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Abstract. We consider the Klein–Gordon equation in Rn, n � 2, with constant or variable
coefficients. The initial datum is a random function with a finite mean density of the energy and
satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. We also assume that the random
function is close to different space-homogeneous processes as xn → ±∞, with the distributions μ±.
We study the distribution μt of the random solution at time t ∈ R. The main result is the convergence
of μt to a Gaussian translation-invariant measure as t → ∞ that means the central limit theorem
for the Klein–Gordon equation. The proof is based on the Bernstein “room-corridor” method and
oscillatory integral estimates. The application to the case of the Gibbs measures μ± = g± with two
different temperatures T± is given. It is proved that limit mean energy current density formally
is −∞· (0, . . . , 0, T+ −T−) for the Gibbs measures, and it is finite and equals −C(0, . . . , 0, T+ −T−)
with some positive constant C > 0 for the smoothed solution. This corresponds to the second law of
thermodynamics.
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1. Introduction. This paper concerns a mathematical problem of the founda-
tion of statistical physics. The second law of thermodynamics states that the energy
current is directed from a higher temperature to a lower one and is directly propor-
tional to the difference of temperatures. We derive the law for the Klein–Gordon
equation in Rn. The key role is played by the mixing condition of Rosenblatt or
Ibragimov–Linnik type for an initial measure. The mixing condition is introduced
initially by Dobrushin and Suhov in their approach to the problem of the foundation
of statistical physics for infinite-particle systems (see [6], [7]). The convergence to sta-
tistical equilibrium for two-temperature initial measure has been analyzed previously
for (i) 1D chains of harmonic oscillators (see [2], [30]), (ii) 1D chains of anharmonic os-
cillators (see [17], [18], [22]), and (iii) nD harmonic crystals (see [16]). A similar result
for the wave equation in Rn with odd n � 3 is established in [14]. The Klein–Gordon
equation shares some common features with the wave equation that is formally ob-
tained by setting m = 0 in (1.1). On the other hand, the Klein–Gordon and wave
equations have serious differences; see what follows. For translation-invariant ini-
tial measures the convergence to statistical equilibrium has been proved for the wave
equation in [13], [24], for the Klein–Gordon equation in [12], [25], and for harmonic
crystals in [15].
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We now pass to a detailed description of our results. Formal definitions and
statements are given in section 2. We consider the Klein–Gordon equation in Rn,
n � 2, ⎧⎪⎪⎨⎪⎪⎩

ü(x, t) =

n∑
j=1

(
∂j − iAj(x)

)2
u(x, t) −m2 u(x, t), x ∈ Rn,

u |t=0 = u0(x), u̇|t=0 = v0(x).

(1.1)

Here ∂j ≡ ∂/∂xj , m > 0, and (A1(x), . . . , An(x)) is a vector potential of a mag-
netic field. We assume that functions Aj(x) vanish outside a bounded domain. The
solution u(x, t) is considered as a complex-valued function.

Denote Y (t) = (Y 0(t), Y 1(t)) ≡ (u(·, t), u̇(·, t)), Y0 = (Y 0
0 , Y

1
0 ) ≡ (u0(·), v0(·)).

Then (1.1) becomes

Ẏ (t) = AY (t), t ∈ R; Y (0) = Y0.(1.2)

Here by A we denote an operator-valued matrix

A =

(
0 1
A 0

)
,(1.3)

where A =
∑n

j=1(∂j−iAj(x))2−m2. We assume that the initial datum Y0 is a random
element of a functional space H of states with a finite local energy; see Definition 2.1 in
what follows. The distribution of Y0 is denoted by μ0. Denote by μt(dY ), t ∈ R, the
measure on H giving the distribution of the random solution Y (t) to problem (1.2).

We identify C ≡ R2 and denote by ⊗ the tensor product of real vectors. We
assume that the initial correlation matrices

Qij
0 (x, y) := E

(
Y i

0 (x) ⊗ Y j
0 (y)

)
, x, y ∈ Rn, i, j = 0, 1,(1.4)

have the form

Qij
0 (x, y) =

{
qij+ (x− y), xn, yn > a,

qij−(x− y), xn, yn < −a.
(1.5)

Here qij±(x−y) are the correlation matrices of some translation-invariant measures μ±
with zero mean value in H, x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn, a > 0.
The measure μ0 is not translation-invariant if qij− �= qij+ .

Next, we assume that the initial mean “energy” density is uniformly bounded:

e0(x) := E
[∣∣u0(x)

∣∣2 +
∣∣∇u0(x)

∣∣2 +
∣∣v0(x)

∣∣2]
= tr

(
Q00

0 (x, x) +
[
∇x · ∇yQ

00
0 (x, y)

] ∣∣
y=x

+ Q11
0 (x, x)

)
� e0 < ∞(1.6)

for a.a. x ∈ Rn. Finally, it is assumed that the measure μ0 satisfies a mixing condition
of Rosenblatt or Ibragimov–Linnik type, which means that

Y0(x) and Y0(y) are asymptotically independent as |x− y| → ∞.(1.7)

Our main result states the (weak) convergence

μt ⇁ μ∞, t → ∞(1.8)
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to an equilibrium measure μ∞, which is a translation-invariant Gaussian measure
on H. A similar convergence holds as t → −∞ since our system is time-reversible.
We construct generic examples of the initial measures μ0 satisfying all assumptions
imposed. The explicit formulas (2.13)–(2.15) for the limiting correlation matrices are
given.

We apply our results to the case of the Gibbs measures μ± = g±. Formally,

g±(du0, dv0) =
1

Z±
exp

{
− β±

2

∫ (∣∣v0(x)
∣∣2 +

∣∣∇u0(x)
∣∣2 + m2

∣∣u0(x)
∣∣2) dx

}
×

∏
x

du0(x) dv0(x),(1.9)

where β± = T−1
± , T± � 0 are the corresponding absolute temperatures. We adjust the

definition of the Gibbs measures g± in section 4. The Gibbs measures g± have singular
correlation functions and do not satisfy our assumptions (1.6). Therefore we consider
Gaussian processes u± corresponding to the measures g± and define the “smoothed”
measures gθ± as the distributions of the convolutions u± ∗ θ, where θ ∈ D ≡ C∞

0 (Rn).
The measures gθ± satisfy all our assumptions, and the convergence gθt ⇁ gθ∞ follows
from (1.8). This implies the weak convergence of the measures gt ⇁ g∞ since θ is
arbitrary. We show that the limit energy current for g∞ formally is

j̄∞ = −∞ · (0, . . . , 0, T+ − T−).

Infinity denotes the “ultraviolet divergence.” This relation has a finite value in the
case of smoothed measures gθ∞,

j̄θ∞ = −Cθ · (0, . . . , 0, T+ − T−),

if θ(x) is axially symmetric with respect to Oxn; Cθ > 0 if θ(x) �≡ 0. This corresponds
to the second law of thermodynamics.

We prove convergence (1.8) first for the case of constant coefficients. We de-
compose the proof into three steps using the general strategy of [12], [13], [14], [15],
and [16]:

I. The family of measures μt, t � 0, is weakly compact in an appropriate Fréchet
space.

II. The correlation matrices converge to a limit: For i, j = 0, 1,

Qij
t (x, y) =

∫ (
Y i(x) ⊗ Y j(y)

)
μt(dY )−→Qij

∞(x, y), t → ∞.(1.10)

III. The characteristic functionals converge to the Gaussian:

μ̂t(Ψ) :=

∫
exp

{
i〈Y, Ψ〉

}
μt(dY )−→ exp

{
− 1

2
Q∞(Ψ,Ψ)

}
, t → ∞,(1.11)

where Ψ is an arbitrary element of the dual space, and Q∞ is the quadratic form
with the integral kernel (Qij

∞(x, y))i,j=0,1; 〈Y,Ψ〉 denotes the scalar product in a real
Hilbert space L2(Rn) ⊗ RN .

Property I follows from the Prokhorov compactness theorem by using methods
of Vishik and Fursikov developed by them for problems of statistical hydromechanics
in [5]. First, one proves a uniform bound for the mean local energy with respect to
the measure μt. We deduce the bound from the explicit expression for the correla-
tion matrices Qij

t (x, y). The conditions of the Prokhorov theorem then follow from
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Sobolev’s embedding theorem. Next, we deduce property II from an analysis of os-
cillatory integrals arising in the Fourier transform. An important role is attributed
to Proposition 5.1, reflecting the properties of the correlation functions in the Fourier
transform deduced from the mixing condition.

Similarly, properties I and II have been established previously in [16] for a har-
monic crystal which is a discrete model of the continuous Klein–Gordon equation.
We extend here the methods of [16] to the continuous case. The main difficulty in
comparison with [16] is the noncompactness of the Fourier space Rn (for the har-
monic crystal the Fourier space is a torus Tn which is a compact space). Namely,
the proofs of properties I and II rely on the uniform bounds of singular oscillatory
integrals in the sense of the Cauchy principal value. The proof of uniform bounds
for such integrals in [16] uses essentially the compactness of set parameters Tn which
in particular provides the uniform nondegeneracy of the phase functions. In the case
of the Klein–Gordon equation the corresponding phase function is nondegenerate in
any finite region of the Fourier space, but is degenerate at infinity, which makes it
difficult to deduce uniform bounds. In the case of translation-invariant measures,
similar bounds are established in [12] for the Klein–Gordon equation; however, corre-
sponding oscillatory integrals are less singular since they do not contain the Cauchy
principal value. Therefore in the present paper the uniform bounds of oscillatory in-
tegrals demand new tools: we remove this difficulty by using Proposition 6.2, which
is a modification of Proposition A.4 of [2, p. 152] to our case. Let us note that this
proposition is an extension of results of Fedoryuk (see Theorems 1.8 and 1.10 in [32]).
However, these results are not applied immediately to our problem because of the
degeneracy of the phase function at infinity.

Let us note that we choose the initial correlation matrices in the particular
form (2.9) which corresponds to the initial function (2.22). This allows us to avoid
some technical assumptions on the initial correlation function (cf. [14, condition S2]).

Finally, property III follows by using a variant of the Bernstein “room-corridor”
method from [12], [15]. In conclusion, we extend convergence (1.8) to the equations
with variable coefficients that are constant outside a finite region. The extension
follows from our result for constant coefficients, using the scattering theory for infinite
energy solutions from [12].

The paper is organized as follows. The main result is stated in section 2. We
apply it to Gibbs measures in section 4. Sections 3–8 deal with the case of constant
coefficients. The compactness (property I) and the convergence (1.10) are proved
in sections 5–7. In section 8 we prove the convergence (1.11) using the “room-
corridor” method. In section 9 we establish the convergence (1.8) for variable co-
efficients. Appendix A is concerned with a dynamics in Fourier space; in Appendix B
we prove a bound of some singular oscillatory integrals.

2. Main results.

2.1. Notation. We assume that functions Aj(x) in (1.1) satisfy the following
conditions:

E1. Aj(x) are real C∞-functions;

E2. Aj(x) = 0 for |x| > R0, where R0 < ∞;

E3. ∂A1

∂x2
�≡ ∂A2

∂x1
if n = 2.

We assume that the initial datum Y0 belongs to the complex phase space H
defined in what follows.

Definition 2.1. H ≡ H1
loc(R

n) ⊕ H0
loc(R

n) is the Fréchet space of pairs Y ≡
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(u(x), v(x)) of complex functions u(x), v(x) endowed with local energy seminorms

‖Y ‖2
R =

∫
|x|<R

(∣∣u(x)
∣∣2 +

∣∣∇u(x)
∣∣2 +

∣∣v(x)
∣∣2) dx < ∞ ∀R > 0.(2.1)

Proposition 2.1 follows from Theorems V.3.1 and V.3.2 of [26] since the speed of
propagation for (1.1) is finite.

Proposition 2.1. (i) For any Y0 ∈ H, there exists a unique solution Y (t) ∈
C(R,H) of the Cauchy problem (1.2).

(ii) For any t ∈ R, the operator U(t) : Y0 �→ Y (t) is continuous on H.
Let us choose a function ξ(x) ∈ C∞

0 (Rn) with ξ(0) �= 0. Denote by Hs
loc(R

n),
s ∈ R, the local Sobolev spaces, i.e., the Fréchet spaces of distributions u ∈ D′(Rn)
with the finite seminorms

‖u‖s,R :=
∥∥Λs

(
ξ(xR−1)u

)∥∥
L2(Rn)

.

Here Λsu := F−1
k→x(〈k〉sû(k)), 〈k〉 :=

√
|k|2 + 1, and û := Fu, where F is the Fourier

transform. For ψ ∈ S ≡ S(Rn), write Fψ(k) =
∫

exp(ikx)ψ(x) dx.
Definition 2.2. For s ∈ R, write Hs ≡ H1+s

loc (Rn) ⊕Hs
loc(R

n).
Using the standard techniques of pseudodifferential operators and Sobolev’s em-

bedding theorem (see, e.g., [20]), one can prove that H0 = H ⊂ H−ε for every ε > 0,
and the embedding is compact.

2.2. Random solution. Convergence to an equilibrium. Let (Ω,Σ,P) be
a probability space with expectation E, and let B(H) denote the Borel σ-algebra
in H. We assume that Y0 = Y0(ω, x) in (1.2) is a measurable random function with
values in (H,B(H)). In other words, (ω, x) �→ Y0(ω, x) is a measurable mapping
Ω × Rn → R2 with respect to the (completed) σ-algebras Σ × B(Rn) and B(R2).
Then, by virtue of Proposition 2.1, Y (t) = U(t)Y0 is again a measurable random
function with values in (H,B(H)). Denote by μ0(dY0) the Borel probability measure
on H giving the distribution of Y0. Without loss of generality, we can assume that
(Ω,Σ,P) = (H,B(H), μ0) and Y0(ω, x) = ω(x) for μ0(dω) × dx-a.a. (ω, x) ∈ H×Rn.

Definition 2.3. Let μt be the Borel probability measure on H which gives the
distribution of Y (t):

μt(B) = μ0

(
U(−t)B

)
∀B ∈ B(H), t ∈ R.(2.2)

Our main objective is to derive the weak convergence of the measures μt in the
Fréchet spaces H−ε for each ε > 0,

μt

H−ε

−⇁ μ∞ as t → ∞,(2.3)

where μ∞ is the Borel probability measure on the space H. By definition, this means
the convergence ∫

f(Y )μt(dY )−→
∫

f(Y )μ∞(dY ) as t → ∞(2.4)

for any bounded continuous functional f(Y ) on the space H−ε. Recall that we identify
C ≡ R2, and ⊗ stands for the tensor product of real vectors. Denote M2 = R2 ⊗R2.
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We introduce the space of test functions S = S ⊕ S and denote 〈Y,Ψ〉 = 〈Y 0,Ψ0〉 +
〈Y 1,Ψ1〉, for Y = (Y 0, Y 1) ∈ H and Ψ = (Ψ0,Ψ1) ∈ S.

Definition 2.4. The correlation functions of the measure μt are M2-valued
generalized functions defined by

Qij
t (x, y) := E

(
Y i(x, t) ⊗ Y j(y, t)

)
, i, j = 0, 1, x, y ∈ Rn × Rn,(2.5)

where E stands for the integral with respect to the measure μ0(dY ), and the conver-
gence of the integral is understood in the sense of distributions, i.e.,〈

Qij
t (x, y), Ψ(x, y)

〉
:= E

〈
Y i(x, t) ⊗ Y j(y, t), Ψ(x, y)

〉
, Ψ ∈ S(R2n).(2.6)

For a Borel probability measure μ on the space H, denote by μ̂ the characteristic
functional (the Fourier transform)

μ̂(Ψ) ≡
∫

exp
(
i〈Y, Ψ〉

)
μ(dY ), Ψ ∈ S.

A probability measure μ is called Gaussian (with zero expectation) if its characteristic
functional has the form

μ̂(Ψ) = exp

(
− 1

2
Q(Ψ, Ψ)

)
, Ψ ∈ S,

where Q is a real nonnegative quadratic form on S. A measure μ is called translation-
invariant if

μ(ThB) = μ(B) ∀B ∈ B(H), h ∈ Rn,

where ThY (x) = Y (x− h), x ∈ Rn.

2.3. Mixing condition. Let O(r) be a set of all pairs of open bounded subsets
A,B ⊂ Rn at the distance dist(A, B) � r, and let σ(A) be a σ-algebra in H generated
by the linear functionals Y �→ 〈Y,Ψ〉, where Ψ ∈ D = D ⊗ D with suppΨ ⊂ A.
Define the Ibragimov–Linnik mixing coefficient of a probability measure μ0 on H by
(cf. Definition 17.2.2 of [21, p. 391])

ϕ(r) ≡ sup
(A,B)∈O(r)

sup
A∈σ(A),B∈σ(B)

μ0(B)>0

|μ0(A ∩B) − μ0(A)μ0(B)|
μ0(B)

.(2.7)

Definition 2.5. The measure μ0 satisfies the strong uniform Ibragimov–Linnik
mixing condition if

ϕ(r) → 0, r → ∞.(2.8)

We specify the rate of decay of ϕ in what follows (see condition S3).

2.4. Statistical conditions and main result. We assume that the initial
measure μ0 satisfies the following conditions.

S0. μ0 has zero expectation value, i.e., EY0(x) = 0, x ∈ Rn.
S1. μ0 has correlation matrices of the form (cf. (1.5))

Qij
0 (x, y) = qij−(x− y) ζ−(xn) ζ−(yn) + qij+ (x− y) ζ+(xn) ζ+(yn).(2.9)
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Here the functions ζ± ∈ C∞(R) such that

ζ±(s) =

{
1 for ± s > a,

0 for ± s < −a.
(2.10)

S2. μ0 has a finite mean energy density, i.e., (1.6) holds.
S3. μ0 satisfies the strong uniform Ibragimov–Linnik mixing condition with

ϕ ≡
∫ ∞

0

rn−1ϕ1/2(r) dr < ∞.(2.11)

Define the correlation matrix of the limit measure μ∞. Denote by E(z) the funda-
mental solution for the operator −Δ +m2, i.e., (−Δ +m2) E = δ(x) for x ∈ Rn, and
P(x) = −iF−1[sign(kn)/

√
|k|2 + m2], where F−1 is the inverse Fourier transform.

Define the matrix-valued function

Q∞(x, y) =
(
Qij

∞(x, y)
)
i,j=0,1

=
(
qij∞(x− y)

)
i,j=0,1

, x, y ∈ Rn,(2.12)

where

q00
∞ =

1

2

[
(q+)00 + E ∗ (q+)11 + P ∗

(
(q−)01 − (q−)10

)]
,(2.13)

q10
∞ = −q01

∞ =
1

2

[
(q+)10 − (q+)01 + P ∗

(
(q−)11 + (−Δ + m2)(q−)00

)]
,(2.14)

q11
∞ = (−Δ + m2) q00

∞

=
1

2

[
(q+)11 + (−Δ + m2)

(
(q+)00 + P ∗

(
(q−)01 − (q−)10

))]
.(2.15)

Here q+ := 1
2 (q+ + q−), q− := 1

2 (q+ − q−), and ∗ stands for the convolution of

generalized functions. We show below that Dγqij± ∈ L2(Rn), where γ ∈ Zn with
|γ| � 2−i−j, i, j = 0, 1 (see (5.4)). Then the convolutions in (2.13)–(2.15) also belong
to the space L2(Rn). Moreover, the explicit formulas for P(x) and (2.13)–(2.15) imply
that qij∞ ∈ L2(Rn), i, j = 0, 1. Applying the Fourier transform, we obtain

q̂∞(k) := q̂+
∞(k) + q̂−∞(k),(2.16)

where

q̂+
∞(k) :=

1

2

(
q̂+(k) + Ĉ(k) q̂+(k) ĈT (k)

)
,(2.17)

q̂−∞(k) := i sign(kn)
1

2

(
Ĉ(k) q̂−(k) − q̂−(k) ĈT (k)

)
(2.18)

with matrix Ĉ(k) defined by (A.3).
Let H = L2(Rn) ⊕ H1(Rn) denote the space of complex-valued functions Ψ =

(Ψ0,Ψ1) with a finite norm

‖Ψ‖2
H =

∫
Rn

(∣∣Ψ0(x)
∣∣2 +

∣∣∇Ψ1(x)
∣∣2 +

∣∣Ψ1(x)
∣∣2) dx < ∞.(2.19)

Denote by Q∞(Ψ,Ψ) a real quadratic form on H defined by

Q∞(Ψ,Ψ) =
∑

i,j=0,1

∫
Rn×Rn

(
Qij

∞(x, y), Ψi(x) ⊗ Ψj(y)
)
dx dy,(2.20)



TWO-TEMPERATURE PROBLEM FOR KLEIN–GORDON EQUATION 589

where Qij
∞(x, y) is as defined in (2.12)–(2.15), and (· , ·) stands for the real scalar

product in R2 × R2 ∼= R4. The form Q∞ is continuous on H by Corollary 5.2.
Write D := C∞

0 (Rn) and D = D ⊕D.
Theorem A. Let n � 2, m > 0, and assume that conditions E1–E3, S0–S3

hold. Then
(i) convergence (2.3) holds for any ε > 0;
(ii) the limiting measure μ∞ is a Gaussian equilibrium measure on H;
(iii) the limiting characteristic functional has the form

μ̂∞(Ψ) = exp

{
− 1

2
Q∞(WΨ, WΨ)

}
, Ψ ∈ D.

Here W : D → H is a linear continuous operator and W = I if Aj(x) ≡ 0.

2.5. Examples.

2.5.1. Gaussian measures. We construct the Gaussian initial measures μ0

satisfying conditions S0–S3. Let us take some Gaussian measures μ± on H with
correlation functions qij±(x− y) which are zero for i �= j and qii± ∈ C2(Rn) ⊗M2 and
have a compact support

qii±(x) = 0, |x| � r0.(2.21)

For instance, we can take qii±(x) = F−1
k→x[f(k1) · · · f(kn)] with

f(z) =

(
1 − cos(r0z/

√
n)

z2

)2

, z ∈ R.

Note that by the Minlos theorem (see [8, Chap. V]) there exist Borel probability
measures μ± on the space H because formally we have∫

‖Y ‖2
R μ±(dY ) = |BR| tr

(
q00
± (0) − Δq00

± (0) + q11
± (0)

)
< ∞, R > 0.

Moreover, the measures μ± satisfy conditions S0–S2 and mixing condition (2.8), since
ϕ(r) = 0 for r � r0 by (2.21). Hence condition S3 also follows.

Let us introduce (Y−, Y+) as a unit random function on the probability space
(H ×H, μ− × μ+). Then Y± ∈ H are Gaussian independent vectors with zero mean
value. Define μ0 as the distribution of the random function

Y0(x) = ζ−(xn)Y−(x) + ζ+(xn)Y+(x),(2.22)

where the functions ζ± are introduced in (2.10). Then the correlation matrices of μ0

have the form (2.9). Hence, conditions S0–S3 hold for μ0 with the same functions ϕ(r)
as for μ±.

2.5.2. Non-Gaussian measures. Let us choose some odd nonconstant func-
tions f0, f1 ∈ C2(Rn×Rn) with bounded derivatives. Define μ∗

0 as the distribution of
the random function (f0(Y0(x)), f1(Y0(x))), where Y0(x) is a random function (2.22)
with the Gaussian distribution μ0. Then S0–S3 hold for μ∗

0, since corresponding
mixing coefficients ϕ∗(r) = 0 for r � r0. The measure μ∗

0 is not Gaussian since the
functions f0, f1 are bounded and nonconstant.
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3. Equations with constant coefficients. In sections 3–8 we assume that
coefficients Aj(x) ≡ 0. The problem (1.1) then becomes⎧⎨⎩ü(x, t) = Δu(x, t) −m2u(x, t), t ∈ R,

u |t=0 = u0(x), u̇|t=0 = v0(x).
(3.1)

As in (1.2), we rewrite (3.1) in the form

Ẏ (t) = A0Y (t), t ∈ R; Y (0) = Y0.(3.2)

Here

A0 =

(
0 1
A0 0

)
,(3.3)

where A0 = Δ−m2. Denote by U0(t), t ∈ R, the dynamical group for problem (3.2);
then Y (t) = U0(t)Y0. The following proposition is well known and is proved by a
standard integration by parts.

Proposition 3.1. Let Y0 = (u0, v0) ∈ H and Y (·, t) = (u(·, t), u̇(·, t)) ∈ C(R,H)
be the solution to problem (3.2). Then the following energy bound holds: For R > 0
and t ∈ R, ∫

|x|<R

(∣∣u̇(x, t)
∣∣2 +

∣∣∇u(x, t)
∣∣2 + m2

∣∣u(x, t)
∣∣2) dx

�
∫
|x|<R+|t|

(∣∣v0(x)
∣∣2 +

∣∣∇u0(x)
∣∣2 + m2

∣∣u0(x)
∣∣2) dx.(3.4)

Set μt(B) = μ0(U0(−t)B), B ∈ B(H), t ∈ R. We formulate the main result for
problem (3.2).

Theorem B. Let n � 1, m > 0, and conditions S0–S3 hold. Then the conclusions
of Theorem A hold with W = I, and the limiting measure μ∞ is translation invariant.

Theorem B can be derived from Propositions 3.2 and 3.3 by using the meth-
ods of [5].

Proposition 3.2. The family of measures {μt, t ∈ R} is weakly compact in H−ε

with any ε > 0, and the bounds supt�0 E‖U0(t)Y0‖2
R < ∞, R > 0, hold.

Proposition 3.3. For any Ψ ∈ D,

μ̂t(Ψ) ≡
∫

exp
(
i〈Y,Ψ〉

)
μt(dY )−→ exp

{
− 1

2
Q∞(Ψ, Ψ)

}
, t → ∞.(3.5)

Propositions 3.2 and 3.3 are proved in sections 7 and 8, respectively. The proofs
essentially use the explicit formulas (A.2)–(A.6) from Appendix A.

4. Application to Gibbs measures. We apply Theorem B to the case when
μ± = g± are the Gibbs measures (1.9) corresponding to different positive temperatures
T− �= T+.

4.1. Gibbs measures. We will define the Gibbs measures g± as the Gaussian
measures with the correlation functions (cf. (1.9))

q00
± (x− y) = T±E(x− y), q11

± (x− y) = T±δ(x− y),

q01
± (x− y) = q10

± (x− y) = 0,
(4.1)
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where x, y ∈ Rn. The correlation functions qij± do not satisfy condition S2 because of
singularity at x = y. The singularity means that the measures g± are not concentrated
on the space H. Let us introduce appropriate functional spaces for measures g±. First,
let us define the weighted Sobolev space with any s, α ∈ R.

Definition 4.1. Hs,α(Rn) is the Hilbert space of the distributions u ∈ S′(Rn)
with the finite norm

‖u‖s,α ≡
∥∥〈x〉αΛsu

∥∥
L2(Rn)

< ∞, Λsu ≡ F−1
[
〈k〉sû(k)

]
.(4.2)

Let us fix arbitrary s, α < −n/2.

Definition 4.2. Let Gs,α be the Hilbert space Hs+1,α(Rn) ⊕Hs,α(Rn) with the
norm

|||Y |||s,α ≡ ‖u‖s+1,α + ‖v‖s,α < ∞, Y = (u, v).

Introduce the Gaussian Borel probability measures g0
±(du), g1

±(dv) on the spaces
Hs+1,α(Rn) and Hs,α(Rn), respectively, with characteristic functionals

ĝ0
±(ψ) =

∫
exp

{
i〈u, ψ〉

}
g0
±(du) = exp

{
− 〈(−Δ + m2)−1ψ, ψ〉

2β±

}
,

ĝ1
±(ψ) =

∫
exp

{
i〈v, ψ〉

}
g1
±(dv) = exp

{
− 〈ψ, ψ〉

2β±

}
,

ψ ∈ D. By the Minlos theorem, the Borel probability measures g0
±, g1

± exist on
the spaces Hs+1,α(Rn), Hs,α(Rn), respectively, because formally (see Appendix B
in [12, p. 31])∫

‖u‖2
s+1,α g0

±(du) < ∞,

∫
‖v‖2

s,α g1
±(dv) < ∞, s, α < −n

2
.(4.3)

Finally, we define the Gibbs measures g±(dY ) as the Borel probability measures
g0
±(du) × g1

±(dv) on Gs,α. Let g0(dY ) be the Borel probability measure on Gs,α that
is constructed as in section 2.5.1 with μ±(dY ) = g±(dY ). It satisfies conditions S0
and S1 with qij± from (4.1). However, g0 does not satisfy condition S2. Therefore,
Theorem B cannot be applied directly to μ0 = g0. The embedding Gs,α ⊂ Hs

is continuous by the standard arguments of pseudodifferential equations [20]. The
following lemma is proved easily by using the Fourier transform from the finite speed
of propagation for the Klein–Gordon equation.

Lemma 4.1. The operators U0(t) : Y0 �→ Y (t) allow a continuous extension
Hs �→ Hs.

Let Y0 be the random function with the distribution g0; hence Y0 ∈ Gs,α a.s.
Denote by gt the distribution of the function U0(t)Y0.

Remark 4.1. Let s be a sufficiently large negative number. Then there exists a
Gaussian Borel probability measure g∞ on Hs such that

gt
Hs

−⇁ g∞, t → ∞.(4.4)
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This can be proved similarly to Theorem A. The limiting measure g∞ is Gaussian
with the correlation matrix Q∞ = (Qij

∞(x, y))i,j=0,1, where

Q00
∞(x, y) ≡ q00

∞(x− y) =
1

2
(T+ + T−) E(x− y),(4.5)

Q10
∞(x, y) = −Q01

∞(x, y) ≡ q10
∞(x− y) =

1

2
(T+ − T−)P(x− y),(4.6)

Q11
∞(x, y) ≡ q11

∞(x− y) =
1

2
(T+ + T−) δ(x− y).(4.7)

The identities (4.5)–(4.7) follow formally from (4.1) and from (2.13)–(2.15). We will
consider them as defining the functions Qij

∞(x, y).

4.2. Limit energy current for smoothed fields. Let u(x, t) be the random
solution to problem (3.1) with the initial measure μ0 satisfying conditions S0–S3.
The mean energy current density is Ej(x, t) = −Eu̇(x, t)∇u(x, t). Therefore, in the
limit t → ∞,

Ej(x, t) → j̄∞ = ∇q10
∞(0)

by (6.7). In the case of the “Gibbs” initial measure g0, expression (4.6) for the limiting
correlation function implies formally that

j̄∞ =
T+ − T−

2
∇P(0),

where [∇P](z) = −F−1[k sign(kn)/
√
|k|2 + m2 ](z). Hence, formally we have the

“ultraviolet divergence” for the limit mean of energy current density:

j̄∞ = −T+ − T−
2(2π)n

∫
Rn

k sign kn√
|k|2 + m2

dk = −∞ · (0, . . . , 0, T+ − T−).

This is since the Gibbs measures g± have singular correlation functions and do not
satisfy assumptions (1.6). Respectively, our results cannot be applied directly to g±.
We consider Gaussian processes u± corresponding to the measures g± and define
the “smoothed” measures gθ± as the distributions of the convolutions u± ∗ θ, where
θ ∈ D ≡ C∞

0 (Rn). The measures gθ± satisfy all our assumptions, and the convergence
gθt ⇁ gθ∞ follows from Theorem B. For the convolution U0(t)(Y0∗θ) the corresponding
limiting mean current density is finite and equals

j̄θ∞ = −T+ − T−
2(2π)n

∫
Rn

∣∣θ̂(k)
∣∣2 k sign kn√

|k|2 + m2
dk = −Cθ · (0, . . . , 0, T+ − T−)

if θ(x) is axially symmetric with respect to Oxn; here Cθ > 0 if θ(x) �≡ 0.

5. Bounds for initial covariance.

5.1. Mixing in terms of spectral density. The next proposition reflects
the mixing property in the Fourier transforms q̂ ij

± of the initial correlation func-

tions qij± . Condition S2 implies that qij±(z) are continuous bounded functions. There-

fore, Qij
0 (x, y) in (2.9) are also continuous bounded functions.

Proposition 5.1. Let the conditions of Theorem B hold. Then
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(i) for i, j = 0, 1, the following bounds hold:∫
Rn

∣∣Qij
0 (x, y)

∣∣ dy � C < ∞, x ∈ Rn,∫
Rn

∣∣Qij
0 (x, y)

∣∣ dx � C < ∞, y ∈ Rn,

where the constant C does not depend on x, y ∈ Rn;

(ii) q̂ ij
± ∈ L1(Rn) ⊗M2, i, j = 0, 1.

Proof. (i) Conditions S0, S2, and S3 imply, by Theorem 17.2.3 of [21], that
for α, β ∈ Zn, |α| � 1 − i, and |β| � 1 − j with i, j = 0, 1, the following bounds hold:∣∣Dα,β

x,y Q
ij
0 (x, y)

∣∣ � Ce0ϕ
1/2

(
|x− y|

)
, x, y ∈ Rn.(5.1)

The mixing coefficient ϕ is bounded, and hence (5.1) and (2.11) imply∫
Rn

∣∣Dα,β
x,y Q

ij
0 (x, y)

∣∣p dy � Cep0

∫
Rn

ϕp/2
(
|x− y|

)
dy

� C1e
p
0

∫ ∞

0

rn−1ϕ1/2(r) dr < ∞, p � 1.(5.2)

(ii) Similarly to (5.1), for γ ∈ Zn with |γ| � 2 − i− j, i, j = 0, 1, we have∣∣Dγ
z q

ij
±(z)

∣∣ � Ce0ϕ
1/2(|z|), z ∈ Rn.(5.3)

Hence, by (2.11) we obtain that for p � 1 (cf. (5.2))

Dγqij±(z) ∈ Lp(Rn) ⊗M2.(5.4)

Further, by Bohner’s theorem, a distribution q̂± ≡ (q̂ ij
± (k)) dk is a positive-definite

matrix-valued measure on Rn, and S2 implies that the total measure q̂±(Rn) is finite.
Finally, (5.4) with p = 2 implies that q̂ ij

± ∈ L2(Rn) ⊗M2.

Corollary 5.1. (i) Proposition 5.1(i) implies, by the Shur lemma, that the
quadratic form Q0(Ψ,Ψ) = 〈Q0(x, y),Ψ(x) ⊗ Ψ(y)〉 is continuous in L2(Rn) ⊗ C2.

(ii) Similarly to Proposition 5.1(ii), estimate (5.4) and Bohner’s theorem imply

that ω2−i−j(k) q̂ ij
± (k) ∈ L1(Rn)⊗M2, i, j = 0, 1. Hence, for the matrix Ĉ(k), defined

by (A.3), we have

Ĉ(k) q̂±(k) ĈT (k), Ĉ(k) q̂±(k), q̂±(k) ĈT (k) ∈ L1(Rn) ⊗M4.(5.5)

Therefore, together with (2.16)–(2.18), it implies that q̂ ij
∞ ∈ L1(Rn)⊗M2 for all i, j.

Corollary 5.2. The quadratic form Q∞(Ψ,Ψ) is continuous in L2(Rn)⊗C2.

Proof. The proof follows from the explicit formulas (2.12)–(2.15). Indeed, first,
E(z) ∈ L1(Rn). Second, for any ψ ∈ L2 we have〈

(P ∗ qij±)(x− y), ψ(x) ⊗ ψ(y)
〉

=
〈
qij±(x− y), (P̌ ∗ ψ)(x) ⊗ ψ(y)

〉
,

where P̌(x) := P(−x). Note that ‖P ∗ ψ‖L2 � C‖ψ‖L2 . Hence, the continuity
of Q∞(Ψ,Ψ) follows from the Shur lemma by (5.4) with p = 1.
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5.2. Splitting of the initial covariance.

Lemma 5.1. The Fourier transforms of the functions ζ± ∈ C∞(R) admit the
following representations:

ζ̂±(k) = πδ(k) ± iPV

(
1

k

)
α̂±(k),(5.6)

where α± ∈ C∞
0 (R).

Proof. Denote α±(x) := ±ζ ′±(x), x ∈ R. Then ζ+(x) =
∫ x

−∞ α+(y) dy, ζ−(x) =∫ +∞
x

α−(y) dy. By virtue of (2.10) the functions α± satisfy the following properties:

(i) α± ∈ C∞
0 (R), (ii) α±(x) = 0 for |x| > a, (iii)

∫ a

−a
α±(y) dy = 1; hence, α̂±(0) = 1.

Therefore,

ζ±(x) =

∫ +∞

−∞
θ(±y)α±(x− y) dy,(5.7)

where θ(x) is a Heaviside function. Denote by PV the Cauchy principal part. Since

θ̂(k) = πδ(k) + iPV(1/k), k ∈ R, due to (5.7) we have

ζ̂±(k) =

[
πδ(k) ± iPV

(
1

k

)]
α̂±(k) = πδ(k) ± iPV

(
1

k

)
α̂±(k).

Conditions S1 and S2 imply that Q0(x, y) is a continuous bounded function.
Hence, it belongs to the Schwarz space of tempered distributions as well as its Fourier
transform. Let us apply the Fourier transform to the function Q0(x, y):

Q̂0(k, k
′) := F x→k

y→−k′
Q0(x, y), k, k′ ∈ Rn.(5.8)

Then the following proposition holds.

Proposition 5.2. Let conditions S0–S3 hold. Then

Q̂0(k, k
′) = Q̂1

0(k, k
′) + Q̂2

0(k, k
′) + Q̂3

0(k, k
′),(5.9)

where the summands admit the following representations:

Q̂1
0(k, k

′) = δ(k − k′)(2π)n
1

4

(
q̂+(k) + q̂−(k)

)
,(5.10)

Q̂2
0(k, k

′) = δ(k − k′)(2π)n−2

×
∑
±

PV

∫ +∞

−∞

α̂±(kn − ξ)

kn − ξ

α̂±(k′n − ξ)

k′n − ξ
q̂±(k, ξ) dξ,(5.11)

Q̂3
0(k, k

′) = δ(k − k′)(2π)n−2πiPV

(
1

kn − k′n

)
×
[
q̂+(k) α̂+(k′n − kn) + q̂+(k′) α̂+(kn − k′n)

− q̂−(k) α̂−(k′n − kn) − q̂−(k′) α̂−(kn − k′n)
]
.(5.12)

Here and in what follows we set k = (k, kn), k = (k1, . . . , kn−1).



TWO-TEMPERATURE PROBLEM FOR KLEIN–GORDON EQUATION 595

Proof. Using the equality f̂g = (2π)−2nf̂∗ĝ for the tempered distributions in R2n,
we get by (2.9), formally,

Q̂0(k, k
′) := F x→k

y→−k′

[∑
±

ζ±(xn) ζ±(yn) q±(x− y)

]
= (2π)−2n

∑
±

(
Fx→k

(
ζ±(xn)

)
Fy→k′

(
ζ±(yn)

) )
∗ (2π)n q̂±(k) δ(k − k′)

= (2π)n−2δ(k − k′)
∑
±

∫
R1

[
ζ̂±(kn − ξ) ζ̂±(k′n − ξ) q̂±(k, ξ)

]
dξ,(5.13)

where ∗ stands for the convolution in k and k′. The convolution exists in the sense of
tempered distributions because the distribution ζ̂±(ξ) is a smooth function at ξ �= 0
which decreases rapidly as |ξ| → ∞, and q̂± are bounded continuous functions. The
last integral exists by the same reasoning as the limit of Riemann integral sums over ξ
with the values in tempered distributions of (k, k′). We substitute (5.6) in (5.13) and
obtain

Q̂0(k, k
′) = (2π)n−2δ(k − k′)

∑
±

PV

∫
R1

q̂±(k, ξ)

[
πδ(kn − ξ) ± i

α̂±(kn − ξ)

kn − ξ

]

×
[
πδ(k′n − ξ) ∓ i

α̂±(k′n − ξ)

k′n − ξ

]
dξ.(5.14)

Finally, (5.14) implies formulas (5.9)–(5.12).

6. Uniform bounds and convergence of covariance. In this section we
prove a uniform bound and convergence (1.10) for the covariance Qt(x, y) of the
measure μt introduced in Definition 2.4. Denote

Qt(Ψ,Ψ) :=
〈
Qt(x, y), Ψ(x) ⊗ Ψ(y)

〉
, Ψ ∈ S,(6.1)

where S = S ⊕ S, and S ≡ S(Rn) denotes Schwarz space. Introduce a subspace of
test functions S0 ⊂ S:

S0 =
⋃

NSN , SN := {Ψ ∈ S : Ψ̂(k) = 0 for |k| � N or |kn| � N−1}.(6.2)

Lemma 6.1. Let limt→∞ Qt(Ψ,Ψ) = Q∞(Ψ,Ψ) for any Ψ ∈ S0. Then the
convergence holds for all Ψ ∈ S.

Proof. At first, from (A.1) it follows that〈
Y (x, t), Ψ(x)

〉
=

〈
Y0(x), Φ(x, t)

〉
,

where Φ(·, t) = F−1[Ĝ∗
t (k) Ψ̂(k)]. Therefore, Qt(Ψ,Ψ) = Q0(Φ(·, t),Φ(·, t)). Hence,

sup
t∈R

∣∣Qt(Ψ,Ψ)
∣∣ � C sup

t∈R

∥∥Φ(·, t)
∥∥2

L2(6.3)

by Corollary 5.1(i). By the Parseval identity and (A.3), (A.4), we obtain

∥∥Φ(·, t)
∥∥2

L2 = (2π)−n

∫ ∣∣Ĝ∗
t (k) Ψ̂(k)

∣∣2 dk � C‖Ψ‖2
H1(Rn).(6.4)
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For any Ψ ∈ S we can choose ΨN ∈ SN such that

Ψ̂N (k) =

⎧⎪⎨⎪⎩
Ψ̂(k) if |k| � N

2
and |kn| � 2

N
,

0 if |k| � N or |kn| � 1

N
,

and, moreover,

‖ΨN − Ψ‖2
H1 =

∫ (
|k|2 + 1

) ∣∣Ψ̂N (k) − Ψ̂(k)
∣∣2dk−→ 0, N → ∞.(6.5)

Hence, Lemma 6.1 follows from (6.3)–(6.5) and Corollary 5.2.
Proposition 6.1. Let conditions S0–S3 hold. Then
(i) the function Qt(x, y) is continuous and

sup
t�1

sup
x∈BR

∣∣Qt(x, x)
∣∣ < ∞, R > 0;(6.6)

(ii) the correlation functions converge in the sense of distributions, i.e.,

Qt(Ψ,Ψ)−→Q∞(Ψ,Ψ), t → ∞, Ψ ∈ S.(6.7)

Proof. Since the solution Y (t) of problem (3.1) has the form Y (t) = (Gt(·)∗Y0)(x),
the correlation Qt(x, y) admits representation in the form of convolution

Qt(x, y) =

∫
R2n

(
Gt(x− x′)Q0(x

′, y′)GT
t (y − y′)

)
dx′ dy′,

the existence of which is proved by the Fourier transform. Namely, let us apply the
Fourier transform to the matrix Qt(x, y):

Q̂t(k, k
′) := F x→k

y→−k′
Qt(x, y) = Ĝt(k) Q̂0(k, k

′) ĜT
t (−k′), k, k′ ∈ Rn,

where the matrix Ĝt(k) is defined by (A.4), and Q̂0(k, k
′) by (5.8). Using the equal-

ity ĜT
t (−k′) = ĜT

t (k′) and decomposition (5.9), we split Qt(x, y) into three terms:
Qt(x, y) = Q1

t (x, y) + Q2
t (x, y) + Q3

t (x, y), where

Qj
t (x, y) := (2π)−2n

∫
R2n

e−ikx+ik′yĜt(k) Q̂j
0(k, k

′) ĜT
t (k′) dk dk′,(6.8)

x, y ∈ Rn, t > 0, j = 1, 2, 3. Then to prove Proposition 6.1 it suffices to verify
bound (6.6) and convergence (6.7) to a limit for each term Qj

t (x, y) with j = 1, 2, 3.
We do it in Lemmas 6.2, 6.3, and 6.5 as demonstrated below.

Lemma 6.2. (i) The function Q1
t (x, y) is continuous and

sup
t�0

sup
x∈Rn

Q1
t (x, x) � C < ∞.

(ii) Q1
t (x, y) → q+

∞(x− y)/2 as t → ∞ for all x, y ∈ Rn, where the matrix q̂+
∞ is

defined in (2.17).
Proof. (i) Substitute (5.10) in (6.8) and obtain

Q̂1
t (k, k

′) = (2π)nδ(k − k′) Ĝt(k)
1

2
q̂+(k) ĜT

t (k),(6.9)
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where q̂+(k) := (q̂+(k) + q̂−(k))/2. Hence,

Q1
t (x, y) ≡ q1

t (x− y) = (2π)−n 1

2

∫
Rn

e−i(x−y)k Ĝt(k) q̂+(k) ĜT
t (k) dk,(6.10)

where x, y ∈ Rn. Hence, (5.5) and (A.4) imply Lemma 6.2(i).
(ii) Applying (A.6) to q̂(k) := q̂+(k), we obtain

q1
t (z) = (2π)−n 1

2

∫
Rn

e−izk q̂+
∞(k) dk + o(1), t → ∞, z ∈ Rn,

since the remaining oscillatory integrals in (6.10) vanish as t → ∞ by (5.5) and the
Lebesgue–Riemann theorem. Lemma 6.2 is proved.

Lemma 6.3. (i) The function Q2
t (x, y) is continuous and

sup
t�1

sup
x∈BR

Q2
t (x, x) � C < ∞ for any R > 0.

(ii) limt→∞〈Q2
t (x, y),Ψ(x) ⊗ Ψ(y)〉 = 1

2 〈q+
∞(x− y),Ψ(x) ⊗ Ψ(y)〉, Ψ ∈ S.

Proof. (i) Substitute (5.11) in (6.8) and obtain

Q2
t (x, y) ≡ (2π)−2n

∫
R2n

e−ikx+ik′y Ĝt(k) Q̂2
0(k, k

′) ĜT
t (k′) dk dk′

= (2π)−n−2
∑
±

∫
Rn+1

dk dkn dk
′
n

×
[
e−ikx+ik′y Ĝt(k) PV

∫ +∞

−∞

α̂±(kn − ξ)

kn − ξ

α̂±(k′n − ξ)

k′n − ξ

× q̂±(k, ξ) dξ ĜT
t (k′)

] ∣∣∣
k′=(k,k′

n)
.(6.11)

We change variables and obtain the representation

Q2
t (x, y) = (2π)−n−2

∑
±

∫
Rn

e−ik(x−y)J±(t, xn, k) q̂±(k) J∗
±(t, yn, k) dk,(6.12)

where by J±(t, xn, k) = (J ij
± (t, xn, k))i,j=0,1 we denote the matrix-valued integral

J±(t, xn, k) := PV

∫ +∞

−∞
e−iξxn

α̂±(ξ)

ξ
Ĝt(k, kn + ξ) dξ,(6.13)

and J∗
± stands for the Hermitian conjugate.

Proposition 6.2. For any k ∈ Rn the functions J±(t, xn, k) are continuous
and uniformly bounded on t > 1 and xn ∈ [−R,R]; moreover,

sup
t�1,|xn|�R

∣∣J ij
± (t, xn, k)

∣∣ < C1 + C2

∣∣Ĉij(k)
∣∣, i, j = 0, 1,(6.14)

where Ĉij(k) are defined in (A.3) and the constants C1, C2 do not depend on k.
The proof of Proposition 6.2 is shown in Appendix B. Now item (i) of Lemma 6.3

follows from (6.12) and from estimate (6.14) by (5.5) and the Lebesgue dominated
convergence theorem.
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(ii) According to Lemma 6.1 it suffices to consider Ψ ∈ SN with any fixed N ∈ N.
By (6.12), we obtain〈

Q2
t (x, y), Ψ(x) ⊗ Ψ(y)

〉
= (2π)−2n

〈
Ĝt(k) Q̂2

0(k, k
′) ĜT

t (k′), Ψ̂(k) ⊗ Ψ̂(k′)
〉

= (2π)−n−2
∑
±

∫
Rn

j±(t, k) q̂±(k)j∗±(t, k) dk,(6.15)

where by j±(t, k) we denote an inner vector-valued integral

j±(t, k) := PV

∫ +∞

−∞

α̂±(ξ)

ξ
Ψ̂(k, kn + ξ) Ĝt(k, kn + ξ) dξ.(6.16)

Recall Ψ ∈ SN ; therefore k ∈ supp Ψ̂ ⊂ B0
N := {k ∈ BN : |kn| � 1/N}, where by BN

we denote a ball of a radius N .
Lemma 6.4. Let Ψ ∈ SN with some N ∈ N. Then for k ∈ Rn,

j±(t, k) = −π sign knΨ̂(k)
[
sinω(k) t− cosω(k) t Ĉ(k)

]
+ o(1)(6.17)

as t → +∞; o(1) tends to zero uniformly on k ∈ Rn.
Proof. From (A.4) it follows that it suffices to prove (6.17) for the integrals of the

form

j∗(t, k) := PV

∫ +∞

−∞
e±iω(k,kn+ξ) t α̂+(ξ)

ξ
g(k, kn + ξ) dξ,(6.18)

where g(k) ∈ C∞
0 (Rn) with supp g ⊂ B0

N . Since g(k, kn+ξ) = 0 for |kn+ξ| � 1/N , we
have ∣∣∇nω(k, kn + ξ)

∣∣ =
|kn + ξ|

ω(k, kn + ξ)
� C(N) > 0,

for (k, kn+ξ) ∈ supp g(k, kn+ξ) and k ∈ B0
N . Therefore we can apply Lemma 5 from

Chapter VII of [4, p. 151] to the integral j∗(t, k) and, since α̂+(0) = 1, we conclude
that j∗(t, k) = g(k) e±iω(k) tπi sign(±∇nω(k))+ o(1), t → +∞. Lemma 6.4 is proved.

Substituting (6.17) in (6.15) and applying (A.7) to q̂(k) = q̂+(k) + q̂−(k), we
obtain, by (2.17), that〈

Q2
t (x, y), Ψ(x) ⊗ Ψ(y)

〉
= (2π)−n−2π2

∫
Rn

Ψ̂(k)
[
sinω(k) t− cosω(k) t Ĉ(k)

](
q̂+(k) + q̂−(k)

)
×
[
sinω(k) t I − cosω(k) t ĈT (k)

]
Ψ̂(k) dk + o(1)

=
1

(2π)n
1

2

〈
q̂+
∞(k), Ψ̂(k) ⊗ Ψ̂(k)

〉
+ o(1), t → ∞,(6.19)

since the remaining oscillatory integrals vanish as t → ∞ by the Lebesgue–Riemann
theorem and Corollary 5.1. Lemma 6.3 is proved.

Lemma 6.5. (i) The function Q3
t (x, y) is continuous and

sup
t�1

sup
x∈BR

Q3
t (x, x) � C < ∞ for any R > 0.
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(ii) limt→∞〈Q3
t (x, y),Ψ(x) ⊗ Ψ(y)〉 = 〈q−∞(x − y),Ψ(x) ⊗ Ψ(y)〉 for any Ψ ∈ S,

where the matrix q̂−∞ is defined in (2.18).
Proof. (i) Substituting (5.12) in (6.8) we obtain

Q3
t (x, y) ≡ (2π)−2n

∫
R2n

e−ikx+ik′y Ĝt(k) Q̂3
0 (k, k′) ĜT

t (k′) dk dk′

= (2π)−n−2πi PV

∫
Rn+1

[
e−ikx+ik′y Ĝt(k) q̂ 3

0 (k, k′) Ĝ T
t (k′)

] ∣∣∣
k′=(k,k′

n)
dk′n dk.(6.20)

Here we denote

q̂3
0(k, k′) :=

1

kn − k′n

[
α̂+(k′n − kn) q̂+(k) + α̂+(kn − k′n) q̂+(k′)

− α̂− (k′n − kn) q̂−(k) − α̂−(kn − k′n) q̂−(k′)
]
.(6.21)

Let us substitute (6.21) in (6.20) and consider the first of the arising integrals,

It(x, y) := (2π)−n−2πi

×PV

∫
Rn+1

[
e−ikx+ik′yĜt(k) q̂+(k)

α̂+(k′n − kn)

kn − k′n
ĜT
t (k′)

] ∣∣∣
k′=(k,k′

n)
dk′n dk.(6.22)

Changing variables k′n → k′n − kn = ξ we obtain

It(x, y) = −(2π)−n−2πi

∫
Rn

e−i(x−y)k Ĝt(k) q̂+(k) J∗
+(t, yn, k) dk,(6.23)

where J+(t, yn, k) is defined in (6.13). Equalities (6.23) and (A.4), Proposition 6.2,
and (5.5) imply that for x, y ∈ BR∣∣It(x, y)∣∣ � C

∫
Rn

(
1 + |Ĉ(k)|

)∣∣q̂+(k)
∣∣(1 + |ĈT (k)|

)
dk � C1 < ∞,

which proves item (i) of Lemma 6.5.
(ii) According to Lemma 6.1, it suffices to prove item (ii) of Lemma 6.5 for Ψ ∈ SN

with any fixed N ∈ N. Applying (6.20) we obtain〈
Q3

t (x, y),Ψ(x) ⊗ Ψ(y)
〉

= (2π)−2n
〈
Q̂3

t (k, k
′), Ψ̂(k) ⊗ Ψ̂(k′)

〉
= (2π)−n−2πiPV

∫
Rn+1

[
Ψ̂(k) Ĝt(k) q̂3

0(k, k′) ĜT
t (k′) Ψ̂(k′)

] ∣∣∣
k′=(k,k′

n)
dk′n dk.(6.24)

Let us substitute (6.21) in (6.24) and consider, for example, 〈It(x, y),Ψ(x) ⊗ Ψ(y)〉,
where Ψ ∈ SN and It(x, y) defined in (6.22). Changing variables k′n → k′n − kn = ξ,
we obtain that

(6.25)

It(Ψ) ≡
〈
It(x, y),Ψ(x) ⊗ Ψ(y)

〉
= −(2π)−n−2πi

∫
Rn

Ψ̂(k) Ĝt(k) q̂+(k) j∗+(t, k) dk,

where j+(t, k) is defined in (6.16). Substituting (6.17) in the integral in the right-hand
side of (6.25), we get

It(Ψ) = (2π)−n−2π2i

×
∫
Rn

Ψ̂(k) Ĝt(k) q̂+(k)
[
sinωt− cosωt ĈT (k)

]
sign(kn) Ψ̂(k) dk + o(1).
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Further, we apply (A.8) with q̂(k) = q̂+(k) and conclude that as t → ∞

(6.26)

It(Ψ) = (2π)−n i

8

∫
Rn

Ψ̂(k)
(
Ĉ(k) q̂+(k) − q̂+(k) ĈT (k)

)
sign(kn)Ψ̂(k) dk + o(1),

since the remaining oscillatory integrals tend to zero as t → ∞ by the Lebesgue–
Riemann theorem and (5.5). This implies the convergence of It(Ψ) to a limit as t → ∞.
Similar arguments give the limits of type (6.26) for all remaining terms in (6.24).
Hence, finally,〈

Q3
t (x, y), Ψ(x) ⊗ Ψ(y)

〉
= (2π)−n i

2

∫
Rn

Ψ̂(k)
(
Ĉ(k) q̂−(k) − q̂−(k) ĈT (k)

)
sign(kn)Ψ̂(k) dk

= (2π)−n
〈
q̂−∞(k), Ψ̂(k) ⊗ Ψ̂(k)

〉
+ o(1),

where t → +∞, q̂−(k) = (q̂+(k) − q̂−(k))/2. Lemma 6.5 is proved.

Now Proposition 6.1 follows from Lemmas 6.2, 6.3, and 6.5.

7. Compactness of measures family. Proposition 3.2 can be deduced from
the bound (7.19) with the help of the Prokhorov theorem (see Lemma 3.1 in [5]). As
a preliminary we prove two auxiliary lemmas.

Lemma 7.1. The function ∇x · ∇yQ
00
t (x, y) is continuous and

sup
t�1

sup
x∈BR

(
∇x · ∇yQ

00
t (x, y)

∣∣
x=y

)
� C < ∞, R > 0.(7.1)

Proof. For simplicity, let us consider the case Y 0
0 (x) ≡ 0 a.e. (The general case

Y 0
0 (x) �≡ 0 is proved similarly.) Then

∇x · ∇yQ
00
t (x, y) = (2π)−2n

∫
R2n

e−ikx+ik′y k · k′
[
Ĝt(k) Q̂0(k, k

′) ĜT
t (k′)

]00

dk dk′

= (2π)−2n

∫
R2n

e−ikx+ik′y sinω(k) t

ω(k)
k · k′Q̂11

0 (k, k′)
sinω(k′) t

ω(k′)
dk dk′.(7.2)

As in the proof of Proposition 6.1, we represent ∇x · ∇yQ
00
t (x, y) as a sum:

∇x · ∇yQ
00
t (x, y) =

3∑
j=1

∇x · ∇y

[
Qj

t (x, y)
]00

,(7.3)

where each term ∇x · ∇y[Q
j
t (x, y)]

00 is defined similarly to (7.2) with the func-

tion [Q̂j
0(k, k

′)]11 in the integrand instead of Q̂11
0 (k, k′). Further, we estimate each

term ∇x · ∇y[Q
j
t (x, y)]

00 separately by the methods of Lemmas 6.2, 6.3, and 6.5.

I. From (5.10) and (7.2) it follows that

(7.4)

∇x · ∇y[Q
1
t (x, y)]

00 = (2π)−n 1

4

∫
Rn

e−ik(x−y) |k|2(q̂11
+ (k) + q̂11

− (k))

ω2(k)

(
sinω(k) t

)2
dk.
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Hence, by Proposition 5.1(ii), we obtain that the function ∇x · ∇y[Q
1
t (x, y)]

00 is con-
tinuous by the Lebesgue dominated convergence theorem. Moreover,

sup
t�0

∣∣∣∇x · ∇y

[
Q1

t (x, y)
]00 ∣∣∣

y=x

∣∣∣ � C

∫ (∣∣q̂11
+ (k)

∣∣ +
∣∣q̂11

− (k)
∣∣) dk < ∞.(7.5)

II. Consider the second term in the right-hand side of (7.3) (cf. (6.11)):

∇x · ∇y

[
Q2

t (x, y)
]00

= (2π)−n−2
∑
±

∫
Rn+1

dk dkn dk
′
n

[
e−ikx+ik′y k · k′ sinω(k) t

ω(k)

sinω(k′) t

ω(k′)

×PV

∫ +∞

−∞

α̂±(kn − ξ)

kn − ξ

α̂±(k′n − ξ)

k′n − ξ
q̂11
± (k, ξ) dξ

] ∣∣∣
k′=(k,k′

n)
.(7.6)

Changing variables, we obtain that

∇x · ∇y

[
Q2

t (x, y)
]00

= C
∑
±

∫
Rn

e−ik(x−y)
(
J01
± (t, xn, k) J01

± (t, yn, k) |k|2

+ J̃±(t, xn, k) J̃±(t, yn, k)
)
q̂11
± (k) dk,(7.7)

where J01
± (t, xn, k) is defined in (6.13), and

J̃±(t, xn, k) := PV

∫ +∞

−∞
e−iξxn

α̂±(ξ)

ξ
sinω(k, kn + ξ) t

kn + ξ

ω(k, kn + ξ)
dξ.(7.8)

By Lemma B.1, we obtain the estimate |J01
± (t, xn, k)| � C1/ω(k). Since∣∣∣∣ kn + ξ

ω(k, kn + ξ)
− kn

ω(k)

∣∣∣∣ � C|ξ|,

it follows that supt�1,|x|�R |J̃±(t, xn, k)| � C1 < ∞ by Lemma B.1. Hence, by virtue

of Proposition 5.1(ii), the function ∇x · ∇y[Q
2
t (x, y)]

00 is continuous by the Lebesgue
dominated convergence theorem. Moreover,

(7.9)∣∣∣∇x · ∇y

[
Q2

t (x, y)
]00 ∣∣

x=y

∣∣∣ � C

∫
Rn

(
C1|k|2
ω2(k)

+ C2

)(∣∣q̂11
+ (k)

∣∣ +
∣∣q̂11

− (k)
∣∣) dk dkn < ∞.

III. Applying (5.12) and (7.2), we obtain (cf. (6.20))

∇x · ∇y

[
Q3

t (x, y)
]00

= C0 PV

∫
Rn+1

e−ixk+iyk′ sinω(k) t

ω(k)
k · k′

[
q̂3
0(k, k

′)
]11

× sinω(k′) t

ω(k′)

∣∣∣
k′=(k, k′

n)
dk dk′n,(7.10)

where C0 = (2π)−n−2πi and q̂3
0(k, k

′) is defined in (6.21). We substitute (6.21) and
estimate one of the integrals (for the remaining integrals the proof is similar):

It(x, y) := C0 PV

∫
Rn+1

e−ixk+iyk′ sinω(k) t

ω(k)
k · k′ q̂11

+ (k)

× sinω(k′) t

ω(k′)

α̂+(k′n − kn)

kn − k′n

∣∣∣
k′=(k, k′

n)
dk dk′n.(7.11)



602 T. V. DUDNIKOVA AND A. I. KOMECH

Changing variables k′n → k′n − kn = ξ, we obtain that

It(x, y) = −C0

∫
Rn

e−i(x−y)k sinω(k) t

ω(k)
q̂11
+ (k) J2(t, yn, k) dk,(7.12)

where

J2(t, yn, k) := PV

∫ +∞

−∞
eiξyn

α̂+(ξ)

ξ
sinω(k, kn + ξ) t

k2 + knξ

ω(k, kn + ξ)
dξ.(7.13)

Note that ∣∣∣∣ k2 + knξ

ω(k, kn + ξ)
− k2

ω(k)

∣∣∣∣ � |ξ| k2

ω(k)
.

Hence, by Lemma B.2, supt�1,|yn|�R |J2(t, yn, k)| � Ck2/ω(k). Therefore, from (7.13)

and Proposition 5.1(ii) it follows that the function ∇x · ∇y[Q
3
t (x, y)]

00 is continuous
by the Lebesgue dominated convergence theorem. Moreover,

sup
t�1,x∈BR

∣∣It(x, x)
∣∣ � C

∫
Rn

∣∣∣∣ sinω(k) t
|k|2
ω2(k)

q̂11
+ (k)

∣∣∣∣ dk � C‖q̂11
+ ‖L1 < ∞.

Lemma 7.1 is proved.
Denote

et(x, x
′) := Q00

t (x, x′) + ∇x · ∇x′Q00
t (x, x′) + Q11

t (x, x′).(7.14)

Lemma 7.2. For any R > 0, the following equality holds:

E
∥∥U0(t)Y0(·)

∥∥2

R
=

∫
|x|<R

et(x, x) dx, t ∈ R.(7.15)

Proof. The estimate (3.4) for U0(t)Y0 = Y (x, t) = (Y 0(x, t), Y 1(x, t)) implies that

E
∥∥Y (·, t)

∥∥2

R
� E

∥∥Y0(·)
∥∥2

R+t
< ∞(7.16)

by condition S2 and the Fubini theorem. Hence, the mathematical expectation
E‖Y (·, t)‖2

R is finite for any R > 0, t � 0. Therefore, by the Fubini theorem, we
obtain that

E
(∣∣Y 0(x, t)

∣∣2 +
∣∣∇Y 0(x, t)

∣∣2 +
∣∣Y 1(x, t)

∣∣2) < ∞, x ∈ X ⊂ Rn,

where mes(Rn \X) = 0. Hence, by the Cauchy–Schwarz inequality,

E
(∣∣Y 0(x, t)Y 0(x′, t)

∣∣ +
∣∣∇xY

0(x, t) · ∇x′Y 0(x′, t)
∣∣

+
∣∣Y 1(x, t)Y 1(x′, t)

∣∣) < ∞, x, x′ ∈ X.(7.17)

We take θk(x) = knθ(kx), where θ(x) ∈ C∞
0 (Rn),

∫
θ(x) dx = 1, and θ(x) � 0. Then

definition (2.6) of the correlation functions gives

E
∥∥θk ∗ Y (·, t)

∥∥2

R
=

∫
|x|�R

dx

∫
R2n

θk(x− y) θk(x− y′) et(y, y
′) dy dy′.(7.18)
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It is obvious that θk(x) → δ(x) as k → ∞. Therefore, the right-hand side of (7.18)
converges to

∫
|x|�R

et(x, x) dx, since et(·, ·) ∈ C(Rn × Rn), and the left-hand side

converges to E‖Y (·, t)‖2
R by the Lebesgue dominated convergence theorem. Indeed,

‖θk ∗ Y (·, t)‖R → ‖Y (·, t)‖R as k → ∞, and ‖θk ∗ Y (·, t)‖R � ‖Y (·, t)‖R+R(θ),
where ‖Y (·, t)‖2

R+R(θ) is a summable majorant, by virtue of (7.16). Hence, (7.18)

implies (7.15) as k → ∞.
Corollary 7.1. The estimate (7.17) implies the convergence of the integrals

in (2.5), for a.e. (x, y) ∈ R2n.
Lemma 7.3. Let conditions S0–S3 hold. Then

sup
t�0

E
∥∥U0(t)Y0

∥∥2

R
< ∞, R > 0.(7.19)

Proof. From Lemma 7.2 it follows that

E
∥∥Y (·, t)

∥∥2

R
=

∫
|x|<R

et(x, x) dx.

Proposition 6.1(i) and Lemma 7.1 imply that

sup
t�1,x∈BR

et(x, x) � e < ∞.

Hence,

E
∥∥U0(t)Y0

∥∥2

R
=

∫
BR

et(x, x) dx � ē|BR| < ∞.

Lemma 7.3 is proved.
Finally, Proposition 3.2 follows from (7.19), by the methods of [5].

8. Convergence of characteristic functionals. In this section we apply the
Bernstein “room-corridor” method to prove Proposition 3.3. We rewrite (3.5) in the
form ∫

exp
(
i〈U0(t)Y0,Ψ〉

)
μ0(dY0)−→ exp

{
− 1

2
Q∞(Ψ,Ψ)

}
, t → ∞.(8.1)

We use the standard integral representation for U0(t)Y0, divide the domain of inte-
gration into “rooms” and “corridors,” and evaluate their contribution. As the result,
the expression 〈U0(t)Y0,Ψ〉 in (8.1) is represented as the sum of weakly dependent
random variables. Further, we evaluate the variances of these random variables. A
similar method was used in [12, section 7, pp. 17–19]. However, the proofs are not
identical since in the present paper we study nontranslation-invariant measures.

First, we evaluate 〈U0(t)Y0,Ψ〉 in (8.1) by using a dual group. For t ∈ R, intro-
duce the “formal adjoint” operators U ′

0(t), U
′(t) from space D to a suitable space of

distributions. For example,〈
Y,U ′

0(t) Ψ
〉

=
〈
U0(t)Y,Ψ

〉
, Ψ ∈ D, Y ∈ H.(8.2)

Denote Φ(·, t) = U ′
0(t) Ψ. Then (8.2) can be rewritten as〈

Y (t), Ψ
〉

=
〈
Y0, Φ(·, t)

〉
, t ∈ R.(8.3)
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The adjoint groups admit a convenient description. Lemma 8.1 in what follows dis-
plays that the action of groups U ′

0(t), U
′(t) coincides, respectively, with the action of

groups U0(t), U(t), up to the order of the components. In particular, U ′
0(t), U

′(t) are
continuous groups of operators from D to D.

Lemma 8.1 (see Lemma 7.1 in [12, p. 17]). For Ψ = (Ψ0,Ψ1) ∈ D,

U ′
0(t) Ψ =

(
φ̇(·, t), φ(·, t)

)
, U ′(t) Ψ =

(
ψ̇(·, t), ψ(·, t)

)
,(8.4)

where φ(x, t) is the solution of (3.1) with the initial date (u0, v0) = (Ψ1,Ψ0) and ψ(x, t)
is the solution of (1.1) with the initial date (u0, v0) = (Ψ1,Ψ0).

Next we divide Rn into “rooms” and “corridors.” Given t > 0, choose d ≡ dt � 1
and ρ ≡ ρt > 0 as follows: take 0 < δ < 1 and ρt ∼ t1−δ, dt ∼ t/ log t, t → ∞. Set
h = d + ρ and

aj = jh, bj = aj + d, j ∈ Z.(8.5)

We call the slabs Rj
t = {x ∈ Rn : aj � xn � bj} “rooms” and the slabs Cj

t =
{x ∈ Rn : bj � xn � aj+1} “corridors.” Here x = (x1, . . . , xn), d is the width of a
room, and ρ is the width of a corridor.

Denote by χr the indicator of the interval [0, d] and by χc the indicator of the
interval [d, h] so that

∑
j∈Z(χr(s − jh) + χc(s − jh)) = 1 for a.a. s ∈ R. Then the

following decomposition holds:〈
Y0, Φ(·, t)

〉
=

∑
j∈Z

(〈
Y0, χ

j
r Φ(·, t)

〉
+
〈
Y0, χ

j
c Φ(·, t)

〉)
,(8.6)

where χ j
r := χr(xn − jh) and χ j

c := χc(xn − jh). Consider the random variables
r j
t , c

j
t , where

r j
t =

〈
Y0, χ

j
r Φ(·, t)

〉
, c j

t =
〈
Y0, χ

j
c Φ(·, t)

〉
, j ∈ Z.(8.7)

Then (8.3) and (8.6) imply that〈
U0(t)Y0,Ψ

〉
=

∑
j∈Z

(r j
t + c j

t ).(8.8)

Note that the series in (8.8) is a finite sum. In fact, the support supp Ψ ⊂ Br with
an r > 0. Then, by Huygen’s principle, the support of the function Φ at t > 0 is a
subset of an “inflated future cone” (see [12, p. 18]):

supp Φ ⊂
{
(x, t) ∈ Rn × R+ : |x| � t + r

}
.(8.9)

Hence, (8.7) implies that

r j
t = c j

t = 0 for jh + t < −r or jh− t > r.(8.10)

Therefore, series (8.8) becomes a sum

〈
U0(t)Y0,Ψ

〉
=

Nt∑
−Nt

(
r j
t + c j

t

)
, Nt ∼

t

h
.(8.11)

Lemma 8.2. Let n � 1, m > 0, and conditions S0–S3 hold. Then the following
bounds hold for t > 1:

E|r j
t |2 � C(Ψ)

dt
t
, E|c j

t |2 � C(Ψ)
ρt
t
, j ∈ Z.(8.12)
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Proof. We prove the first bound in (8.12) only; the second is done in a similar
way. Let us express E|r j

t |2 in correlation matrices. Definition (8.7) and condition S2
imply, by the Fubini theorem, that

E|r j
t |2 =

〈
χ j
r (xn)χ j

r (yn)Q0(x, y), Φ(x, t) ⊗ Φ(y, t)
〉
.(8.13)

For the function Φ(x, t), the following bound holds (cf. Theorem XI.17(b) of [29,
p. 54]):

sup
x∈Rn

∣∣Φ(x, t)
∣∣ = O(t−n/2), t → ∞.(8.14)

Applying (8.9) and (8.14) to equality (8.13), we obtain that

E|r j
t |2 � Ct−n

∫
|x|�t+r

χ j
r (xn)

(∫
Rn

∥∥Q0(x, y)
∥∥ dy) dx,(8.15)

where ‖Q0(x, y)‖ stands for the norm of a matrix (Qij
0 (x, y)). Therefore, the first

bound (8.12) follows from Proposition 5.1(i). Lemma 8.2 is proved.
Now convergence (8.1) follows just as in sections 8 and 9 in [12, pp. 20–25].

9. Variable coefficients: The scattering theory for infinite energy so-
lutions. In this section we prove Theorem A. We deduce it from Propositions 9.1
and 9.2 below by using the arguments as in sections 10 and 11 in [12, pp. 25–29].

Consider the operators U ′(t), U ′
0(t) in H = L2(Rn) ⊕H1(Rn) (see (2.19)). The

energy conservation for the Klein–Gordon equation implies the following corollary.
Corollary 9.1. There exists a constant C > 0 such that for any Ψ ∈ H,∥∥U ′

0(t) Ψ
∥∥
H

� C ‖Ψ‖H ,
∥∥U ′(t) Ψ

∥∥
H

� C‖Ψ‖H , t ∈ R.(9.1)

Lemma 9.1 follows from the results of Vainberg (see Theorems 3–5 in [3]). Con-
sider a family of finite seminorms in H,

‖Ψ‖2
(R) =

∫
|x|�R

(∣∣Ψ0(x)
∣∣2 +

∣∣Ψ1(x)
∣∣2 +

∣∣∇Ψ1(x)
∣∣2) dx, R > 0.

Denote by H(R) the subspace of functions from H with a support in the ball BR.
Definition 9.1. Hc denotes the space

⋃
R>0H(R) endowed with the following

convergence: A sequence Ψn converges to Ψ in Hc as n → ∞ if and only if there
exists R > 0 such that all Ψn ∈ H(R), and Ψn converges to Ψ in the norm ‖ · ‖(R)

as n → ∞.
In what follows, we speak of continuity of maps from Hc in the sense of sequential

continuity. Given t � 0, denote

ε(t) =

{
(t + 1)−3/2, n � 3,

(t + 1)−1 log−2(t + 2), n = 2.
(9.2)

Lemma 9.1 (see [3]). Let n � 2 and conditions E1–E3 hold. Then, for any
R,R0 > 0, there exists a constant C = C(R,R0) such that for Ψ ∈ H(R),∥∥U ′(t) Ψ

∥∥
(R0)

� Cε(t)
∥∥Ψ

∥∥
(R)

, t � 0.(9.3)
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Given t � 0, set

ε1(t) =

{
(t + 1)−1/2, n � 3,

log−1(t + 2), n = 2.
(9.4)

Theorem 9.1. Let n � 2 and conditions E1–E3 and S0–S3 hold. Then there
exist linear continuous operators W, r(t) : Hc → H such that for Ψ ∈ Hc,

U ′(t) Ψ = U ′
0(t)W Ψ + r(t) Ψ, t � 0,(9.5)

and the following bounds hold: For any R > 0 and Ψ ∈ H(R),

‖r(t) Ψ‖H � C(R) ε1(t) ‖Ψ‖(R), t � 0,(9.6)

E
∣∣〈Y0, r(t) Ψ

〉
|2 � C(R) ε2

1(t) ‖Ψ‖2
(R), t � 0.(9.7)

Proof. Relations (9.5) and (9.6) are proved just as in section 10 in [12, p. 25–27].
It remains to prove (9.7). First, similarly to (8.13),

E
〈
Y0, r(t) Ψ

〉2
=

〈
Q0(x, y), r(t) Ψ(x) ⊗ r(t) Ψ(y)

〉
=: Q0

(
r(t) Ψ, r(t) Ψ

)
.(9.8)

Hence, Corollary 5.1(i) and (9.6) imply the following inequality for Ψ ∈ H(R):

E
〈
Y0, r(t) Ψ

〉2 � C
∥∥r(t) Ψ

∥∥2

L2 � C
∥∥r(t) Ψ

∥∥2

H
� C(R) ε2

1(t) ‖Ψ‖2
(R).(9.9)

Theorem 9.1 is proved.
Finally, Theorem A follows from the two propositions below.
Proposition 9.1. The family of the measures {μt, t ∈ R} is weakly compact

in H−ε, for any ε > 0.
Proposition 9.2. For any Ψ ∈ D,

μ̂t(Ψ) ≡
∫

exp
(
i〈Y, Ψ〉

)
μt(dY )−→ exp

{
− 1

2
Q∞(WΨ, WΨ)

}
(9.10)

as t → ∞.
We deduce these propositions from Propositions 3.2 and 3.3, respectively, with

the help of Theorem 9.1.
Proof of Proposition 9.1. Similarly to Proposition 3.2, Proposition 9.1 follows

from the bounds

sup
t�0

E
∥∥U(t)Y0

∥∥
R
< ∞, R > 0,(9.11)

which follow from Theorem 9.1 and Proposition 3.2 as in [12].
Proof of Proposition 9.2. Equations (9.5) and (9.7) imply, by the Cauchy–

Schwarz inequality, that∣∣∣E exp
{
i〈U(t)Y0,Ψ〉

}
− E exp

{
i
〈
Y0, U

′
0(t)WΨ

〉}∣∣∣
� E

∣∣〈Y0, r(t) Ψ〉
∣∣ �

(
E
∣∣〈Y0, r(t) Ψ

〉
|2
)1/2 −→ 0, t → ∞.

It remains to prove that

E exp
{
i〈Y0, U

′
0(t)WΨ〉

}
−→ exp

{
− 1

2
Q∞(WΨ, WΨ)

}
, t → ∞.(9.12)
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This does not follow directly from Proposition 3.3, since generally, WΨ �∈ D. We
approximate WΨ by functions from D. It is possible since WΨ ∈ H, and D is dense
in H. Hence, for any ε > 0 there exists Φ ∈ D such that

‖WΨ − Φ‖H � ε.(9.13)

Now we can derive (9.12) by the triangle inequality∣∣∣∣E exp
{
i〈Y0, U

′
0(t)WΨ〉

}
− exp

{
− 1

2
Q∞(WΨ, WΨ)

}∣∣∣∣
�

∣∣∣E exp
{
i〈Y0, U

′
0(t)WΨ〉

}
− E exp

{
i〈Y0, U

′
0(t) Φ〉

}∣∣∣
+E

∣∣∣∣ exp
{
i〈U0(t)Y0,Φ〉

}
− exp

{
− 1

2
Q∞(Φ,Φ)

}∣∣∣∣
+

∣∣∣∣ exp

{
− 1

2
Q∞(Φ, Φ)

}
− exp

{
− 1

2
Q∞(WΨ, WΨ)

}∣∣∣∣.(9.14)

Applying the Cauchy–Schwarz inequality, we get, similarly to (9.8) and (9.9), that

E
∣∣〈Y0, U

′
0(t)(WΨ − Φ)

〉∣∣ �
(
E
∣∣〈Y0, U

′
0(t)(WΨ − Φ)

〉∣∣2)1/2

� C
∥∥U ′

0(t)(WΨ − Φ)
∥∥
H
.

Hence, (9.1) and (9.13) imply that

E
∣∣〈Y0, U

′
0(t)(WΨ − Φ)

〉∣∣ � Cε, t � 0.(9.15)

Now we can estimate each term in the right-hand side of (9.14). The first term
is O(ε) uniformly in t > 0 by (9.15). The second term converges to zero as t → ∞ by
Proposition 3.3, since Φ ∈ D. Finally, the third term is O(ε) owing to (9.13) and the
continuity of the quadratic form Q∞(Ψ,Ψ) in L2(Rn)⊗C2 (Corollary 5.2). Now the
convergence (9.12) follows since ε > 0 is arbitrary.

Appendix A. Fourier transform. We consider the dynamics and correlation
functions of system (3.2). Denote by F : w �→ ŵ the Fourier transform of a tempered
distribution w ∈ D′(Rn) (see, e.g., [19]). We also use this notation for vector- and
matrix-valued functions.

In the Fourier representation, system (3.2) becomes
˙̂
Y (k, t) = Â0(k) Ŷ (k, t), and

hence,

Ŷ (k, t) = Ĝt(k) Ŷ0(k), Ĝt(k) = exp
(
Â0(k) t

)
.(A.1)

Here we denote

Â0(k) =

(
0 1

−ω2 0

)
, Ĝt(k) =

(
cosωt

sinωt

ω
−ω sinωt cosωt

)
,(A.2)

where ω = ω(k) =
√
|k|2 + m2. Denote by I the identity matrix and

Ĉ(k) ≡
(
Ĉij(k)

)1
i,j=0

:=

(
0 ω−1(k)

−ω(k) 0

)
.(A.3)

Then

Ĝt(k) = cosωt I + sinωt Ĉ(k).(A.4)
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Hence,

Ĝt(k) Q̂(k, k′) ĜT
t (k′) = cosω(k) t cosω(k′) t Q̂(k, k′)

+ sinω(k) t sinω(k′) t Ĉ(k) Q̂(k, k′) ĈT (k′)

+ cosω(k) t sinω(k′) t Q̂(k, k′) ĈT (k′)

+ cosω(k) t sinω(k′) t Ĉ(k) Q̂(k, k′)

=
1

2

∑
±

{
cos

(
ω(k) ± ω(k′)

)
t
(
Q̂(k, k′) ∓ Ĉ(k) Q̂(k, k′) ĈT (k′)

)
+

1

2
sin

(
ω(k) ± ω(k′)

)
t
(
Ĉ(k) Q̂(k, k′) ± Q̂(k, k′) ĈT (k′)

)}
.(A.5)

In the particular case when Q̂(k, k′) = δ(k − k′) q̂(k), we obtain

Ĝt(k) q̂(k) ĜT
t (k) =

1

2

{
q̂(k) + Ĉ(k) q̂(k) ĈT (k)

}
+

1

2
cos 2ω(k) t

{
q̂(k) − Ĉ(k) q̂(k) ĈT (k)

}
+

1

2
sin 2ω(k) t

{
Ĉ(k) q̂(k) + q̂(k) ĈT (k)

}
.(A.6)

The following formulas are used in the proofs of Lemmas 6.3 and 6.5, respectively:[
sinωt I − cosωt Ĉ(k)

]
q̂(k)

[
sinωt I − cosωt ĈT (k)

]
=

1

2

{
q̂(k) + Ĉ(k) q̂(k) ĈT (k)

}
− 1

2
cos 2ω(k) t

{
q̂(k) − Ĉ(k) q̂(k) ĈT (k)

}
− 1

2
sin 2ω(k) t

{
Ĉ(k) q̂(k) + q̂(k) ĈT (k)

}
,(A.7)

Ĝt(k) q̂(k)
[
sinω(k) t I − cosω(k) t ĈT (k)

]
=

1

2

{
Ĉ(k) q̂(k) − q̂(k) ĈT (k)

}
− 1

2
cos 2ω(k) t

{
q̂(k) ĈT (k) + Ĉ(k) q̂(k)

}
+

1

2
sin 2ω(k) t

{
q̂(k) − Ĉ(k) q̂(k) ĈT (k)

}
.(A.8)

Appendix B. Singular oscillatory integrals. By virtue of (A.4), Proposi-
tion 6.2 follows from the following lemma.

Lemma B.1. Let ω(k) =
√

|k|2 + m2; the function Ω(k) be one of the func-
tions ω(k), ω−1(k) or 1; and xn ∈ [−R,R]. Then the matrix-valued integral

I(t, xn, k) := PV

∫
R

e−iξxne±iω(k,kn+ξ) t α̂+(ξ)

ξ
Ω(k, kn + ξ) dξ

is uniformly bounded:

sup
|xn|�R,t�1

∣∣I(t, xn, k)
∣∣ � C Ω(k),(B.1)

where a constant C does not depend on k.
The bound (B.1) follows from the inequalities∣∣ω(k, kn + ξ) − ω(k)

∣∣ � C|ξ|∣∣ω−1(k, kn + ξ) − ω−1(k)
∣∣ � C|ξ|ω−1(k)

∀ k ∈ Rn,
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|eiξxn − 1| � min{|ξ||xn|, 2} and the following lemma.

Lemma B.2. The integral Jt(k) := PV
∫ +∞
−∞ eiω(k,kn+ξ) tα̂+(ξ)/ξ dξ is bounded

for all t > 1, k = (k, kn) ∈ Rn.

Proof. Note that a similar integral around the circle (instead of R) has been
considered in Proposition A.4 of [2] for n = 1 and the condition ω(p)(0) = 0 for
p = 1, . . . ,m−1 and ω(m)(0) �= 0 for a finite number m. Moreover, it is assumed in [2]
that the inequality and the estimates for all functions are fulfilled uniformly on the
parameter, which belongs to a compact set. In our case the parameter belongs to an
infinite space, and these estimates are not uniform because all derivatives ∂p

kn
ω(k, kn)

vanish as |k| → ∞. Then Proposition A.4(ii) from [2] is not applied directly and we
have to modify it to apply it to our case. Since α̂+ ∈ S(R1), it suffices to prove that
the integral

jt(k) := PV

∫ δ

−δ

eiω(k,kn+ξ) t

ξ
dξ(B.2)

is bounded uniformly on t > 1 and k ∈ Rn for a small enough δ > 0. Let us consider
separately two cases |kn| � Bδ and |kn| � Bδ, where B is a large enough number.

(i) Let |kn| � Bδ. Then ∂kn
ω(k) = kn/ω(k) �= 0. We change the variables

ξ → z ≡ z(k, ξ) :=
ω(k, kn + ξ) − ω(k)

∂knω(k)
.

Then ω(k, kn + ξ) = ω(k) + zkn/ω(k) and z |ξ=0 = 0, (∂z/∂ξ) |ξ=0 = 1. Therefore,
denoting by ξ = ϕ(k, z) the inverse function to z = z(k, ξ), we obtain that for small
enough δ for |kn| � Bδ

jt(k) = eiω(k) t PV

∫ δ

−δ

eiztkn/ω(k)∂zϕ(k, z)

ϕ(k, z)
dz + O(1)

uniformly on k. Note that (∂zϕ(k, z))/ϕ(k, z) = 1/z + χ(k, z), where χ(k, z) is a
bounded function for |z| � δ uniformly on |kn| � Bδ for large enough B. Hence,

jt(k) = eiω(k) t PV

∫ δ

−δ

eiztkn/ω(k)

z
dz + O(1)

uniformly on k for |kn| � Bδ. Further, denote λ := tkn/ω(k). Hence, jt(k) =

eiω(k) tI(λ) + O(1), where I(λ) := PV
∫ δ

−δ
(eizλ/z) dz. For |λ| � C < ∞, we have

|I(λ)| � |λ|2δ � C1. For |λ| � C, using the formula limλ→±∞ I(λ) = ±πi, we obtain
the uniform boundedness of the integral I(λ) for all λ. Hence, for the case |kn| � Bδ
the integral jt(k) is uniformly bounded in t and k.

(ii) Let |kn| � Bδ with fixed B above. We use the following relation:

∂2
kn
ω(k, 0) =

1

ω(k, 0)
�= 0, k ∈ Rn−1.

The phase function in the integral (B.2) admits a representation in the form

ω(k, kn + ξ) = ω(k, 0) + (kn + ξ)2
∂2
kn
ω(k, 0)

2
+ · · · = ω(k, 0) + Ckμ

2(k, kn + ξ),
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where Ck := (2ω(k, 0))−1. Moreover, μ(k, 0) = 0 and μ′
kn

(k, 0) = 1, and the inte-
gral (B.2) becomes

jt(k) = eiω(k,0) t PV

∫ δ

−δ

eiCkμ
2(k,kn+ξ) t

ξ
dξ.

Take a new variable ζ by the rule μ(k, kn + ξ) = μ(k, kn)+ ζ, and express a variable ξ
by ζ. Denote by ϕ(k, μ) = kn the inverse function to μ = μ(k, kn). Then kn + ξ =
ϕ(k, ζ + μ(k, kn)). Hence,

ξ = ϕ
(
k, ζ + μ(k, kn)

)
− kn = ϕ

(
k, ζ + μ(k, kn)

)
− ϕ

(
k, μ(k, kn)

)
.

In particular, ∂ζξ = ∂μϕ(k, ζ + μ(k)), and then,

jt(k) = eiω(k,0) t PV

∫ δ

−δ

eiCkt[ζ+μ(k)]2∂μϕ(k, ζ + μ(k))

ϕ(k, ζ + μ(k)) − ϕ(k, μ(k))
dζ + O(1)

= eiω(k,0) t PV

∫ δ

−δ

eiCkt[ζ+μ(k)]2

ζ
dζ + O(1)(B.3)

uniformly in k for |kn| � Bδ. In contrast to Proposition A.4 of [2], in our case
Ck �= const., and, moreover, Ck → 0 as |k| → ∞. Let us take a new parameter
λ := Ckt. Then

jt(k) = eiω(k,0) t PV

∫ δ

−δ

eiλ[z+μ(k)]2

z
dz + O(1)

uniformly in k for |kn| � Bδ. Note that |μ(k)| � |kn| � Bδ. Hence, the uniform

boundedness of the last integral PV
∫ δ

−δ
follows by Proposition A.4 (ii) of [2].
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