+(t)‖F = O(t−1/2), (11.7)

since W0(t) is a unitary group on the Sobolev space F by the energy conservation for the
free Klein–Gordon equation. Finally, the asymptotics (11.7) hold since (11.6) implies
that

W0(−t)Z(t) = Z(0)−
∫ t

0
W0(−s)R(s)ds, R(s) = v̇(s) · ∇v Fv(s)(s), (11.8)
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where the integral on the right-hand side of (11.8) converges in the Hilbert space F with
the rate O(t−1/2). The latter holds since ‖W0(−s)R(s)‖F = O(s−3/2) by the unitarity
of W0(−s) and the decay rate ‖R(s)‖F = O(s−3/2). Let us prove this rate of decay. It
suffices to prove that |v̇(s)| = O(s−3/2), or equivalently | ṗ(s)| = O(s−3/2). Substitute
(4.2) to the last equation of (1.2) and obtain

ṗ(t) =
∫ [

ψv(t)(x − b(t)) +�(x − b(t), t)
]∇ρ(x − b(t)− Q(t))dx

=
∫
ψv(t)(y)∇ρ(y)dy +

∫
ψv(t)(y) [∇ρ(y − Q(t))− ∇ρ(y)] dy

+
∫
�(y, t)∇ρ(y − Q(t))dy. (11.9)

The first integral on the right-hand side is zero by the stationary equations (2.7). The
second integral is O(t−3/2), which follows from the conditions (1.9) on ρ and the as-
ymptotics Q(t) = O(t−3/2). Finally, the third integral is O(t−3/2) by estimate (6.19).
This completes the proof. ��

12. Decay for the Linearized Dynamics

In the remaining section, we prove Proposition 6.7 to complete the proof of the main
result (Theorem 2.5). Here we discuss the general strategy of proving the proposition.
We apply the Fourier–Laplace transform

X̃(λ) =
∫ ∞

0
e−λt X (t)dt, Re λ > 0 (12.1)

to (6.23). According to Proposition 6.7, we can expect that the solution X (t) is bounded
in the norm ‖ · ‖−β . Then the integral (12.1) converges and is analytic for Re λ > 0, and

‖X̃(λ)‖−β ≤ C

Re λ
, Re λ > 0. (12.2)

Let us derive an equation for X̃(λ)which is equivalent to the Cauchy problem for (6.23)
with the initial condition X (0) = X0 ∈ E−β . We shall write A and v instead of A1 and
v1 in all the remaining part of the paper. Applying the Fourier–Laplace transform to
(6.23), we get that

λX̃(λ) = AX̃(λ) + X0, Re λ > 0. (12.3)

Let us stress that (12.3) is equivalent to the Cauchy problem for the functions X (t) ∈
Cb([0,∞); E−β). Hence the solution X (t) is given by

X̃(λ) = −(A − λ)−1 X0, Re λ > 0 (12.4)

if the resolvent R(λ) = (A − λ)−1 exists for Re λ > 0.
Let us comment on our following strategy in proving the decay (6.19). We shall first

construct the resolvent R(λ) for Re λ > 0 and prove that this resolvent is a continuous
operator on E−β . Then X̃(λ) ∈ E−β and is an analytic function for Re λ > 0. After this
we must justify that there exists a (unique) function X (t) ∈ C([0,∞); E−β) satisfying
(12.1).



On Scattering of Solitons for Klein–Gordon Equation Coupled to a Particle 349

The analyticity of X̃(λ) and the Paley-Wiener arguments (see [22]) should provide
the existence of a E−β – valued distribution X (t), t ∈ R, with a support in [0,∞).
Formally,

X (t) = 1

2π

∫

R

eiωt X̃(iω + 0)dω, t ∈ R. (12.5)

However, to establish the continuity of X (t) for t ≥ 0, we need additional bound for
X̃(iω+ 0) for large values of |ω|. Finally, for the time decay of X (t), we need additional
information on the smoothness and decay of X̃(iω + 0). More precisely, we must prove
that the function X̃(iω + 0) has the following properties:

i) it is smooth outside ω = 0 and ω = ±μ, where μ = μ(v) > 0,
ii) it decays in a certain sense as |ω| → ∞,

iii) it admits the Puiseux expansion at ω = ±μ,
iv) it is analytic at ω = 0 if X0 ∈ Zv := PvE and X0 ∈ Eβ .

Then the decay (6.19) would follow from the Fourier–Laplace representation (12.5).
We shall check in detail properties of the type i)–iv) only for the last two components

Q̃(λ) and P̃(λ) of the vector X̃(λ) = (�̃(λ), �̃(λ), Q̃(λ), P̃(λ)). The properties provide
the decay (6.19) for the vector components Q(t) and P(t) of the solution X (t).

However, we will not prove the properties of the type i)–iv) for the field components
�(x, λ) and �(x, λ). The decay (6.19) for the field components is deduced in Sect. 18
directly from the time-dependent field equations of the system (6.23), using the decay of
the component Q(t) and a version of the strong Huygens principle for the Klein–Gordon
equation.

13. Constructing the Resolvent

To justify the representation (12.4), we construct the resolvent as a bounded operator
in E−β for Re λ > 0. We shall write (�(y),�(y), Q, P) instead of (�̃(y, λ), �̃(y, λ),
Q̃(λ), P̃(λ)) to simplify the notations. Then (12.3) reads

(A − λ)
⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠=−

⎛

⎜
⎝

�0
�0
Q0
P0

⎞

⎟
⎠ , where A

⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠=

⎛

⎜
⎝

� + v · ∇�
�� − m2� + v · ∇� + Q · ∇ρ

BvP
−〈∇�, ρ〉 + 〈∇ψv, Q · ∇ρ〉

⎞

⎟
⎠ .

This gives the system of equations

�(y) + v · ∇�(y)−λ�(y)=−�0(y)

��(y)−m2�(y) + v · ∇�(y) + Q · ∇ρ(y)−λ�(y)=−�0(y)

BvP − λQ=−Q0

−〈∇�(y), ρ(y)〉 + 〈∇ψv(y), Q · ∇ρ(y)〉 − λP=−P0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y ∈ R
3. (13.1)

Step i) Let us study the first two equations. In the Fourier space they become

�̂(k)− ivk�̂(k)− λ�̂(k) = −�̂0(k)

(−k2 − m2)�̂(k)− (ivk + λ)�̂(k) = −�̂0(k) + i Qkρ̂(k)

∣
∣
∣
∣
∣
∣

k ∈ R
3 . (13.2)
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Let us invert the matrix of the system and obtain

( −(ivk + λ) 1
−(k2 + m2) −(ivk + λ)

)−1

= [(ivk + λ)2 + k2 + m2]−1
(−(ivk + λ) −1

k2 + m2 −(ivk + λ)

)
.

Taking the inverse Fourier transform, we obtain the corresponding fundamental solution

Gλ(y) =
(
v · ∇ − λ −1
−� + m2 v · ∇ − λ

)
gλ(y), (13.3)

where gλ(y) is the unique tempered fundamental solution of the determinant

D = D(λ) = −� + m2 + (−v · ∇ + λ)2. (13.4)

From now on we use the system of coordinates in x-space in which v = (|v|, 0, 0),
hence vk = |v|k1, and

gλ(y) = F−1
k→y

1

k2 + m2 + (ivk + λ)2
= F−1

k→y
1

k2 + m2 + (i |v|k1 + λ)2
, y ∈ R

3.

(13.5)

Note that the denominator does not vanish for Re λ > 0. This implies

Lemma 13.1. The operator Gλ with the integral kernel Gλ(y− y′) is continuous as an
operator from H1(R3)⊕ L2(R3) to H2(R3)⊕ H1(R3) for Re λ > 0.

Thus, formulas (13.2) and (13.3) imply the convolution representation

� = −(v · ∇ − λ)gλ ∗�0 + gλ ∗�0 + (gλ ∗ ∇ρ) · Q

� = −(−� + m2)gλ ∗�0 − (v · ∇ − λ)gλ ∗�0 − (v · ∇−λ)(gλ ∗ ∇ρ) · Q

∣
∣
∣
∣
∣
∣
.

(13.6)

Step ii) Let us compute gλ(y) explicitly. First consider the case v = 0. The fundamental
solution of the operator −� + m2 + λ2 is

gλ(y) = e−κ|y|

4π |y| , (13.7)

where

κ2 = m2 + λ2, Re κ > 0 for Re λ > 0. (13.8)

Thus, in the case v = 0 we have

Gλ(y − y′) =
( −λ −1
−� + m2 −λ

)
e−
√
λ2+m2|y−y′|

4π |y − y′| .
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For general v = (|v|, 0, 0) with |v| < 1 the denominator in (13.5), which is the Fourier
symbol of D, reads

D̂(k) = k2 + m2 + (i |v|k1 + λ)2

= (1− v2)k2
1 + k2

2 + k2
3 + 2i |v|k1λ + λ2 + m2

= (1− v2)(k1 +
i |v|λ

1− v2 )
2 + k2

2 + k2
3 + κ2, (13.9)

where

κ2 = v2λ2

1− v2 + λ2 + m2 = λ2

1− v2 + m2. (13.10)

Therefore, setting γ := 1/
√

1− v2, we have

κ = γ
√
λ2 + μ2, μ := m/γ. (13.11)

Return to x-space:

D = − 1

γ 2 (∇1 + γ κ1)
2 −∇2

2 −∇2
3 + κ2, κ1 := γ |v|λ. (13.12)

Define ỹ1 := γ y1 and ∇̃1 := ∂/∂ ỹ1. Then

D = −(∇̃1 + κ1)
2 − ∇2

2 − ∇2
3 + κ2. (13.13)

Thus, its fundamental solution is

gλ(y) = e−κ|ỹ|−κ1 ỹ1

4π |ỹ| , ỹ := (γ y1, y2, y3), (13.14)

where we choose Re κ > 0 for Re λ > 0. Let us note that

0 < Re κ1 < Re κ, Re λ > 0. (13.15)

This inequality follows from the fact that the fundamental solution decays exponentially
by the Paley–Wiener arguments since the quadratic form (13.9) does not vanish in a
complex neighborhood of the real space R

3 for Re λ > 0. Let us state the result which
we obtained above.

Lemma 13.2. i) The operator D = D(λ) is invertible in L2(R3) for Re λ > 0 and its
fundamental solution (13.14) decays exponentially.

ii) Formulas (13.14) and (13.11) imply that, for every fixed y, the Green function gλ(y)
admits an analytic continuation (in the variable λ) to the Riemann surface of the
algebraic function

√
λ2 + μ2 with the branching points ±iμ.
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Step iii) Let us now proceed with the last two equations (13.1),

−λQ + BvP = −Q0, 〈∇ψv, Q · ∇ρ〉 − 〈∇�, ρ〉 − λP = −P0. (13.16)

Let us eliminate the field � by the first equation (13.6). Namely, rewrite the equation in
the form �(x) = �1(Q) +�2(�0,�0), where

�1(Q) = Q · (gλ ∗ ∇ρ), �2(�0,�0) = −(v · ∇ − λ)gλ ∗�0 + gλ ∗�0.

(13.17)

Then we have

〈∇�, ρ〉 = 〈∇�1(Q), ρ〉 + 〈∇�2(�0,�0), ρ〉,
and the last equation in (13.16) becomes

〈∇ψv, Q · ∇ρ〉 − 〈∇�1(Q), ρ〉 − λP = −P0 + 〈∇�2(�0,�0), ρ〉 =: −P ′0.

Let us first compute the term 〈∇ψv, Q·∇ρ〉 =∑
j 〈∇ψv, Q j∂ jρ〉 =∑

j 〈∇ψv, ∂ jρ〉Q j .
Applying the Fourier transform Fy→k , the Parseval identity, and (A.5) we see that

〈∂iψv, ∂ jρ〉 = 〈−iki ψ̂v(k),−ik j ρ̂(k)〉 = 〈ki ψ̂v(k), k j ρ̂(k)〉
= −〈 ki ρ̂(k)

k2 + m2 − (|v|k1)2
, k j ρ̂(k)〉 = −

∫
ki k j |ρ̂(k)|2dk

k2 + m2 − (|v|k1)
2 =: −Ki j .

(13.18)

As the result, 〈∇ψv, Q · ∇ρ〉 = −K Q, where K is the 3 × 3 matrix with the matrix
elements Ki j . The matrix K is diagonal and positive definite since ρ̂(k) is spherically
symmetric and not identically zero by (1.10).

Let us now compute the term −〈∇�1, ρ〉 = 〈�1,∇ρ〉. We have

〈�1, ∂iρ〉 = 〈
∑

j

(gλ ∗ ∂ jρ)Q j , ∂iρ〉 =
∑

j

〈gλ ∗ ∂ jρ, ∂iρ〉Q j =
∑

j

Hi j (λ)Q j ,

since �1 = Q · (gλ ∗ ∇ρ), and by the Parseval identity again, we have

Hi j (λ) : = 〈gλ ∗ ∂ jρ, ∂iρ〉 = 〈i ĝλ(k)k j ρ̂(k), iki ρ̂(k)〉

= 〈 ik j ρ̂(k)

k2 + m2 + (i |v|k1 + λ)2
, iki ρ̂(k)〉 =

∫
ki k j |ρ̂(k)|2dk

k2 + m2 + (i |v|k1 + λ)2
.

(13.19)

The matrix H is well defined for Re λ > 0 since the denominator does not vanish (or
gλ(x) exponentially decays). The matrix H is diagonal similarly to K . Indeed, if i 	= j ,
then at least one of these indexes is not equal to one, and the integrand in (13.19) is odd
with respect to the corresponding variable.

As the result, −〈∇�1, ρ〉 = H Q, where H is the diagonal matrix with matrix ele-
ments Hj j , 1 ≤ j ≤ 3. Finally, Eqs. (13.16) become

M(λ)

(
Q
P

)
=

(
Q0
P ′0

)
, where M(λ) =

(
λE −Bv

K − H(λ) λE

)
, (13.20)
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where the matrices K and H(λ) are diagonal.
Step iv) Assume for a moment that the matrix M(λ) is invertible for Re λ > 0 (later we
shall prove that this the case indeed). Then

(
Q
P

)
= M−1(λ)

(
Q0
P ′0

)
, Re λ > 0. (13.21)

Finally, formulas (13.21) and (13.6) give the expression of the resolvent R(λ) = (A −
λ)−1, Re λ > 0.

Lemma 13.3. The matrix function M(λ) (M−1(λ)) admits an analytic (meromorphic)
continuation from the domain Re λ > 0 to the Riemann surface of the function

√
λ2 + μ2.

Proof. The analytic continuation of M(λ) exists by Lemma 13.2 ii) and the convolu-
tion expressions in (13.19) since the function ρ(x) is compactly supported by (1.9).
The inverse matrix is then meromorphic since it exists for large Re λ: this follows from
(13.20) since H(λ)→ 0 as Re λ→∞ by (13.19). ��

14. Analyticity in the Half-Plane

Here we prove the following proposition.

Proposition 14.1. The operator-valued function R(λ) : E → E is analytic for Re λ > 0.

Proof. It suffices to prove that the operator A−λ : E → E has bounded inverse operator
for Re λ > 0. Recall that A = Av,v where |v| < 1.
Step i) Let us prove that Ker (A − λ) = 0 for Re λ > 0. Indeed, assume that the vector
Xλ = (�λ,�λ, Qλ, Pλ) ∈ E satisfies the equation (A − λ)Xλ = 0, that is Xλ is a
solution to (13.1) with �0 = �0 = 0 and Q0 = P0 = 0. We must prove that Xλ = 0.

Let us first show that Pλ = 0. Indeed, the trajectory X := Xλeλt ∈ C(R, E) is the
solution to the equation Ẋ = AX of type (5.1) with w = v. Then Hv,v(X (t)) grows
exponentially by (5.14), since the matrix Bv is positive. This growth contradicts the
conservation of Hv,v , which follows from Lemma 5.1 ii) because X (t) ∈ C1(R, E+).
The latter inclusion follows from Lemma 13.1 since (�λ,�λ) satisfies Eqs. (13.6) with
�0 = �0 = 0 and Q = Qλ.

We now have λQλ = BvPλ = 0 by the third equation of (13.1), and hence Qλ = 0
because λ 	= 0. Finally, �λ = 0, �λ = 0 by Eqs. (13.6) with Q = Qλ = 0.
Step ii) One has

(A − λ)
⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠ =

⎛

⎜
⎝

v · ∇ − λ 1 0 0
�− m2 v · ∇ − λ ·∇ρ 0

0 0 −λ Bv
〈·,∇ρ〉 0 〈∇ψv, ·∇ρ〉 −λ

⎞

⎟
⎠

⎛

⎜
⎝

�

�

Q
P

⎞

⎟
⎠ .

Thus, A − λ = A0 + T , where

A0 =
⎛

⎜
⎝

v · ∇ − λ 1 0 0
�− m2 v · ∇ − λ 0 0

0 0 −λ 0
0 0 0 −λ

⎞

⎟
⎠ , T =

⎛

⎜
⎝

0 0 0 0
0 0 ·∇ρ 0
0 0 0 Bv

〈·,∇ρ〉 0 〈∇ψv, ·∇ρ〉 0

⎞

⎟
⎠ .
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The operator T is finite-dimensional, and the operator A−1
0 is bounded on E by Lemma

13.1. Finally, A − λ = A0(I + A−1
0 T ), where A−1

0 T is a compact operator. Since we
know that Ker (I + A−1

0 T ) = 0, the operator (I + A−1
0 T ) is invertible by the Fredholm

theory. ��
Corollary 14.2. The matrix M(λ) of (13.20) is invertible for Re λ > 0.

15. Regularity on the Imaginary Axis

Next step should be an investigation of the limit values of the resolvent R(λ) at the
imaginary axis λ = iω, ω ∈ R, that is necessary for proving the decay (6.19) of the
solution X (t) = (�(t),�(t), Q(t), P(t)).

Let us first describe the continuous spectrum of the operator A = Av,v on the imag-
inary axis. By definition, the continuous spectrum corresponds to ω ∈ R such that the
resolvent R(iω + 0) is not a bounded operator on E . By the formulas (13.6), this is the
case if the Green function gλ(y − y′) fails to have exponential decay. This is equivalent
to the condition that Re κ = 0, where κ is given by (13.11): κ = γ√

μ2 − ω2. Thus, iω
belongs to the continuous spectrum if (cf. (13.11))

|ω| ≥ μ = m
√

1− v2.

By Lemma 13.3, the limit matrix

M(iω) := M(iω + 0) =
(

iωE −Bv
K−H(iω + 0) iωE

)
, ω ∈ R, (15.1)

exists, and its entries are continuous functions of ω ∈ R, smooth for |ω| < μ and
|ω| > μ. Recall that the point λ = 0 belongs to the discrete spectrum of the operator A
by Lemma 5.4 i), and hence M(iω + 0) is (probably) not invertible either at ω = 0.

Proposition 15.1. Let (1.9) and (1.10) hold, and |v| < 1. Then the limit matrix M(iω+0)
is invertible for ω 	= 0, ω ∈ R.

Proof. Let us consider the three possible cases 0 < |ω| < μ, |ω| = μ, and |ω| > μ

separately. Let us recall that the matrices K and H are diagonal with the entries

K j j =
∫ k2

j |ρ̂(k)|2dk

k2 + m2 − (|v|k1)
2 , (15.2)

Hj j (λ) =
∫ k2

j |ρ̂(k)|2dk

k2 + m2 + (i |v|k1 + λ)2
, Re λ > 0, (15.3)

and H22 = H33. Since v = (|v|, 0, 0), the matrix Bv is also diagonal:

Bv := ν(E − v ⊗ v) =
⎛

⎝
ν3 0 0
0 ν 0
0 0 ν

⎞

⎠ , (15.4)
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since ν2 := 1 − v2. Let us denote F(ω) := −K + H(iω + 0) which is also diagonal,
and let F‖ := F11(ω), and F⊥ := F22(ω) = F33(ω). Then by (15.1)

det M(iω) = det

(
iωE −Bv
−F(ω) iωE

)
= −(ω2 + ν3 F‖)(ω2 + νF⊥)2, ω ∈ R. (15.5)

The formula for the determinant is obvious since both matrices F(ω) and Bv are diagonal,
hence the matrix M(iω) is equivalent to three independent matrices 2× 2. Namely, let
us transpose the columns and rows of the matrix M(iω) in the order (142536). Then we
get the matrix with three 2× 2 blocks on the main diagonal. Therefore, the determinant
of M(iω) is simply a product of the determinants of the three matrices.
I. First, let us consider the case 0 < |ω| < μ. Then the invertibility of M(iω) follows
from (15.5) by the following lemma. ��
Lemma 15.2. For 0 < |ω| < μ, the matrix F(ω) is positive definite, i.e. Fj j (ω) > 0,
j = 1, 2, 3.

Proof. First, let us check that the denominator in (15.3) is positive for λ = iω with
|ω| < μ. Indeed, it equals m2 + k2 − (ω + |v|k1)

2 and we have to prove that m2 + k2 >

ω2 + 2ω|v|k1 + v2k2
1. By the condition |ω| < μ = m

√
1− v2, it suffices to prove that

m2 +k2 ≥ m2(1−v2)+2ω|v|k1 +v2k2
1. This is equivalent to k2

2 +k2
3 +m2v2 +k2

1(1−v2) ≥
2m|v|k1

√
1− v2, which is evidently true. Thus,

Fj j (ω) =
∫

k2
j |ρ̂(k)|2dk

(
1

m2 + k2 − (|v|k1 + ω)2
− 1

m2 + k2 − (|v|k1)2

)
,

j = 1, 2, 3.

Let us prove that Fj j (ω) > 0. Indeed, since ρ̂(k) = ρ̂(−k), we obtain that

Fj j (ω) =
∫

dk2dk3

∫ +∞

0
k2

j |ρ̂(k)|2
(

1

m2 + k2 − (|v|k1 + ω)2

+
1

m2 + k2 − (|v|k1 − ω)2 −
2

m2 + k2 − (|v|k1)2

)
dk1. (15.6)

Now it suffices to prove that the expression in brackets is positive (or positive infinite)
under the conditions

|v| < 1, 0 < |ω| ≤ μ = m
√

1− v2. (15.7)

This is proved in Appendix B. ��
II. ω = ±μ. For example consider the case ω = μ. Then formula (15.3) reads (see
(13.9)):

Hj j (iμ) =
∫ k2

j |ρ̂(k)|2dk

k2
2 + k2

3 + (νk1 − m|v|)2 .

Now the integrand has a unique singular point. The singularity is integrable, and there-
fore the terms Fj j (μ) are finite. Furthermore, the terms are positive by the integral
representation (15.6) again. Hence, the matrix M(iμ) is invertible.
III. |ω| > μ. Here we apply another argument: the invertibility of M(iω) follows from
(15.5) by the methods used in [40, Chapter VII, formula (58)].
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Lemma 15.3. If (1.10) holds and if |ω| > μ, then the imaginary part of the matrix
ω

|ω| F(ω) is negative definite, i.e.
ω

|ω| Im Fj j (ω) < 0, j = 1, 2, 3.

Proof. Since F(ω) = −K + H(iω + 0), where the matrix K is real, it suffices to study
the matrix H(iω + 0). For ε > 0, we have

Hj j (iω + ε) =
∫ k2

j |ρ̂(k)|2dk

k2
1 + k2

2 + k2
3 − (|v|k1 + ω − iε)2 + m2

, j = 1, 2, 3. (15.8)

Consider the denominator

D̂ε(k) = k2 + m2 − (|v|k1 + ω − iε)2.

It was shown above that D̂0(k) 	= 0 if |ω| < μ, and D̂0(k) vanishes at one point if
|ω| = μ. On the other hand, for |ω| > μ the denominator D̂0(k) vanishes on the
ellipsoid

Tω =
{

k : (νk1 − |v|ω
ν
)2 + k2

2 + k2
3 = R2 := ω2 − μ2

ν2

}
,

where ν = √1− v2. We shall show below that the Plemelj formula for C1-functions
implies that

Im Hj j (iω + 0) = − ω

|ω|π
∫

Tω

k2
j |ρ̂(k)|2
|∇ D̂0(k)|

d S, (15.9)

where d S is the element of the surface area. This immediately implies the statement of
the lemma since the integrand in (15.9) is positive by the Wiener condition (1.10).

Let us justify (15.9) for ω > μ > 0 (the case ω < −μ < 0 can be treated similarly).
Let ζ ∈ C∞0 (R3) be a nonnegative cut off function equal to one when |D̂0(k)| < δ and
vanishing when |D̂0(k)| > 2δ. We fix a small δ and split the integral (15.8) in two parts:
with the factor ζ in the integrand and with the factor 1− ζ . The limit of the second term
as ε→ 0 is real. Hence, we have to calculate the imaginary part only for

H (δ)
j j (iω + 0) = lim

ε→0

∫
ζ(k)

k2
j |ρ̂(k)|2dk

D̂ε(k)
. (15.10)

Denote a(k) = √k2 + m2 and b(k) = |v|k1 + ω. Then

1

D̂ε(k)
= 1

a2 − (b − iε)2
= 1

2a(a − b + iε)
+

1

2a(a + b − iε)
. (15.11)

Note that D̂0(k) 	= 0 if b(k) = 0. Thus, b(k) 	= 0 on Tω, and therefore b(k) 	= 0 on the
support of ζ if δ � 1. Since b(k) > 0 when v = 0 (ν = 1), we get that b(k) > 0 on the
support of ζ for all v with |v| < 1.

We split the integral in (15.10) in two terms according to (15.11). Then the second
term is real for ε = 0. Now it remains to calculate the imaginary part of h(iω+0), where

h(iω + ε) :=
∫
ζ(k)

k2
j |ρ̂(k)|2dk

2a(a − b + iε)
. (15.12)
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One can rewrite (15.12) as the iterated integral: over the surfaces T αω = {k ∈ R
3 :

a(k)− b(k) = α, |D̂0(k)| < δ} and over α. Then we get

h(iω + ε) =
∫

u(α)

α + iε
dα, u(α) =

∫

T αω

ζ(k)
k2

j |ρ̂(k)|2d S

2a|∇(a − b)| ,

and therefore

Im h(iω + 0) = −πu(0) = −π
∫

Tω
ζ(k)

k2
j |ρ̂(k)|2d S

2a|∇(a − b)| .

This implies (15.9), since D̂0(k) = a2 − b2 and |∇ D̂0(k)| = 2a|∇(a − b)| on Tω. ��
This completes the proofs of Lemma 15.3 and Proposition 15.1.

Corollary 15.4. Proposition 15.1 implies that the matrix M−1(iω) is smooth with re-
spect to ω ∈ R outside the three points ω = 0,±μ.

Remark 15.5. The proof of Lemma 15.3 is the unique point in the paper where the
Wiener condition is indispensable. In Lemma 15.2 we use only that the coupling func-
tion ρ(x) is not identically zero.

16. Singular Spectral Points

Recall that the formula (13.21) expresses the Fourier–Laplace transforms Q̃(λ), P̃(λ).
Hence, the components are given by the Fourier integral

(
Q(t)
P(t)

)
= 1

2π

∫
eiωt M−1(iω + 0)

(
Q0
P ′0

)
dω (16.1)

which converges in the sense of distributions. It remains to prove the continuity and
decay of the vector components. Corollary 15.4 by itself is insufficient to prove the
convergence and decay of the integral. Namely, we need additional information about
the regularity of the matrix M−1(iω) at the singular points ω = 0,±μ and about some
bounds at |ω| → ∞. We shall study the points separately.
I. Consider first the points ±μ.

Lemma 16.1. The matrix M−1(iω) admits the following Puiseux expansion in a neigh-
borhood of ±μ: there exists an ε± > 0 s.t.

M−1(iω) =
∞∑

k=0

R±k (ω ∓ μ)k/2, |ω ∓ μ| < ε±, ω ∈ R. (16.2)

Proof. It suffices to prove a similar expansion for M(iω). Then (16.2) holds for M−1(iω)
as well, since the matrices M(±iμ) are invertible. The asymptotics for M(iω) holds by
the convolution representation in (13.19):

Hi j (λ) = 〈gλ ∗ ∂ jρ, ∂iρ〉, (16.3)

since gλ admits the corresponding Puiseux expansions by formula (13.14). ��
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II. Second, we study the asymptotic behavior of M−1(λ) at infinity. Let us recall that
M−1(λ) was originally defined for Re λ > 0, but it admits a meromorphic continuation
to the Riemann surface of the function

√
λ2 + μ2 (see Lemma 13.3).

The following proposition is a very particular case of a general fundamental theo-
rem about the bound for the truncated resolvent on the continuous spectrum. The bound
plays a crucial role in the study of the long-time asymptotics of general linear hyperbolic
PDEs, [40].

Proposition 16.2. We can find a matrix R0 and a matrix-function R1(ω) such that

M−1(iω) = R0

ω
+ R1(ω), |ω| ≥ μ + 1, ω ∈ R,

where

|∂k
ωR1(ω)| ≤ Ck

|ω|2 , |ω| ≥ μ + 1, ω ∈ R (16.4)

for every k = 0, 1, 2, ...,.

Proof. By the structure (15.1) of the matrix M(iω) it suffices to prove the following
estimate for the elements of the matrix H(iω) := H(iω + 0):

|∂k
ωHj j (iω)| ≤ Ck

|ω| , ω ∈ R, |ω| ≥ μ + 1, j = 1, 2, 3. (16.5)

Let us rewrite (16.3) as

Hi j (λ) = 〈D−1(λ)∂ jρ, ∂iρ〉, Re λ > 0, (16.6)

where D(λ) is the operator (13.4), and D−1(λ) is a bounded operator on L2(R3). Let us
denote by BR the ball {x ∈ R

3 : |x | < R}. Estimate (16.5) immediately follows from a
more general bound

‖∂k
ωD−1(iω + 0) f ‖L2(BR)

≤ Ck(R)

|ω| ‖ f ‖L2(BR)
, ω ∈ R, |ω| ≥ μ + 1 (16.7)

which holds for every R > 0 and all functions f (y) ∈ L2
R := { f (y) ∈ L2(R3) :

supp f ⊂ BR}. Namely, by (1.9) the asymptotics (16.5) follows from the bound (16.7)
applied to the function f (y) = ∂ jρ(y) ∈ L2

R with R ≥ Rρ . The bound (16.7) follows
from a general estimate [38, Thm 3] (see also [2, the bound (A.2’)] ,[21, Thm 8.1], [39,
Thm 3]).
III. Finally, consider the point ω = 0 which is the most singular. This is an isolated pole
of a finite degree by Lemma 13.3, and hence the Laurent expansion holds,

M−1(iω) =
n∑

k=0

Lkω
−k−1 + h(ω), |ω| < ε0, (16.8)

where Lk are 6 × 6 complex matrices, ε0 > 0, and h(ω) is an analytic matrix-valued
function for complex ω with |ω| < ε0.
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17. Time Decay of the Vector Components

Here we prove the decay (6.19) for the components Q(t) and P(t).

Lemma 17.1. Let X0 ∈ Zv,β . Then Q(t), P(t) are continuous and the following bound
holds:

|Q(t)| + |P(t)| ≤ C(ρ, v, d0)

(1 + |t |)3/2 , t ≥ 0. (17.1)

Proof. Expansions (16.2), (16.4), and (16.8) imply the convergence of the Fourier inte-
gral (16.1) in the sense of distributions to a continuous function of t ≥ 0. Let us prove
the decay (17.1). We know that the linearized dynamics admits the secular solutions
without decay, see (6.24). The formulas (3.3) give the corresponding components QS(t)
and PS(t) of the secular solutions,

(
QS(t)
PS(t)

)
=

3∑

1

C j

(
e j
0

)
+

3∑

1

D j

[(
e j
0

)
t +

(
0

∂v j pv

) ]
. (17.2)

We claim that the symplectic orthogonality condition leads to (17.1). Let us split the Fou-
rier integral (16.1) into three terms by using the partition of unity ζ1(ω)+ζ2(ω)+ζ3(ω) =
1, ω ∈ R:

(
Q(t)
P(t)

)
= 1

2π

∫
eiωt (ζ1(ω) + ζ2(ω) + ζ3(ω))M

−1(iω + 0)

(
Q0
P ′0

)
dω

= I1(t) + I2(t) + I3(t), (17.3)

where the functions ζk(ω) ∈ C∞(R) are supported by

supp ζ1 ⊂ {ω ∈ R : ε0/2 < |ω| < μ + 2}
supp ζ2 ⊂ {ω ∈ R : |ω| > μ + 1}
supp ζ3 ⊂ {ω ∈ R : |ω| < ε0}

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (17.4)

Then

i) The function I1(t) ∈ C∞(R) decays like (1 + |t |)−3/2 by the Puiseux expansion
(16.2).

ii) The function I2(t) ∈ C[0,∞) decays faster than any power of t due to Proposition
16.2.

iii) Finally, the function I3(t) generally does not decay if n ≥ 0 in the Laurent expansion
(16.8).

Namely, the contribution of the analytic function h(ω) is a smooth function of t ∈ R,
and decays faster than any power of t . On the other hand, the contribution of the Laurent
series,

(
QL(t)
PL(t)

)
:= 1

2π

∫
eiωtζ3(ω)

n∑

k=0

Lk(ω − i0)−k−1
(

Q0
P ′0

)
dω, t ∈ R, (17.5)

is a polynomial function of t ∈ R of a degree ≤ n, modulo smooth functions of t ∈ R

decaying faster than any power of t . This follows by the Cauchy theorem applied to the
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integral (17.5) if we change the integral over ω ∈ [−ε0/2, ε0/2], where ζ3(ω) ≡ 1, by
the integral over the semicircle eiθ ε0/2, θ ∈ [π, 0]. Let us note that the formula (17.2)
gives an example of polynomial functions arising from (17.5).

We must show that the symplectic orthogonality condition eliminates the polynomial
functions. Our main difficulty is that we know nothing about the order n of the pole
and about the Laurent coefficients Lk of the matrix M−1(iω) at ω = 0. Our crucial
observation has the following form:

a) The components (17.2) of the secular solutions form a linear space LS of dimension
dim LS = 6.

b) The polynomial functions in (17.5) belong to a linear space LL of dimension
dim LL ≤ 6 since (Q0, P ′0) ∈ R

6.
c) LS ⊂ LL since any function (17.2) admits a representation of the form (17.5). The

validity of this representation follows from the fact that the secular solutions (6.24)
can be reproduced by our calculations with the Laplace transform.

Therefore, we can conclude that

LL = LS . (17.6)

Let us show that the secular solutions are forbidden since X0 ∈ Zv,β , and hence the
polynomial terms in (17.5) vanish, which implies the decay (17.1).

First, the constructed vector components Q(t) and P(t) are continuous functions of
t ≥ 0. Hence, the corresponding field components�(t) and�(t) can be constructred by
solving the first two equations of (6.23), where A1 is given by (4.9) withw = v = v(t1)
(see (18.1) below). Proposition 18.1 i) in the next section implies that X (t) ∈ C(R, E).

Second, the condition X0 ∈ Zv,β Implies that the entire trajectory X (t) lies in Zv,β .
This follows from the invariance of the space Zv,β under the generator Av,v (cf. Remark
6.6). In other words, X (t) = PvX (t).

On the other hand, identity (17.6) implies that X (t) can be corrected by a secular
solution X S(t) s.t. the corresponding components Q�(t) and P�(t) of the difference
�(t) := X (t) − X S(t) decay at the rate (1 + |t |)−3/2. Note that Pv�(t) = PvX (t) =
X (t) since PvX S(t) = 0.

Further, the difference�(t) ∈ C(R, E) is a solution to the linearized equation (6.23).
Hence, the corresponding norms of the field components of �(t) also decay like (1 +
|t |)−3/2 that follows from Proposition 18.1 ii). Therefore, ‖�(t)‖−β ≤ C(1 + |t |)−3/2,
hence the components Q(t) and P(t), of X (t) = Pv�(t) also decay like (1 + |t |)−3/2.
��

18. Time Decay of Fields

In Sects. 12–17 we denote by X (t) the solution to the linearized equation (6.23) with a
fixed initial condition X0. Here we consider an arbitrary solution X (t) = (�(·, t),�(·, t),
Q(t), P(t)) of the linearized equation. We shall prove a proposition which can be ap-
plied to the solution X (t) from previous sections as well as to the solution �(t) above.
Let us study the field part of the solution, F(t) = (�(·, t),�(·, t)), solving the first two
equations from the system (6.23). These two equations have the form

Ḟ(t) =
(
v · ∇ 1
�− m2 v · ∇

)
F(t) +

(
0
Q(t) · ∇ρ

)
. (18.1)
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We shall assume that the vector components decay,

|Q(t)| ≤ C(ρ, v, d0)

(1 + |t |)3/2 , t ≥ 0. (18.2)

Proposition 6.7 is reduced now to the following assertion.

Proposition 18.1. i) Let Q(t) ∈ C([0,∞);R3), and F0 ∈ F . Then Eq. (18.1) admits
a unique solution F(t) ∈ C([0,∞);F) with the initial condition F(0) = F0.

ii) If F0 ∈ Fβ and if the decay (18.2) holds, then the corresponding fields also decay
uniformly with respect to v:

‖F(t)‖−β ≤ C(ρ, v, ṽ, d0, ‖F0‖β)
(1 + |t |)3/2 , t ≥ 0, (18.3)

for |v| ≤ ṽ with any ṽ ∈ (0, 1).

Proof. Step i) The statement i) follows from the Duhamel representation

F(t) = W (t)F0 +

[∫ t

0
W (t − s)

(
0
Q(s) · ∇ρ

)
ds

]
, t ≥ 0, (18.4)

where W (t) is the dynamical group of the modified Klein–Gordon equation

Ḟ(t) =
(

v · ∇ 1
�− m2 v · ∇

)
F(t). (18.5)

The group W (t) can be expressed through the group W0(t) of the standard Klein–Gordon
equation

�̇(t) =
(

0 1
�− m2 0

)
�(t). (18.6)

Namely, the problem (18.6) corresponds to (18.5), when v = 0, and it is easy to see that

[W (t)F(0)](x) = [W0(t)F(0)](x + vt), x ∈ R
3, t ∈ R. (18.7)

Denote by W (x − y, t) and W0(x − y, t) the (distribution) integral matrix kernels of the
operators W (t) and W0(t) respectively. Then (18.7) implies that

W (x − y, t) = W0(x − y + vt, t), x, y ∈ R
3, t ∈ R. (18.8)

The identity (18.7) implies also the energy conservation law for the group W (t). Namely,
for (�(·, t),�(·, t)) = W (t)F(0) we have
∫
[|�(x, t)− v · ∇�(x, t)|2 + |∇�(x, t)|2 + m2|�(x, t)|2]dx = const, t ∈ R.

In particular, this gives that

‖W (t)F0‖F ≤ C(v)‖F0‖F , t ∈ R. (18.9)

This estimate and (18.4) imply the statement i).
Step ii) The statement ii) follows from the Duhamel representation (18.4) and the

next lemma.
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Lemma 18.2. For any β > 3/2, v < 1 and F0 ∈ Fβ , the following decay holds:

‖W (t)F0‖−β ≤ C(β, v)

(1 + t)3/2
‖F0‖β, t ≥ 0, (18.10)

for the dynamical group W (t) corresponding to the modified Klein–Gordon equation
(18.5) with |v| < v.

Proof. The lemma can be proved by general methods of Jensen and Kato [21] relying on
the fundamental Agmon estimate [2, the bound (A.2’)]. We give an independent short
proof for the convenience of the reader.

Step i) The matrix kernel W0(x − y, t) of the group W0(t) can be written explicitly
since the solution to (18.6) has the form (see [22])

�(·, t) =
[
∂

∂t
R(t) ∗�0 + R(t) ∗�0

]
, �(·, t) = �̇(·, t). (18.11)

Here R(t) = R(·, t) = R0(·, t) + Rm(·, t), and

R0(x, t) = δ(t − |x |)
4π t

, Rm(x, t) = − m

4π

J +
1 (m

√
t2 − |x |2)

√
t2 − |x |2 ,

where

J +
1 (m

√
s) :=

{
J1(m

√
s), s ≥ 0

0 s < 0,

and J1 is the Bessel function of order 1. From here and well known asymptotics of the
Bessel function it follows that

W0(z, t) = 0, |z| > t,

|∂αz W0(z, t)| ≤ C(δ)(1 + t)−3/2, |z| ≤ (1− δ)t,
for t ≥ 1, |α| ≤ 1 and any δ > 0. From the last two relations and (18.8) it follows that,
for any v < 1 and ε = 1−v

2 , the following estimates hold for the matrix kernel W (z, t)
of the group W (t) :

W (z, t) = 0, |z| > (1 + v)t, (18.12)

|∂αz W (z, t)| ≤ C(v)(1 + t)−3/2, |z| ≤ εt, |α| < 1. (18.13)

Step ii) Let us fix an arbitrary t ≥ 1, and split the initial function F0 in two terms,
F0 = F ′0,t + F ′′0,t such that

‖F ′0,t‖β + ‖F ′′0,t‖β ≤ C‖F0‖β, t ≥ 1, (18.14)

and

F ′0,t (x) = 0, |x | > εt

2
, (18.15)

F ′′0,t (x) = 0, |x | < εt

4
, (18.16)
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where ε > 0 is defined in (18.13). The estimate for W (t)F ′′0,t follows by (18.9), (18.16)
and (18.14):

‖W (t)F ′′0,t‖−β ≤ ‖W (t)F ′′0,t‖F ≤ C‖F ′′0,t‖F
≤ C1(ε)‖F ′′0,t‖β(1 + t)−β ≤ C2(ε)‖F0‖β(1 + t)−β, t ≥ 1.

(18.17)

Step iii) It remains to estimate W (t)F ′0,t . We split the operator W (t), for t > 1, in two
terms:

W (t) = (1− ζ )W (t) + ζW (t),

where ζ is the operator of multiplication by the function ζ(|x |/t) such that ζ = ζ(s) ∈
C∞0 (IR), ζ(s) = 1 for |s| < ε/4, ζ(s) = 0 for |s| > ε/2. Since

|∂αx ζ(|x |/t)| ≤ C, |α| ≤ 1, t ≥ 1,

and 1− ζ(|x |/t) = 0 for |x | < εt/4, we have, for t ≥ 1,

||(1− ζ )W (t)F ′0,t ||−β ≤ C3(ε)(1 + t)−β ||(1− ζ )W (t)F ′0,t ||F
≤ C4(ε)(1 + t)−β ||W (t)F ′0,t ||F .

From here, (18.9) and (18.14) it follows that

||(1− ζ )W (t)F ′0,t ||−β ≤ C5(ε)(1 + t)−β ||F ′0,t ||F ≤ C6(ε)(1 + t)−β ||F0||F , t≥1.

(18.18)

Step iv) Thus, in order to complete the proof of Lemma 18.2, it remains to receive a simi-
lar estimate for ζW (t)F ′0,t . Let χεt/2 be the characteristic function of the ball |x | ≤ εt/2.
We will use the same notation for the operator of multiplication by this characteristic
function. From (18.15) it follows that

ζW (t)F ′0,t = ζW (t)χεt/2 F ′0,t .

The matrix kernel W ′(x, y, t) of the operator ζW (t)χεt/2 is equal to

W ′(x, y, t) = ζ(|x |/t)W (x − y, t)χεt/2(y).

Since ζ(|x |/t) = 0 for |x | > εt/2 and χεt/2(y) = 0 for |y| > εt/2, the estimate (18.13)
implies that

|∂αx W ′(x, y, t)| ≤ C(v)(1 + t)−3/2, |α| < 1, t ≥ 1. (18.19)

The norm of the operator ζW (t)χεt/2 : Fβ → F−β is equivalent to the norm of the
operator

(1 + |x |)−βζW (t)χεt/2(1 + |y|)−β : F → F .

The norm of the later operator does not exceed the sum in α, |α| ≤ 1 of the norms of
operators

∂αx [(1 + |x |)−βζW (t)χεt/2(1 + |y|)−β ] : L2(R3)⊕ L2(R)→ L2(R3)⊕ L2(R3).

(18.20)
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From (18.19) it follows that operators (18.20) are Hilbert-Schmidt operators since β >
3/2, and their Hilbert-Schmidt norms do not exceed C(1 + t)−3/2. Hence

||ζW (t)F ′0,t ||−β ≤ C(v)(1 + t)−3/2||F ′0,t ||β ≤ C7(v)(1 + t)−3/2||F0,t ||β, t ≥ 1.

(18.21)

The last estimate above is due to (18.14). Finally, the estimates (18.21), (18.18) and
(18.17) imply (18.10). ��

A. Appendix: Computing Symplectic Form

Here we justify the formulas (3.5)–(3.7) for the matrix �. For j, l = 1, 2, 3 it follows
from (3.3) and (3.2) that

�(τ j , τl) = 〈∂ jψv, ∂lπv〉 − 〈∂ jπv, ∂lψv〉, (A.1)

�(τ j+3, τl+3) = 〈∂v jψv, ∂vlπv〉 − 〈∂v jπv, ∂vlψv〉, (A.2)

and

�(τ j , τl+3) = −〈∂ jψv, ∂vlπv〉 + 〈∂ jπv, ∂vlψv〉 + e j · ∂vl pv. (A.3)

Let us transfer to the Fourier representation. Set

ψ̂(k) := (2π)−3/2
∫

eikxψ(x)dx . (A.4)

It is easy to compute that

ψ̂v(k) = − ρ̂(k)

k2 + m2 − (kv)2 , π̂v(k) = i(kv)ψ̂v(k). (A.5)

Further, differentiating, we obtain

∂v j ψ̂v =
2(kv)k j

k2 + m2 − (kv)2 ψ̂v, ∂v j π̂v = ik j
k2 + m2 + (kv)2

k2 + m2 − (kv)2 ψ̂v, j = 1, 2, 3,

(A.6)

and

∂v j pv := e j√
1− v2

+
v j

(1− v2)3/2
v, j = 1, 2, 3.

Then for j, l = 1, 2, 3 we see from (A.1) by the Parseval identity that

�(τ j , τl) = −2i
∫

k j kl(kv)|ψ̂v|2 dk = 0, (A.7)

since the integrand is odd in k. Similarly, by (A.2),

�(τ j+3, τl+3) = −4i
∫

k j kl(kv)(k2 + m2 + (kv)2)|ψ̂v|2
(k2 + m2 − (kv)2)2 = 0. (A.8)
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Finally, by (A.3),

�(τ j , τl+3) =
∫

dk|ψ̂v|2k j kl

[
k2 + m2 + (kv)2

k2 + m2 − (kv)2 +
2(kv)2

k2 + m2 − (kv)2
]

+ e j · ∂vl pv

=
∫

dk|ψ̂v|2k j kl
k2 + m2 + 3(kv)2

k2 + m2 − (kv)2 + e j ·
(

el√
1− v2

+
vlv

(1− v2)3/2

)
.

(A.9)

This completes the proof of (3.5)–(3.7).

B. Appendix: Positivity of the Matrix F

Here we justify the inequality used above in the proof of Lemma 15.2:

1

m2 + k2 − (|v|k1 + ω)2
+

1

m2 + k2 − (|v|k1 − ω)2 −
2

m2 + k2 − (|v|k1)2
> 0

under the conditions (15.7):

|v| < 1, 0 < |ω| ≤ μ = m
√

1− v2. (B.1)

Let us denote M2 := m2 + k2, r± := |v|k1 ± ω, and r := |v|k1. Then the inequality
reads, after cancellation by 2M ,

1

M − r+
+

1

M − r−
− 2

M − r
+

1

M + r+
+

1

M + r−
− 2

M + r
> 0. (B.2)

The sum of the first three terms in (B.2) can be written as

1

N − ω +
1

N + ω
− 2

N
= 2ω2

(N + ω)(N − ω)N , (B.3)

where N := M − r . It is easy to check that N ± ω ≥ 0 and N > 0 under conditions
(B.1). Hence, the sum (B.3) is positive (or positive infinite). Similarly, the sum of the
last three terms in (B.2) also is positive.
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