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I. Tempered distributions: differentiation, multiplication by smooth functions, Fourier transform.
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Programme of exam

I. Fourier transform of test functions and tempered distributions: Lemmas 2.2, 2.7, 2.8,
and Theorem 2.10.

II. Sobolev spaces: Lemmas 4.3, 4.4, 6.1.

III. First Sobolev’s Embedding Theorem: Theorem 5.3.

IV. Sobolev’s Compactness Embedding Theorem: Theorem 7.2.

V. Strongly elliptic PDE with constant coefficients: Theorem 8.5.

VI. Schur’s lemma: Lemma 10.1.

VII. Boundedness of multiplication operator: Lemma 10.4.

VIII. Boundedness of PDO: Theorem 10.7.

IX. Composition of PDO: Theorem 11.1.

X. Regulariser for strongly elliptic PDE with variable coefficients: Theorem 12.4.

XI. Solvability of strongly elliptic PDE with variable coefficients: Theorem 13.3.
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1 Tempered Distributions

1.1 Definitions and examples

Let us introduce the Schwartz space S(IR) of test functions.

Definition 1.1 i) S = S(IR) is the space of functions ϕ(x) ∈ C∞(IR) such that

‖ϕ‖α,N := sup
x∈IR

(1 + |x|)N |∂α
x ϕ(x)| < ∞(1.1)

for any α, N = 1, 2, ..., where ∂α
x ϕ(x) := ϕ(α)(x).

ii) The sequence ϕn(x)
S−→ ϕ(x) iff

‖ϕn − ϕ‖α,N → 0, n → ∞(1.2)

for any α, N = 1, 2, ....

Let us note that (1.1) implies the bound

|∂α
x ϕ(x)| ≤ ‖ϕ‖α,N (1 + |x|)−N , x ∈ IR.(1.3)

for any α, N = 1, 2, .... Hence, we have

Corollary 1.2 For any α = 0, 1, 2, ... and q ∈ IR the bound holds

|∂α
x ϕ(x)| ≤ ‖ϕ‖α,N (1 + |x|)−q, x ∈ IR(1.4)

for any N ≥ q.

Example 1.3 The function ϕ(x) = e−x2
belongs to the Schwartz space S (check this!).

Definition 1.4 i) S ′(IR) is the space of linear continuous functionals on S(IR), i.e. f ∈ S ′(IR) if f
is the map S → S, and the following two conditions hold:

Linearity : f(αϕ + βψ) = αf(ϕ) + βf(ψ) for any α, β ∈ C and ϕ, ψ ∈ S;(1.5)

Continuity : f(ϕn) → f(ϕ) if ϕn
S−→ ϕ.(1.6)

ii) The functionals f ∈ S ′(IR) are called tempered distributions.
iii) The scalar product 〈f(x), ϕ(x)〉 denotes the value of a functional f ∈ S ′(IR) at the test function
ϕ ∈ S(IR), i.e.

〈f(x), ϕ(x)〉 := f(ϕ), ϕ ∈ S.(1.7)

Example 1.5 Let us consider a continuous function f(x) ∈ C(IR) satisfying the bounds

|f(x)| ≤ C(1 + |x|)p, x ∈ IR(1.8)

with some constants C, p ∈ IR. Let us define the functional

〈f, ϕ〉 :=

∫
f(x)ϕ(x)dx, ϕ ∈ S.(1.9)
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Lemma 1.6 The integral (1.9) converges, and the functional is tempered distribution.

Proof i) First we note that |f(x)| ≤ ‖ϕ‖0,N (1 + |x|)−p−2 by the bound (1.4) with an q = p + 2, hence
the integrand of (1.9) is bounded by C‖ϕ‖0,N (1 + |x|)−2. Therefore, the integral converges:

|〈f, ϕ〉| ≤ C‖ϕ‖0,N

∫
(1 + |x|)−2dx < ∞.(1.10)

ii) The linearity (1.5) of the functional follows from the properties of the integral.

iii) The continuity (1.6) of the functional follows from the estimate (1.10): if ϕn
S−→ 0 as n → ∞,

then ‖ϕ‖0,N → 0, hence

|〈f, ϕn〉| ≤ C‖ϕn‖0,N

∫
(1 + |x|)−2dx → 0, n → ∞.(1.11)

Remark 1.7 The bounds (1.9) motivate the term “tempered distribution” for the corresponding func-
tionals.

Exercise 1.8 Prove that functional of type (1.9) is tempered distribution if:

i) f(x) ∈ L1(IR),

ii) f(x) ∈ L2(IR),

iii) f(x) ∈ Lp(IR) with a p > 1.
Hint: Use the bound (1.4) with a suitable q depending on p. For ii) use the Cauchy-Schwarz inequality,
and for iii) use the Hölder inequality.

Exercise 1.9 Let us check that ex 6∈ S ′. Hint: Construct a sequence ϕn ∈ S such that ϕn
S−→ 0 as

n → ∞ while 〈f, ϕn〉 6→ 0. For example, take ϕn(x) = φ(x − n), where φ is an arbitrary nonnegative

function φ ∈ D with

∫
φ(x)dx 6= 0.

Remark 1.10 We have the continuous inclusion D(IR) ⊂ S(R) (check this!). Hence, each tempered
distribution f ∈ S ′ belongs also to D′ since the scalar product 〈f, ϕ〉 is linear and continuous for all
test functions ϕ ∈ S, hence also for all ϕ ∈ D. Therefore, we have the map f ∈ S ′ 7→ f ∈ D′

Exercise 1.11 Prove that the map D′ 7→ S ′ is injective, so the map is the inclusion: D′ ⊂ S ′.
Hint: The space D is dense everywhere in S (check this!).

Exercise 1.12 Check that δ(x) ∈ S ′ and pv
1

x
∈ S ′.

1.2 Differentiation of tempered distributions

Definition 1.13 For f ∈ S ′ let us define the derivative f ′ as the following functional on S:

〈f ′, ϕ〉 := −〈f, ϕ′〉, ϕ ∈ S.(1.12)

Lemma 1.14 f ′ ∈ S ′ if f ∈ S ′.

Exercise 1.15 Prove this lemma. Hint: ϕ′
n

S−→ ϕ′ if ϕn
S−→ ϕ (check this!).
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1.3 Convergence of tempered distributions

Definition 1.16 fn
S′

−→ f if
〈fn, ϕ〉 → 〈f, ϕ〉, ϕ ∈ S.(1.13)

Exercise 1.17 Check that the differentiation is continuous operator in S ′, i.e. f ′
n

S′

−→ f ′ if fn
S′

−→ f .

1.4 Multiplication by smooth functions

Let us consider smooth functions M(x) satisfying the bounds

|M (k)(x)| ≤ C(k)(1 + |x|)p(k)(1.14)

with some constants C(k), p(k) ∈ IR for every k = 0, 1, 2...

Example 1.18 i) Any polynomial M(x) =
∑N

k=0 Mkx
k satisfies the bounds (1.14) (find p(k) !).

ii) The exponential function ex does not satisfy the bounds (1.14) (check this!).

Lemma 1.19 Let M(x) satisfies the bounds (1.14). Then
i) Mϕ ∈ S for ϕ ∈ S, and
ii) Multiplication map M : ϕ(x) 7→ M(x)ϕ(x) is linear continuous map S → S.

Proof i) By definition (1.1), we have to check that

sup
x∈IR

(1 + |x|)N |∂α
x (M(x)ϕ(x))| < ∞(1.15)

for any α, N = 1, 2, .... This follows from the Leibniz formula

∂α
x (M(x)ϕ(x)) =

α∑

k=0

Ck
αM (k)(x)ϕ(α−k)(x))(1.16)

by the condition (1.14) since supx∈IR(1+|x|)N+p(k)|∂α
x ϕ(x)| < ∞ by the bounds (1.4) with q = N+p(k).

ii) The continuity of the map means that

sup
x∈IR

(1 + |x|)N |∂α
x (M(x)ψn(x))| → 0, n → ∞,(1.17)

if supx∈IR(1+ |x|)N |∂α
x ϕn(x)| → 0. This follows by arguments of previous step i). Finally, the linearity

of the multiplication map is obvious.

Definition 1.20 For f ∈ S ′ let us set

〈M(x)f(x), ϕ(x)〉 = 〈f(x), M(x)ϕ(x)〉, ϕ ∈ S.(1.18)

Here the right hand side is defined since M(x)ϕ(x) ∈ S by previous lemma i).

Lemma 1.21 i) The functional (1.18) is tempered distribution, and
ii) Multiplication operator M : f(x) 7→ M(x)f(x) is linear continuous map S ′ → S ′ if M(x) satisfies
the bounds (1.14).

Proof i) The functional (1.18) is obviously linear. Let us check its continuity: if ϕn
S−→ 0, then

〈M(x)f(x), ϕn(x)〉 = 〈f(x), M(x)ϕn(x)〉 → 0, n → ∞,(1.19)

since M(x)ϕn(x)
S−→ 0 by previous lemma ii), and the functional f is continuous on S.

ii) It remains to prove continuity of the map M in S ′: if fn
S′

−→ f , then

〈M(x)fn(x), ϕ(x)〉 := 〈fn(x), M(x)ϕ(x)〉 → 〈f(x), M(x)ϕ(x)〉, ϕ ∈ S.(1.20)

Hence, Mfn
S′

−→ Mf by definition of the convergence of tempered distributions.



2. FOURIER TRANSFORM OF TEMPERED DISTRIBUTIONS 7

2 Fourier Transform of Tempered Distributions

We are going to define the Fourier transform for tempered distributions. First we need to study the
Fourier transform of the test functions.

2.1 Fourier Transform of Test Functions

Definition 2.1 For ϕ ∈ S(IR) the Fourier transform is defined by

Fϕ(k) := ϕ̂(k) :=

∫

IR
eikxϕ(x)dx, k ∈ IR,(2.1)

where eikx := cos kx + i sin kx.

It is well known that the inversion of the Fourier transform is given by

ϕ(x) :=
1

2π

∫

IR
e−ikxϕ̂(k)dk, x ∈ IR.(2.2)

Lemma 2.2
i) For any test function ϕ ∈ S, its Fourier transform ϕ̂(k) also belongs to the Schwartz space S.
ii) The operator F : ϕ 7→ ϕ̂ is linear and continuous in S.

Proof i) We have to prove the bounds (1.1) for the Fourier transform ϕ(k). i.e.

‖ϕ̂‖α,N := sup
k∈IR

(1 + |k|)N |∂α
k ϕ̂(k)| < ∞, α, N = 1, 2, ...(2.3)

Equivalently

sup
k∈IR

|k|N |∂α
k ϕ̂(k)| < ∞, α, N = 1, 2, ...(2.4)

Exercise 2.3 Check that the bounds (2.4) imply (2.3). Hint: Prove the estimates

‖ϕ̂‖α,N ≤ CN

N∑

M=0

sup
k∈IR

|k|M |∂α
k ϕ̂(k)|(2.5)

To prove bounds (2.4), note very important formulas of differentiation of the Fourier integral:

∂kϕ̂(k) =

∫

IR
(ix)eikxϕ(x)dx = F [(ix)ψ(x)], k ∈ IR.(2.6)

Another important formula of multiplication we obtain integrating by parts:

kϕ̂(k) =

∫

IR
(−i∂x)eikxϕ(x)dx =

∫

IR
eikx(i∂x)ϕ(x)dx = F [(i∂x)ϕ(x)], k ∈ IR.(2.7)

In operator form the identities (2.6) and (2.7) can be written as

∂k F = F ix, k F = F i∂x(2.8)

Applying α times the first formula and N times the second one, we obtain

kN∂α
k ϕ̂(k) = F [(i∂x)N

(
(ix)αϕ(x)

)
].(2.9)
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This can be written as

kN∂α
k ϕ̂(k) =

∫
eikx(i∂x)N

(
(ix)αϕ(x)

)
dx,(2.10)

that implies the bound

|kN∂α
k ϕ̂(k)| ≤

∫
|(i∂x)N

(
(ix)αϕ(x)

)
|dx.(2.11)

Now we apply the Leibniz formula for differentiation of the product and obtain

(i∂x)N
(
(ix)αϕ(x)

)
=

∑

M=0,...,N

CN−M
N [(i∂x)M (ix)α](i∂x)N−Mϕ(x).(2.12)

This formula implies that

|(i∂x)N
(
(ix)αϕ(x)

)
| ≤ CN

∑

M=0,...,N

(1 + |x|)α−M ]|ϕ(N−M)(x)| ≤ Bα,N‖ϕ‖N,α+2(1 + |x|)−2.(2.13)

Substituting into (2.11), we obtain that

|kN∂α
k ϕ̂(k)| ≤ C1‖ϕ‖N,α+2

∫
(1 + |x|)−2dx < ∞.(2.14)

that implies the desired bound (2.4).

ii) The linearity of the operator F in the space S is obvious. To prove the continuity of the operator
F in the space S, we note that

‖ϕ‖α,N ≤ Dα,N‖ϕ‖N,α+2(2.15)

by the estimates (2.5) and bounds (2.14). Now the continuity follows from definition of the convergence
in S.

2.2 Definition

Lemma 2.4 For any test functions f(x), ϕ(k) ∈ S the following identity holds

〈f̂(k), ϕ(k)〉 = 〈f(x), ϕ̂(x)〉.(2.16)

Proof The left hand side admits the following representation:

〈f̂(k), ϕ(k)〉 =

∫ ( 1

2π

∫
eikxf(x)dx

)
ϕ(k)dk.(2.17)

Applying here the Fubini theorem, we obtain

〈f̂(k), ϕ(k)〉 =

∫
f(x)

( 1

2π

∫
eikxϕ(k)dk

)
dx(2.18)

that is the right hand side of (2.16).

Exercise 2.5 Check that the Fubini theorem is applicable here.

Now we are going to define the Fourier transform for tempered distributions. The definition can
be done using the following identity:
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Definition 2.6 For any distribution f ∈ S ′ let us define the functional

〈f̂(k), ϕ(k)〉 = 〈f(x), ϕ̂(x)〉, ϕ ∈ S,(2.19)

where the right hand side is well defined since ϕ̂ ∈ S by Lemma 2.2 i).

Lemma 2.7
i) For any tempered distribution f ∈ S ′, its Fourier transform f̂ is also a tempered distribution.
ii) The operator F : f 7→ f̂ is linear and continuous in S ′.

Proof i) The linearity of the functional f̂ follows easy: for any numbers α, β ∈ C and test functions
ϕ, ψ ∈ S, we have

〈f̂(k), αϕ(k) + βψ(k)〉 = 〈f(x), αϕ̂(x) + βψ̂(x)〉 = α〈f(x), ϕ̂(x)〉 + β〈f(x), ψ̂(x)〉
= α〈f̂(k), ϕ(k)〉 + β〈f̂(k), ψ(k)〉,(2.20)

where the first and last identities follows by definition 2.6, while the middle one follows by the linearity
of the functional f .

Similarly, the continuity of f̂ follows from definition 2.6 and continuity of the functional f : if

ϕn(k)
S−→ ϕ(k) as n → ∞, we have

〈f̂(k), ϕn(k)〉 = 〈f(x), ϕ̂n(x)〉 → 〈f(x), ϕ̂(x)〉 = 〈f̂(k), ϕ(k)〉(2.21)

since ϕ̂n(x)
S−→ ϕ̂(x) by Lemma 2.2 ii).

ii) The continuity of the map F : S ′ → S ′ follows similarly: if fn(k)
S−→ f(k) as n → ∞, we have

〈f̂n(k), ϕ(k)〉 = 〈fn(x), ϕ̂(x)〉 → 〈f(x), ϕ̂(x)〉 = 〈f̂(k), ϕ(k)〉,(2.22)

where the identities follow from definition 2.6. Finally, the linearity of the map F is easy to check
(Please check!)

2.3 Parseval-Plancherel theory

Now the Fourier transform f̂(k) is defined for any tempered distribution f(x). Let us study f̂(k) for
the Lebesgue functions f(x) ∈ Lp(IR) with p ≥ 1. This is possible since Lp(IR) ⊂ S ′ for every p ≥ 1.

I. First consider p = 1.

Lemma 2.8 For f(x) ∈ L1(IR) the Fourier transform f̂(k) is a bounded continuous function, i.e.
f̂ ∈ Cb(IR). It is given by the Fourier integral

Ff(k) := f̂(k) :=

∫

IR
eikxf(x)dx, k ∈ IR,(2.23)

where identities hold in the sense of distributions though the right hand side is a classical continuous
function.

Proof By definition 2.19 and the Fubini theorem, we have

〈f̂(k), ϕ(k)〉 = 〈f(x), ϕ̂(x)〉 =

∫

IR
f(x)

( ∫

R
eikxϕ(k)dk

)
dx =

∫

IR

( ∫

R
eikxf(x)dx

)
ϕ(k)dk(2.24)

for any ϕ ∈ S (check the conditions of the Fubini theorem!). The comparison of the first and last
terms implies the formula (2.23) in the sense of the functionals.
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Let us check that the integral (2.23) is bounded and continuous function of k ∈ IR. The bounded-
ness follows from the estimate

|f̂(k)| ≤
∫

IR
|f(x)|dx < ∞, k ∈ IR.(2.25)

The continuity means that f̂(kn) → f̂(k) if kn → k as n → ∞, i.e.

∫

IR
eiknxf(x)dx →

∫

IR
eikxf(x)dx, kn → k.(2.26)

This follows from the Lebesgue dominated convergence theorem since
i) The integrand converges:

eiknxf(x) → eikxf(x) for almost all x ∈ IR.(2.27)

ii) The integrand admits summable majorant which does not depend on n:

|eiknxf(x)| ≤ |f(x)| for almost all x ∈ IR.(2.28)

The lemma is proved.

Exercise 2.9 Check that for f(x) ∈ L1(IR) we have

f̂(k) → 0, |k| → ∞.(2.29)

Hints: i) Check (2.29) for characteristic functions of intervals.
ii) Approximate the function f(x), in the norm of the space L1(IR), by finite linear combinations of
the characteristic functions.
iii) Use the bound (2.25).

II. Now consider p = 2.

Theorem 2.10 (The Parseval Theorem) For f(x) ∈ L2 = L2(IR) the Fourier transform f̂(k) also
belongs to L2(IR), and the Parseval identity holds:

‖f̂‖2 = 2π‖f‖2.(2.30)

Proof Step i) First let us prove (2.30) for the functions f(x) ∈ S. For this purpose substitute

ϕ(k) = f̂(k) into (2.16): this is possible since f̂(k) ∈ S by Lemma 2.2 i). Let us note that ϕ̂(x) =∫
eikxf̂(k)dk =

∫
e−ikxf̂(k)dk = 2πf(x) according to the inversion formula (2.2). Hence, (2.16) with

ϕ(k) = f̂(k) gives that

〈f̂(k), f̂(k)〉 = 2π〈f(x), f(x)〉,(2.31)

i.e. (2.30) and the Parseval Theorem 2.10 are proved for the functions f(x) ∈ S.
Step ii) For general functions f(x) ∈ L2(IR) we take an approximating sequence fn(x) ∈ S(IR) such
that

‖fn(x) − f(x)‖L2 → 0, n → ∞.(2.32)

Such sequence exists since S is dense in L2 (Please check the density!). The convergence (2.32) implies
that fn is the Cauchy sequence, i.e.

‖fn(x) − fm(x)‖L2 → 0, n, m → ∞.(2.33)
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Applying (2.30), we obtain from (2.33) that f̂n is also the Cauchy sequence, i.e.

‖f̂n(k) − f̂m(k)‖L2 → 0, n, m → ∞.(2.34)

Now we use the completeness of the Hilbert space L2(IR): every Cauchy sequence has limit function
g(k) ∈ L2, i.e.

‖f̂n(k) − g(k)‖L2 → 0, n → ∞.(2.35)

Step iii) Now let us prove that g = f̂ . Namely, the convergence (2.32) implies that (Please check this!)

fn(x)
S′

−→ f(x), n → ∞.(2.36)

Similarly, the convergence (2.35) implies that

f̂n(k)
S′

−→ g(k), n → ∞.(2.37)

However, the convergence (2.36) implies that

f̂n(k)
S′

−→ f̂(k), n → ∞.(2.38)

by continuity of the Fourier transform in S ′ (Lemma 2.7 ii)). Finally, (2.37) and (2.38) imply that
f̂ = g ∈ L2.
Step iv) It remains to prove the Parseval identity (2.30). We have proved the identity for the test
functions from S, hence

‖f̂n‖2 = 2π‖fn‖2.(2.39)

Let us take here the limit n → ∞. Then we get

‖g‖2 = 2π‖f‖2(2.40)

using (2.32) in the right hand side and (2.35) in the left hand side. Finally, this implies (2.30) taking
into account that g = f̂ .

Corollary 2.11 The Parseval identity (2.30) means that the operator 1√
2π

F : L2(IR) → L2(IR) is an
isometry, i.e.

‖ 1√
2π

f̂(k)‖L2(IR) = ‖f(x)‖L2(IR).(2.41)



12 CONTENTS

3 Generalisation to n variables

3.1 Definitions and examples

Let us introduce test functions and tempered distributions of n variables x = (x1, ..., xn) ∈ IRn,

n > 1. Let us denote |x| =
√

x2
1 + ... + x2

n, and ∂αϕ(x) := ∂α1
1 ...∂αn

n ϕ(x) = ϕ(α)(x) for any multiindex

α = (α1, ..., αn) with αj = 0, 1, 2, .... Here ∂α1
1 ϕ(x) :=

∂α1ϕ(x)

∂xα1
1

, etc.

Definition 3.1 i) S = S(IRn) is the space of functions ϕ(x) ∈ C∞(IRn) such that

‖ϕ‖α,N := sup
x∈IRn

(1 + |x|)N |∂α
x ϕ(x)| < ∞(3.1)

for any N = 1, 2, ..., and any multiindex α = (α1, ..., αn) with αj = 0, 1, 2, ....

ii) The sequence ϕn(x)
S−→ ϕ(x) iff

‖ϕn − ϕ‖α,N → 0, n → ∞(3.2)

for any N = 1, 2, ... and α = (α1, ..., αn) with αj = 0, 1, 2, ....

Example 3.2 Function ϕ(x) = e−|x|2 belongs to the space S(IRn).

Further, the space of tempered distributions S ′(IRn) is defined similarly to the case n = 1.

Example 3.3 i) Let us consider a continuous function f(x) ∈ C(IR) satisfying the bounds

|f(x)| ≤ C(1 + |x|)p, x ∈ IR(3.3)

with some constants C, p ∈ IR. Let us define the functional

〈f, ϕ〉 :=

∫
f(x)ϕ(x)dx, ϕ ∈ S.(3.4)

Then the integral (3.4) converges, and the functional is tempered distribution.
ii) The functional (3.4) is tempered distribution if f(x) ∈ Lp(IR) with a p ≥ 1.
iii) Dirac delta-function is defined as the distribution

〈δ(x), ϕ(x)〉 = ϕ(0), ϕ ∈ S.(3.5)

It is also tempered distribution of n variables.

3.2 Differentiation

Differentiation of tempered distributions is defined similarly to the case n = 1: for any k = 1, ..., n,

〈∂kf(x), ϕ(x)〉 = −〈f(x), ∂kϕ(x)〉, ϕ ∈ S.(3.6)

Then for any multiindex α = (α1, ..., αn), we get general formula

〈∂αf(x), ϕ(x)〉 = (−1)α1+...+αn〈f(x), ∂αϕ(x)〉.(3.7)
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3.3 Fourier transform

Further, the Fourier transform of test functions ϕ ∈ S(IR) is defined by

Fϕ(k) := ϕ̂(k) :=

∫

IRn
eikxϕ(x)dx, k ∈ IRn,(3.8)

where kx = k1x1 + ... + knxn. The inversion of the Fourier transform is given by

ϕ(x) :=
1

(2π)n

∫

IRn
e−ikxϕ̂(k)dk, x ∈ IRn.(3.9)

Similarly to the case n = 1, for any test function ϕ ∈ S(IRn), its Fourier transform ϕ̂(k) also belongs
to the Schwartz space S(IRn), and the operator F : ϕ 7→ ϕ̂ is linear and continuous in S(IRn).

Finally, the Fourier transform of tempered distribution f ∈ S ′(IRn) is defined by the Parseval
identity:

〈f̂(k), ϕ(k)〉 = 〈f(x), ϕ̂(x)〉, ϕ ∈ S(IRn).(3.10)

Lemma 2.8 and Theorem 2.10 generalises to any dimension n > 1:

Lemma 3.4 For f(x) ∈ L1(IRn) the Fourier transform f̂(k) is a bounded continuous function, i.e.
f̂ ∈ Cb(IR

n). It is given by the Fourier integral

Ff(k) := f̂(k) :=

∫

IRn
eikxf(x)dx, k ∈ IRn.(3.11)

Theorem 3.5 (The Parseval Theorem) For f(x) ∈ L2 = L2(IRn) the Fourier transform f̂(k) also
belongs to L2(IRn), and the Parseval identity holds (Cf. (2.30)):

‖f̂‖2 = (2π)n‖f‖2.(3.12)

3.4 Fourier transform of derivative

For any tempered distribution f ∈ S ′(IRn), the following generalisations of the identities (2.8) hold:

kj f̂(k) = F [i∂jf(x)], ∂j f̂(k) = F [ixjf(x)](3.13)

For the test function f ∈ S(IRn) the identities follows similarly to (2.8). For tempered distributions
f ∈ S ′(IRn) the proof of the first formula is the following:

〈kjFf(k), ϕ(k)〉 = 〈Ff(k), kjϕ(k)〉 = 〈f(x), F (kjϕ(k))〉 = 〈f(x),−i∂xj
F (ϕ(k))〉

= 〈i∂xj
f(x), F (ϕ(k))〉 = 〈F [i∂xj

f(x)], ϕ(k)〉.
(3.14)

Here i) first identity follows by definition of distributions by smooth function kj ,
ii) second and last identities follow from definition of the Fourier transform for distributions,
iii) third identity follows by differentiation of the Fourier integral:

F (kjϕ(k)) =

∫

IRn
eikxkjϕ(k)dk =

∫
IRn(−i∂xj

)eikxϕ(k)dk

= −i∂xj

∫

IRn
eikxϕ(k)dk = −i∂xj

F (ϕ).

(3.15)

iv) The fourth identity in (3.14) follows by definition of the derivative for distributions.

Finally, second formula (3.13) follows similarly.

Exercise 3.6 Prove the second formula (3.13).
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4 The Sobolev spaces

Here we introduce the Sobolev spaces and prove simplest properties. Let s be a real number.

Definition 4.1 Hs = Hs(IRn) is the space of tempered distributions f(x) ∈ S ′(IRn) such that (1 +
|k|)sf̂(k) ∈ L2 = L2(IRn), and the corresponding Sobolev’s norm is defined as

‖f‖s := ‖(1 + |k|)sf̂(k)‖L2 .(4.1)

Remark 4.2 For s = 0 the Sobolev space H0(IRn) coincides with the Hilbert space L2(IRn) by the
Parseval Lemma 3.5, and

‖f‖0 := ‖f̂(k)‖L2 = (2π)n‖f(x)‖L2(4.2)

according to (3.12).

Lemma 4.3 Every Sobolev space Hs is isomorphic to the Hilbert space L2 = L2(IRn). The map
(1+ |k|)sF : Hs → L2 is continuous, and the inverse map F−1(1+ |k|)−s : L2 → Hs is also continuous.

Proof i) By Definition 4.1, g(k) = (1 + |k|)sFf(k) = (1 + |k|)sf̂(k) ∈ L2 if f(x) ∈ Hs. Furthermore,
‖f(x)‖s := ‖g(k)‖L2 , hence

‖g(k)‖L2 ≤ ‖f(x)‖s(4.3)

that implies the continuity of the map (1 + |k|)sF : f(x) 7→ g(k) from Hs to L2.
ii) We have f̂(k) = (1 + |k|)−sg(k), hence the inverse map is given by f(x) = F−1f̂ = F−1[(1 +
|k|)−sg(k)]. It is important that this map is defined on the whole of g(k) ∈ L2 since (1 + |k|)−sg(k)
is a tempered distribution for every g(k) ∈ L2 (check this!), hence f(x) = F−1[(1 + |k|)−sg(k)] is also
tempered distribution! Now we check that f̂(k) = (1+|k|)−sg(k), hence (1+|k|)sf̂(k) = g(k) ∈ L2, and
therefore, by definition, f ∈ Hs. Furthermore, ‖f(x)‖s := ‖g(k)‖L2 , hence the map F−1(1 + |k|)−s :
g(k) 7→ f(x) is continuous from L2 to Hs.

For a multiindex α = (α1, ..., αn) let us define monomial kα := kα1
1 ...kαn

n of n complex variables
k1, ..., kn ∈ C. Consider polynomials A(k) =

∑
|α|≤m

aαkα of order m = 0, 1, 2, ... and corresponding

differential operators

A(∂)u(x) =
∑

|α|≤m

aα∂αu(x).(4.4)

For any tempered distribution u(x) ∈ S ′, we also have A(∂)u(x) ∈ S ′ since any derivative of tempered
distribution also is a tempered distribution. By definition, the Sobolev spaces Hs are subspaces of S ′,
hence A(∂)u is a tempered distribution for any u ∈ Hs.

Lemma 4.4 For any s ∈ IR and u ∈ Hs we have A(∂)u ∈ Hs−m, and the operator A(∂) : Hs → Hs−m

is linear and continuous.

Proof By definition, A(∂)u ∈ Hs−m if (1 + |k|)s−mF [A(∂)u](k) ∈ L2, and

‖A(∂)u‖s−m = ‖(1 + |k|)s−mF [A(∂)u](k)‖L2 .(4.5)

Let us calculate the Fourier transform: using first formulas of (3.13), we obtain that F [∂αu](k) =
(−i∂)αû(k), hence F [A(∂)u](k) = A(−ik)û(k), and (4.5) becomes

‖A(∂)u‖s−m = ‖(1 + |k|)s−mA(−ik)û(k)‖L2 .(4.6)
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Note that the polynomial A(k) is continuous function, hence the product (1 + |k|)s−mA(−ik)û(k) is
measurable function of k ∈ IRn. Furthermore, |A(−ik)| ≤ C(1 + |k|)m for k ∈ IRn, hence

(1 + |k|)s−m|A(−ik)| ≤ C(1 + |k|)s, for k ∈ IRn.(4.7)

This implies that

‖(1 + |k|)s−mA(−ik)û(k)‖2
L2 =

∫
(1 + |k|)2(s−m)|A(−ik)û(k)|2dk ≤

∫
(1 + |k|)2s|û(k)|2dk

= C‖(1 + |k|)sû(k)‖2
L2 = C‖u‖2

s.(4.8)

Therefore (4.6) implies that
‖A(∂)u‖s−m ≤ C1‖u‖s < ∞(4.9)

that proves the lemma.
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5 First Sobolev’s embedding theorem

First we state the following generalisation of Lemma 2.8 to n variables:

Lemma 5.1 For f(x) ∈ L1(IRn) the Fourier transform f̂(k) is a bounded continuous function, i.e.
f̂ ∈ Cb(IR

n). It is given by the Fourier integral

Ff(k) := f̂(k) :=

∫

IRn
eikxf(x)dx, k ∈ IRn.(5.1)

The proof of the lemma coincides with the proof of Lemma 2.8.

The lemma can be reformulated for the inverse Fourier transform as follows:

Lemma 5.2 For g(k) ∈ L1(IRn) the inverse Fourier transform F−1g(x) is a bounded continuous
function, i.e. F−1g ∈ Cb(IR

n). It is given by the Fourier integral

F−1g(x) =
1

(2π)n

∫

IRn
e−ikxg(k)dk, x ∈ IRn.(5.2)

Now we can prove first Sobolev’s embedding theorem is the following.

Theorem 5.3 (First Sobolev’s embedding theorem) Let a tempered distribution u(x) ∈ Hs(IRn) with
s > n/2. Then u(x) is a continuous function in IRn, and

sup
x∈IRn

|u(x)| ≤ C(s)‖u‖s,(5.3)

where the constant C(s) < ∞ does not depend on u(x). In other words, we have continuous embedding
Hs(IRn) ⊂ Cb(IR

n) if s > n/2.

Proof Step i) First we will prove that û(k) ∈ L1(IRn). Namely, by definition, u(x) ∈ Hs(IRn) means
that (1 + |k|)sû(k) ∈ L2, i.e. ∫

|(1 + |k|)sû(k)|2dk < ∞(5.4)

Then by the Cauchy-Schwartz inequality, we get
∫

|û(k)|dk =

∫
(1 + |k|)−s|(1 + |k|)sû(k)|dk

≤
( ∫

(1 + |k|)−2sdk
)1/2( ∫

|(1 + |k|)sû(k)|2dk
)1/2

< I(s)‖u‖s < ∞(5.5)

since I(s) :=
( ∫

(1 + |k|)−2sdk
)1/2

< ∞ for s > n/2 (Check this!).

Step ii) We have proved that û(k) ∈ L1(IRn). Therefore, u(x) = F−1û(k) is bounded continuous
function by Lemma 5.2. To prove the bound (5.3), let us write (5.2) with g(k) = û(k): then F−1g(k) =
u(x), hence (5.2) becomes

u(x) =
1

(2π)n

∫

IRn
e−ikxû(k)dk, x ∈ IRn.(5.6)

Therefore,

sup
x∈IRn

|u(x)| ≤ 1

(2π)n

∫
|û(k)|dk, x ∈ IRn.(5.7)

Substituting here (5.5), we obtain (5.3) with the constant C(s) = I(s)/(2π)n.
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Exercise 5.4 Check that C(s) → ∞ as s → n/2.

Corollary 5.5 Let a tempered distribution u(x) ∈ Hs(IRn) with s > n/2 + k, k ≥ 0. Then for any
multiindex α = (α1, ..., αn), the derivative ∂αu(x) is bounded continuous function in IRn if |α| ≤ k.

In other words, we have continuous embedding Hs(IR) ⊂ Ck
b (IR) if s > n/2 + k.

Example 5.6 I. For one variable, n = 1: H1(IR) ⊂ Cb(IR) since 1 > 1/2, H2(IR) ⊂ C1
b (IR) since

2 > 1/2 + 1,...
II. For three variables, n = 3: H2(IR) ⊂ Cb(IR) since 2 > 3/2, H3(IR) ⊂ C1

b (IR) since 3 > 1/2 + 2,...
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6 Sobolev’s spaces for integer s ≥ 0

First we give an equivalent characterisation to the Sobolev spaces with integer s = 0, 1, ....

Lemma 6.1 i) For s = 0, 1, ... the Sobolev space Hs(IRn) coincides with the space of functions u(x) ∈
L2(IRn) such that ∂αu(x) ∈ L2(IRn) for any multiindex α = (α1, ..., αn) with |α| ≤ s.
ii) The Sobolev norm ‖u‖s is equivalent to the norm |||u|||s defined by

|||u|||2s =
∑

|α|≤s

‖∂αu‖2
L2(6.1)

Remark 6.2 i) In this lemma the derivatives ∂αu(x) of a function u(x) ∈ L2(IRn) are understood in
the sense of distributions: if one treat the derivatives in the classical sense, then the lemma would fail.
ii) The equivalence of the norms means that

|||u|||s ≤ C1‖u‖s for u ∈ Hs,(6.2)

for a constant C1 < ∞, and also

‖u‖s ≤ C2|||u|||s for u ∈ Hs.(6.3)

Proof of Lemma 6.1 We have to check that i) ∂αu(x) ∈ L2(IRn) for u ∈ Hs, and ii) vice versa,
u ∈ Hs if ∂αu(x) ∈ L2(IRn) for any |α| ≤ s.

Step i) Lemma 4.4 implies that ∂αu(x) ∈ L2(IRn) for u ∈ Hs, and the bound (6.2) holds.

Step ii) Vice versa, let us consider a function u(x) ∈ L2(IRn) such that ∂αu(x) ∈ L2(IRn) for any
multiindex α = (α1, ..., αn) with |α| ≤ s. We have to prove that u ∈ Hs, and the bound (6.3) holds. By
the Parseval Theorem 3.5, we have that F [∂αu] ∈ L2(IRn). On the other hand, F [∂αu] = (−ik)αû(k)
by the formula (3.13), hence (−ik)αû(k) ∈ L2(IRn). Furthermore, by the Parseval identity (3.12), we
have ∫

|(−ik)αû(k)|2dk = ‖F [∂αu]‖2
L2 = (2π)n‖∂αu‖2

L2 < ∞.(6.4)

Summing up the identities with |α| ≤ s, we obtain that
∫

[
∑

|α|≤s

|(−ik)α|2] |û(k)|2dk = C
∑

|α|≤s

‖∂αu‖2
L2 = C|||u|||2s < ∞.(6.5)

Let us note that the function S(k) =
∑

|α|≤s
|(−ik)α|2 6= 0 for each k ∈ IRn, hence (6.5) implies that the

tempered distribution û(k) is measurable Lebesgue function. Moreover, the function S(k) admits the
following bound from below:

B(1 + |k|)2s ≤ S(k) :=
∑

|α|≤s

|(−ik)α|2, k ∈ IRn.(6.6)

Exercise 6.3 Check the bound (6.6).

The bound (6.6) implies that

B

∫
(1 + |k|)2s |û(k)|2dk ≤

∫
[
∑

|α|≤s

|(−ik)α|2] |û(k)|2dk < ∞(6.7)

by (6.5). Therefore,
B‖u‖2

s ≤ C|||u|||2s < ∞(6.8)

by definitions of the norms. Hence, u ∈ Hs, and the bound (6.3) holds.
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7 Sobolev’s theorem on compact embedding

Definition 4.1 implies that Hs1(IRn) ⊂ Hs2(IRn) if s1 > s2 (Check this!). We will prove that some
bounded sets in Hs1(IRn) are precompact in Hs2(IRn).

We will consider the case s1 ≥ 0 for the simplicity of exposition, though all statements below are
valid also for s1 < 0.

Let us consider an open region Ω ⊂ IRn.

Definition 7.1
o

Hs1(Ω) is the subspace of tempered distributions u(x) ∈ Hs1(IRn) such that u(x)

vanishes in the complement of Ω, i.e. u(x) = 0, x ∈ IRn \Ω. The norm in
o

Hs1(Ω) coincides with the
norm in Hs1(IRn).

By this definition,
o

Hs1(Ω) ⊂ Hs1(IRn), and hence
o

Hs1(Ω) ⊂ Hs2(IRn).

Theorem 7.2 Let the region Ω be bounded in IRn, and s1 > s2. Then the embedding
o

Hs1(Ω) ⊂
Hs2(IRn) is compact, i.e. for any bounded sequence of the functions uj(x) ∈

o
Hs1(Ω) there exists a

subsequence uj′(x) converging in Hs2(IRn), i.e.

‖uj′(x) − u(x)‖s2 → 0 as j′ → ∞,(7.1)

where u(x) ∈ Hs2(IRn).

Proof We will prove the theorem for the case s1 ≥ 0. The proof for general s1 < 0 is very similar.
We shall check that uj(x) is the Cauchy sequence in Hs2(IRn), i.e.

‖uj′(x) − um′(x)‖s2 → 0 as j′, m′ → ∞.(7.2)

Then (7.1) would follow since Hs1(IRn) is complete Hilbert space.

Step i) First we prove that the sequence uj(x) is bounded in L1(IRn), i.e.

∫

Ω

|uj(x)|dx ≤ B1 < ∞, j = 1, 2, ...(7.3)

Namely, by definition of bounded sequence in
o

Hs1(Ω),

sup
j∈N

‖uj(x)‖s1 ≤ B < ∞.(7.4)

Since s1 ≥ 0, we have Hs1(IRn) ⊂ H0(IRn) = L2(IRn). Therefore,

∫
|uj(x)|2dx = ‖uj(x)‖2

0 ≤ ‖uj(x)‖2
s1

≤ B2.(7.5)

Moreover, we have
uj(x) = 0 for x ∈ IRn \ Ω(7.6)

since uj(x) ∈
o

Hs1(Ω). Finally, by the Cauchy-Schwartz inequality and (7.5), we obtain

∫

Ω

|uj(x)|dx ≤
( ∫

Ω

1dx
)1/2( ∫

Ω

|uj(x)|2dx
)1/2

≤ |Ω|1/2B.(7.7)
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Here |Ω| is the volume of the region Ω. The volume is finite since the region is bounded by our
assumption, hence (7.7) implies (7.3) with B1 = |Ω|1/2B.

Step ii) Further let us study the Fourier transform of the functions uj(x). First, we have

ûj(k) =

∫

Ω

eikxuj(x)dx(7.8)

by Lemma 3.4 and (7.6) since we have proved that uj(x) ∈ L1. Let us prove that the derivatives of
the functions are bounded, i.e.

sup
k∈IRn

| ∂

∂kl
ûj(k)| < Bl < ∞, j = 1, 2, ...(7.9)

for any l = 1, ..., n. For the proof we write definition of partial derivative:

∂

∂kl
ûj(k) = lim

ε→0

∫

Ω

ei(k+εel)x − eikx

ε
uj(x)dx,(7.10)

where el is the unit vector el = (0, ..., 1l, ..., 0). The limit exists and is given by

∂

∂kl
ûj(k) =

∫

Ω

∂

∂kl
eikxuj(x)dx.(7.11)

This follows by the Lebesgue Dominated Convergence Theorem since
I. the integrands converge for almost all points x ∈ Ω
II. There exists summable majorant:

|e
i(k+εel)x − eikx

ε
uj(x)| ≤ M(Ω)|uj(x)|, x ∈ Ω(7.12)

since ei(k+εel)x−eikx

ε is bounded function for x ∈ Ω:

ei(k+εel)x − eikx

ε
≤ M(Ω) < ∞, x ∈ Ω, ε ∈ (0, 1).(7.13)

Exercise 7.3 Check the bound (7.13). Hints:

i)
|ei(k+εel)x − eikx|

ε
=

|eiεelx − 1|
ε

=
|eiεxl − 1|

ε

ii)
|eiεφ − 1|

ε
=

|eiεφ/2 − e−iεφ/2|
ε

=
2| sin εφ

2 |
ε

→ |φ| as ε → 0.

Step iii) Now we consider the norms in (7.2):

∆jm(R) := ‖uj(x) − um(x)‖2
s2

=

∫
(1 + |k|)2s2 |ûj(k) − ûm(k)|2dk.(7.14)

Let us split the region of integration into the ball |k| < R and its complement |k| > R, where the
radius R will be chosen later:

∆jm(R) = =

∫

|k|<R

(1 + |k|)2s2 |ûj(k) − ûm(k)|2dk +

∫

|k|>R

(1 + |k|)2s2 |ûj(k) − ûm(k)|2dk

= Ijm(R) + Jjm(R).(7.15)
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First we estimate the second integral:

Jjm(R) =

∫

|k|>R

(1 + |k|)2s1(1 + |k|)2s2−2s1 |ûj(k) − ûm(k)|2dk

≤ (1 + |R|)2s2−2s1

∫

|k|>R

(1 + |k|)2s1 |ûj(k) − ûm(k)|2dk(7.16)

since s2 − s1 < 0. Therefore,

Jjm(R) ≤ (1 + |R|)2s2−2s1

∫

|k|>R

(1 + |k|)2s12(|ûj(k)|2 + |ûm(k)|2)dk

≤ (1 + |R|)2s2−2s1

∫

IRn

(1 + |k|)2s12(|ûj(k)|2 + |ûm(k)|2)dk

≤ 2B2

(1 + |R|)2(s1−s2)
(7.17)

according to (7.3).

Step iv) Finally we can prove (7.2). First we use the bounds (7.9): they imply that the functions
ûj(k) are equicontinuous in IRn. On the other hand, the bound (7.3) implies that the functions are
uniformly bounded in IRn. Hence, by the Arzela-Ascoli Theorem, there exists a subsequence ûj′(k)
converging at every point of IRn. Therefore,

|ûj′(k) − ûm′(k)| → 0 as j′, m′ → ∞,(7.18)

and this convergence is uniform in every compact set of k. In particular, for any fixed R > 0,

max
|k|≤R

|ûj′(k) − ûm′(k)| → 0 as j′, m′ → ∞.(7.19)

This implies that first integral in (7.15) converges to zero: for any fixed R > 0,

Ij′m′(R) → 0 as j′, m′ → ∞.(7.20)

It remains to note that Jj′m′(Rε) is small for large R by (7.17) uniformly in j′ and m′. This proves
(7.2). With detail: for any ε > 0

a) (7.17) implies that there exists Rε > 0 such that

|Jj′m′(Rε)| < ε/2 for all j′, m′(7.21)

since s1 − s2 > 0.
b) (7.20) implies that for the fixed Rε there exists a number Nε such that

|Ij′m′(Rε)| < ε/2 for j′, m′ ≥ Nε.(7.22)

On the other hand, ∆j′m′ = Ij′m′(Rε) + Jj′m′(Rε) by (7.15). Therefore, (7.21) and (7.22) imply that

|∆j′m′ | ≤ |Ij′m′(Rε)| + |Jj′m′(Rε)| < ε for j′, m′ ≥ Nε.(7.23)
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8 Elliptic partial differential equations with constant coefficients

We will consider partial differential equations in IRn with variable coefficients
∑

|α|≤m

aα(x)∂αu(x) = f(x), x ∈ IRn.(8.1)

We plan to study in the future the questions on existence, uniqueness and smoothness of solutions
u(x).

Example 8.1 For example, we will consider the stationary Schrödinger equation

(H − E)u(x) := (−∆ + V (x) − E)u(x) = f(x) = f(x), x ∈ IRn,(8.2)

where ∆ =
n∑

j=1

∂2

∂x2
j

is the Laplace operator, H = −∆ + V (x) is the Schrödinger operator, V (x)

is the potential energy, and E ∈ C is a complex (energy) parameter.
The investigation of the inverse operator (H − E)−1 = (−∆ + V (x) − E)−1 is one of main goals

of quantum scattering theory.

Here we will study the equations with constant coefficients

Au(x) :=
∑

|α|≤m

aα∂αu(x) = f(x), x ∈ IRn.(8.3)

We assume that the right hand side f(x) is tempered distribution, f(x) ∈ S ′(IRn), and seek for the
solution u(x) also in the space of tempered distributions, u(x) ∈ S ′(IRn).

Definition 8.2 The polynomial a(k) =
∑

|α|≤m
aα(−ik)α is the symbol of differential operator A.

In the Fourier transform, the equation (8.3) becomes

a(k)û(k) = f̂(k), k ∈ IRn.(8.4)

due to formulas (3.13).

Definition 8.3 i) Differential operator A(∂) is elliptic of order m if

|a(k)| > c(1 + |k|)m, |k| > R, k ∈ IRn(8.5)

for some R > 0 and c > 0.
ii) Differential operator A(∂) is strongly elliptic of order m if

|a(k)| > c(1 + |k|)m, k ∈ IRn,(8.6)

where c > 0.

Example 8.4 i) The Laplace operator ∆ (and −∆) is elliptic (check this!). Hint: Symbol of the

Laplace operator is −
n∑

j=1
k2

j = −|k|2.

ii) The Schrödinger operator −∆ − E is elliptic for every E ∈ C (check this!).
iii) The Schrödinger operator −∆ − E is strongly elliptic
a) for every E < 0 (check this!);
b) for every E ∈ C \ IR+ where IR+ = {E ∈ IR : E ≥ 0} (check this!).
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Theorem 8.5 Let us consider equation with constant coefficients (8.3). Let us assume that A is
strongly elliptic operator of order m, and f(x) ∈ Hs−m(IRn). Then for any s ∈ IR, we have
i) Equation (8.3) admits unique solution u(x) ∈ Hs(IRn).
ii) The bound holds,

‖u‖s ≤ C‖f‖s−m.(8.7)

Proof In Fourier transform, equation (8.3) becomes (8.3) where û(k) and f̂(k) are measurable
Lebesgue functions in IRn. Therefore, the solution is given by

û(k) =
f̂(k)

a(k)
for almost all k ∈ IRn(8.8)

since a(k) 6= 0 for k ∈ IRn. It remains to set u(x) := F−1û(k) and check that u(x) belongs to the
Sobolev space Hs(IRn). By definition,

‖u‖2
s =

∫
(1 + |k|)2s|û(k)|2dk =

∫
(1 + |k|)2s

∣∣∣ f̂(k)

a(k)

∣∣∣
2
dk =

∫
(1 + |k|)2s

|a(k)|2 |f̂(k)|2dk.(8.9)

Note that
(1 + |k|)2s

|a(k)|2 ≤ C(1 + |k|)2(s−m), k ∈ IRn(8.10)

by (8.6). Hence, (8.9) implies that

‖u‖2
s ≤ C

∫
(1 + |k|)2(s−m)|f̂(k)|2dk = C‖f‖2

s−m < ∞(8.11)

since f ∈ Hs−m. This proves the bound (8.7).

Corollary 8.6 Strongly elliptic operator A of order m is isomorphism Hs → Hs−m. The continuity
of the direct operator A : Hs → Hs−m follows from Lemma4.4, and the continuity of the inverse
operator A−1 : Hs−m → Hs follows from the bound (8.7).

Exercise 8.7 Check the inequality (8.10). Hints: Due to (8.6), i) The function

R(k) :=
(1 + |k|)2s

|a(k)|2(1 + |k|)2(s−m)
(8.12)

is continuous in IRn, and ii)
lim

|k|→∞
R(k) < ∞.(8.13)

In next lectures we will extend Theorem 8.5 and Corollary 8.6 to strongly elliptic partial differential
equations with variable coefficients.
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9 Pseudodifferential operators

9.1 Fourier representation for differential operators

Let us consider the Fourier representation for partial differential operators in IRn with variable coef-
ficients

Au(x) =
∑

|α|≤m

aα(x)∂αu(x), x ∈ IRn,(9.1)

for test functions u(x) ∈ S(IRn).
First let us consider the case of constant coefficients: aα(x) = aα. Then Au(x) =

∑
|α|≤m

aα∂αu(x),

and in the Fourier representation we have FAu(k) = a(k)û(k), where a(k) is the symbol of the
operator A:

a(k) :=
∑

|α|≤m

aα(−ik)α.(9.2)

Since u(x) ∈ S(IRn), we have also û(k) ∈ S(IRn), and hence a(−ik)û(k) ∈ L1(IRn) (Check this!). Then
the inverse Fourier transform Au(x) = F−1a(k)û(k) can be written as the standard Fourier integral

Au(x) =
1

(2π)n

∫
e−ikxa(k)û(k)dk.(9.3)

Now consider the case of variable coefficients (8.1). Applying (9.3) to the operator ∂α, we write

∂αu(x) =
1

(2π)n

∫
e−ikx(−ik)αû(k)dk.(9.4)

Multiplying by aα(x) and summing up, we obtain that

Au(x) =
∑

|α|≤m

aα(x)∂αu(x) =
1

(2π)n

∫
e−ikx

∑

|α|≤m

aα(x)(−ik)αû(k)dk.(9.5)

This can be written as

Au(x) =
1

(2π)n

∫
e−ikxa(x, k)û(k)dk,(9.6)

where the polynomial
a(x, k) :=

∑

|α|≤m

aα(x)(−ik)α(9.7)

is the symbol of the differential operator A (Cf. Definition 8.2).
For general, not necessarily polynomial, functions a(x, k), the operators of type (9.6) are called

pseudodifferential operators if a(x, k) satisfies appropriate estimates that we are going to discuss.

9.2 Classes of symbols and pseudodifferential operators

Definition 9.1 For a real number m ∈ IR, class of symbols Sm consists of the functions a(x, k) ∈
C∞(IRn) such that a(x, k) = a0(k) + a′(x, k), where the terms a0(k) and a′(x, k) satisfy the following
estimates

I. For any multiindex α, the bound holds,

|∂α
k a0(k)| ≤ C(α)(1 + |k|)m−|α|, k ∈ IRn.(9.8)

II. For any multiindexes α, β, and number N > 0, the bound holds,

(1 + |x|)N |∂α
k ∂β

xa′(x, k)| ≤ C(α, β, N)(1 + |k|)m−|α|, x, k ∈ IRn.(9.9)
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Exercise 9.2 i) Check that a(k) = (1 + |k|2)m/2 ∈ Sm for any m ∈ IR.
ii) Check that the symbol a(x, k) =

∑
|α|≤m

aα(x)(−ik)α belongs to the class Sm if for any multiindex α

we have aα(x) = a0
α(k) + a′α(x), where a′α(x) ∈ S(IRn).

Exercise 9.3 Check that a1(x, k)a2(x, k) ∈ Sm1+m2 if a1(x, k) ∈ Sm1 and a2(x, k) ∈ Sm2, i.e. the
union of the classes ∪m∈IRSm is an algebra.

Now consider an operator A of type (9.6 with the symbol a(x, k) from the class Sm with an m ∈ IR.
The operator is defined for the test functions u(x) ∈ S(IRn) since the integral (9.6) converges then
(Check this!).

Definition 9.4 An operator A of type (9.6) is called pseudodifferential operator of class Am if
the corresponding symbol a(x, k) belongs to the class Sm with m ∈ IR.
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10 Boundedness of pseudodifferential operators

Here we discuss boundedness of pseudodifferential operators in the Sobolev spaces.

10.1 Schur’s Lemma

Let us consider an integral operator defined for test functions v(k) ∈ S(IRn) by the following formula

Sv(k) =

∫

IRn

S(k, k′)v(k′)dk′, k ∈ IRn.(10.1)

Lemma 10.1 Let the integral kernel S(k, k′) satisfies the estimates
∫

IRn

|S(k, k′)|dk′ ≤ C < ∞, k ∈ IRn,(10.2)

∫

IRn

|S(k, k′)|dk ≤ C < ∞, k′ ∈ IRn.(10.3)

Then Sv(k) ∈ L2(IRn) for v(k) ∈ S(IRn), and

‖Sv‖L2 ≤ C‖v‖L2 .(10.4)

Proof Definition (10.1) implies the inequality

|Sv(k)| ≤
∫

IRn

|S(k, k′)v(k′)|dk′ =

∫

IRn

|S(k, k′)|1/2|S(k, k′)|1/2|v(k′)|dk′, k ∈ IRn.(10.5)

Applying here the Cauchy-Schwartz inequality, we obtain the inequality

|Sv(k)|2 ≤
∫

IRn

|S(k, k′)v(k′)|dk′ =

∫

IRn

|S(k, k′)|dk′
∫

IRn

|S(k, k′)||v(k′)|2dk′

≤ C

∫

IRn

|S(k, k′)||v(k′)|2dk′, k ∈ IRn(10.6)

by condition (10.2). Integrating (10.6) over k ∈ IRn, we obtain that
∫

|Sv(k)|2dk ≤ C

∫

IRn

( ∫

IRn

|S(k, k′)||v(k′)|2dk′
)
dk.(10.7)

This implies by the Fubini theorem, that
∫

|Sv(k)|2dk ≤ C

∫

IRn

( ∫

IRn

|S(k, k′)|dk
)
|v(k′)|2dk′.(10.8)

Now we use second condition (10.3) and obtain
∫

|Sv(k)|2dk ≤ C2
∫

IRn

|v(k′)|2dk′(10.9)

that implies (10.4).

Corollary 10.2 Under the conditions (10.2), (10.3), the integral operator S admits unique extension
from test functions v(k) ∈ S(IRn) to the functions v(k) ∈ L2(IRn) as bounded operator S : L2(IRn) →
L2(IRn).

Exercise 10.3 Justify the application of the Fubini theorem in (10.8). Hint: Use the condition
(10.3).
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10.2 Application to operator of multiplication

Let us consider the operator of multiplication, M : u(x) 7→ a(x)u(x), by a test function a(x) ∈ S(IRn).

Lemma 10.4 Let a(x) ∈ S(IRn). Then the operator M is continuous Hs(IRn) → Hs(IRn) for any
s ∈ IR.

Proof We have to prove the bound

‖a(x)u(x)‖s ≤ C(s)‖u(x)‖s, u ∈ Hs.(10.10)

By definition,
‖a(x)u(x)‖2

s = ‖(1 + |k|)s[F (au)](k)‖L2 .(10.11)

Let us calculate the Fourier transform F (au):

F (au)(k) =

∫
eikxa(x)u(x)dx.(10.12)

Substituting the Fourier representation u(x) =
1

(2π)n

∫
e−ik′xû(k′)dk′, we obtain by the Fubini theo-

rem that

F (au)(k) =

∫
eikxa(x)

( 1

(2π)n

∫
e−ik′xû(k′)dk′

)
dx

=
1

(2π)n

∫ ( ∫
ei(k−k′)xa(x)dx

)
û(k′)dk′ =

1

(2π)n

∫
â(k − k′)û(k′)dk′.(10.13)

Therefore, (10.11) becomes

‖a(x)u(x)‖2
s =

1

(2π)n
‖(1 + |k|)s

∫
â(k − k′)û(k′)dk′‖L2(10.14)

Hence, the bound (10.10) can be written in the form

‖(1 + |k|)s
∫

â(k − k′)û(k′)dk′‖L2 ≤ C(s)‖(1 + |k′|)sû(k′)‖L2(10.15)

Finally, denoting v(k′) := (1 + |k′|)sû(k′), rewrite (10.15) as

‖(1 + |k|)s
∫

â(k − k′)
v(k′)

(1 + |k′|)s
dk′‖L2 ≤ C(s)‖v̂(k′)‖L2(10.16)

This bound is equivalent to boundedness in L2 of integral operator with integral kernel

S(k, k′) = (1 + |k|)s â(k − k′)
(1 + |k′|)s

= â(k − k′)
(1 + |k|)s

(1 + |k′|)s
(10.17)

It remains to prove the estimates (10.2) and (10.3) for the kernel (10.17). To prove the estimates, we
first note that

(1 + |k|)s

(1 + |k′|)s
≤ C(s)(1 + |k − k′|)|s|, k, k′ ∈ IRn.(10.18)

(this is known as the Peetre inequality). Further, |â(k − k′)| ≤ C(N)(1 + |k − k′|)−N for any N > 0.
Therefore, we obtain the bound

S(k, k′) ≤ C(s, N))(1 + |k − k′|)|s|−N(10.19)

Taking |s| − N > n, we obtain (10.2) and (10.3).

Exercise 10.5 Prove the Peetre inequality (10.18). Hints: i) Consider first s = 1, then s > 0.
ii) Reduce the case s < 0 to −s > 0.

Exercise 10.6 Check that (10.19) with |s| − N > n implies (10.2) and (10.3).
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10.3 Boundedness of pseudodifferential operators

Theorem 10.7 Let A be pseudodifferential operator of class Am with an m ∈ IR. Then Au(x) is
defined by formula (9.6) for test functions u ∈ S(IRn), and for any s ∈ IR the bound holds

‖Au(x)‖s−m ≤ C(s)‖u(x)‖s(10.20)

where C(s) < ∞ does not depend on u(x).

Example 10.8 For example, let us prove the theorem for particular case of differential operators of
class Am from Exercise 9.2 ii) with integer m = 0, 1, 2.

I. First we consider integer s = m, m+1, .... In this case the Sobolev norms ‖Au(x)‖s−m and ‖u(x)‖s

admit equivalent characterisation (6.1), hence (10.20) is equivalent to the estimate

|||Au(x)|||s−m ≤ C(s)|||u(x)|||s.(10.21)

By (9.1) and triangle inequality for the norm ||| · |||, we have

|||Au(x)|||s−m ≤
∑

|α|≤m

|||aα(x)∂αu(x)|||s−m.(10.22)

Hence, it suffices to prove the estimate for every summand in (10.22), i.e.

|||aα(x)∂αu(x)|||s−m ≤ C(s)|||u(x)|||s(10.23)

for |α| ≤ m: then summing up in |α|, we obtain (10.21). Further, (10.23) means by definition that

∑

|β|≤s−m

‖∂β
[
aα(x)∂αu(x)

]
‖L2 ≤ C(s)

∑

|γ|≤s

‖∂γu(x)‖L2 .(10.24)

Finally, this inequality holds since every derivative ∂β
[
aα(x)∂αu(x)

]
is the sum of products of deriva-

tives of the coefficients aα(x) and derivatives of ∂γu(x) with |γ| ≤ s since |β| ≤ s−m and |α| ≤ m. It
remains to note that every derivative of aα(x) is bounded function in IRn since aα(x) = a0

α(k)+ a′α(x)
with a′α(x) ∈ S(IRn).

II. Now let us prove the bound (10.20) for the same class of differential operators and for all s ∈ IR.
Similarly to (10.22), we have by triangle inequality for the norm ‖ · ‖ that

‖Au(x)‖s−m ≤
∑

|α|≤m

‖aα(x)∂αu(x)‖s−m.(10.25)

Hence, again it suffices to prove the estimate for every summand in (10.25), i.e.

‖aα(x)∂αu(x)‖s−m ≤ C(s)‖u(x)‖s(10.26)

for |α| ≤ m. Since aα(x) = a0
α(k) + a′α(x), we have

‖aα(x)∂αu(x)‖s−m ≤ ‖a0
α∂αu(x)‖s−m + ‖a′α(x)∂αu(x)‖s−m.(10.27)

The first term in the right hand side is bounded by C(s)‖u(x)‖s by Lemma 4.4. Finally, for the second
term we obtain from Lemma 10.4 that

‖a′α(x)∂αu(x)‖s−m ≤ C(s − m)‖∂αu(x)‖s−m(10.28)

since a′α(x) ∈ S(IRn).
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Proof of Theorem 10.7 for general case Step i) By definition 9.1, the formula (9.6) can be
rewritten as

Au(x) = A0u(x) + A′u(x) =
1

(2π)n

∫
e−ikxa0(k)û(k)dk +

1

(2π)n

∫
e−ikxa′(x, k)û(k)dk.(10.29)

It suffices to prove the bound of type (10.20) for each of two terms.

Step ii) For the first term the bound follows easily. Namely, by definition of the Sobolev norm,

‖A0u(x)‖s−m = ‖(1 + |k|)s−mÂ0u(k)‖L2 .(10.30)

Further, definition of A0u(x) in (10.29) implies that F
[
A0u

]
(k) = a0(k)û(k), hence

‖(1 + |k|)s−mÂ0u(k)‖L2 = ‖(1 + |k|)s−ma0(k)û(k)‖L2 ≤ C‖(1 + |k|)sû(k)‖L2(10.31)

since a0(k) ≤ C(1 + |k|)m by condition (9.8) with α = 0. Combining the bounds (10.30) and (10.31),
we obtain the desired estimate

‖A0u(x)‖s−m ≤ C‖u(x)‖s.(10.32)

Step iii) It remains to prove similar bound for second term,

A′u(x) =
1

(2π)n

∫
e−ikxa′(x, k)û(k)dk.(10.33)

As in (10.30)
‖A′u(x)‖s−m = ‖(1 + |k|)s−mÂ′u(k)‖L2 .(10.34)

Let us calculate the Fourier transform Â′u(k). First let us prove that A′u(x) ∈ L1(IRn). Indeed,
condition (9.8) with α = β = 0 implies that |a′(x, k)| ≤ C(N)(1 + |x|)−N (1 + |k|)m for any N > 0.
On the other hand, |û(k)| ≤ C(M)(1 + |k|)−M for any M > 0 since u(x) ∈ S and also û(k) ∈ S.
Therefore,

|a′(x, k)û(k)| ≤ C(N, M)(1 + |x|)−N (1 + |k|)m−M(10.35)

Therefore, (10.33) implies that

|A′u(x)| ≤ C ′(N, M)(1 + |x|)−N
∫

(1 + |k|)m−Mdk ≤ C ′′(N, M)(1 + |x|)−N(10.36)

if we take M sufficiently large, so that m − M < −n. Finally, this inequality implies that A′u(x) ∈
L1(IRn) if we take N > n. Therefore, Lemma 5.1 implies that the Fourier transform F

[
A′u

]
(k) is

given by standard Fourier integral:

Â′u(k) =

∫
eikxA′u(x)dx =

∫
eikx

( 1

(2π)n

∫
e−ik′xa′(x, k′)û(k′)dk′

)
dx.(10.37)

Applying here the Fubini theorem (it is possible by (10.35) with m−M < −n and N > n), we obtain

Â′u(k) =
1

(2π)n

∫ ( ∫
ei(k−k′)xa′(x, k′)dx

)
û(k′)dk′ =

1

(2π)n

∫
â′(k − k′, k′)û(k′)dk′.(10.38)

Step iv) Now we substitute (10.38) into (10.39) and obtain that

‖A′u(x)‖s−m = C‖(1 + |k|)s−m
∫

â′(k − k′, k′)û(k′)dk′‖L2

= C‖
∫

(1 + |k|)s−m

(1 + |k′|)s
â′(k − k′, k′)(1 + |k′|)sû(k′)dk′‖L2

= C‖
∫

S(k, k′)v(k′)dk′‖L2 ,(10.39)
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where S(k, k′) =
(1 + |k|)s−m

(1 + |k′|)s
â′(k − k′, k′) and v(k′) = (1 + |k′|)sû(k′).

Lemma 10.9 The kernel S(k, k′) satisfies conditions (10.2) and (10.3) of Schur’s lemma.

Proof The crucial observation is that condition (9.9) with α = 0 implies the bound

|â′(k − k′, k′)| ≤ C(N)(1 + |k − k′|)−N (1 + |k′|)m(10.40)

for any N > 0. This follows by arguments similar to the proof of Lemma 2.2. The bound implies that

|S(k, k′)| ≤ C
(1 + |k|)s−m

(1 + |k′|)s
(1 + |k − k′|)−N (1 + |k′|)m

= C
(1 + |k|)s−m

(1 + |k′|)s−m
(1 + |k − k′|)−N ≤ C(1 + |k − k′|)−N+|s−m|.(10.41)

by the Peetre inequality (10.18) with s − m instead of s. Now conditions (10.2) and (10.3) follow if
we take N sufficiently large so that −N + |s − m| < −n.

Finally, applying Schur’s lemma in (10.39), we obtain that

‖A′u(x)‖s−m = ‖
∫

S(k, k′)v(k′)dk′‖L2 ≤ C‖v(k)‖L2 = C‖u(x)‖s,(10.42)

that proves bound of type (10.20) for operator (10.39).
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11 Composition of pseudodifferential operators

Here we consider composition of two pseudodifferential operators A1 and A2 classes Am1 and Am2

respectively.

Theorem 11.1 Let the symbols a1(x, k) and a2(x, k) of pseudodifferential operators A1 and A2, belong
to the classes Sm1 and Sm2 respectively. Then the operator A1A2 belongs to the class Am1+m2, and
its symbol a(x, k) admits asymptotic expansion (generalised Leibniz Formula)

a(x, k) ∼
∑

|γ|≥0

1

γ!
(i∂k)

γa1(x, k)∂γ
xa2(x, k).(11.1)

First let us discuss the meaning of asymptotic expansion (11.1): by definition, it means that for
any N = 0, 1, 2, ... the finite expansion holds

a(x, k) =
N−1∑

|γ|≥0

1

γ!
(i∂k)

γa1(x, k)∂γ
xa2(x, k) + RN (x, k),(11.2)

where the remainder RN (x, k) belongs to class Sm1+m2−N .
Next let us consider the properties of all terms in the asymptotic expansion. Definition 9.1 implies

that

i) the symbol (i∂k)
αa1(x, k) belongs to class Sm1−|α| (Exercise: Check this!), and

ii) the symbol ∂α
x a2(x, k) belongs to class Sm2 (Exercise: Check this!).

Therefore, their product (i∂k)
αa1(x, k)∂α

x a2(x, k) belongs to class Sm1+m2−|α| by Exercise 9.3.

11.1 Composition of differential operators

I. First consider simplest example of differential operators A1 =
d

dx
and A2 = a(x) in dimension

n = 1. Their composition is

Au(x) := A1A2u(x) =
d

dx

[
a(x)u(x)

]
= a′(x)u(x) + a(x)u′(x).(11.3)

This means that A = A1A2 = a(x)
d

dx
+ a′(x), hence the symbol of the composition is

a(x, k) = a(x)(−ik) + a′(x).(11.4)

This formula coincides with (11.2) since the symbols a1(x, k) = −ik and a1(x, k) = a(x), hence
i) the term in (11.2) with γ = 0 is the product (−ik)a(x),
ii) next term with γ = 1 is a(x), and
iii) all terms with |γ| > 1 vanish.

II. Second, let us consider general differential operators A1 and A2 in dimension n = 1:

Alu(x) =
∑

α≤ml

alα(x)∂αu(x), l = 1, 2.(11.5)

Their composition is also a differential operator

Au(x) := A1A2u(x) =
∑

α1 ≤ m1

α2 ≤ m2

a1α1(x)∂α1

[
a2α2(x)∂α2u(x)

]
.(11.6)
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To define the symbol of this operator, we have to rewrite it in the standard form (9.1), where all
coefficients are on the left of the operators of differentiation. It suffices to rewrite each term in the

sum (11.6). Moreover, it suffices to consider the composition ∂α1

[
a2α2(x)∂α2u(x)

]
. Using the Leibniz

formula for the product, we obtain that

∂α1

[
a2α2(x)∂α2u(x)

]
=

∑

γ≤α1

Cγ
α1

∂γ
xa2α2(x)∂α1−γ+α2u(x),(11.7)

where Cγ
α1

=
α1!

γ!(α1 − γ)!
. Hence we can rewrite (11.6) in the standard form as

Au(x) =
∑

α1 ≤ m1

α2 ≤ m2

a1α1(x)
∑

γ≤α1

Cγ
α1

∂γ
xa2α2(x)∂α1−γ+α2u(x).(11.8)

Now the symbol of the composition is

a(x, k) =
∑

α1 ≤ m1

α2 ≤ m2

a1α1(x)
∑

γ≤α1

Cγ
α1

∂γ
xa2α2(x)(−ik)α1−γ+α2(11.9)

according to formula (9.7).
Let us check that the symbol coincides with general formula (11.2) for the particular case of

differential operators A1 and A2. Indeed, we can rewrite (11.9) as

a(x, k) =
∑

γ≤α1

∑

α1≤m1

1

γ!

α1!

(α1 − γ)!
(−ik)α1−γa1α1(x)∂γ

x

∑

α2≤m2

a2α2(x)(−ik)α2 .(11.10)

It remains to note that
α1!

(α1 − γ)!
(−ik)α1−γ = (i∂)γ(−ik)α1 (Exercise: Check this!). Hence (11.10)

becomes

a(x, k) =
∑

γ≤α1

∑

α1≤m1

1

γ!
(i∂)γ(−ik)α1a1α1(x)∂γ

x

∑

α2≤m2

a2α2(x)(−ik)α2 =
∑

γ≤m1

1

γ!
(i∂k)

γa1(x, k)∂γ
xa2(x, k).

(11.11)
Finally, this formula coincides with (11.2) since (i∂k)

γa1(x, k) = 0 for γ > m1.

Now we are prepared to prove formula (11.2) for general pseudodifferential operators A1 and A2.

11.2 Composition of PDO

Step i) Let us take any test function u(x) ∈ S(IRn). By definition of pseudodifferential operator A1,
we have

A1A2u(x) =
1

(2π)n

∫
e−ikxa1(x, k)Â2u(k)dk,(11.12)

By definition of pseudodifferential operator A2, we have

A2u(x) =
1

(2π)n

∫
e−ikxa2(x, k)û(k)dk =

1

(2π)n

∫
e−ikxa0

2(k)û(k)dk +
1

(2π)n

∫
e−ikxa′2(x, k)û(k)dk

= A0
2u(x) + A′

2u(x).(11.13)
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Respectively, A1A2 = A1A
0
2 + A1A

′
2, and it suffices to prove formula (11.2) for each term separately

since the formula is linear in symbol a2(x, k).

Step ii) First let us consider term A1A
0
2:

A1A
0
2u(x) =

1

(2π)n

∫
e−ikxa1(x, k)Â0

2u(k)dk(11.14)

Definition of A0
2u in (11.13) implies that Â0

2u(k) = a0
2(k)û(k), hence (11.14) becomes

A1A
0
2u(x) =

1

(2π)n

∫
e−ikxa1(x, k)a0

2(k)û(k)dk.(11.15)

By definition 9.4 (see (9.6)), this means that A1A
0
2 is pseudodifferential operator with symbol a(x, k) =

a1(x, k)a0
2(k). It remains to note that this product coincides with formula (11.2) for the composition

A1A
0
2 since

i) first term with γ = 0 is just product of the symbols, and
ii) all derivatives ∂γ

xa0
2(k) vanish for |γ| > 0.

Step iii) It remains to study term A1A
′
2:

A1A
′
2u(x) =

1

(2π)n

∫
e−ikxa1(x, k)Â′

2u(k)dk(11.16)

Let us calculate symbol of the composition A1A
′
2. First, let us evaluate the Fourier transform Â′

2u.
Definition of A0

2u in (11.13) implies that

A′
2u(x) =

1

(2π)n

∫
e−ik′xa′2(x, k′)û(k′)dk′,(11.17)

Hence by the Fubini theorem, we obtain, similarly to (10.38), that

Â′
2u(k) =

1

(2π)n

∫
â′2(k − k′, k′)û(k′)dk′,(11.18)

where integral kernel â′2(k − k′, k′) satisfies the estimate of type (10.40):

|â′2(k − k′, k′)| ≤ C(M2)(1 + |k − k′|)−M2(1 + |k′|)m2(11.19)

for any M2 > 0. Substituting expression (11.18) into (11.16), we obtain

A1A
′
2u(x) =

1

(2π)n

∫
e−ikxa1(x, k)

( 1

(2π)n

∫
â′2(k − k′, k′)û(k′)dk′

)
dk.(11.20)

We are going to apply the Fubini theorem to change the order of integrations, and rewrite (11.20) as

A1A
′
2u(x) =

1

(2π)n

∫ ( 1

(2π)n

∫
e−ikxa1(x, k)â′2(k − k′, k′)dk

)
û(k′)dk′.(11.21)

Exercise 11.2 Justify the applicability of the Fubini theorem. Hint: By 9.1, we have that |a1(x, k)| ≤
C(1 + |k|)m1 . Hence, (11.19) implies that the integrand of (11.20) admits the estimate

|e−ikxa1(x, k)â′2(k − k′, k′)û(k′)| ≤ C(M2, M3)(1 + |k|)m1(1 + |k − k′|)−M2(1 + |k′|)m2−M3(11.22)

for any M2, M3 > 0, since |û(k′)| ≤ C(1 + |k′|)−M3 for any M3 > 0. Applying the Peetre inequality
(1 + |k|)m1 ≤ (1 + |k′|)m1(1 + |k − k′|)|m1|, we obtain

|e−ikxa1(x, k)â′2(k − k′, k′)û(k′)| ≤ C(M2, M3)(1 + |k − k′|)|m1|−M2(1 + |k′|)m1+m2−M3(11.23)

where the right hand side is summable function of (k, k′) ∈ IR2n if |m1|−M2 < −n and m1+m2−M3 <
−n.
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Finally, we can write (11.20) in the form

A1A
′
2u(x) =

1

(2π)n

∫
e−ik′x

( 1

(2π)n

∫
e−i(k−k′)xa1(x, k)â′2(k − k′, k′)dk

)
û(k′)dk′.(11.24)

By definition 9.4 (see (9.6)) this means that A1A
′
2 is pseudodifferential operator with symbol

a(x, k′) =
1

(2π)n

∫
e−i(k−k′)xa1(x, k)â′2(k − k′, k′)dk.(11.25)

Step iv) It remains to prove the asymptotic expansion (11.1) for this symbol. First we expand the
symbol a1(x, k) in the Taylor series in k with the centre at k′:

a1(x, k) =
N−1∑

|γ|=0

1

γ!
∂γ

ka1(x, k′)(k − k′)γ + rN (x, k, k′),(11.26)

where the remainder rN (x, k, k′) can be represented in the Cauchy form

rN (x, k, k′) =
∑

|γ|=N

1

γ!

[ ∫ 1

0
(1 − t)N−1∂γ

ka1(x, k′ + t(k − k′))dt
]
(k − k′)γ .(11.27)

Substituting (11.26) into (11.25), we obtain that

a(x, k′) =
1

(2π)n

N−1∑

|γ|=0

1

γ!
∂γ

ka1(x, k′)
∫

e−i(k−k′)x(k − k′)γ â′2(k − k′, k′)dk

+
1

(2π)n

∫
e−i(k−k′)xrN (x, k, k′)â′2(k − k′, k′)dk.(11.28)

We note that the sum in (11.28) coincides with the sum in finite asymptotic expansion (11.2) since

1

(2π)n

∫
e−i(k−k′)x(k − k′)γ â′2(k − k′, k′)dk = (i∂x)γa2(x, k′)(11.29)

by formula (5.1) for the inversion of the Fourier transform. Note that the formula is applicable since
the integral converges by the bound (11.19) with N > n + |γ|.

Step v) It remains to prove necessary bounds for the remainder

RN (x, k′) =
1

(2π)n

∫
e−i(k−k′)xrN (x, k, k′)â′2(k − k′, k′)dk.(11.30)

We have to prove that RN (x, k′) ∈ Sm1+m2−N . More precisely, we will prove the bounds of type (9.9):

(1 + |x|)M |∂α
k ∂β

xRN (x, k′)| ≤ C(α, β, M)(1 + |k′|)m1+m2−N−|α|, x, k′ ∈ IRn(11.31)

for any M > 0 and any multiindexes α and β.

Remark 11.3 Bounds (11.31) mean that the first component R0
N (k′) for this symbol vanishes.
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We will prove bounds (11.31) for M = 0 and α = β = 0. First, (11.30) implies that

|RN (x, k′)| ≤ C

∫
|rN (x, k, k′)â′2(k − k′, k′)|dk.(11.32)

The Cauchy formula (11.27) implies that

|rN (x, k, k′)| ≤
∑

|γ|=N

1

γ!

[ ∫ 1

0
(1 − t)N−1|∂γ

ka1(x, k′ + t(k − k′))|dt
]
|(k − k′)γ |

≤ C(1 + |k′ + t(k − k′)|)m1−N (1 + |k − k′|)N .(11.33)

Substituting the estimate to (11.32), we obtain that

|RN (x, k′)|

≤ C

∫ [ ∫ 1

0
(1 − t)N−1(1 + |k′ + t(k − k′)|)m1−Ndt

]
(1 + |k − k′|)N â′2(k − k′, k′)|dk.(11.34)

Now we use the estimate (11.19) for â′2(k − k′, k′) and obtain

|RN (x, k′)|

≤ C(M2)(1 + |k′|)m2

∫ [ ∫ 1

0
(1 − t)N−1(1 + |k′ + t(k − k′)|)m1−Ndt

]
(1 + |k − k′|)N−M2dk.(11.35)

Therefore, the bound (11.31) with M = 0 and α = β = 0 follows from next lemma.

Lemma 11.4 For sufficiently large M2 > 0, we have

∫

IRn

[ ∫ 1

0
(1 − t)N−1(1 + |k′ + t(k − k′)|)m1−Ndt

]
(1 + |k − k′|)N−M2dk ≤ C(1 + |k′|)m1−N .(11.36)

Proof Let us split the integration over IRn into two regions:
i) over |k − k′| < |k′|/2 and
ii) over |k − k′| > |k′|/2.

I. In first region, we have k′ + t(k − k′) ≈ k′, or more precisely,

1

2
|k′| ≤ |k′ + t(k − k′)| ≤ 3

2
|k′|, 0 ≤ t ≤ 1.(11.37)

Hence,
C1(1 + |k′|)m1−N ≤ (1 + |k′ + t(k − k′)|)m1−N ≤ C2(1 + |k′|)m1−N ,(11.38)

where C1, C2 > 0. Therefore, for large M2 the first integral is bounded by

C(1 + |k′|)m1−N
∫

|k−k′|<|k′|/2

(1 + |k − k′|)N−M2dk ≤ C ′(1 + |k′|)m1−N
∫

IRn

(1 + |k − k′|)N−M2dk

≤ C ′′(1 + |k′|)m1−N(11.39)

since the integral is finite for M2 > N + n.
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II. It remains to bound the integral over second region |k − k′| > |k′|/2. Then |k′ + t(k − k′)| ≤
|k′| + |t(k − k′)| ≤ 3|k − k′|, hence

(1 + |k′ + t(k − k′)|)m1−N ≤ C(1 + |k − k′|)|m1−N |(11.40)

Hence, the integral over second region is bounded by

C

∫

|k−k′|>|k′|/2

(1 + |k − k′|)|m1−N |+N−M2dk = C

∫ ∞

|k′|/2
(1 + r)|m1−N |+N−M2rn−1dr

≤ C ′′(1 + r)|m1−N |+N−M2+n
∣∣∣
∞

|k′|/2

= C ′′(1 + |k′|/2)|m1−N |+N−M2+n(11.41)

if |m1−N |+N−M2+n < 0. Therefore, the integral is bounded by C(1+|k′|)m1−N if M2 is sufficiently
large so that |m1 − N | + N − M2 + n < m1 − N .

We have proved bounds (11.31) for M = 0 and α = β = 0. For all other values of the parameters the
proof is similar. Theorem 11.1 is proved.
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12 Regulariser of elliptic equations

We consider partial differential operator

Au(x) =
∑

|α|≤m

aα(x)∂αu(x)(12.1)

with symbol
a(x, k) =

∑

|α|≤m

aα(x)(−ik)α.(12.2)

In next section we will study the questions on existence, uniqueness and smoothness of solutions u(x)
to partial differential equation in IRn

Au(x) = f(x), x ∈ IRn(12.3)

for elliptic and strongly elliptic operators A.

Definition 12.1 (Cf. Definition 8.3) i) Differential operator A is elliptic of order m if

|a(x, k)| > c(1 + |k|)m, |k| > R, x, k ∈ IRn(12.4)

for some R > 0 and c > 0.
iii) Differential operator A is strongly elliptic of order m if

|a(x, k)| > c(1 + |k|)m, x, k ∈ IRn,(12.5)

where c > 0.

Example 12.2 i) Let V (x) ∈ S(IRn). Then the Schrödinger operator −∆ + V (x)−E is elliptic for
every E ∈ C (check this!).
ii) Let V (x) ∈ S(IRn), and V (x) ≥ 0 for x ∈ IRn. Then the Schrödinger operator −∆ + V (x) − E is
strongly elliptic
a) for every E < 0 (check this!);
b) for every E ∈ C \ IR+ where IR+ = {E ∈ IR : E ≥ 0} (check this!).

We start with definition of “regulariser” R of the operator A which is “almost inverse” to the
operator A in the following sense:

Definition 12.3 An operator R : Hs−m → Hs is called regulariser of the operator A if
I. R is PDO of class A−m, hence continuous Hs−m → Hs for any s ∈ IR;

II. RA = 1 + T and AR = 1 + T , where T and T are PDO of class A−1,
hence continuous Hs → Hs+1 and Hs−m → Hs−m+1 respectively;

III. T and T are compact operators in Hs and Hs−m respectively.

We will construct the regulariser for strongly elliptic operators A by the following formula:

Rf(x) =
1

(2π)n

∫
e−ikxr(x, k)f̂(k)dk, where r(x, k) =

1

a(x, k)
(12.6)

Theorem 12.4 Let A be strongly elliptic operator. Then the operator (12.6) is regulariser of A.
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Proof

Exercise 12.5 Check property I. Hint: Definition (12.5) implies that the inverse symbol r(x, k) =
1/a(x, k) belongs to class S−m. Therefore, R : Hs−m → Hs is continuous by Theorem 10.7.

Exercise 12.6 Check property II. Hint: Apply Theorem 11.1 to the compositions RA and RA: in
generalised Leibniz formula (11.2) with N = 1, the term with γ = 0 gives unit operator 1, while the
symbols of remainders T and T belong to class S−1. Therefore, T : Hs → Hs+1 and T : Hs−m →
Hs−m+1 are continuous by Theorem 10.7.

It remains to prove property III:

Proposition 12.7 T and T are compact operators in Hs and Hs−m respectively, for any s ∈ IR.

Proof We will prove the theorem with an additional assumption on the coefficients aα(x) = a0
α+a′α(x)

of the operator (12.1). Namely, let all terms a′α(x) vanish for large |x|, i.e.

a′α(x) = 0, |x| ≥ R, |α| ≤ m.(12.7)

Then in the corresponding decomposition of the symbol a(x, k) = a0(k) + a′(x, k), the term a′(x, k)
also vanishes for large |x|, hence we have

a(x, k) = a0(k), |x| ≥ R.(12.8)

In other words, the symbol a(x, k) does not depend on x for |x| ≥ R. Therefore, the same is true for
inverse symbol r(x, k) = 1/a(x, k). Hence, r(x, k) = r0(k) + r′(x, k), and

r′(x, k) = r0(k), |x| ≥ R.(12.9)

For concreteness, we will prove the compactness for the operator T : Hs → Hs since the compactness
of operator T : Hs−m → Hs−m follows similarly.

Let us denote by c(x, k) symbol of the composition C = RA. Applying generalised Leibniz formula
(11.2) with sufficiently large N > 0, we obtain the expansion

c(x, k) =
N−1∑

|γ|≥0

1

γ!
(i∂k)

γr(x, k)∂γ
xa(x, k) + RN (x, k),(12.10)

Then the corresponding operator C admits the decomposition

C =
N−1∑

|γ|≥0

Cγ + DN ,(12.11)

where Cγ stands for PDO with symbol 1
γ!(i∂k)

γr(x, k)∂γ
xa(x, k), and DN stands for PDO with symbol

RN (x, k).

We have C0 = r(x, k)a(x, k) = 1, so it remains to prove compactness of each term in (12.11) with
|γ| > 0.

Lemma 12.8 Each operator Cγ : Hs → Hs is compact if |γ| > 0.
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Proof We have to prove that for any bounded sequence uj ∈ Hs, the sequence Cγuj has a limit point,
i.e. there exists a converging in Hs subsequence Cγuj′ :

‖Cγuj′ − v‖s → 0, j′ → ∞(12.12)

for some v ∈ Hs. By Theorem 10.7 operator Cγ : Hs → Hs+|γ| is bounded since Cγ is PDO of class
A−|γ| by Theorem 11.1. Therefore, the sequence Cγuj is bounded in Hs+|γ|(IRn), hence bounded in
Hs+1(IRn) since |γ| ≥ 1. Furthermore,

Cγuj(x) =
1

(2π)n

∫
e−ikx 1

γ!
(i∂k)

γr(x, k)∂γ
xa(x, k)ûj(k)dk = 0, |x| ≥ R(12.13)

since ∂γ
xa(x, k) = 0 for |x| > R by (12.8) and condition |γ| > 0. Therefore, Cγuj(x) ∈

o
Hs+1(Ω), where

Ω stands for the ball {x ∈ IRn : |x| < R}.
So, functions Cγuj belong to a bounded set in

o
Hs+1(Ω). Therefore, the sequence Cγuj contains a

converging subsequence in Hs(IRn) by Sobolev’s theorem on compact embedding
o

Hs+1(Ω) ⊂ Hs(IRn)
(Theorem 7.2).

It remains to prove compactness of operator DN : Hs → Hs for sufficiently large N > 0.

Proposition 12.9 Operator DN : Hs → Hs is compact if N > 0 is sufficiently large.

Proof Let us introduce PDO Λs with symbol (1 + |k|)s: by definition 9.1, we have

Λsu =
1

(2π)n
F−1

[
(1 + |k|)sû(k)

]
.(12.14)

Then Λs : Hs → L2 is isomorphism by definition of the Sobolev space Hs. Indeed, u(x) ∈ Hs

is equivalent to the fact that (1 + |k|)sû(k) ∈ L2. Finally, last relation is equivalent to F−1
[
(1 +

|k|)sû(k)
]
∈ L2 by the Parseval Theorem. Hence, Λsu ∈ L2 by (12.14).

Obviously, Λ−s is inverse operator to Λs. Hence, we can write DN = Λ−sΛsDNΛ−sΛs. It suffices
to prove that operator K := ΛsDNΛ−s : L2 → L2 is compact in L2. Then the composition DN =
Λ−sKΛs : Hs → Hs will be compact. Indeed:

i) Λsuj is bounded sequence in L2 since Λs : Hs → L2 is bounded operator;

ii) Then the sequence KΛsuj contains converging in L2 subsequence KΛsuj′ ;

iii) Hence the subsequence DNuj = Λ−sKΛsuj′ is converging in Hs since Λ−s : L2 → Hs is continuous
operator.

So, it remains to prove

Lemma 12.10 Operator K := ΛsDNΛ−s : L2 → L2 is compact in L2 if N > 0 is sufficiently large.

Proof By Theorem 11.1, the composition K := ΛsDNΛ−s is PDO of class A−N , and the Fourier
representation K̂u(k) admits integral representation

K̂u(k) = (1 + |k|)s
∫

IRn

R̂N (k − k′, k′)(1 + |k′|)−sû(k′)dk′,(12.15)

similarly to (11.18). The function R̂N (k − k′, k′) admits the bound

|R̂N (k − k′, k′)| ≤ C(M)(1 + |k − k′|)−M (1 + |k′|)−N(12.16)
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for any M > 0. The bounds follow from (11.31) similarly to (11.19) and (10.40). Therefore, the
integral kernel K(k, k′) := (1 + |k|)sR̂N (k − k′, k′)(1 + |k′|)−s of the operator K admits the bound

|K(k, k′)| ≤ C(M)(1 + |k|)s(1 + |k − k′|)−M (1 + |k′|)−N

≤ C ′(M)(1 + |k − k′|)−M+|s|(1 + |k′|)−N+s,(12.17)

where we used the Peetre inequality (1 + |k|)s ≤ (1 + |k − k′|)|s|(1 + |k′|)s as in (11.23). This estimate
implies that the integral operator K belongs to the Hilbert-Schmidt class of operators, i.e.

∫
|K(k, k′)|2dkdk′ < ∞(12.18)

if 2(−M + |s|) < −n and 2(−N + s) < −n. This property provides that the operator K is compact
in L2(IRn) (see e.g. Exercise 15 (c) in [4]).
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13 Applications of regulariser

13.1 Smoothness of solutions

Lemma 13.1 (“Schauder’s Lemma”) Let A be strongly elliptic operator, and consider a solution
u ∈ Hs of equation (12.3). Let us assume that f ∈ Ht, where t ∈ IR. Then u ∈ Ht+m.

Proof The lemma is trivial if t + m ≤ s, since Hs ⊂ Ht+m in this case. Further we consider the
case t + m > s, so j := t + m − s > 0, and additionally assume that j is integer, i.e. j = 1, 2, ... for
simplicity of exposition. Then t + m = s + j, and we have to check that ‖u‖s+j < ∞.

Applying R to both sides of (12.3), we obtain RAu = u+Tu = Rf . Rewriting this as u = Rf−Tu,
we obtain that

‖u‖s ≤ ‖Rf‖s + ‖Tu‖s ≤ C‖f‖s−m + C1‖u‖s−1(13.1)

since R ∈ A−m and T ∈ A−1. Hence, the following Schauder a priori estimate holds for the
solutions to (12.3):

‖u‖s+1 ≤ C‖f‖s+1−m + C1‖u‖s < ∞.(13.2)

Hence, ‖u‖s+1 < ∞ since ‖f‖s+1−m < ∞ due to s + 1 − m ≤ t. By induction, ‖u‖s+l < ∞ until
s + l − m ≤ t. Taking l = j, we obtain that ‖u‖s+j < ∞.

Corollary 13.2 (“Weyl’s lemma”) Let A be strongly elliptic operator. Then for any s ∈ IR, all
solutions u(x) ∈ Hs(IRn) to (homogeneous) equation (12.3) with f = 0 are smooth functions.

Proof Applying Schauder’s lemma, we obtain that u ∈ Ht+m with any t ∈ IR since f = 0 ∈ Ht with
any t ∈ IR. Hence, u ∈ Hs with any s ∈ IR. Finally, this implies that u(x) ∈ C∞(IRn) by Corollary
5.5.

13.2 Solvability of elliptic equations

Next theorem is main result of our course.

Theorem 13.3 (Cf. Theorem 8.5) Let us consider equation with variable coefficients (12.3). Let us
assume that A is strongly elliptic operator of order m. Then for any s ∈ IR,
i) The solutions to corresponding homogeneous equation

Au(x) = 0, x ∈ IRn,(13.3)

constitute finite dimensional space in Hs(IRn).
ii) Nonhomogeneous equation (12.3) with f(x) ∈ Hs−m(IRn), admits solution u(x) ∈ Hs(IRn) if f(x)
satisfies finite number of “orthogonality conditions” of type

Lj(f) = 0, j = 1, ..., M,(13.4)

where Lj are linear continuous functionals on the space Hs−m(IRn).

Proof i) Applying the regulariser R to both sides of (13.3), we obtain

RAu = u + Tu = 0,(13.5)

where T is compact operator in Hs. Hence, the linear space of the solutions u(x) is finite dimensional
by First Fredholm Theorem [4].
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ii) Let us seek the solution to (12.3) in the form u = Rg. Substituting to (12.3), we obtain the equation

ARg = g + T g = f,(13.6)

where T is compact operator in Hs−m. Hence, Second Fredholm Theorem [4] guaranties that the
equation g + T g = f admits a solution g ∈ Hs−m if f(x) satisfies finite number of “orthogonality
conditions” of type (13.4). Then u = Rg is solution to (12.3) by (13.6).


