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Abstract. We consider the dynamics of a field coupled to a harmonic crystal with n compo-
nents in dimension d, d, n � 1. The crystal and the dynamics are translation-invariant with

respect to the subgroup Zd of Rd. The initial data form a random function with a finite mean
density of energy which also satisfies a mixing condition of Rosenblatt or Ibragimov–Linnik
type. Moreover, initial correlation functions are translation invariant with respect to the dis-

crete subgroup Zd. We study the distribution µt of the solution at times t ∈ R. The main
result is the convergence of µt to a Gaussian measure as t → ∞, where µ∞ is translation

invariant with respect to the subgroup Zd.

1. INTRODUCTION

The paper concerns problems of long-time convergence to an equilibrium distribution in a coupled
system which is similar to the Born–Oppenheimer model of a solid state. In [5–7, 10], we have started
the convergence analysis for partial differential equations of hyperbolic type in Rd. In [8, 9], we have
extended the results to harmonic crystals.

Here we treat a harmonic crystal coupled to a scalar Klein–Gordon field. In this case, the
corresponding problem in the unit cell is an infinite-dimensional Schrödinger operator, whereas in
[8, 9] (and in [5–7, 10]), it was a finite-dimensional matrix. This situation usually arises in the
solid-state problems similar to that for the Schrödinger equation with space-periodic potential [18].
The main novelty in our methods consists in that they yield exact estimates of trace norms for the
problem in the unit cell.

We assume that an initial state Y0 of the coupled system is a random element of a Hilbert
phase space E , see Definition 2.4. The distribution of Y0 is a probability measure µ0 (with zero
mean) satisfying conditions S1–S3. In particular, the measure µ0 is invariant with respect to
translations by vectors of Zd. For a given t ∈ R, we denote by µt the probability measure defining
the distribution of the solution Y (t) to the dynamical equations with random initial state Y0. We
study the asymptotics of µt as t→ ±∞.

Our main result gives the (weak) convergence of the measures µt to a limit measure µ∞,

µt ⇁ µ∞, t→∞. (1.1)

The measure µ∞ is Gaussian and translation-invariant with respect to the group Zd. We give
explicit formulas for the covariance of the measure µ∞. The dynamical group is ergodic and mixing
with respect to the limit measure µ∞. Similar results also hold as t→ −∞ because the dynamics
is time-reversible.

Similar results have been established in [1, 24] for one-dimensional chains of harmonic oscillators
(with d = 1) and in [11, 13, 16, 21] for one-dimensional chains of anharmonic oscillators coupled to
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heat baths. For d-dimensional harmonic crystals, with d � 1, the convergence (1.1) was proved in
[8, 9, 17]. The mixing condition was first introduced by R. Dobrushin and Yu. Suhov for an ideal gas
in [3]. The condition can replace the (quasi-) ergodic hypothesis when proving the convergence to
the equilibrium distribution, and this plays a crucial role in our approach. Developing a Bernshtein-
type approach, we have proved the convergence for the wave and Klein–Gordon equations and for
harmonic crystals with translation-invariant initial measures [5, 6, 8]. In [7, 9, 10], we have extended
the results to two-temperature initial measures. The present paper extends our previous results to
the scalar Klein–Gordon field coupled to the nearest neighbor crystal.

Let us outline our main result and the strategy of the proof. (For the formal definitions and
statements, see Section 2.) Consider the Hamiltonian system with the following Hamiltonian func-
tional:

H(ψ, u, π, v) =
1
2

∫ (
|∇ψ(x)|2 + |π(x)|2 +m2

0|ψ(x)|2
)
dx (1.2)

+
1
2

∑
k∈Zd

( d∑
j=1

|u(k + ej)− u(k)|2 + |v(k)|2 + ν2
0 |u(k)|2

)
+
∑
k∈Zd

∫
R(x− k) · u(k)ψ(x) dx,

involving a real scalar field ψ(x) and its momentum π(x), x ∈ Rd, coupled to a “simple lattice”
described by the deviations u(k) ∈ Rn of the “atoms” and their velocities v(k) ∈ Rn, k ∈ Zd.
The symbol R(x) stands for an Rn-valued function and ej ∈ Zd for the vector with the coordinates
eij := δij . Taking the variational derivatives of H(ψ, u, π, v), we formally obtain the following system
for x ∈ Rd and k ∈ Zd:


ψ̇(x, t) = (δH/δπ) = π(x, t),
u̇(k, t) = (∂H/∂v) = v(k, t),
π̇(x, t) = −(δH/δψ) = (∆−m2

0)ψ(x, t) −
∑

k′∈Zd u(k
′, t) ·R(x− k′),

v̇(k, t) = −(∂H/∂u) = (∆L − ν2
0)u(k, t) −

∫
R(x′ − k)ψ(x′, t) dx′.

(1.3)

Here m0, ν0 > 0 and the symbol ∆L denotes the discrete Laplace operator on the lattice Zd,

∆Lu(k) :=
∑

e,|e|=1

(u(k + e)− u(k)).

Note that, for n = d and R(x) = −∇ρ(x), the interaction term in the Hamiltonian is the linearized
Pauli–Fierz approximation of the translation-invariant coupling∑

k

∫
ρ(x− k − u(k))ψ(x) dx. (1.4)

A similar model was analyzed by Born and Oppenheimer [2] as a model of a solid state (coupled
Maxwell–Schrödinger equations for electrons in the harmonic crystal; see, e.g., [18]). The traditional
analysis of the coupled field-crystal system (1.3) is based on an iterative perturbation procedure
using the adiabatic approximation. Namely, in the zero approximation, the crystal and the (electron)
field are discoupled. The electron field in the crystal defines a slow displacement of nuclei. The
displacements give the corresponding contribution to the field via the static Coulombic potentials,
which means a non-relativistic approximation, etc. The iterations converge if the motion of the
nuclei is sufficiently slow, i.e., the nuclei are rather heavy as compared with the electrons. A similar
procedure applies to the corresponding stationary problem of finding the dispersion relations.

Our analysis of the dispersion relations is a bit different and holds for small displacements.
Namely, we linearize the translation-invariant coupling (1.4) at the zero displacements of the nuclei
and obtain equations (1.3) corresponding to the Pauli–Fierz approximation. On the other hand, we
analyze the dispersion relations of the linearized equations without any adiabatic or non-relativistic
approximation. We give an exact nonperturbative spectral analysis of the coupled system (1.3).

We study the Cauchy problem for the system (1.3) with the initial data{
ψ(x, 0) = ψ0(x), π(x, 0) = π0(x), x ∈ Rd,

u(k, 0) = u0(k), v(k, 0) = v0(k), k ∈ Zd.
(1.5)
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Let us write

ψ0 := ψ, ψ1 := π, u0 := u, u1 := v,

Y (t) := (Y 0(t), Y 1(t))
∣∣∣∣Y 0(t) := (ψ0(x, t), u0(k, t)) := (ψ(x, t), u(k, t)),
Y 1(t) := (ψ1(x, t), u1(k, t)) := (π(x, t), v(k, t)).

(1.6)

In other words, Y (·, t) are functions defined on the disjoint union P := Rd ∪ Zd,

Y i(t) = Y i(p, t) :=

{
ψi(x, t), p = x ∈ Rd,

ui(k, t), p = k ∈ Zd,
i = 0, 1.

In this case, the system (1.3), (1.5) becomes a dynamical problem of the form

Ẏ (t) = AY (t), t ∈ R; Y (0) = Y0. (1.7)
Here Y0 = (ψ0, u0, π0, v0) and

A = J∇H(Y ) =
(

0 1
−H 0

)
, H =

(
−∆+m2

0 S
S∗ −∆L + ν2

0

)
, J =

(
0 1

−1 0

)
, (1.8)

where Su(x) =
∑

k∈Zd R(x− k)u(k), S∗ψ(k) =
∫
Rd

R(x− k)ψ(x) dx, and
〈ψ, Su〉L2(Rd) = 〈S∗ψ, u〉[l2(Zd)]n , ψ ∈ L2(Rd), u ∈ [l2(Zd)]n.

We assume that the initial data Y0 define a random function, and the initial correlation matrix

Q0(p, p′) := E
(
Y0(p)⊗ Y0(p′)

)
, p, p′ ∈ P,

is translation invariant with respect to translations by Zd, i.e.,

Q0(p + k, p′ + k) = Q0(p, p′), p, p′ ∈ P, (1.9)
for any k ∈ Zd. We also assume that the initial mean energy densities are uniformly bounded,

eF (x) := E(|∇ψ0(x)|2 + |ψ0(x)|2 + |π0(x)|2) � ēF <∞, a.a. x ∈ Rd, (1.10)

eL := E(|u0(k)|2 + |v0(k)|2) <∞, k ∈ Zd. (1.11)

Finally, we assume that the measure µ0 satisfies a mixing condition of Rosenblatt- or Ibragimov–
Linnik type, which means that

Y0(p) and Y0(p′) are asymptotically independent as |p − p′| → ∞. (1.12)
Our main result gives the (weak) convergence (1.1) of µt to a limit measure µ∞, which is a stationary
Gaussian probability measure.

Let us comment on the methods of the proof. The key role in our proof is played by the standard
reduction of system (1.7) to the Bloch problem on the torus. Namely, we split x ∈ Rd in the form
x = k + y, k ∈ Z

d, y ∈ Kd
1 := [0, 1]d, and apply the Fourier transform Fk→θ to the solution

Y (k, t) :=
(
ψ(k + y, t), u(k, t), π(k + y, t), v(k, t)

)
,

Ỹ (θ, t) := Fk→θY (k, t) ≡
∑
k∈Zd

eikθY (k, t) = (ψ̃(θ, y, t), ũ(θ, t), π̃(θ, y, t), ṽ(θ, t)), θ ∈ Rd,

which is a version of the Bloch–Floquet transform. The functions ψ̃, π̃ are periodic with respect to
θ and quasi-periodic with respect to y, i.e.,

ψ̃(θ, y +m, t) = e−imθψ(θ, y, t), π̃(θ, y +m, t) = e−imθπ(θ, y, t), m ∈ Zd.

Further, introduce the Zak transform of Y (·, t) (which is also known under the title of Lifshitz–
Gelfand–Zak transform) (cf. [18, p. 5]) as

ZY (·, t) ≡ ỸΠ(θ, t) := (ψ̃Π(θ, y, t), ũ(θ, t), π̃Π(θ, y, t), ṽ(θ, t)), (1.13)
where ψ̃Π(θ, y, t) := eiyθψ̃(θ, y, t) and π̃Π(θ, y, t) := eiyθπ̃(θ, y, t) are periodic functions with respect
to y (and quasi-periodic with respect to θ). Denote by T d

1 := R
d/Zd the real d-torus and write

R := T d
1 ∪ {0}. Set
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ỸΠ(θ, r, t) ≡ ỸΠ(θ, t) :=

{
(ψ̃Π(θ, y, t), π̃Π(θ, y, t)), r = y ∈ T d

1 ,

(ũ(θ, t), ṽ(θ, t)), r = 0.
Problem (1.7) is now equivalent to the problem on the unit torus y ∈ T d

1 with the parameter
θ ∈ Kd ≡ [0, 2π]d, { ˙̃Y Π(θ, t) = Ã(θ)ỸΠ(θ, t), t ∈ R

ỸΠ(θ, 0) = Ỹ0Π(θ)

∣∣∣∣∣ θ ∈ Kd. (1.14)

Here

Ã(θ) =
(

0 1
−H̃(θ) 0

)
, (1.15)

and H̃(θ) := ZHZ−1 is the “Schrödinger operator” on the torus T d
1 ,

H̃(θ) =
(
(i∇y + θ)2 +m2

0 S̃(θ)
S̃∗(θ) ω2

∗(θ)

)
, (1.16)

where

ω2
∗(θ) := 2(1 − cos θ1) + · · · + 2(1− cos θd) + ν2

0 , (1.17)(
S̃(θ)ũ(·)

)
(θ, y) := R̃Π(θ, y) · ũ(θ),

(
S̃∗(θ)ψ̃Π(θ, ·)

)
(θ) :=

∫
Td1

R̃Π(−θ, y)ψ̃Π(θ, y) dy, (1.18)

〈ψ̃Π(θ, ·), (S̃(θ)ũ)(θ, ·)〉L2(Td1 ) = (S̃∗(θ)ψ̃Π)(θ) · ũ(θ), ψ̃Π(θ, ·) ∈ H1(T d
1 ), ũ(θ) ∈ Cn.

Then, formally,

ỸΠ(θ, t) = eÃ(θ)tỸ0Π(θ), θ ∈ Kd. (1.19)
To justify the definition of the exponential, we note that H̃(θ) is a self-adjoint operator with a
discrete spectrum. Indeed, if R = 0, then this follows from elliptic theory and, if R �= 0, then
the operators S̃(θ) and S̃∗(θ) are finite-dimensional for a fixed θ. We assume that H̃(θ) > 0
(condition R2), which corresponds to the hyperbolicity of problem (1.3).

Note that in [8, 9], we considered the harmonic crystal without any field. In this case, the operator
Ã(θ) is a finite-dimensional matrix.

Let us prove the convergence (1.1) by using the strategy of [5–10] in the following three steps.
I. The family of measures µt, t � 0, is weakly compact in an appropriate Fréchet space.
II. The correlation functions converge to a limit,

Qt(p, p′) :=
∫ (

Y (p)⊗ Y (p′)
)
µt(dY )→ Q∞(p, p′), t→∞, p, p′ ∈ P. (1.20)

III. The characteristic functionals converge to a Gaussian functional,

µ̂t(Z) :=
∫
ei〈Y,Z〉 µt(dY )→ exp

{
− 1

2
Q∞(Z,Z)

}
, t→∞, (1.21)

where Z is an arbitrary element of the dual space and Q∞ is a quadratic form.
Property I follows from the Prokhorov theorem. First, let us prove the uniform bound (2.15)

for the mean local energy in µt. To this end, we shall show that the operator
(
Ωiq̃ijt (θ)Ω

j
)
i,j=0,1

is of trace class, where q̃ijt (θ) represents the covariance of the measure µt in the Zak transform

(see (3.7)) and Ω ≡ Ω(θ) :=
√
H̃(θ). Moreover, we derive the uniform bound

sup
t�0

sup
θ∈[0,2π]d

tr
(
Ωiq̃ijt (θ)Ω

j
)
i,j=0,1

<∞. (1.22)

This implies the compactness of µt by the Prokhorov theorem (when applying Sobolev’s embedding
theorem as in [5]).

To derive property II, we study oscillatory integrals in the Zak transform by developing our
cutting strategy introduced in [8]. Namely, we rewrite (1.20) in the form

Qt(Z,Z)→ Q∞(Z,Z), t→∞, (1.23)
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where Qt(Z,Z) stands for the quadratic correlation form for the measure µt. Further, we prove
formula (1.23) for Z ∈ D0 as follows: by the definition of D0, the Zak transform Z̃Π(θ) vanishes in
a neighborhood of a “critical set” C ⊂ Kd. In particular, the set C includes all points θ ∈ Kd with
a degenerate Hessian of ωl(θ) and the points for which the function ωl(θ) is non-smooth. One can
cut off the critical set C by the following two crucial observations: (i) mes C = 0 and (ii) the initial
quadratic correlation form is continuous in L2 due to the mixing condition. The continuity follows
from the spatial decay of the correlation functions in accordance with the well-known Schur lemma.

Similarly, we first prove property III for Z ∈ D0 and then extend it to all points Z ∈ D. For
Z ∈ D0, we use a version of the S. N. Bernshtein “room-corridor” technique (cf. [5, 8]). This leads
to a representation of the solution as the sum of weakly dependent random variables. Then (1.21)
follows from the Central Limit Theorem under a Lindeberg-type condition.

Let us comment on the two main technical novelties of our paper. The first of them is the
bound (1.22), which then ensures compactness. We derive formula (1.22) in Section 4 directly from
our assumption concerning the finiteness of the mean energy density (1.10), (1.11). The derivation
uses the technique of trace class operators [23], which enables us to avoid additional continuity
conditions for higher-order derivatives of the correlation functions. An essential ingredient of the
proof is the “unitary trick” (4.6), which is a natural consequence of the Hamiltonian structure of
system (1.3). The second main novelty is the bound (2.2) for the dynamics in weighted norms. In the
Zak transform, the weighted norms become Sobolev norms with negative index. We derive (2.2)
in Appendix A, by usng duality arguments, from the corresponding bounds for the derivatives
of the exponential (1.19). The bounds for the derivatives follow by differentiating the dynamical
equations.

Let us comment on our conditions E1 and E2. The conditions are natural generalizations of
similar conditions in [8, 9]. Condition E1 enables us to apply the stationary phase method to the
oscillatory integral representation for the covariance. This helps to prove that the stationary points
of the phase functions are non-degenerate.

The paper is organized as follows. In Section 2, we formally state our main result. The com-
pactness (property I) is established in Section 4, the convergence (1.20) in Section 6, and the
convergence (1.21) in Section 7. In Section 8, mixing properties for the limit measures are proved.
Appendix A concerns the dynamics in the Fourier transform, in Appendix B, we analyze the cross-
ing points of the dispersion relations, and in Appendix C, we discuss the covariance in the spectral
representation.

2. MAIN RESULTS

2.1. Notation

We assume that the initial data Y0 are given by an element of the real phase space E defined
below.

Definition 2.1. Let Hs,α = Hs,α(Rd), s ∈ R, α ∈ R, be the Hilbert space of distributions
ψ ∈ S′(Rd) with finite norm

‖ψ‖s,α ≡ ‖〈x〉αΛsψ‖L2(Rd) <∞.

For ψ ∈ D ≡ C∞0 (Rd), write Fψ(ξ) =
∫
eiξ·xψ(x)dx. Let Λsψ := F−1

ξ→x(〈ξ〉sψ̂(ξ)) and 〈x〉 :=√
|x|2 + 1, where ψ̂ := Fψ stands for the Fourier transform of a tempered distribution ψ.

Remark 2.2. For s = 0, 1, 2, . . . , the spaceHs,α(Rd) is the Hilbert space of real-valued functions
ψ(x) with finite norm ∑

|γ|�s

∫
(1 + |x|2)α|Dγψ(x)|2 dx <∞,

which is equivalent to ‖ψ‖2
s,α.
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Definition 2.3. Let Lα, α ∈ R, be the Hilbert space of vector functions u(k) ∈ Rn, k ∈ Zd,
with finite norm

‖u‖2
α ≡

∑
k∈Zd

(1 + |k|2)α|u(k)|2 <∞.

Definition 2.4. Let Es,α := H1+s,α(Rd)⊕Lα ⊕Hs,α(Rd)⊕Lα be the Hilbert space of vectors
Y ≡ (ψ, u, π, v) with finite norm

|||Y |||2s,α = ‖ψ‖2
1+s,α + ‖u‖2

α + ‖π‖2
s,α + ‖v‖2

α.

Choose some α, α < −d/2. Assume that Y0 ∈ E := E0,α.

Using the standard technique of pseudo-differential operators and Sobolev’s theorem (see, e.g.
[14]), one can prove that E0,α = E ⊂ Es,β for every s < 0 and β < α, and the embedding is compact.

Definition 2.5. The phase space of problem (1.7) is E := E0,α, α < −d/2.

Introduce the space Hs
1 := Hs(T d

1 )⊕Cn, s ∈ R, where Hs(T d
1 ) stands for the Sobolev space.

We assume that the following conditions hold for the real-valued coupling vector function R(x):
R1. R ∈ C∞(Rd) and |R(x)| � R̄ exp(−ε|x|) for some ε > 0 and some R̄ <∞.
R2. The operator H̃(θ) is positive definite for θ ∈ Kd ≡ [0, 2π]d. This is equivalent to the uniform
bound

(X0, H̃(θ)X0) � κ2‖X0‖2
H1

1
for X0 ∈ H1

1 , θ ∈ Kd, (2.1)
where κ > 0 is a constant and (· , ·) stands for the inner product in H0

1 (see (3.13)).

Remark 2.6. i) Condition R2 ensures that the operator iÃ(θ) is self-adjoint with respect to
the energy inner product. This corresponds to the hyperbolicity of problem (1.3).

ii) Condition R2 holds, in particular, if the following condition R2′ holds (see Remark 9.3):

R2′.
∫

[0,1]d

∣∣∣ ∑
k∈Zd

R(k + y)
∣∣∣2 dy < ν2

0m
2
0/2.

iii) Condition R2′ holds for functions R satisfying condition R1 with R̄ε−d � 1.

Proposition 2.7. Let conditions R1 and R2 hold. Then (i) for any Y0 ∈ E, there is a unique
solution Y (t) ∈ C(R, E) to the Cauchy problem (1.7), (ii) the operator W (t) : Y0 �→ Y (t) is contin-
uous in E for any t ∈ R,

sup
|t|�T

|||W (t)Y0|||0,α � C(T )|||Y0|||0,α (2.2)

if α is even and α � −2.
Proof. (i) Local existence. Introduce the matrices

A0 :=
(

0 1
−H0 0

)
, H0 =

(
−∆+m2

0 0
0 −∆L + ν2

0

)
. (2.3)

Then problem (1.3) can be rewritten as the Duhamel integral

Y (t) = eA0tY0 +
∫ t

0

eA0(t−s)BY (s) ds,

where

BY =
(
0, 0,−

∑
k′∈Zd

u(k′)R(x− k′),−
∫
Rd

R(x′ − k)ψ(x′) dx′
)
, Y = (ψ, u, π, v).

Condition R1 implies that |||BY (s)|||0,α � C|||Y (s)|||0,α. Further, for 0 � s � t � T , we obtain
|||eA0(t−s)BY (s)|||0,α � C(T )|||Y (s)|||0,α,

(see, e.g., [8]). Hence,

max
|t|�T

|||Y (t)|||0,α � C(T )|||Y0|||0,α + TC(T ) max
|s|�T

|||Y (s)|||0,α � (T + 1)C(T ) max
|s|�T

|||Y (s)|||0,α.
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We choose a T > 0 so that (T + 1)C(T ) < 1. Then the contraction mapping principle implies the
existence of a unique solution Y (t) ∈ C([0, T ]; E). The global existence follows from the bound (2.2).

(ii) The bounds (2.2) are proved in Corollary 9.6. �

Conditions R1, R2 imply that, for a fixed θ ∈ Kd, the operator H̃(θ) is positive definite and
self-adjoint in H0

1 and its spectrum is discrete. Introduce the Hermitian positive-definite operator

Ω(θ) :=
√
H̃(θ) > 0.

Denote by ωl(θ) > 0 and Fl(θ, ·), l = 1, 2, . . . , the eigenvalues (“Bloch bands”) and the orthonormal
eigenvectors (“Bloch functions”) of the operator Ω(θ) in H0

1 , respectively. Note that Fl(θ, ·) ∈
H∞1 := C∞(T d

1 )⊕ Cn because these are eigenfunctions of the elliptic operator H̃(θ).
As is well known, the functions ωl(·) and Fl(·, r) are real-analytic outside the set of the “crossing”

points θ∗, where ωl(θ∗) = ωl′(θ∗) for some l �= l′. However, the functions are not smooth at the
crossing points in general if ωl(θ) �≡ ωl′(θ). Therefore, we need the following lemma, which is proved
in Appendix B.

Lemma 2.8 [26]. There exists a closed subset C∗ ⊂ Kd such that (i) the Lebesgue measure of C∗
vanishes,

mes C∗ = 0. (2.4)
(ii) For every point Θ ∈ Kd \ C∗ and N ∈ N, there exists a neighborhood O(Θ) ⊂ Kd \ C∗ such that
each of the functions ωl(θ) and Fl(θ, ·), l = 1, . . . , N , can be chosen to be real-analytic on O(Θ).
(iii) The eigenvalues ωl(θ) have constant multiplicity in O(Θ), i.e., one can enumerate them in
such a way that

ω1(θ) ≡ · · · ≡ ωr1(θ), ωr1+1(θ) ≡ · · · ≡ ωr2(θ), . . . , (2.5)

ωrσ(θ) �≡ ωrν (θ) if σ �= ν, rσ, rν � 1 (2.6)

for any θ ∈ O(Θ).

Corollary 2.9. The spectral decomposition holds,

Ω(θ) =
+∞∑
l=1

ωl(θ)Pl(θ), θ ∈ O(Θ), (2.7)

where Pl(θ) are the orthogonal projectors in H0
1 onto the linear span of Fl(θ, ·), and Pl(θ) and ωl(θ)

depend on θ ∈ O(Θ) analytically.

Assume that system (1.7) satisfies the following conditions E1 and E2. For every Θ ∈ Kd \ C∗:

E1. Dl(θ) �≡ 0, l = 1, 2, . . . , where Dl(θ) := det
(∂2ωl(θ)
∂θi∂θj

)d
i,j=1

, θ ∈ O(Θ) and O(Θ) is defined in

Lemma 2.8. Write
Cl :=

⋃
Θ∈Kd\C∗

{θ ∈ O(Θ) : Dl(θ) = 0}, l = 1, 2, . . .

The following lemma is also proved in Appendix B.

Lemma 2.10. Let conditions R1, R2 hold. Then mes Cl = 0, l = 1, 2, . . .

E2. For each l �= l′, the identity ωl(θ)− ωl′(θ) ≡ const−, θ ∈ O(Θ), cannot hold for any constant
const− �= 0, and the identity ωl(θ) + ωl′(θ) ≡ const+ cannot hold for any constant const+ �= 0.

Condition E2 could be considerably weakened (cf. [8, Remark 2.10, iii, condition E5′]). Note
that conditions E1 and E2 hold if R = 0.

Let us show that conditions E1 and E2 hold for “almost all” functions R satisfying conditions
R1, R2. More precisely, consider finitely many coupling functions R1, . . . , RN satisfying conditions
R1 and R2′ and take their linear combinations

RC(x) =
N∑
s=1

CsRs(x), C = (C1, . . . , CN ) ∈ RN .
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For RC(x), conditions R1 and R2′ hold if ‖C‖ < ε with a sufficiently small ε > 0. Let

M1 := {C ∈ Bε : condition E1 holds for RC(x)}, M2 := {C ∈ Bε : condition E2 holds for RC(x)},

where Bε := {C ∈ RN : ‖C‖ < ε}. In Appendix B, we prove the following lemma.

Lemma 2.11. The sets M1 and M2 are dense in some ball Bε for a sufficiently small ε > 0.

2.2. Random Solution. Convergence to Equilibrium

Let (Ω,Σ, P ) be a probability space with expectation E and let B(E) denote the Borel σ-algebra
in E . Assume that Y0 = Y0(ω, p) (see (1.7)) is a measurable random function with values in
(E , B(E)). In other words, the map Ω×P→ R

2+2n given by the rule (ω, p) �→ Y0(ω, p) is measurable
with respect to the (completed) σ-algebra Σ × B(P) and B(R2+2n). Then Y (t) = W (t)Y0 is also a
measurable random function with values in (E ,B(E)) owing to Proposition 2.7. Denote by µ0(dY0)
the Borel probability measure in E defining the distribution of Y0. Without loss of generality, we can
assume (Ω,Σ, P ) = (E ,B(E), µ0) and Y0(ω, p) = ω(p) for µ0(dω)×dp-almost all point (ω, p) ∈ E×P.

Definition 2.12. The measure µt is a Borel probability measure in E defining the distribution
of Y (t),

µt(B) = µ0(W (−t)B), ∀B ∈ B(E), t ∈ R.

Our main objective is to prove the weak convergence of the measures µt in the Fréchet spaces
Es,β for each s < 0, β < α < −d/2,

µt
Es,β
⇁ µ∞ as t→∞, (2.8)

where µ∞ is a limit measure on E ≡ E0,α. This is equivalent to the convergence∫
f(Y )µt(dY )→

∫
f(Y )µ∞(dY ) as t→∞

for any bounded continuous functional f(Y ) on Es,β .
Let D = [DF ⊕DL]2 with DF ≡ C∞0 (Rd), and let DL be the set of vector sequences u(k) ∈ Rn,

k ∈ Zd, such that u(k) = 0 for k ∈ Zd outside a finite set. For a probability measure µ on E , denote
by µ̂ the characteristic functional (Fourier transform)

µ̂(Z) ≡
∫
ei〈Y,Z〉 µ(dY ), Z ∈ D.

Here 〈· , ·〉 stands for the inner product in L2(P)⊗ RN with different N = 1, 2, . . . ,

〈Y,Z〉 :=
1∑

i=0

〈Y i, Zi〉, Y = (Y 0, Y 1), Z = (Z0, Z1),

〈Y i, Zi〉 :=
∫
P

Y i(p)Zi(p) dp ≡
∫
Rd

ψi(x)ξi(x) dx+
∑
k∈Zd

ui(k)χi(k),

where Y i = (ψi, ui), Zi = (ξi, χi). A measure µ is said to be Gaussian (with zero expectation) if
its characteristic functional has the form

µ̂(Z) = exp
{
− 1

2
Q(Z,Z)

}
, Z ∈ D,

where Q is a real nonnegative quadratic form in D.
Definition 2.13. The correlation functions of the measure µt, t ∈ R, are defined by

Qij
t (p, p

′) ≡ E
(
Y i(p, t)⊗ Y j(p′, t)

)
, i, j = 0, 1, p, p′ ∈ P, (2.9)

where E stands for the integral against the measure µ0(dY ) and the convergence of the integral
in (2.9) is understood in the sense of distributions, namely,

〈Qij
t (p, p

′), Z1(p)⊗ Z2(p′)〉 := E〈Y i(p, t), Z1(p)〉〈Y j(p′, t), Z2(p′)〉, Z1, Z2 ∈ DF ⊕DL. (2.10)
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2.3. Mixing Condition

Let O(r) be the set of all pairs of open subsets A,B ⊂ P such that the distance ρ(A, B) is not
less than r, and let σ(A) be the σ-algebra in E generated by the linear functionals Y �→ 〈Y,Z〉
for which Z ∈ D and suppZ ⊂ A. Define the Ibragimov–Linnik mixing coefficient of a probability
measure µ0 on E by the formula (cf. [15, Definition 17.2.2])

ϕ(r) ≡ sup
(A,B)∈O(r)

sup
A∈σ(A),B∈σ(B)

µ0(B)>0

|µ0(A ∩B)− µ0(A)µ0(B)|
µ0(B)

.

Definition 2.14. A measure µ0 satisfies the strong uniform Ibragimov–Linnik mixing condition
if ϕ(r)→ 0 as r →∞.

Below we specify the rate of the decay of ϕ (see condition S3).

2.4. Main Theorem

Assume that the initial measure µ0 satisfies the following properties S0–S3:
S0. The measure µ0 has zero expectation value, EY0(p) ≡ 0, p ∈ P.
S1. The correlation matrices of µ0 are invariant with respect to translations in Zd, i.e., equation (1.9)
holds for a.a. p, p′ ∈ P.
S2. The measure µ0 has a finite mean “energy” density, i.e., equations (1.10), (1.11) hold.
S3. The measure µ0 satisfies the strong uniform Ibragimov–Linnik mixing condition with∫ +∞

0

rd−1ϕ1/2(r)dr <∞. (2.11)

Introduce the correlation matrix Q∞(p, p′) of the limit measure µ∞. It is translation invariant with
respect to translations in Zd, i.e.,

Q∞(p, p′) = Q∞(p+ k, p′ + k), k ∈ Zd. (2.12)
For Z ∈ D, write

Q∞(Z,Z) := 〈Q∞(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−d
∫
Kd

(
q̃∞(θ), Z̃Π(θ, ·)⊗ Z̃Π(θ, ·)

)
dθ, (2.13)

where q̃∞(θ) is the operator-valued function given by the rule

q̃∞(θ) :=
+∞∑
l=1

Pl(θ)
1
2

(
q̃00
0 (θ) + H̃−1(θ)q̃11

0 (θ) q̃01
0 (θ)− q̃10

0 (θ)
q̃10
0 (θ)− q̃01

0 (θ) H̃(θ)q̃00
0 (θ) + q̃11

0 (θ)

)
Pl(θ), (2.14)

for θ ∈ Kd \ C∗. Here the symbol q̃ij0 (θ) = Op
(
q̃ij0 (θ, r, r′)

)
stands for the integral operator with

the integral kernel q̃ij0 (θ, r, r′) (see formula (3.7) with t = 0), r, r′ ∈ R, and Pl(θ) is the spectral
projection operator introduced in Corollary 2.9.

Theorem A. Let conditions S0–S3, R1, R2, E1, and E2 hold. Then the following assertions
are valid:

(i) the convergence (2.8) holds for any s < 0 and β < −d/2;
(ii) the limit measure µ∞ is Gaussian on E ;
(iii) the characteristic functional of µ∞ is Gaussian, µ̂∞(Z) = exp

{
− 1
2
Q∞(Z,Z)

}
, Z ∈ D;

(iv) the measure µ∞ is invariant, i.e., [W (t)]∗µ∞ = µ∞, t ∈ R.

Assertions (i)–(iii) of Theorem A follow from Propositions 2.15 and 2.16 below.

Proposition 2.15. The family of measures {µt, t ∈ R} is weakly compact in Es,β with any
s < 0 and β < α < −d/2, and the following bounds hold :

sup
t∈R

E|||W (t)Y0|||20,α � C(α) <∞. (2.15)
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Proposition 2.16. The convergence (1.21) holds for every Z ∈ D.

Proposition 2.15 (Proposition 2.16) provides the existence (the uniqueness) of the limit mea-
sure µ∞. They are proved in Sections 4 and 7, respectively.

Theorem A, (iv) follows from (2.8) because the group W (t) is continuous with respect to E by
Proposition 2.7, (ii).

3. CORRELATION MATRICES

To prove the compactness of the family of measures {µt}, we introduce auxiliary notation and
prove necessary bounds for initial correlation matrices. Since Y i(p, t) = (ψi(x, t), ui(k, t)), we can
rewrite formula (2.9) as follows:

Qij
t (p, p

′) = E[Y i(p, t)⊗ Y j(p′, t)] =


E
(
ψi(x, t)⊗ ψj(x′, t)

)
E
(
ψi(x, t)⊗ uj(k′, t)

)
E
(
ui(k, t) ⊗ ψj(x′, t)

)
E
(
ui(k, t) ⊗ uj(k′, t)

)



≡
(
Qψiψj

t (x, x′) Qψiuj

t (x, k′)
Quiψj

t (k, x′) Quiuj

t (k, k′)

)
, i, j = 0, 1, t ∈ R. (3.1)

Let us rewrite the correlation matrices Qij
t (p, p′) by using condition S1. Note that the dynamical

group W (t) commutes with the translations in Zd. In this case, condition S1 implies that
Qt(k + p, k + p′) = Qt(p, p′), t ∈ R, k ∈ Zd. (3.2)

Let us introduce the splitting p = k + r, where k ∈ Zd and r ∈ Kd
1 ∪ 0. In other words,

r =
{
x− [x] ∈ Kd

1 if p = x ∈ Rd,
0 if p = k ∈ Zd.

In this notation, (3.2) implies that

Qij
t (k + r, k

′ + r′) =: qijt (k − k′, r, r′) ≡
(
qψ

iψj

t (k − k′ + r, r′) qψ
iuj

t (k − k′ + r)
qu

iψj

t (k′ − k + r′) qu
iuj

t (k − k′)

)
. (3.3)

Using the Zak transform (1.13), introduce the following matrices (cf. (2.10)):

Q̃ij
t (θ, r, θ

′, r′) := E[Ỹ i
Π(θ, r, t) ⊗ Ỹ

j
Π(θ′, r′, t)], θ, θ′ ∈ Kd, r, r′ ∈ R ≡ T d

1 ∪ 0, (3.4)
where the convergence of the mathematical expectation is understood in the sense of distributions.
Namely, write D̃ = [D̃F ⊕ D̃L]2 and D̃F := C∞(Kd × T d

1 ), D̃L := [C∞(T d)]n. Then

〈Q̃ij
t (θ, r, θ

′, r′), Z̃i
Π(θ, r)⊗ Z̃

j
Π(θ′, r′)〉 = E〈Ỹ i

Π(θ, r, t), Z̃
i
Π(θ, r)〉 〈Ỹ

j
Π(θ′, r′, t), Z̃

j
Π(θ′, r′)〉 (3.5)

for Z̃Π = (Z̃0
Π, Z̃

1
Π) ∈ D̃. Now (3.2) implies that

Q̃ij
t (θ, r, θ

′, r′) = (2π)dδ(θ − θ′)q̃ijt (θ, r, r′), θ, θ′ ∈ Kd, r, r′ ∈ R, t ∈ R, (3.6)
where

q̃ijt (θ, r, r
′) = ei(r−r

′)θ
∑
k∈Zd

eikθqijt (k, r, r
′) =

(
q̃ψ

iψj

t (θ, y, y′) q̃ψ
iuj

t (θ, y)

q̃u
iψj

t (θ, y′) q̃u
iuj

t (θ)

)
. (3.7)

Recall that P is the disjoint union Rd ∪ Zd. For a measurable function Y (p), write∫
P

Y (p) dp =
∫
Rd

Y (x) dx +
∑
k∈Zd

Y (k). (3.8)

Proposition 3.1. Let conditions S0–S3 be satisfied. Then the following assertions hold.∫
P

|Q0(p, p′)| dp � C <∞ for any p′ ∈ P, (3.9)

(i) ∫
P

|Q0(p, p′)| dp′ � C <∞ for any p ∈ P, (3.10)

where the constant C does not depend on p, p′ ∈ P.
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(ii) Dα,β
y,y′ q̃

ψiψj

0 (θ, y, y′), Dα
y q̃

ψiuj

0 (θ, y), Dβ
y′ q̃

uiψj

0 (θ, y′), q̃u
iuj

0 (θ) are uniformly bounded in
(θ, y, y′) ∈ Kd × T d

1 × T d
1 , |α| � 1− i, |β| � 1− j.

Proof. (i) By [15, Lemma 17.2.3], conditions S0, S2, and S3 imply

|Q0(p, p′)| � Cmax{ēF , eL}ϕ1/2(|p− p′|), p, p′ ∈ P. (3.11)
Hence, the bounds (3.9) and (3.10) follow from (2.11).

(ii) Similarly to (3.11), conditions S0, S2, and S3 imply

|Dα,β
y,y′ q̃

ψiψj

0 (θ, y, y′)| �
∑
k∈Zd

|Dα,β
y,y′q

ψiψj

0 (k + y, y′)| � C
∑
k∈Zd

ϕ1/2(|k + y − y′|)

� C
∑
k∈Zd

ϕ1/2(|k| − 2
√
d ) � C <∞.

Similar arguments imply the other bounds. �

Corollary 3.2. By the Schur lemma, Proposition 3.1, (i) implies that the following bound holds
for any F,G ∈ L2 := [L2(P, dp)]2 = [L2(Rd)⊕ [l2(Zd)]n]2:

|〈Q0(p, p′), F (p) ⊗G(p′)〉| � C‖F‖L2‖G‖L2 .

Corollary 3.3. The quadratic form Q∞(Z,Z) defined in (2.13)–(2.14) is continuous in L2.

Proof. Formulas (2.13) and (2.14) imply

〈Q∞(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−d
∫
Kd\C∗

(
q̃∞(θ, r, r′), Z̃Π(θ, r)⊗ Z̃Π(θ, r′)

)
dθ

= (2π)−d
1
2

∞∑
l=1

∫
Kd\C∗

(
q̃0(θ, r, r′) + r̃0(θ, r, r′), Pl(θ)Z̃Π(θ, r)⊗ Pl(θ)Z̃Π(θ, r′)

)
dθ, (3.12)

where r̃0(θ, r, r′) is the integral kernel of the operator r̃0(θ) :=
(
H̃−1(θ)q̃11

0 (θ) −q̃10
0 (θ)

−q̃01
0 (θ) H̃(θ)q̃00

0 (θ)

)
. Here

and below, the symbol (· , ·) stands for the inner product in H0
1 ≡ H0(Kd

1 )⊕ Cn, i.e.,

(F,G) =
∫
Kd

1

F 1(y)G1(y) dy + F 2 ·G2, F = (F 1, F 2), G = (G1, G2) ∈ H0
1 , (3.13)

or in H0 ≡ [H0
1 ]

2. Consider the terms on the right-hand side of (3.12). Since
∞∑
l=1

‖PlZ̃Π‖2
[L2(Kd×R)]2 � C‖Z̃Π‖2

[L2(Kd×R)]2 = C ′‖Z‖2
L2 , (3.14)

we obtain
∞∑
l=1

∫
Kd\C∗

(
q̃ij0 (θ, r, r′), Pl(θ)Z̃i′

Π(θ, r)⊗ Pl(θ)Z̃
j′

Π (θ, r′)
)
dθ � C‖Z‖2

L2 , i, j, i′, j′ = 0, 1, (3.15)

by Corollary 3.2. Further, consider r̃ij0 . For the terms with r̃01
0 and r̃10

0 , estimate (3.15) holds. We
rewrite the term with r̃00

0 in the form
∞∑
l=1

∫
Kd\C∗

(
r̃00
0 (θ, r, r′), Pl(θ)Z̃0

Π(θ, r)⊗ Pl(θ)Z̃0
Π(θ, r′)

)
dθ

=
∞∑
l=1

∫
Kd\C∗

(
q̃11
0 (θ, r, r′), H̃−1(θ)Pl(θ)Z̃0

Π(θ, r)⊗ Pl(θ)Z̃0
Π(θ, r′)

)
dθ. (3.16)
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It follows from estimates (3.14) and (9.7) and Corollary 3.2 that the right-hand side of (3.16) is
estimated from above by C‖Z0‖2

L2(P). Finally, consider the term with r̃11
0 and represent it in the

form∞∑
l=1

∫
Kd\C∗

(
r̃11
0 (θ, r, r′), Pl(θ)Z̃1

Π(θ, r)⊗ Pl(θ)Z̃1
Π(θ, r′)

)
dθ

=
∞∑
l=1

∫
Kd\C∗

(
q̃00
0 (θ, r, r′),Ω(θ)Pl(θ)Z̃1

Π(θ, r)⊗ Ω(θ)Pl(θ)Z̃1
Π(θ, r′)

)
dθ. (3.17)

By the bounds (3.14) and (9.6), the right-hand side of (3.17) is bounded by

C

∫
Kd

(
‖q̃ψ

0ψ0

0 (θ, ·, ·)‖[H1(Td1 )]2 +‖q̃
ψ0u0

0 (θ, ·)‖H1(Td1 )+‖q̃
u0ψ0

0 (θ, ·)‖H1(Td1 )+ |q̃u
0u0

0 (θ)|
)
‖Z̃1

Π(θ, ·)‖2
H0

1
dθ.

(3.18)In turn, (3.18) is estimated by C‖Z1‖2
L2(P) by Proposition 3.1, (ii). �

Remark 3.4. The operator q̃0(θ) inH0 is nonnegative and self-adjoint. Indeed, for any function
Z ∈ D, we have ∫

Kd

(
q̃0(θ), Z̃Π(θ, ·)⊗ Z̃Π(θ, ·)

)
dθ = (2π)dE|〈Y,Z〉|2 � 0.

Hence,
(
q̃0(θ), Z̃Π(θ, ·)⊗ Z̃Π(θ, ·)

)
� 0, θ ∈ Kd.

4. COMPACTNESS OF THE SET OF MEASURES OF THE FORM µT

Proposition 2.15 follows from the bound (2.15) by the Prokhorov theorem [25, Lemma II.3.1] by
using the method of [25, Theorem XII.5.2] because the embedding E0,α ⊂ Es,β is compact if s < 0
and α > β.

Lemma 4.1. Let conditions S0–S3 hold. Then the bounds (2.15) hold for α < −d/2.

Proof. Step (i). By condition S1,

E‖Y (t)‖2
0,α = E

[ ∫
Rd

(1 + |x|2)α
(
|ψ(x, t)|2 + |∇ψ(x, t)|2 + |π(x, t)|2

)
dx

+
∑
k∈Zd

(1 + |k|2)α
(
|u(k, t)|2 + |v(k, t)|2

)]
� C(α, d)e(t), (4.1)

where

e(t) := E
[ ∫

Kd
1

(
|ψ(y, t)|2 + |∇ψ(y, t)|2 + |π(y, t)|2

)
dy + |u(0, t)|2 + |v(0, t)|2

]
.

Denote by Ct the correlation operator of the random function(
ψ(y, t)|y∈Kd

1
, u(0, t), π(y, t)|y∈Kd

1
, v(0, t)

)
∈ E1 := H1(Kd

1 )⊕ Rd ⊕H0(Kd
1 )⊕ Rd.

Then e(t) is equal to the trace of the operator Ct. Note that Ct = Op
(
qt(0, r, r′)

)
is an integral

operator with the integral kernel qt(0, r, r′) (see (3.7)),

qt(0, r, r′) = (2π)−d
∫
Kd

e−i(r−r
′)θ q̃t(θ, r, r′) dθ, r, r′ ∈ R1 := Kd

1 ∪ {0}. (4.2)

Denote by q̃t(θ) := Op
(
q̃t(θ, r, r′)

)
the integral operator with the integral kernel q̃t(θ, r, r′). In this

case, (4.2) implies that

e(t) = trE1 Ct = (2π)−d
∫
Kd

trE1
[
e−irθ q̃t(θ)eir

′θ
]
dθ. (4.3)
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Step (ii). Introduce the operator Γ defined by Γψ̃Π(θ, y) := (∇yψ̃Π(θ, y), ψ̃Π(θ, y)) and the oper-
ator Γex given by

Γex :=



(
Γ 0
0 1

)
0

0 I


 .

Then, since q̃t(θ) � 0 and the operator eirθ : (ψ(y), u, π(y), v) → (eiyθψ, u, eiyθπ, v) in E1 is bounded
uniformly with respect to θ ∈ Kd, we have

trE1
[
e−irθ q̃t(θ)eir

′θ
]

� C trE1 q̃t(θ) = C trH0

[
Γexq̃t(θ)Γ∗ex

]
. (4.4)

Let us now estimate the trace trH0

[
Γexq̃t(θ)Γ∗ex

]
. Introduce the matrix-valued self-adjoint operator

Ωex on the space H0,

Ωex ≡ Ωex(θ) :=
(
Ω(θ) 0
0 I

)
,

where I stands for the identity operator on H0
1 . Note that Ωexq̃t(θ)Ωex � 0 (recall that Ωex is a self-

adjoint operator). Further, B := (ΓexΩ−1
ex ) is a bounded operator onH0 since Ω−1 : H0(Kd

1 )⊕Cn =

H0
1 → H1

1 , and
(
Γ 0
0 1

)
: H1

1 → H0
1 . Therefore,

trH0 [Γexq̃t(θ)Γ∗ex] = trH0 [BΩexq̃t(θ)ΩexB
∗] � C trH0 [Ωexq̃t(θ)Ωex], (4.5)

by [23, Theorem 1.6]. Let us now estimate the trace of the operator Ωexq̃t(θ)Ωex. We first use the
formula ΩexG(θ, t) = U(θ, t)Ωex, where G(θ, t) is defined in (11.1) and

U(θ, t) :=
(

cos Ωt sinΩt
− sinΩt cos Ωt

)
.

Hence, by (11.4), we have

Ωexq̃t(θ)Ωex = ΩexG(θ, t)q̃0(θ)G∗(θ, t)Ωex = U(θ, t)Ωexq̃0(θ)ΩexU
∗(θ, t).

Since U(t, θ) is a unitary operator on H0,

trH0 [Ωexq̃t(θ)Ωex] = trH0 [U(θ, t)Ωexq̃0(θ)ΩexU
∗(θ, t)] = trH0 [Ωexq̃0(θ)Ωex] (4.6)

by [19, Theorem VI.18, (c)]. Finally, it follows from (4.3)–(4.6) that

sup
t∈R

e(t) � C1

∫
Kd

trH0 [Ωexq̃0(θ)Ωex] dθ. (4.7)

Step (iii). Let us now prove that the right-hand side of (4.7) is finite. We use the representation

Ωexq̃0(θ)Ω∗ex = (ΩexΓ−1
ex )Γexq̃0(θ)Γ∗ex(ΩexΓ−1

ex )
∗,

where Γ−1
ex stands for the left inverse operator of Γex. On the other hand, ΩexΓ−1

ex is a bounded
operator in H0 since Ωex(θ) (Γ−1

ex , respectively) is (a finite-dimensional perturbation of) a pseudo-
differential operator of order 1 (−1, respectively) on Kd

1 . Moreover, Ωex(θ) is uniformly bounded
on θ ∈ Kd. Hence,

trH0 [Ωexq̃0(θ)Ωex] � C trH0 [Γexq̃0(θ)Γ∗ex] = C trE1 [q̃0(θ)]. (4.8)

Finally, by inequalities (4.7) and (4.8) and by condition S2, we obtain

sup
t∈R

e(t) � C

∫
Kd

trE1 q̃0(θ) dθ

� C1E
[ ∫

Kd
1

(|ψ0(y)|2 + |∇ψ0(y)|2 + |π0(y)|2) dy + |u0(0)|2 + |v0(0)|2
]

� C1(ēF + eL) <∞. (4.9)

Now the bound (2.15) follows from (4.1) and (4.9). �
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5. “CUTTING OUT” THE CRITICAL SPECTRUM

Definition 5.1. (i) Introduce the critical set C := C∗ ∪
(
∪k Ck

)
(see E1).

(ii) Introduce the set D0 ⊂ D given by

D0 = ∪NDN , DN :=
{
Z ∈ D

∣∣∣∣ PlZ̃Π(θ, ·) = 0 for ∀l � N, θ ∈ Kd,

Z̃Π(θ, ·) = 0 in a neighborhood of a set C ∪ ∂Kd

}
. (5.1)

Lemma 5.2. Let limt→∞Qt(Z,Z) = Q∞(Z,Z) for any Z ∈ D0. Then the convergence holds
for any Z ∈ D.

Proof. First, Definition 2.13 implies that

Qt(Z,Z) := E|〈Y (·, t), Z〉|2 = 〈Qt(p, p′), Z(p)⊗ Z(p′)〉, Z ∈ D. (5.2)
Therefore, by (7.2), we have Qt(Z,Z) = Q0(Z(·, t), Z(·, t)), and hence

sup
t∈R

|Qt(Z,Z)| � C sup
t∈R

‖Z(·, t)‖2
L2 (5.3)

by Corollary 3.2. By the Parseval identity and by the bound (7.5), we obtain

‖Z(·, t)‖2
L2 = C(d)

∫
Kd

‖eÃT (θ)tZ̃Π(θ, ·)‖2
H0

1⊕H0
1
dθ � C

∫
Kd

‖Z̃Π(θ, ·)‖2
H0

1⊕H1
1
dθ = C‖Z‖2

L (5.4)

uniformly with respect to t. Here L := L2(Rd) ⊕ [l2(Zd)]n ⊕ H1(Rd) ⊕ [l2(Zd)]n. Further, by
Lemma 2.8, for any Z ∈ D, we can find a ZN ∈ DN such that ‖Z−ZN‖L → 0 as N →∞. Namely,
Z̃N

Π (θ) =
∑

l�N Pl(θ)Z̃Π(θ) if Z̃Π(θ) = 0 for θ in a neighborhood of C ∪ ∂Kd. Finally, the set of
such functions Z is dense in L. Then Lemma 5.2 follows from (5.3), (5.4), and Corollary 3.3. �

Lemma 5.3. The convergence (1.21) holds for any Z ∈ D if it holds for Z ∈ D0.

Proof. This follows immediately from Lemma 5.2 by the Cauchy–Bunyakovskii–Schwartz in-
equality:

|µ̂t(Z ′)− µ̂t(Z ′′)| =
∣∣∣ ∫ (ei〈Y,Z′〉 − ei〈Y,Z′′〉)µt(dY )∣∣∣ �

∫
|ei〈Y,Z′−Z′′〉 − 1|µt(dY )

�
∫
|〈Y,Z ′ − Z ′′〉|µt(dY ) �

√∫
|〈Y,Z ′ − Z ′′〉|2µt(dY )

=
√
Qt(Z ′ − Z ′′, Z ′ − Z ′′) � C‖Z ′ − Z ′′‖L. �

6. CONVERGENCE OF THE COVARIANCE

Proposition 6.1. Let conditions E1–E2, R1–R3, and S0–S3 hold. Then, for any Z ∈ D,

Qt(Z,Z)→ Q∞(Z,Z), t→∞. (6.1)

Proof. By Lemma 5.2, it suffices to prove the convergence (6.1) for Z ∈ D0 only. If Z ∈ D,
then Z ∈ DN for some N . Let us apply the Zak transform to the matrix Qt(p, p′),

〈Qt(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−2d〈Q̃t(θ, θ′, r, r′), Z̃Π(θ, r)⊗ Z̃Π(θ′, r′)〉. (6.2)
Further, by Lemma 2.8, we can choose some smooth branches of the functions Fl(θ, r) and ωl(θ) to
apply the stationary phase arguments, which requires some smoothness with respect to θ. Denote
by supp Z̃Π the closure of the set {θ ∈ Kd : Z̃Π(θ, y) �≡ 0, y ∈ T d

1 }. Since supp Z̃Π ∩ (C ∪ ∂Kd) = ∅,
we can apply Lemma 2.8. Namely, for any point Θ ∈ supp Z̃Π, there is a neighborhood O(Θ) ⊂ Kd\
(C∪∂Kd) with the corresponding properties. Hence, supp Z̃Π ⊂ ∪M

m=1O(Θm), where Θm ∈ supp Z̃Π.
Therefore, there is a finite partition of unity

M∑
m=1

gm(θ) = 1, θ ∈ supp Z̃Π, (6.3)
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where gm are nonnegative functions of C∞0 (Kd) and supp gm ⊂ O(Θm). Further, using Defini-
tion 5.1, (ii) and the partition (6.3), represent the right-hand side of (6.2) as

〈Qt(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−d
M∑

m=1

N∑
l,l′=1

〈gm(θ)rll′(t, θ), Al(θ)⊗Al′(θ)〉, (6.4)

using formulas (3.6) and (11.6). Here Al(θ) = (Fl(θ, ·), Z̃Π(θ, ·)), rll′(t, θ) is the 2× 2 matrix

rll′(t, θ) :=
1
2

∑
±

{
cos
(
ωl(θ)±ωl′(θ)

)
t
(
pll′(θ)∓ Cl(θ)pll′(θ)CT

l′ (θ)
)

+ sin
(
ωl(θ)±ωl′(θ)

)
t
(
Cl(θ)pll′(θ)± pll′(θ)CT

l′ (θ)
)}
, (6.5)

where

Cl(θ) :=
(

0 ω−1
l (θ)

−ωl(θ) 0

)
, CT

l (θ) :=
(

0 −ωl(θ)
ω−1
l (θ) 0

)
, (6.6)

pijll′(θ) :=
(
Fl(θ, ·), (q̃ij0 (θ)Fl′)(θ, ·)

)
, θ ∈ O(Θm), l, l′ = 1, 2, . . . , i, j = 0, 1, (6.7)

and (· , ·) stands for the inner product in H0
1 ≡ H0(T d

1 ) ⊕ Cn (see (3.13)) or in H0 ≡ [H0
1 ]

2.
By Lemma 2.8, the eigenvalues ωl(θ) and the eigenfunctions Fl(θ, r) are real-analytic functions in
θ ∈ supp gm for every m: we do not mark the functions by the index m to simplify the notation.

Lemma 6.2. Let conditions S0–S3 hold. Then pijll′(θ) ∈ L1(O(Θm)), i, j = 0, 1, l, l′ = 1, 2, . . .
for each m = 1, . . . ,M .

Proof. Since {Fl(θ, ·)} is an orthonormal basis, by the Cauchy–Bunyakovskii–Schwartz in-
equlity, we have∣∣∣ ∫

O(Θm)

|pijll′(θ)| dθ
∣∣∣2 � C

∫
O(Θm)

|pijll′(θ)|2 dθ �
∫
O(Θm)

∣∣∣(Fl(θ, r), q̃ij0 (θ, r, r′)Fl′ (θ, r′)
)∣∣∣2 dθ

�
∫
O(Θm)

dθ

∫
R
dr

∫
R
|q̃ij0 (θ, r, r′)|2 dr′. �

Further, let us study the terms in (6.4), which are oscillatory integrals with respect to the
variable θ. The identities ωl(θ) + ωl′(θ) ≡ const+ or ωl(θ) − ωl′(θ) ≡ const− with const± �= 0 are
impossible by condition E2. Moreover, the oscillatory integrals with ωl(θ)± ωl′(θ) �≡ const vanish
as t → ∞. Hence, only the integrals with ωl(θ) − ωl′(θ) ≡ 0 contribute to the limit because the
relation ωl(θ) + ωl′(θ) ≡ 0 would imply the relation ωl(θ) ≡ ωl′(θ) ≡ 0, which is impossible by E2.
Let us index the eigenvalues ωl(θ) as in (2.5). Then cos

(
ωl(θ) − ωl′(θ)

)
t = 1 for l, l′ ∈ (rσ−1, rσ],

σ = 1, 2, . . . Hence, for l, l′ ∈ (rσ−1, rσ ], we have

rll′(t, θ) =
1
2

(
pll′(θ) + Cl(θ)pll′(θ)CT

l′ (θ)
)
+

1
2
cos 2ωl(θ)t

(
pll′(θ)− Cl(θ)pll′(θ)CT

l′ (θ)
)

+
1
2
sin 2ωl(θ)t

(
Cl(θ)pll′(θ) + pll′(θ)CT

l′ (θ)
)
. (6.8)

Therefore,

〈Qt(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−d
∑
m

N∑
l,l′=1

∫
gm(θ)

(
Mll′(θ) + · · · , Al(θ)⊗Al′(θ)

)
dθ, (6.9)

where Mll′(θ) = (M ij
ll′(θ))

1
i,j=0, l, l

′ = 1, 2, . . . , is the matrix with the continuous entries

M ij
ll′(θ) = χll′

1
2

(
Fl(θ, r),

[
q̃0(θ, r, r′) + Cl(θ)q̃0(θ, r, r′)CT

l (θ)
]ij
Fl′(θ, r′)

)
; (6.10)

here the symbol χll′ is given by the rule (see (2.5))

χll′ :=
{

1 if l, l′ ∈ (rσ−1, rσ], σ = 1, 2, . . . , r0 := 0,
0 otherwise.

(6.11)
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Further, for θ ∈ supp gm ⊂ O(Θ) (see Lemma 2.8), we write

q̃ij∞(θ, r, r
′) =

+∞∑
l,l′=1

Fl(θ, r)M
ij
ll′(θ)Fl′(θ, r

′), i, j = 0, 1. (6.12)

The local representation (6.12) can be expressed globally in the form (2.14). Hence,

〈Qt(p, p′), Z(p)⊗ Z(p′)〉 = (2π)−d
∑
m

∫
gm(θ)

(
q̃∞(θ, r, r′), Z̃Π(θ, r)⊗ Z̃Π(θ, r′)

)
dθ + · · · , (6.13)

where the symbol “ · · · ” stands for the oscillatory integrals which contain cos(ωl(θ) ± ωl′(θ))t
and sin(ωl(θ) ± ωl′(θ))t with ωl(θ) ± ωl′(θ) �≡const. The oscillatory integrals converge to zero
by the Lebesgue–Riemann theorem because the integrands in “ · · · ” are summable, and we have
∇(ωl(θ) ± ωl′(θ)) = 0 on the set of Lebesgue measure zero only. The summability follows from
Lemma 6.2 because the functions Al(θ) are smooth. The zero-measure condition follows as in (2.4)
since ωl(θ)± ωl′(θ) �≡const. This completes the proof of Proposition 6.1. �

7. BERNSHTEIN’S ARGUMENT
7.1. Oscillatory Representation and Stationary Phase Method

To prove (1.21), we evaluate 〈Y (·, t), Z〉 by duality arguments. Namely, introduce the dual space
E ′ := H−1,−α(Rd)⊕ L−α ⊕H0,−α(Rd)⊕ L−α with finite norm

(|||Z|||′0,−α)2 := ‖ψ‖2
−1,−α + ‖π‖2

0,−α + ‖u‖2
−α + ‖v‖2

−α.

For t ∈ R, introduce the “formal adjoint” operator W ′(t),

〈W (t)Y,Z〉 := 〈Y,W ′(t)Z〉, Y ∈ E , Z ∈ E ′, (7.1)
where 〈· , ·〉 stands for the inner product in L2(Rd)⊕ [l2(Zd)]n ⊕ L2(Rd)⊕ [l2(Zd)]n.

Write Z(·, t) =W ′(t)Z. Then formula (7.1) can be rewritten as

〈Y (t), Z〉 = 〈Y0, Z(·, t)〉, t ∈ R. (7.2)
The adjoint group W ′(t) admits a convenient description.

Lemma 7.1. The action of the group W ′(t) coincides with the action of W (t) up to the order
of components. Namely, W ′(t) = exp(AT t), where A is the generator of the group W (t).

Proof. Differentiating (7.1) with respect to t for Y,Z ∈ D, we obtain
〈Y, Ẇ ′(t)Z〉 = 〈Ẇ (t)Y,Z〉. (7.3)

The group W (t) has the generator A (see (1.8)). The generator of W ′(t) is the conjugate operator

A′ =
(
0 −H′
1 0

)
, H′ = H =

(
−∆+m2

0 S
S∗ −∆L + ν2

0

)
. (7.4)

Hence, A′ = AT . �
Corollary 7.2. The following uniform bound holds:

‖eÃT (θ)tZ̃Π(θ, ·)‖H0
1⊕H1

1
� C‖Z̃Π(θ, ·)‖H0

1⊕H1
1
, Z̃Π(θ, ·) ∈ H0

1 ⊕H1
1 , (7.5)

which can be proved similarly to (9.3).

Applying Lemma 7.1, we can rewrite Z(t) = W ′(t)Z as the Zak transform, i.e., Z̃Π(θ, r, t)
= exp

(
ÃT (θ)t

)
Z̃Π(θ, r). Recall that we can restrict ourselves to elements Z ∈ DN with a fixed

index N . Using the partition of unity (6.3), we obtain

Z(k + r, t) = (2π)−d
M∑

m=1

N∑
l=1

∫
Kd

gm(θ)e−i(k+r)θGT
l (θ, t)Fl(θ, r)Al(θ) dθ

=
∑
m,±

N∑
l=1

∫
Kd

e−i(θ(k+r)±ωl(θ)t)gm(θ)a±l (θ)Fl(θ, r)Al(θ) dθ, Z ∈ DN . (7.6)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 12 No. 3 2005



ON THE CONVERGENCE TO A STATISTICAL EQUILIBRIUM 317

Here Al(θ) = (Fl(θ, ·), Z̃Π(θ, ·)),

Gl(θ, t) :=


 cosωl(θ)t

sinωl(θ)t
ωl(θ)

−ωl(θ) sinωl(θ)t cosωl(θ)t


 , θ ∈ supp gm, (7.7)

and ωl(θ) and a±l (θ) are real-analytic functions in the interior of the set supp gm for every m.
Let us derive formula (1.21) by analyzing the propagation of the solution Z(k+ r, t) of the form

(7.6) in diverse directions k = vt with v ∈ Rd and for r ∈ R. To this end, we apply the stationary
phase method to the oscillatory integral (7.6) along the rays k = vt, t > 0. Then the phase becomes
(θv ± ωl(θ))t, and its stationary points are the solutions of the equations v = ∓∇ωl(θ).

Note that Z̃Π(θ, r) = 0 at the points (θ, r) ∈ Kd ⊕ R with degenerate Hessian Dl(θ) (see E1).
Therefore, the stationary phase method leads to the following two different types of asymptotic
behavior of Z(vt, t) as t→∞.

I. Let the velocity v be inside the light cone, v = ±∇ωl(θ), where θ ∈ O(Θ) \ C. Then
Z(vt, t) = O(t−d/2). (7.8)

II. Let the velocity v be outside the light cone, v �= ±∇ωl(θ), where θ ∈ O(Θ) \ C, l = 1, . . . , N .
Then

Z(vt, t) = O(t−k), ∀k > 0. (7.9)

Lemma 7.3. The following bounds hold for any fixed Z ∈ D0:

(i) sup
p∈P

|Z(p, t)| � C t−d/2, (7.10)

(ii) for any k > 0, there exist numbers Ck, γ > 0 such that
|Z(p, t)| � Ck(1 + |p|+ |t|)−k, |p| � γt. (7.11)

Proof. Consider Z(k + r, t) along each ray k = vt with an arbitrary v ∈ Rd. Substituting the
related expressions into (7.6), we obtain

Z(vt+ r, t) =
∑
m,±

N∑
l=1

∫
Kd

e−i(θv±ωl(θ))te−iθra±l (θ)Fl(θ, r)Al(θ) dθ, Z ∈ DN . (7.12)

This is a sum of oscillatory integrals with phase functions of the form φ±l (θ) = θv±ωl(θ) and with
amplitudes a±l (θ) that are real-analytic functions of θ in the interiors of the sets supp gm. Since
ωl(θ) is real-analytic, each function φ±l has at most finitely many stationary points θ ∈ supp gm
(solutions of the equation v = ∓∇ωl(θ)). The stationary points are nondegenerate for θ ∈ supp gm
by Definition 5.1 and by E1 since

det
( ∂2φ±l
∂θi∂θj

)
= ±Dl(θ) �= 0, θ ∈ supp gm. (7.13)

At last, Z̃Π(θ, r) is smooth because Z ∈ D. Therefore, we have Z(vt + r, t) = O(t−d/2) according
to the standard stationary phase method of [12, 20]. This implies the bounds (7.10) in each cone
|k| � ct with any finite c.

Further, write v̄ := maxmmaxl=1,N maxθ∈supp gm |∇ωl(θ)|. Then, for |v| > v̄, there are no sta-
tionary points in supp Z̃Π. Hence, integration by parts (as in [20]) yields Z(vt + r, t) = O(t−k)
for any k > 0. On the other hand, the integration by parts in (7.6) implies a similar bound,
Z(p, t) = O

(
(t/|p|)l

)
for any l > 0. Therefore, relation (7.11) follows with any γ > v. This shows

that the bounds (7.10) hold everywhere. �

7.2. “Room-Corridor” Partition

The remaining constructions in the proof of (1.21) are similar to [5, 8]. However, the proofs are
not identical, since here we consider a non-translation-invariant case and a coupled system.
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Introduce a “room-corridor” partition of the ball {p ∈ P : |p| � γt} with γ taken from (7.11).
For t > 0, choose ∆t and ρt ∈ N. Asymptotic relations between t, ∆t, and ρt are specified below.
Set ht = ∆t + ρt and

aj = jht, bj = aj +∆t, j ∈ Z, Nt = [(γt)/ht]. (7.14)
The slabs Rj

t = {p ∈ P : |p| � Ntht, a
j � pd < bj} are referred to as “rooms,” Cj

t = {p ∈ P :
|p| � Ntht, b

j � pd < aj+1} as “corridors,” and Lt = {p ∈ P : |p| > Ntht} as “tails.” Here
p = (p1, . . . , pd), ∆t is the width of a room, and ρt is that of a corridor. Denote by χjt the indicator
of the room Rj

t , by ξ
j
t the indicator of the corridor Cj

t , and by ηt the indicator of the tail Lt. In
this case, ∑

t

[χjt (p) + ξ
j
t (p)] + ηt(p) = 1, p ∈ P, (7.15)

where the sum
∑

t stands for
∑Nt−1

j=−Nt . Hence, we obtain the following Bernshtein’s type represen-
tation:

〈Y0, Z(·, t)〉 =
∑
t

[〈Y0, χ
j
tZ(·, t)〉+ 〈Y0, ξ

j
tZ(·, t)〉] + 〈Y0, ηtZ(·, t)〉. (7.16)

Introduce the random variables rjt , c
j
t , and lt by the formulas

rjt = 〈Y0, χ
j
tZ(·, t)〉, cjt = 〈Y0, ξ

j
tZ(·, t)〉, lt = 〈Y0, ηtZ(·, t)〉. (7.17)

Then relation (7.16) becomes

〈Y0, Z(·, t)〉 =
∑
t

(rjt + c
j
t ) + lt. (7.18)

Lemma 7.4. Let S0–S3 hold and Z ∈ D0. The following bounds hold for t > 1:

E|rjt |2 � C(Z) ∆t/t ∀j, (7.19)

E|cjt |2 � C(Z) ρt/t ∀j, (7.20)

E|lt|2 � Ck(Z) t−k ∀k > 0. (7.21)

Proof. Relation (7.21) follows from (7.11) and Proposition 3.1, (i). We discuss (7.19) only, and
relation (7.20) can be studied in a similar way. Let us express E|rjt |2 in terms of correlation matrices.
Definition (7.17) implies

E|rjt |2 = 〈Q0(p, p′), χ
j
t (p)Z(p, t)⊗ χ

j
t(y)Z(p

′, t)〉. (7.22)
According to (7.10), equation (7.22) yields

E|rjt |2 � Ct−d
∫
χjt(p)‖Q0(p, p′)‖ dpdp′ = Ct−d

∫
χjt(p) dp

∫
‖Q0(p, p′)‖ dp′ � C∆t/t, (7.23)

where ‖Q0(p, p′)‖ stands for the norm of the matrix
(
Qij

0 (p, p
′)
)
. Therefore, (7.23) follows by

Corollary 3.2. �

7.3. Proof of Theorem A

The remaining part of the proof of the convergence (1.21) uses the Ibragimov–Linnik central
limit theorem [15] and the bounds (7.19)–(7.21). For details, see [5, Secs. 8, 9] and [9, Secs. 9, 10].

8. ERGODICITY AND MIXING FOR THE LIMIT MEASURES

The limit measure µ∞ is invariant by Theorem A, (iv). Let E∞ be the integral with respect
to µ∞.

Theorem 8.1. Let the assumptions of Theorem A hold. Then W (t) is mixing with respect to
the corresponding limit measure µ∞, i.e., for any f, g ∈ L2(E , µ∞), we have

lim
t→∞

E∞f(W (t)Y )g(Y ) = E∞f(Y )E∞g(Y ). (8.1)

In particular, the group W (t) is ergodic with respect to the measure µ∞,

lim
T→∞

1
T

∫ T

0

f(W (t)Y )dt = E∞f(Y ) (mod µ∞). (8.2)
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Proof. Step (i). Since µ∞ is Gaussian, the proof of (8.1) reduces to that of the convergence
lim
t→∞

E∞〈W (t)Y,Z〉〈Y,Z1〉 = 0 (8.3)

for any Z,Z1 ∈ D. It suffices to prove relation (8.3) for Z,Z1 ∈ DN . However, this follows from
Corollary 3.3 and Theorem A, (iv).

Step (ii). Let Z,Z1 ∈ DN . Applying the Zak transform and the Parseval identity, we obtain

I(t) ≡ E∞〈W (t)Y,Z〉〈Y,Z1〉

= E∞〈Y,W ′(t)Z〉〈Y,Z1〉 = (2π)−d〈q̃∞(θ, r, r′), G∗(θ, t)Z̃Π(θ, r)⊗ Z̃1
Π(θ, r

′)〉. (8.4)

Using a finite partition of unity (6.3), and relations (8.4) and (6.12), we see that

I(t) = (2π)−d
M∑

m=1

N∑
l,l′=1

∫
gm(θ)G∗l (θ, t)Al(θ)Mll′(θ)Al′(θ) dθ. (8.5)

Here Al(θ) = (Fl(θ, ·), Z̃Π(θ, ·)) and Al′(θ) = (Fl(θ, ·), Z̃1
Π(θ, ·)), and Gl(t, θ) is defined in (7.7).

Similarly to (7.6), we have

I(t) =
∑
m

N∑
l,l′=1

∫
gm(θ)e±iωl(θ)ta±l (θ)Al(θ)Mll′(θ)Al′(θ) dθ. (8.6)

Here all the phase functions ωl(θ) and the amplitudes a±l (θ) are smooth on supp gm. Further, the
relation ∇ωl(θ) = 0 holds on a set of Lebesgue measure zero only. This follows similarly to (2.4)
since ∇ωl(θ) �≡ const by condition E2. Hence, I(t) → 0 as t → ∞ by the Lebesgue–Riemann
theorem since the functions Mll′(θ) are continuous. �
Remark. A similar result for wave equations and for harmonic crystals was proved in [4, 8].

9. APPENDIX A: DYNAMICS IN THE BLOCH–FOURIER REPRESENTATION

In this appendix, we prove the bound (2.2). We first construct the exponential exp(Ã(θ)t) for any
chosen θ ∈ Kd ≡ [0, 2π]d and study its properties. Let us choose θ ∈ Kd and X0 ∈ H1 := H1

1 ⊕H0
1 ,

where Hs
1 ≡ Hs(T d

1 ) ⊕ Cn. Introduce the functions exp(Ã(θ)t)X0 for X0 ∈ H1 as the solutions
X(θ, t) to the problem {

Ẋ(θ, t) = Ã(θ)X(θ, t), t ∈ R,
X(θ, 0) = X0.

(9.1)

Proposition 9.1. For any chosen θ ∈ Kd, the Cauchy problem (9.1) admits a unique solution
X(θ, t) ∈ C(R;H1). Moreover,

X(θ, t) = eÃ(θ)tX0, (9.2)
and ‖X(θ, t)‖H1 � C‖X0‖H1 , (9.3)
where the constant C does not depend on θ ∈ Kd and t ∈ R.

We prove this proposition in Subsection 9.2.

9.1. Schrödinger Operator

Let us first construct solutions X(θ, t) to problem (9.1) with a chosen parameter θ ∈ Kd. Write
X(θ, t) = (X0(θ, t),X1(θ, t)), where X0(θ, t) = (ϕ(θ, t), u(θ, t)) and X1(θ, t) = (φ(θ, t), v(θ, t)).
By (9.1) and (1.15), we have X1(θ, t) = Ẋ0(θ, t), and X0(θ, t) is a solution to the following Cauchy
problem with a chosen parameter θ ∈ Kd:


Ẍ0(θ, t) = −H̃(θ)X0(θ, t), t ∈ R,(

X0(θ, t), Ẋ0(θ, t)
)∣∣∣

t=0
= (X0

0 ,X
1
0 ) = X0,

(9.4)

where H̃(θ) is the “Schrödinger operator” (1.16). Hence, formally,
X0(θ, t) = cos Ω(θ)tX0

0 + sinΩ(θ)tΩ−1(θ)X1
0 , (9.5)

where Ω(θ) =
√
H̃(θ) > 0.
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Lemma 9.2. For X0 ∈ H0
1 , the following bounds hold :

‖Ω(θ)X0‖H−1
1

� C‖X0‖H0
1
, (9.6)

‖H̃−1(θ)X0‖H0
1

� C‖X0‖H0
1
, (9.7)

where the constant C does not depend on θ ∈ Kd.

Proof. (i) Formula (1.16) for H̃(θ) implies that
‖H̃(θ)X0‖H−1

1
� C‖X0‖H1

1
, X0 ∈ H1

1 , (9.8)

where the constant C does not depend on θ ∈ Kd. Hence,
‖Ω(θ)X0‖2

H0
1
= (X0, H̃(θ)X0) � ‖X0‖H1

1
‖H̃(θ)X0‖H−1

1
� C‖X0‖2

H1
1
. (9.9)

Since, Ω(θ) = Ω∗(θ), the bound (9.9) implies (9.6).
(ii) Condition R2 implies that

‖X0‖H1
1
‖H̃(θ)X0‖H−1

1
� (X0, H̃(θ)X0) � κ2‖X0‖2

H1
1
.

Hence, ‖H̃(θ)X0‖H−1
1

� κ2‖X0‖H1
1
. Therefore, ‖H̃−1(θ)X0‖H1

1
� κ−2‖X0‖H−1

1
. In particular, (9.7)

follows. �

Remark 9.3. Condition R2′ implies condition R2.

Proof. Indeed, for X0 = (ϕ(y), u) ∈ H1
1 and θ ∈ Kd, we have

(X0, H̃(θ)X0) =
∫
Td1

[
ϕ(y)[(i∇y + θ)2 +m2

0]ϕ(y) + R̃Π(θ, y) · u(θ)ϕ(y)

+ R̃Π(θ, y) · u(θ)ϕ(y)
]
dy + ω2

∗(θ)|u(θ)|2

=
∫
Td1

[
|(i∇y + θ)ϕ(y)|2 +

m2
0

2

∣∣∣∣ϕ(y) + 2
m2

0

R̃Π(θ, y)u(θ)
∣∣∣∣
2
]
dy

+ ω2
∗(θ)|u(θ)|2 −

2
m2

0

∫
Td1

|R̃Π(θ, y)u(θ)|2 dy +
m2

0

2

∫
Td1

|ϕ(y)|2 dy

� α

∫
Td1

|∇yϕ(y)|2 dy +
(
m2

0

2
− βd2π

)∫
Td1

|ϕ(y)|2 dy

+ |u(θ)|2
(
ν2

0 −
2
m2

0

∫
Td1

|R̃Π(θ, y)|2 dy
)

for some β > 0 and α ∈ (0, β/(β + 1)). Take β < m2
0/(4πd). It remains to prove that

ν2
0 −

2
m2

0

∫
Td1

|R̃Π(θ, y)|2 dy > 0.

With regard to condition R2′, the Parseval equality implies
∫
Td1

|R̃Π(θ, y)|2dy =
∫
Td1

∣∣∣ ∑
k∈Zd

eikθR(k + y)
∣∣∣2 dy �

∫
Td1

∣∣∣ ∑
k∈Zd

|R(k + y)|
∣∣∣2 dy < ν2

0m
2
0/2. �

9.2. Existence of the Schrödinger Group

Recall that ωl(θ) > 0 (Fl(θ, ·)), l = 1, 2, . . . , are the eigenvalues (orthonormal eigenvectors) of
the operator Ω(θ) in H0

1 . Let us prove the existence of solutions to the Cauchy problem (9.1). We
represent X0(θ, t) in the form

X0(θ, t) =
∞∑
l=1

Al(t)Fl(θ, r), t ∈ R, (9.10)
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where Al(t) ≡ Al(θ, t) is the unique solution of the Cauchy problem

Äl(t) = −ω2
l (θ)Al(t), (Al(t), Ȧl(t))|t=0 = (A0

0l, A
1
0l),

and Ai
0l ≡ Ai

0l(θ) = (Fl(θ, ·),Xi
0(·)), i = 0, 1. Hence,

Al(t) = cosωl(θ)tA0
0l +

sinωl(θ)t
ωl(θ)

A1
0l. (9.11)

By the energy conservation, this yields
|Ȧl(t)|2

2
+ ω2

l (θ)
|Al(t)|2

2
=
|A1

0l|2
2

+ ω2
l (θ)

|A0
0l|2
2

.

Summing up, for t ∈ R, we obtain
1
2
‖Ẋ0(θ, t)‖2

H0
1
+

1
2
(X0(θ, t), H̃(θ)X0(θ, t)) =

1
2
‖X1

0‖2
H0

1
+

1
2
(X0

0 , H̃(θ)X0
0 ) � C‖X0‖2

H1 (9.12)

by (9.8). Hence, the solution (9.10) exists and is unique.
Further, relation (9.11) implies (9.5). Finally, the solution to problem (9.1) exists; it is unique

and can be represented by (9.2). The bound (9.3) follows from (9.12) and (2.1). �
Now the exponential exp

(
Ã(θ)t

)
is defined for any chosen value θ ∈ Kd, and this exponential is

a continuous operator in H1.

9.3. Smoothness of the Schrödinger Group

To complete the proof of Proposition 9.1, we must prove the smoothness of the exponential
with respect to θ. This is needed to define the product (1.19) of the exponential and the distribu-
tion Ỹ0Π(·).

Consider the operators exp
(
Ã′(θ)t

)
, t ∈ R, on H−1 := (H1)∗ = H−1

1 ⊕H0
1 , where Ã′(θ) is the

formal adjoint operator to Ã(θ):
(X, Ã′(θ)Z)H0

1
= (Ã(θ)X,Z)H0

1
, X,Z ∈ C∞0 (T d

1 )× Cn.

Note that

Ã′(θ) = ÃT (θ) =
(
0 −H̃(θ)
1 0

)
. (9.13)

Lemma 9.4. For any α � 0, the following bound holds:

sup
|t|�T

sup
θ∈Kd

∑
|γ|�α

‖Dγ
θ e
Ã′(θ)tX0‖H−1 � C(T )‖X0‖H−1 . (9.14)

Proof. For α = 0, the bound
‖eÃ′(θ)tX0‖H−1 � C‖X0‖H−1 (9.15)

follows from the bound (9.3) by duality arguments. Consider the case of α = 1. Introduce the
function Xγ(t) := Dγ

θX(θ, t), where X(θ, t) = eÃ
′(θ)tX0. Then

Ẋγ(t) = Ã′(θ)Xγ(t) + [Dγ
θ Ã′(θ)]X(θ, t), Xγ(0) = 0.

Hence,

Xγ(t) =
∫ t

0

eÃ
′(θ)(t−s)[Dγ

θ Ã′(θ)]X(θ, s) ds.

Therefore, by the bound (9.15),

‖Xγ(t)‖H−1 �
∫ t

0

‖eÃ′(θ)(t−s)[Dγ
θ Ã′(θ)]X(θ, s)‖H−1 ds � C

∫ t

0

‖[Dγ
θ Ã′(θ)]X(θ, s)‖H−1 ds. (9.16)
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It follows from (9.13) that

[Dγ
θ Ã′(θ)] =

(
0 −[Dγ

θ H̃(θ)]
0 0

)
, [Dγ

θ H̃(θ)] :=

(
2(Dγ

θ θ)(i∇y + θ) [Dγ
θ S̃(θ)]

[Dγ
θ S̃
∗(θ)] 2ω∗(θ)Dγ

θω∗(θ)

)
.

Here [Dγ
θ S̃(θ)]u := [Dγ

θ R̃Π(θ, ·)]u, u ∈ Cn, and [Dγ
θ S̃
∗(θ)]ϕ(y) :=

∫
[Dγ

θ R̃Π(−θ, y)]ϕ(y) dy. Hence,

if θ ∈ Kd, then

‖[Dγ
θ Ã′(θ)]X(θ, s)‖H−1=‖[Dγ

θ H̃(θ)]X1(θ, s)‖H−1
1

�C‖X1(θ, s)‖H0
1
�C‖eÃ′(θ)sX0‖H−1�C‖X0‖H−1 ,

(9.17)
by the bound (9.15). Inequalities (9.16) and (9.17) imply the bound (9.14) with α = 1. For α > 1,
the estimate follows by induction. �

9.4. Dual Group

Here we complete the proof of the bound (2.2) by duality arguments. Introduce the dual space
E ′ := H−1,−α(Rd)⊕ L−α ⊕H0,−α(Rd)⊕ L−α of functions Z with finite norm

(|||Z|||′0,−α)2 := ‖ψ‖2
−1,−α + ‖π‖2

0,−α + ‖u‖2
−α + ‖v‖2

−α.

For Z ∈ E ′, we have Z̃Π(θ, ·) ∈ Hα(Kd;H−1).

Lemma 9.5. Let α be even and let α � −2. Then
sup
|t|�T

|||W ′(t)Z|||′0,−α � C(T )|||Z|||′0,−α. (9.18)

Proof. Note first that
(|||Z|||′0,−α)2 ∼

∑
|γ|�−α

∫
Kd

‖Dγ
θ Z̃Π(θ, ·)‖2

H−1 dθ (9.19)

for any Z ∈ E ′. Indeed,

‖u‖2
−α =

∑
k∈Zd

〈k〉−2α|u(k)|2 = C
∫
Td
|(1−∆θ)−α/2ũ(θ)|2 dθ,

‖ψ‖2
−1,−α = ‖〈x〉−αΛ−1ψ(x)‖2

L2 ∼ ‖Λ−1〈x〉−αψ(x)‖2
L2 = C‖(1 + |ξ|2)−1/2(1−∆ξ)−α/2ψ̂(ξ)‖2

L2

∼
∑
m∈Zd

∫
Kd

(1 + |2πm+ θ|2)−1/2|(1−∆θ)−α/2ψ̂(2πm+ θ)|2 dθ

∼
∑
m∈Zd

∫
Kd

(1 + |m|2)−1/2|(1−∆θ)−α/2ψ̂(2πm+ θ)|2 dθ

∼
∫
Kd

‖(1 −∆θ)−α/2ψ̃Π(θ, ·)‖2
H−1(Td1 ) dθ. (9.20)

Hence, by Lemma 9.4 and by (9.19),

(|||W ′(t)Z|||′0,−α)2 ∼
∑
|γ|�−α

∫
Kd

∥∥Dγ
θ

(
eÃ
′(θ)tZ̃Π(θ, ·)

)∥∥2

H−1 dθ

� C(t)
∑
|γ|�−α

∫
Kd

∥∥Dγ
θ Z̃Π(θ, ·)

∥∥2

H−1 dθ ∼ C(t)
(
|||Z|||′0,−α

)2
. �

Corollary 9.6. The bound (2.2) follows from (9.18) by the duality considerations.
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10. APPENDIX B: CROSSING POINTS
10.1. Proof of Lemmas 2.8 and 2.10

Let us prove Lemma 2.8. For any chosen θ ∈ Rd, the Schrödinger operator H̃(θ) admits the
spectral resolution

H̃(θ) =
∞∑
l=1

λl(θ)Pl(θ),

where 0 < λ1(θ) � λ2(θ) � . . . , and Pl(θ) are one-dimensional orthogonal projectors inH0
1 . Further,

let us take an arbitrary point Θ ∈ Rd and a number Λ ∈ (λM (Θ), λM+1(Θ)), where M � N and
λM (Θ) < λM+1(Θ). Then Λ �= λl(θ) for θ ∈ O(Θ) if O(Θ) is a sufficiently small neighborhood
of Θ. Write H̃Λ(θ) =

∑
λl(θ)<Λ λl(θ)Pl(θ), P

Λ(θ) =
∑

λl(θ)<ΛPl(θ), θ ∈ O(Θ).

Further, let us choose a contour ΓΛ (in the complex plane C) surrounding the interval (0,Λ).
In this case, by the Cauchy theorem,

H̃Λ(θ) =
∫

ΓΛ

λdλ

H̃(θ)− λ
, PΛ(θ) =

∫
ΓΛ

dλ

H̃(θ)− λ
θ ∈ O(Θ).

Finally, by (1.16)–(1.18) and by condition R1, the mapping H̃(θ) is an analytic operator-valued
function in θ ∈ Oc(Θ), where Oc(Θ) is a complex neighborhood of O(Θ). Therefore, the same
integrals converge for θ ∈ Oc(Θ), and the functions PΛ(θ) and H̃Λ(θ) are analytic in a smaller
neighborhood O′c(Θ). Reducing O′c(Θ) again, we can choose a basis e1(θ), . . . , eM (θ) in the space
RΛ(θ) := PΛ(θ)H0

1 , where the functions el(θ) depend analytically on θ ∈ Oc(Θ). For example, it
suffices to choose an arbitrary basis e1(Θ), . . . , eM (Θ) and set el(θ) = PΛ(θ)el(Θ). The operator
H̃(θ) on the invariant space RΛ(θ) can be identified with the corresponding matrix

H̃Λ(θ) =
(
H̃kl(θ)

)
k,l=0,...,M

, (10.1)

which depends analytically on θ ∈ Oc(Θ). Therefore, the eigenvalues λ1(θ), . . . , λM (θ) and
the eigenvectors F1(θ), . . . , FM (θ) of this matrix can be chosen as real-analytic functions of
θ ∈ Or(Θ) \ CΛ

∗ , where Or(Θ) := Oc(Θ) ∩ Rd and CΛ
∗ is a subset of Rd of Lebesgue measure

zero. This can be proved by using the methods of [8, Appendix]. It remains to pass to the limit
as Λ → ∞ and define C∗ := ∪∞1 CΛ

∗ . Finally, ωl(θ) :=
√
λl(θ). After this, relations (2.5) and (2.6)

follow as in [8, Appendix]. �
Lemma 2.10 can be proved in a similar way.

10.2. Proof of Lemma 2.11

First let us show that conditions E1, E2 hold for RC(x) ≡ 0 corresponding to C1= · · · = CN = 0.
Indeed, in this case, relation (1.16) becomes

H̃(θ) :=
(
(i∇y + θ)2 +m2

0 0
0 ω2

∗(θ)

)
.

Therefore, ωl(θ) are equal to either ω∗(θ) or
√
(2πk + θ)2 +m2

0, k ∈ Zd. Namely, ω∗(θ) corresponds
to the eigenvectors (0, u) with an arbitrary u ∈ Rn. The square root corresponds to the eigenvectors
Fk(θ, y) = (e−2πik·y, 0) with k ∈ Zd. It can readily be seen that conditions E1 and E2 hold in
this case.

Further, choose an arbitrary l = 1, 2, . . . , a point Θ ∈ Rd\C∗, and a bound Λ ∈ (λM (θ), λM+1(θ))
as above (with M � l). The function RC(x) and the corresponding operator H̃Λ

C(θ) depend ana-
lytically on (θ,C) ∈ Cd × CN . Moreover, RC(x) satisfies conditions R1 and R2′ for C ∈ Bε with
a sufficiently small ε > 0. Therefore, as in the proof of Lemma 2.8, the corresponding eigenvalues
ωl(θ,C), l = 1, . . . ,M , are also analytic functions of (θ,C) in the domain Ml(Θ) = Oc \ C, where
Oc is a complex neighborhood of Or(Θ) × Bε, and C is a proper analytic subset of Oc. Hence,
the corresponding determinant Dl(θ,C) is an analytic function of Ml(Θ). Further, Ml(Θ) is an
open connected set since C is a proper analytic subset. Therefore, Dl(θ,C) �≡ 0 on Ml(Θ) since
Dl(θ, 0) �≡ 0, θ ∈ Rd. Further, introduce the set M1l = {C ∈ Bε : Dl(θ,C) �≡ 0}. The set Bε \M1l

cannot contain any open ball, since otherwise Dl(θ,C) ≡ 0. Hence, M1l is an open dense set in Bε.
It remains to note that M1 = ∩lM1l is thus a dense subset of Bε. For M2, the proof is similar. �
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11. APPENDIX C: COVARIANCE IN THE SPECTRAL REPRESENTATION

Introduce the matrix-valued operator

G(θ, t) := eÃ(θ)t =
(

cos Ω(θ)t sinΩ(θ)tΩ−1(θ)
−Ω(θ) sinΩ(θ)t cos Ω(θ)t

)
. (11.1)

Note that we can represent the matrix G(θ, t) in the form

G(θ, t) = cos Ω(θ)t I + sinΩ(θ)t C(θ), (11.2)

where I stands for the unit matrix, and

C(θ) :=
(

0 Ω−1(θ)

−Ω(θ) 0

)
.

In this case, the solution of (1.14) has the form ỸΠ(θ, r, t) = G(θ, t)Ỹ0Π(θ, r), r ∈ R. Using (11.2)
and (3.4), we obtain

Q̃t(θ, r, θ′, r′) = E[ỸΠ(θ, r, t)⊗ ỸΠ(θ′, r′, t)]

= cosΩ(θ)t Q̃0(θ, r, θ′, r′) cos Ω(θ′)t

+ sinΩ(θ)t C(θ)Q̃0(θ, r, θ′, r′)CT (θ′) sinΩ(θ′)t

+ cosΩ(θ)t Q̃0(θ, r, θ′, r′)CT (θ′) sinΩ(θ′)t

+ sinΩ(θ)t C(θ)Q̃0(θ, r, θ′, r′) cosΩ(θ′)t. (11.3)

By (3.6), we see that

q̃t(θ) = G(θ, t)q̃0(θ)G∗(θ, t) = cos Ω(θ)t q̃0(θ) cos Ω(θ)t

+ cosΩ(θ)t q̃0(θ)CT (θ) sinΩ(θ)t+ sinΩ(θ)t C(θ)q̃0(θ) cosΩ(θ)t

+ sinΩ(θ)t C(θ)q̃0(θ)CT (θ) sinΩ(θ)t, (11.4)

where q̃t(θ) is the integral operator with the kernel q̃t(θ, r, r′) defined by (3.7).
For the simplicity of our manipulations, we assume now that the set of “crossing” points θ∗ is

empty, i.e., ωl(θ) �= ωl′(θ) for any l, l′ ∈ N, and the functions ωl(θ) and Fl(θ, r) are real-analytic.
(Otherwise we need a partition of unity (6.3).) Consider the first term on the right-hand side
of (11.4) and represent it in the form

cos Ω(θ)t q̃0(θ) cos Ω(θ)t

=
∑
l,l′

Fl(θ, r)
(
cosωl(θ)t pll′(θ) cosωl′(θ)t

)
Fl′(θ, r′)

=
∑
l,l′

Fl(θ, r)
1
2

[
cos(ωl(θ)−ωl′(θ))t+ cos(ωl(θ)+ωl′(θ))t

]
pll′(θ)Fl′(θ, r′),

(11.5)

where pll′(θ) =
(
pijll′(θ)

)1
i,j=0

=
(
Fl(θ, ·), (q̃ij0 (θ)Fl′)(θ, ·)

)1
i,j=0

(pijll′(θ) are introduced in (6.7)). Sim-
ilarly, we can rewrite the remaining three terms on the right-hand side of (11.4). Finally,

q̃ijt (θ, r, r
′) :=

∞∑
l,l′=1

Fl(θ, r)r
ij
ll′(t, θ)⊗ Fl′(θ, r′), (11.6)

where rll′(t, θ) = (rijll′(t, θ))
1
ij=0 are defined in (6.5).
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