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ELLIPTIC BOUNDARY VALUE PROBLEMS ON MANIFOLDS
WITH A PIECEWISE SMOOTH BOUNDARY

UDC 517.949.9
A. 1. KOMEC

Abstract. In this paper general boundary value problems for second-order ellip-
tic differential equations are considered on manifolds with edges. It is assumed
that in the neighborhood of an edge point the manifold is diffeomorphic to the interior
of a convex dihedral angle. Effective conditions for normal solvability of these
boundary value problems are obtained and the parametrix is constructed. The meth-
ods make use of the theory of analytic functions of several variables and automorphic
functions.

Bibliography: 17 items.

Introduction

In this paper boundary value problems are considered on a compact n-dimensional

manifold M with a piecewise smooth boundary. ‘These problems are of the form
Auy (x) + Kity (x) = fo(x),  x €My,
Buy (%) + Ly (x) = [y (x),  x €4y, 0:1)
Tuy(x) + Juy (x) = fo (), X€.1,.
Here mo is the interior of M, ml is the smooth part of the boundary and Wz is the edge
of codimension 2. It is assumed that mz is a smooth (n — 2)-dimensional manifold and

that the tangent spaces to Wl at points of m2 are intersected transversally. An ex-

ample of an admissible manifold N is represented in Figure 1.

Figure 1
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92 A. I. KOMEC

The letter A in (0.1) denotes a second-order differential opeartor on M with smooth
coefficients; B denotes a differential operator of arbitrary order whose coefficients are
smooth on Wl but may have discontinuities of the first kind on ?Kz. In tum, K and L
are operators of potential type, T is a boundary operator of codimension two (Definition
7.3) and | is a pseudodifferential operator on the edge. All functions occurring in (0.1)
belong to spaces of Sobolev type.

We assume that A is an elliptic operator and that the pair (A, B) satisfies the
classical §apiro-LopatinskiI_ condition on the smooth parts of the boundary up to the
edge when approaching it from each side.

Problem (0. 1) has not been considered in full generality up to now. The class of

problems of the form
Auo (x) = fo (x), X € iy,
Buy(x) =fi(x), x€.#,

0.2

has been partially studied.

In the case n = 2 problem (0.2) has been investigated in a whole series of papers:
S. L. Sobolev [1], V. V. Fufaev [2], G. E. Silov [3], N. I. Musheligvili [4], M. 8. Biman
and G. E. Skvorcov [5], E. A. Volkov [6]. The most complete results for 7 = 2 were
obtained by G. L. Eskin [7] and V. A. Kondrat'ev [8]. For n > 3 problem (0.2) was
partially studied by M. S. Hanna and K. T. Smith [10], Kondrat'ev [13] and V. S. Maz'ja
and B. A. Plamenevskii [16]. In [10] there are isolated qualitative results on the
Dirichlet problem for the Laplace operator in convex polytopes. In [13] results are ob-
tained on the smoothness of the solution of the Dirichlet problem for a second-order
operator with real coefficients. Finally, in [16] effective conditions were first indicated
in order that problem (0.2) be Noetherian when A is the Beltrami-Laplace operator and
B is a differential operator of first order at most with real coefficients (see also [17]).

Such contrast between the cases n =2 and n =3 stems from the fact that to estab-
lish the Noetherian property for problem (0.2) when » > 3 it is necessary to construct
the inverse operator for a problem of the same type with a parameter and constant coef-
ficients in a quadrant of the plane. Consequently for problem (0.2) with constant coef-
ficients in a plane quadrant it is necessary to be able to find the ketnel and cokemel
exactly. But from results of [1]1-{8] only the Noetherian property of such problems fol-
lows. Exact computation of their kemel and cokernel involves considerable difficulties.
In the special case when A is a second-order operator with real coefficients and B is
an operator of first order at most with real coefficients, this problem was solved in [16].

In this paper, for a second-order operator A we find, in the general case itself,
the kemel and cokemel of the problem with a parameter and constant coefficients in a
quadrant. To do this we apply a new method based on variables dual to x in the com-
plex plane and the use of automorphic functions. With the aid of this methed we find
the kemel and cokemel of the problem with a parameter, and explicit formulas for its

solution. This permits us to investigate problems (0.1) and (0.2) for a second-order
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operator A without assuming that coefficients are real and without restriction on the
order of the boundary operator B. We assume that » > 3, since problem (0.2) has been
well studied in the case n = 2.

We note that the method of automorphic functions, which we apply to partial dif-
ferential equations, was first applied to difference equations in a quadrant by V. A.
MalySev [12].

For lack of space we omit proofs of some assertions in the first and seventh sec-
tions. Detailed proofs of these assertions will be published elsewhere by the author.

We shall employ the following notation: d is the differentiation vector (9, »-+, 9 )
in R” and in C”, and D = id. N denotes the set {0, 1, 2, --- I, R" the real half-line
x>0 and C* the complex half-plane Im z Z 0. For a real number s, [s] denotes its
integral part. If X and Y are smooth spaces, CT‘;(X, Y) is the space of smooth im-
beddings of X in Y. A set B C CT;(X, Y) is called bounded if B C CT:\(X, Y) and the
derivatives of arbitrary order of functions effecting imbeddings of B in local coordinates
are uniformly bounded on every compact set. As usual, &X) = C(X) and D(X) =
CP(X); D(X) is the dual of DX) of generalized functions (distributions). The Fourier
transform of the generalized function # in R” is denoted by 4 or Fu. If K is a set
in R™, 8'(R”, K) is the space of tempered distributions in R” concentrated in K.

For Q C C" we denote by Oy the ring of functions holomorphic on Q. For A €
@Cn, V(A) denotes the set of zeros of the function A. If P is a polynomial in one
variable, deg P denotes its degree.

We define the norm for elements of a finite-dimensional linear space to be any of
the equivalent norms. For example, for polynomials of bounded degree the sum of the
moduli of the coefficients can be taken as norm.

If X and Y are two sets and h: X, > Y is amapping of X, CX into Y, XU Y
denotes the union X U Y in which the points x, € X, and hx; € Y are identified. If
X =Y, then XU, Y is denoted by X/h.

By a covering we mean a fibering in Serre’s sense with discrete fiber.

The author expresses profound gratitude to M. I. ViSik for posing the problem and

for valuable advice, and also to A. I. Snirel ‘'man for useful discussion.

$1. Boundary value problems in a quadrant of the plane
In this section we reduce the general boundary value problem itself in a quadrant

to an equivalent system of equations on a Riemann surface. Let K be the first quadrant
of the plane: K = R x R*. In K we consider a general boundary value problem of the
form

AD)u(x) =Ffx), x>0, x, >0,

Bi(D)u(x;, 0) =fi(x), x>0, (1.1

B,(D)u(0, xy) = f, (x5), x, >0.

Here A(D) is a scalar differential operator of order m and Bl(D), forI=1,2,isa

differential operator with constant vector coefficients:
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Bi(D)= (B} (D), - - - , B/' (D)), (1.2)

where the n, are natural numbers and the B{(D) are scalar operators of order m; We
assume that [ € Hs_m(K), where s — m > — Y. Suppose also that /l € ®,'H ; %(I_{+),

s-m]-

with s —m, -% >0, where m; = max}.m’l. We shall seek a solution u of problem (1.1)
in H (K).
Let us extend the function z to R? by setting it equal to zero on R2\K. Then

AD)u) =f'(x), xER?, (1.3)

where /' € 5'(1{2, K). Fourier transformation carries (1.3) into
AQu@) =T @, z€R. (1.4)
We shall assume that A(D) is a strongly elliptic operator, i.e. that for z € R?

|A@|>C (1 + )™ (15)

Under this condition # is uniquely detemmined by (1.4). Consequently, to find the
general solution of (1.1) it sufficies in this case to describe the image of the opera-
tor A(D): Hs(l—() > 8'(R%, K). We give such a description at once by using the Fourier
transform of /' and the complex characteristics of A(D).

We introduce the notation
gt = L D°A(0), df(z) =—DiAG,0) and al(z)=—DIA(, 2).
a! o! al
Then
A@ =3 a*(— 2" =T a} (&) (—iz)" = 3 af (z) (—iz)", (1.6)
a a a

or

AD) = 2 a®d® = 2 ay (D) 97 = E a$ (D,) 0. (1.7)
a a a

Let CK* be the tubular domain dual to K:
CK' = {z€C?|Imz, >0, Imz, > 0}. (1.8)

We denote by J*(A) the principal ideal A(Z)GCK' of the ring of functions holomorphic
in CK*. Now we are able completely to describe the space A(D)HS(K). We note that
f (2) is holomorphic in CK*.

Theorem L.1. (i). If s —m>% and ' € ADYH (K), then [ ' € T¥(A) and for
z € CK*
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FR= 3 a@deE(—i)"*
op<lasm (1.9)
Ak ~ aBel |~
- X FEE+ Y d@de) ) e,
oSkl m—2 oB<lasm
where [ € Hs_m(K), y’? € Hs—B—%(ﬁ+)’ the f’e are complex numbers and the following
compatibility conditions hold: there exist constants P e C, 0<|Bl <s ~1, satis-
fying the system of equations
fe= Z ab, 0L |k|<m—2,
G,—B-I=k

N @) =of, s—|p|>1, 0<py<m—1,
(1.10)

B0 =08, s—|Bp|>1, 0B, <m—1,
FO) = 3 a%h, s—m—|k|>1,
(l-ﬁ=k
where I =(1, 1).

(i1). Conversely, suppose [ 'e j*(A) and conditions (1.9) and (1.10) hold. If
A(D) is a strongly elliptic operator of order m and s is not an integer, then [' = A(D)u,
where u € HS(K). Here the functions 1/;3 are Cauchy data for u:

o) =hutr, 0, x>0, 0<p<m—1,
(1.11)
o (%) = B0, x,), x>0, 0<B<m—1,

and the constants v° are equal to the derivatives of u at the vertex of the quadrant:
vB=0fy (0). (1.12)
The function u is determined by (1.4); moreover
J B
lu], <C (\\f\\s_m + S0 [l gy, + DV ) (1.13)
1.6 k

Lemma 1.1. Let A(D) be a strongly elliptic operator of order m. Then the sys-
tem (1.10) of linear equations is solvable if and only if m - [s] linearly independent
orthogonality conditions hold on the constants fk and on the derivatives at zero of the
Junctions | and vf, 0<B<m=-1,1=1,2.

In consequence of Theorem 1.1 and Lemma 1.1, for a strongly elliptic operator
A(D) of order m the first equation of (1.1) is equivalent to the system of conditions
e @,
(1.14)
L;(f, 0v,(0), 0v,(0), f(0)) =0, 1 <Lj<mls],

where [’ is of the form (1.9) and the L]. are independent linear functionals. In (1.4)

we have used the notation
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f={ff|0L|k|<m—2},

90, (0) = {Fvl* O)[s—|B| >1, 0 <Py <m—1},
(1.15)
00, (0) = {0 (O)|s—|B| >1,0<PB, <m—1},
0f 0) = {f (O) |s —m — | k| >1}.

A one-to-one correspondence between solutions of the system (1.14) and the first equa-
tion of (1.1) is effected by (1.4).
From (1.11) it follows that besides the known function [ and the constants fk only

the Cauchy data for the solution u figure in the first condition of the system (1.14).
But the operator A(D) is elliptic and consequently does not have real characteristics.
Therefore all normal derivatives of z on the boundary of the quadrant can be expressed
in terms of the Cauchy data and the derivatives of f. We set uﬁ(xl) = 8 ”(xl’ 0) for

1 >0 and u'B(x )= a5 14(0, x,) for x,>0. Then, as in the Cauchy-Kowalewski theorem,

from the first equation of (1.11) for B Z m we obtain the recurrence relation

uf (1) = (a““"‘ (% 0) — 2 a(Dy) e (xl)) % > 0. (1.16)

l a=0

A similar relation also holds for the functions uf(xz).
From what has been said it follows that the boundary conditions for (1.1) can be

expressed in temms of the Cauchy data for the solution in the following way: for [ = 1, 2

S Pe@)f(x) =qi(x), x>0, (1.17)

oSBgm -1
where PI,B(DI) =(P, ﬁ(Dl)’ .. lnﬁl(D )) are differential operators with constant vector
coefficients belonging to C"! and ¢, is the sum of f, and the derivatives of { on the

boundary. For example, if m; <m — 1, then
P ) = 57 (DIB) @ O) (1.18)

and ¢, = ;. In the general case the symbols Pl,(i(zl) and functions ¢(x;) are com-

puted using the recurrence relations (1. 16).
Remark 1.1. (i) From (1.16) it follows that

> Pp@)(—iz) = B,(z) mod A () (1.19)
<P m-1
and similarly
S P (—iz) =B,() mod A (). (1.20)
oBCm—-1

(ii) If /=0, then ¢, = [, for I =1, 2.
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(ii1) The degree of the polynomial Pljﬁ does not exceed m; -B.

Applying the Fourier transformation to (1.17), we obtain

S Pt =@+ Y ewd, 2€C (1.21)

ohTm-1 ochSmy -1

for I =1, 2, where ¢,, € c"L

Finally, we note that the first condition in the system (1.14) is equivalent to the
equality ’/\J'(z) =0 on the complex characteristics of A(D) situated in CK*, provided
the polynomial A(z) is irreducible. Then we arrive at the following equivalent state-
ment of the boundary value problem (1.1). We denote by V¥(A) the part of the charac-
teristic A(z) =0 lying in CK*.

Theorem 1.2. Let A(D) be a strongly elliptic operator of order m and suppose its
symbol is irreducible. Then

(i). The boundary value problem (1.1) is equivalent to the following problem. Find
functions v’l6 € Hs-ﬁ—l/z(ﬁ+)’ I=1,2,zand0<B<m - 1, satisfying the system of equa-

tions

Fo= 3 d@dE@Eiz)""'— 3 F—id

oSh<asm oIl S<m-2
+ S @) (— )P T =0, zeV* (@A),
<B<asm

(1.22)
> P @)} @) = pu(e) + Pi@), z€CH1=1,2,
oSB<cm-1
Li (f» avl (O)’ avz (O)r af (0)) = 01 1 <] < m [S]’

where the //e are arbitrary constants and tbenPl are arbitrary polynomials of degree
not exceeding m; — 1, with coefficients in C'L.

(ii). A one-to-one correspondence between solutions of the problems (1.22) and
(1.1) is effected by the formula

A_(;); (1.23)

moreover the estimate (1.13) is valid.

Proof. If u is a solution of (1.1), then by virtue of (1.11) and (1.12) the functions
a_ﬁ_l=kaa6'6u(0) satisfy (1.22). Conversely, from the first
equation of (1.22) and the compatibility conditions L].(. ..) =0 it follows by Theorem

B

v =ulﬁ and constants [* =3,

1.1 and Lemma 1.1 that «, defined by formula (1.23), belongs to HS(K) and satisfies
the first equation of (1.1). But by (1,11) we have v28= u'IB Therefore, from the second
and third equations of (1.22) it follows that the boundary conditions of problem (1. 1)

are also satisfied. Theorem 1.2 is proved.
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$2. Reduction of the boundary value problem in a quadrant for a
second-order elliptic equation to an algebraic

equation with a shift

In $82-6 we shall fully investigate the boundary value problem (1. 1) for a second-

order strongly elliptic operator A(D) and scalar operators B (D) of arbitrary order m.
Thus we now consider the problem

AD)u(x)=fx), x>0, x,>0,
B (Dyu(x, 0) = fi(x)y %, >0, (2.1)
B, (D)u (0, x4) = fy (%), x>0,

in which [ € H,_,(K) and /, e H__ _, (R"), with s>3/2, s —m ~1>0 and s

nonintegral. There is a solution « in the space H (K). We set

%(S) (T() = HS"2 (T() @ HS‘”":“‘/: (—R‘F) @ HS—”‘:‘I/: (Ti+) (2.2)
Then (2.1) can be written briefly in the form
Au= ¢, (2.3)

where F € H(s)(K).
Since m = 2, strong ellipticity of the operator A(D) means that for z € R?
14@|>C (L + 2] (2.9

From (2.4) follows the irreducibility of A(z). In fact, if A(z) = A (2)A 2(z), where the
A [(z) are polynomials, then the A, are strongly elliptic and therefore have even degree,
equal to 0 or 2.

For brevity we denote v¥) by v* and v(4) by V. Since A(z) is irreducible,
from Theorem 1.2 it follows that problem (2.1) is equivalent to the following system

of algebraic equations:
T@) + 9 @) (@ @) —izg) + v @) e}
+ 08 (29) (@} (2) — i2@}) + Vi () @l — 0 = 0, zE V",
Py (2) V1 (2) + Py @) 9 (2) = @, (@) + P, @), z€CH, (2.5

Py, (2,) zi (2,) + Py (22)53 (@) = ?Pz (7)) + Py(2), 2,€CH,
L;(f*, 0v,(0), 0v,(0), 9f (0)) = 0, 1 <j<2]s]

Here the 2%, € H %(f—{+) and in correspondence with (1.15)

S=—mj|~-
v, (0) = (0P ()]s —|B| >1,By =0, 1},
00, (0) = {908 (0)|s —[B|>1,B,=- 0, 1), (2.6)
OF (0) — {4 (0) | s — 2 — | k| > 1}.

It is assumed that the u'l8 € Hs—ﬁ—%(ﬁ+)’ /% is an arbitrary constant and the P, are
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arbitrary polynomials of degree not exceeding m, — 1, with complex coefficients.
In view of statement (i) of Remark 1.1, for z € V
Py (2) (—izy) + Pyy(2)) = By (2)- (27

By virtue of (iii) of the same remark, deg P, <m, ~ 1 and deg P, <m,;. We now
note that for the a priori estimate

llllsve < C (u Fllsve—s -+ ST Naseomy oy, + 112 us) (2.8)

=12

to hold for at least one ¢ > 0 it is necessary that problem (2.1) satisfy the Sapiro-

Lopatinskii condition on the smooth parts of the boundary of the quadrant. For(2.1)

this condition on x, =0 is equivalent to

Bio(2) #0 (2.9)
for Ay(2) =0, 2z, € R\{0} and z, € C™, while on x; =0 it is equivalent to
Bao(2) =0 (2.10)

for Ay(z) =0, z, € R\{O} and z, € C™. Here B,, denotes the leading homo-
geneous part of degree m; of the polynomial B, and A, is the leading
homogeneous part of A. From (2.7) and (2.9} it follows that equality holds in at least
one of the relations deg P;; <m; ~ 1 and deg P, <m,. Suppose, for example,

deg Pio=m;. (2.11)
Let us also assume that

deg P20=m2. (2.12)

The cases when P, and P,, or P, and P,, have maximum degree are examined
similarly.

Thus, suppose (2.11) and (2.12) are satisfied. We eliminate the functions r;(l) from
the first three equations of (2.5). Then we obtain one equation in two unknown func-

tions:
S1@vi@) + S, @) i@ =g@), z€V" (2.13)
Here we have used the notation

1
Sy = — Py} (Pn(“——ai‘*‘ izz) +Plo).

1

o -

b

a,
S, = — Pyya; (le("

a

—+- izl> —+ on) R (2.14)

0o 19

\
g = PioPay (F— ) + Py (@1 — iz,a3) 51 b P (@ — iz a) 6;,

where qSl' = ¢, + P,. Note that alz #£0 for I =1, 2 in view of (2.4).
As an algebraic equation in the functions r;;, relation (2.13) is underdetermined.
But it can be raised to a well-posed problem if we take into account the fact that 'z\f;

is holomorphic in VI+ ={z eV|z € C*} and depends only on z,. The latter property
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. . . - ~a .
is expressed analytically as the invariance of v, with respect to the monodromy group

of the covering p;: V;( » C" effected by the coordinate function:
The monodromy group of the covering p; is isomorphic to Z,. In fact, its generator b,

transposes the roots of the equation A(z) = 0 with the same coordinates z,. Conse-

quently by Viéte’s formulas

/ at(z ’
hz = (zl,~i ‘(1)—22) (2.16)
2
\ 4
and similarly
@) (z2)
h = [ —i22 7 2, |. (2.17)
\ a

The monodromy group of p, acts transitively in its fibers; consequently (2.13) is

equivalent to the system

Si@0 @)+ S, (D00 = 9@, z2€V,
ojt @ =nuv@), zeV], (2.18)
() = 0,(2), 2EVL

under the assumption that vl(zl) € ﬁs-—}/ 2(f—{+). In (2.18) we have used the exponential
notation for the action of the automorphisms 5, in the space of functions on V;:
0} (2) = vi (2 (2-19)
To simplify the investigation of (2.18) we reduce the consideration of (2.1) to the
case f=0. For this we find a particular solution of the equation
ADyu, (x) =f(x), x>0, x,>0, (2.20)
belonging to HS(K). Since u, € HS(K), the boundary value problem (2.1) is equivalent
to
AD)u(x) =0, x>0, x, >0,
B, (DYu®(x;, 0) = fi (x)), %, >0, (2.21)

B, (D)t (0, %5) = f5(x3), %5 >0,

where 20 = u - u,, /(i(xl) = fl(xl) - BI(D)u+(xl, 0) and /g(xz) = fz(xz) - BZ(D)u+(O, xz).
Thus we may assume that {=0. In addition, in view of statement (ii) of Remark 1.1

8 = — PyPof’ + Py (a1 — izyay) f1+ Py (a: — iz,a3) 7:2 (2.22)
Let us find the general soluuon of (2.18) for such a function g. Fxrst we find func-
tions v;, meromorphic in V and satisfying (2.18) in the case / =0. Then we com-
pute the general solution v,; of the same system in the case /0 0 and f 1 =0 under
the assumption that u”(zl) + 1/21(2 ) € H 3/2(R ) for /=1, 2. Then the sum vyt
v,; =v, will be the general solution of (2.18). As we shall show in the remaining
part of this section, v,, and v,, are solutions of linear algebraic equations with a

shift on Riemann surfaces.
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First of all consider the case ’/\’2' = 0. Then
8 (@) = 81(2) = — PPy’ + Py (@ — izzai)’?; @) (2.23)

Obviously g, is analytic in V;. The function v, is meromorphic in VJlr by assump-
tion. Therefore, from the first equation of the system (2.18) it follows that S,v,, is

also meromorphic in V;. But from (2.14), the irreducibility of A(z) and the conditions
(2.11) and (2.12), by the Hilbert Nullstellensatz it follows that

S;==0 (2.24)

on V for /=1, 2. Consequently v,, can be continuedto a meromorphic function in

wh= V; U VI, and as before the equality
S$,@um @)+ S @) vy () = g1 (@), z€W, (2.25)
holds.
Let us apply the automorphism 5, to both sides of (2.25). Then in view of the

second equation of (2.18) we obtain
P, @)+ St @l = g @), zeVi. (2.26)
Taking account of (2.24) we find that under (2.23) the system (2. 18) is equivalent to
$,@) @+ S: @) v, @) = g (@), z€VI,
St @un @+ S (Ve = &' @, 26V, (2.27)

V@) = 0,(), 26 Vi
Eliminating v, from the first two equations of (2.27), we arrive at the equivalent
(via (2.24)) system

$1@v, @)+ S, @) v () = g, 26 Vi,
SM@) S, (@) v (@) — S1 @) S (D vi1@) = SM @) g @) — S (D) g @), zeVE,  (2.28)

@) =v,@), zeVi.

From the first equation of (2.18) we have deduced that 2% is meromorphic in
wt = V; U] V;. The second equation of this system has also been used to derive (2.26).
We now consider the third equation of (2.18), i.e. the invariance of Vi, with respect
to h2 in V;. We shall show that from this invariance it follows that v,, is meromor-
phic in the multisheeted region Wz =wt Uy h2W+, where h:: is the restriction of 4,
to V;. 2 _

The space Wz is a covering of W, = whu /72W+_1ith projection_p. We set W )=

+

P . i . ~ .
W_ Y _f_)zw*, where b;’ is the restriction of b, to V;. If i;: W > W, and iy

2
sz+ - W are the nawural imbeddings, then
—1 PrTa
iiyw, wei,Wt
po={" &h (2.29)
@, WeihW.
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Let };2 be a lifting of 5, to 17/2, i.e. an automorphism that makes the diagram

— hy —

~

s> W,

IR (2.30)
— hy
Wy— W,

commutative. Obviously b, is, like b,, an involution:

hy=1. (2.31)

We denote by 17;~t~l_1_e sheet of the covering Wz lying in ilW+ over V;. “The auto-
morphism b, carries VI into itself and therefore it can be lifted to 51 on lA/I In this
connection the diagram

— F
Vl bt V:
R 24 (2.32)
—_—y —
ViV

~

is commutative and bl is an involution:

~

hi= 1. (2.33)
Let 512 be a lifting of vy, to z‘lw+;
U1 (@) = 0y (P0),  WELW*. (2.34)

. . . ~ St .. . -
From the commutativity of (2.30) it follows that v, on V, is invariant with respect
to h,. Therefore 1'}1.2 can be continued to a meromorphic function on W,, invariant
with respect to b ,:

@) = on@), weW, (2.35)

Now we proceed to examine (2.28). Let us write its second equation in the form

Q1 (2)v12 (2) — il ‘U?Q @ =G, (»), zeV;. (2.36)
Obviously
Gi'@Q)=—G.(a), z€Vi. (2.37)
We now use (2.35) to reduce (2.36) to an algebraic equanon on W with shift b = b b
In §3 we shall show that for the fundamental domain H of the group generated by
b this equation is the Haseman problem [11] and by passage to the quotient space H /b it
can be reduced to the Riemann problem. In $4 we shall solve the latter problem in quadtatures.
Remark 2.1. Relation (2.36) itself is an equation with shift »,. But after identi-.
fying the boundary of V: by means of 5, a nonanalytic space is obtained, since
carries VJ{ into itself. Therefore (2.36) cannot be reduced to the Riemann problem by
the method of conformal identification. Equation (2.36) is called a one-sided Carleman

problem and it can be reduced to a Fredholm equation of the first kind [11].
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Let us lift equation (2.36) to W,. Let O, be a lifting of Q; to W, and G, a
lifting of G, to \A/; Taking account of (2.35), we transform (2.36) into

Q@) v (@) — Q@) 05 @) = G (©), wEVS, (2.38)

where b = 52/;1. In (2.38) we have used the commutativity of (2.32).

Obviously the system of equations (2.38) and (2.35) is equivalent to the last two
equations in (2.28). Solving (2.38) and (2.35) simultaneously, we then detemmine v,
from the first equation of (2.28), since S, #0 on V.

We shall show that in fact (2.35) ‘‘follows’’ from the structure of (2.38).

A - ~h, . .
Theorem 2.} If the function 0, satisfies (2.38), then 1,2 is also a solution of
. ~ ~h .
this equation, and the function Vi(0, + v, 2) satisfies (2.38) as well as (2.35).

Proof. In view of (2.31), (2.33) and (2.37), for w € 17+
Q, (@) of* () — Qi ()01 h0) =y (0) 2, (i) — 0 (y0) 5 )~ —T, () — ().
(2.39)

Thus it suffices to find a solution of (2.38) meromorphic in W. Hence the con-
sideration of (2 18) in the case f; =0 under the assumption that the v, are mero-
morphic in Vl has brought us to the linear algebraic equation (2.38) with shift b on
the Riemann surface W . Since in the case fl =0 we shall seek a solution v,, of
are also

(2.18) under the assumptlon that TR v € H (R ), the functions v

s~3/2 21
meromorphic in Vl. Consequently v, sansfies a linear equation with a shift similar

to (2.38) on the corresponding Riemann surface ﬁ/l.

$3. Reduction of a linear algebraic equation with a shift
to the Riemann conjugation problem
To solve equation (2.38) it is necessary to inquire into the topology of the space
ﬁlz and the action of the automorphism b on W

. 4
We first consider the algebraic curve V. The covering V;r S

C* can be extended
to a covering V 5! C in accordance with formula (2.15). Let V be the projectiviza-
tion of the affine algebraic curve V. Then the covering can in tumn be extended to a
covering v slepl, ‘Obviously the last covering is two-sheeted and has two double
branch points zl' and Zl"' These points are distinct, since A(2) is irreducible. They
are not real (because A(z) is strongly elliptic) and consequently finite. The mono-
dromy groups of the coverings Vl+ %c and V & CP! are isomorphic (and isomorphic

to Zz)‘ Their ‘‘common’’ generator hl acts according to formulas (2.16) and (2.17).

Lemma 3.1. (i) The projective algebraic curve Vis birationally equivalent to
CPl. The equivalence is given by a mapping x: CP! 5V in accordance with the

formulas

— P () = m,( x+-L) o, 11,2 (3.1)
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The inverse mapping has the form

A=19@) = a2+ a2, + a, (3.2)
(ii) The automorphisms hl go into b}k = ‘M’[X under this equivalence:
* 1
A= — (3.3)
07

(ii1). The mapping ¥ establishes a holomorphic equivalence of the affine algebraic

curve V with the Riemann surface C\{0}.

Proof. By means of the affine transformation
z2=cf+d (3.4)
the polynomial A(z) is brought into the form
A Q) =5+ L+ b, (3.5)
where bo # 0. In fact, the quadratic form occurring in A(z) can be reduced to a sum of
squares by a nonsingular linear transformation. The form is nondegenerate by virtue of

the strong ellipticity of A, since the polynomial

9

Gzl az, b | (3.6)

can have real roots in z, for any él and arbitrarily small complex ¢. In consequence
of the nondegeneracy of the quadratic form, the linear temms in the symbol disappear
under a suitable shift. Furthermore, from the irreducibility of A(z) follows the irreduci-
bility of Al(é); therefore bo £0.

Thus the surface V is the graph of the root él = \/.—-sz - bg of AI(Q. Therefore
it is a double covering of CP! with projection g,: ¢ ¢, and double branch points
tib,. Now it is easy to establish a homeomorphism i of the covering g, with the
double covering j: CP! 5 CP! effected by Zukov’'s function

Cza‘i(k):’-b—“(k +1). (3.7)
2 A
In fact j (as well as g,) branch at 1ib,; consequently there exists a homeomorphism

: V 5 CP! for which the diagram

V-3 cpt
aN (3.8)
cp?

is commutative. Except for qzl(iibo) and j~ K 1ib;) the local coordinates of both
covering spaces are obviously equivalent to CZ’ and at the exceptional points they are
equivalent to \/'Cz F1b,. Consequently ¥ is a holomorphic equivalence.

Let us find formulas for the mapping x = l/l-l. Since éz =j(AN) = ibo(/\ + 1/N/2,
it follows that
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) T2 =44
To define X uniquely, let x(i) = (iby, 0). Then
,:%(x—%). (3.10)
From (3.7) and (3.10) it follows that
NS el T (3.11)

by

Thus the birational equivalence of V and CP! is established. In addition, from (3.11)
and the invertibility of the substitution (3.4) follows (3.2).
From (3.4), by virtue of (3.7) and (3.10), we obtain

z:cC+d::clk+%+d. (3.12)

The covering p;X is two-sheeted; therefore the vectors c¢; and c, have nonzero com-
ponents and consequently (3.12) can be transformed into the form (3.1).
To prove formula (3.3) we note that the automorphism b’; permutes the roots of the

equation

2=y (917\, -+ %) + oy, (3.13)
l

Consequently by Viéte’s formulas

P W (3. 14)
o
Lemma 3.1 is proved.
Now let us consider the space W'. For convenience we identify V with CP! by
means of the birational equivalence ). Thus b, is identified with h;‘. We introduce

the notation

I =pROVE, TF=pROVE (3.15)
Evidently
mET =17 (3.16)

for [ =1, 2. From the strong ellipticity of A(z) it follows that Fli are smooth con-
nected curves. Let ') = l_‘; ul).

Lemma 3.2. (i) For [ =1, 2 the curves let join the points 0 and o in CP!
and do not intersect.
(ii) For I =1, 2 the curves 1", are smooth and intersect transversally at. the

points 0 and .
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Figure 2

(iii) The branch points of the covering p, lie on different sides of the real axis.

Proof. From (3.15) it follows that
T, = pi'RPL. (3.17)

Since the branch points of p; are finite and not real, F are smooth curves. Each of
the curves Fl passes through 0 and « and has at most two connected components.
But from the strong ellipticity of A(z) it follows that the curves F and r‘ cannot
intersect at any points different from 0 and « and cannot be tangent at these inter-
section points. This is possible only if they are connected. In this case the points

0 and « split Fl into two nonintersecting curves Fl’ which proves (i). Assertion
(ii) has already been proved, and (iii) follows from the connectedness of F and for-
mula (3.1). The lemma is proved.

Now we can reduce equation (2.38) to Riemann’s conjugation problem. From (3. }6)

it follows that for h = h,h,

hTE C VY. (3.18)

Therefore
AT O TF = O (3.19)

Next, by virtue of (3.3)

hr =07, (3.20)
where § = 6,/6,. From (ii) of Lemma 3.2 and from (3.18) it follows that

arg 0<0. (3.21)
In addition, it is possible to assume that

|arg 8] <. (3.22)

Equality (3.20) means that hI'] as well as I'T join 0 and ~. ‘But, in view of (i) of
Lemma 3.2 rhe space W2 is contracuble. We denote by ﬂl the regxon in W included
between Fl and bFl, where Fl is the counterimage of I'T in le . Then equation

(2.38) is equivalent to the following

Q@) 05 (@) — Q@) oh @) - P @), wel, (3.23)
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under the assumption that 1712 is meromorphic in II,. Here

9@ =Gw+ 3 Gd” (hw —wy), (3.24)

o<<p<pk

where the w, are the poles of U, on l;lc"l' of orders ﬁk. The boundary values of the
function 0, on f‘; and ;FI are regarded as the limiting values approaching from
within [1, in the space 9'(011)).

Let us state the equivalence of problems (2.38) and (3.23) more precisely.

Theorem 3.1. (i) Every solution of equation (3.23) can be extended to a meromor-
phic function in ﬁlz and satisfies equation (2.38).

(i) If 512 has a finite fet of poles in ﬁl and the sum in (3.24) is finite, then 1712
has a finite set of poles in W,.

. + o . .
Proof. Since W' and W, are simply connected by virtue of Lemma 3.2, we can
identify W, with a region on the universal covering surface V of the curve V. From

(iii) of Lemma 3.1 it follows that the universal covering for V is the complex plane

C, and
w=In\ (3.25)

can be taken as uniformizing parameter on V. The automorphisms 52 and /;1 can be
extended from W and O;, respectively, to automorphisms of V~(, and by virtue of
(3.3) they act according to the formulas
ho = —w + 2w, (3.26)
where w, = In 0, is a fixed point of h,. Obviously w, € V] and
pip2; = 21, (3.27)
where zl' is the branch point of the covering p; lying in C*. This follows from the
fact that w,; is a fixed point of Z,—it lies over the fixed point of b,.
Let f‘li be the counterimages of F[t in i1W+. From (i) and (ii) of Lemma 3.2 it
follows that fli are smooth curves in the complex plane having asymptotes parallel
to the real axis. Since h’!:/; = VZ and i)\llﬁ‘;‘rz f‘lt , by (3.206) \A/; is centrally symmetric
with respect to w,; and I'; and Fl- are centrally symmetric to each other with respect

to w,. Similarly W, is centrally symmetric with respect to w:
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Imw

0 Re w
Figure 3
From (3.26) it follows that
hw — w4+ 2w, (3.28)
where wy =w, —w, =1In 6. From (3.21) and (3.22) it follows that
0 < |Imw,|< m. (3.29)

~

Consequently II, is the fundamental domain of the group of translations of the complex
plane generated by h. Since f‘; and l;f‘; lie in f/;, the regions \7: and fll lie on
one side of I'7. Consequently _
= U 0 R, (3.30)
Now we can prove Theorem 3.1 Obviously it suffices to demonstrate that if 7,
has a finite set of poles in H1 and the sum in (3.24) is finite, then 1')12 can be ex-
tended to a meromorphic function in \7: and has a finite set of poles there. In fact
al(w) is holomorphic in \A/I by (2.23) and (2.28). Therefore if 1712 is meromorphic in
VT, then from (3.23), using the principle of analytic continuation by continuity, we ob-
tain that 1312 can be continued across f";r to a meromorphic function in ﬁl v };f/; = ﬁ’z.
Finiteness of the set of poles of 1712 in W2 follows from the birational equivalence of
V and CP! and from (2.24), and (2.38) follows from the uniqueness of analytic con-
tinuation.
Finally, we show by induction that 1712 can be extended to a meromorphic func-
tion in each domain
Via= U_(Vin ki) (3.31)
with n > 0 and has a finite set of poles there. For n =0 the assertion follows directly

from the hypothesis. Let us assume that it is true for some 7n > 0. We shall show that

RV N R V. (3.32)
In fact

RV N R VY, (3.33)

. . o+ . R T e ~+
since otherwise we would have w' € Vv, for some point w' e 1258 h" lﬂl, while = 1w’ ¢ Vi



ELLIPTIC BOUNDARY VALUE PROBLEMS 109

But b~ 'w' € g"ﬁ for n> 0. Consequently w' and 5~ 'w' lie on one side of f;

and on different 81des of Fl. But b~ l1es on one side of Fl, since
DY m I = ¢ (3.34)

by (3.19), and h 1f‘; lies on the same side of f‘: as f‘l— From (3.33), evidently,
follows (3.32).
Now we can define 7, in \7; nh"+1H1 by the relation

0 (@) 0 @) — O @) @) = Gy (), we R (PF N R (3.35)

In \7+ﬁ 5"+1ﬁ the function v,, is meromorphic by (2.24) and has a finite number of
poles there. We show that vlz is meromorphic and has a finite set of poles in V1 nalt
In fact the intersection of the boundaries of the regions h"+1H and Vl is equal to
b"r" N Vl' Assume that » > 0. Then from (3.23) and the uniqueness of analytic con-

tinuation we obtain that

0, @) 0p0)— O @) V@) =Gu@) + 3] Gi'8” (w—wk™), hweh Ty NV,
op<p1

(3.36)

pn=-1

where the w”~ ! are the poles of vu on A"~ 11—" of orders p

k
ues of 1')12 are regarded as the limiting values from within h" Hl in the space
D’ (a(h"l'[ )) Therefore from (3.35) it follows that the difference of the traces of v

as h” r‘ al V is approached from different sides is equal to a sum of &-functions and

. The boundary val-

their denvanves. This sum is finite by the inductive assumption. In consequence of

.o . . . S A . Spfhe S
the principle of analytic continuation by continuity, v, is meromorphic on A"I'T NV,

and has a finite set of poles there. In the case n =0 tlzle proof is completed analogously.
Theorem 3.1 is proved.

Problem (3.23) is a Haseman conjugation problem for meromorphic functions on
fll with translation 5 (see [11]). It is equivalent to a Riemann conjugation problem for
meromosphic functions on the surface fll = fll/i; along the contour f"l' = f“'f Us l;f‘;
We denote the quotient mapping II, - II;, by ®,. Let #,,(¢) be the image of the func-

tion ﬁlz(w) on fll:

Ui () = 0y (@7, £ETL,\TT. (3.37)
We orient f‘; consistently with fll, i.e. ﬁl is on the left when moving along f‘; Then
the contour f‘l = (I)lle‘f is also oriented. For the function 7 defined on ﬁl\f‘l_ we
shall denote by 7% the limiting values of ¥ as f‘; is approached from the left and

from the right,‘respectively, in the space 9 '(f‘;). Then it is possible to write problem
(3.23) in the form

QO —Q O = G, (t), tely. (3.38)

+ . ~ ~ g . .
Here Q(t) are the values of the functions Q, and Q1, respectively, at the point
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w=07 lvt NI'7T, and g 1(8) is the “*value’’ of gl at the same point. In other words,
for t € I'T

Q* () = Q (@7,
QO = Q@) (3.39)
%) = G, (@),

where the branch with values in I'] is taken for ®7 1.

$4. Solution of the Riemann conjugation problem for
meromorphic functions on a Riemann surface

As in the classical scheme for solving the Riemann problem (see [11]) we first

find a nonzero solution T,(t) of the homogeneous problem
UOT:O—Q O T, () =0, tely, (4.1

corresponding to (3.38), meromorphic in II;. Then we obtain ¥, as a solution of the

saltus problem
%. o
012 j (t) 012 (t) _ ?1*-( ) , t E Fl . (4. 2)
y Q,T,) ()
The problem of factoring (4.1) also reduces by a standard method (taking the logarithm)

to the saltus problem.

First of all we consider the problem of factoring (4. 1):
L0 GO
T,(0  Q®

=R, (1), teTy. (4.3)

From (2.28) it follows that R (¢) is a lifting to I'7 of the function

RI(Z):( ) (z)( )(z) (4.4)

which is rational on V. In view of (2.24) this function is not identically zero on V.
For further analysis of problem (2.1) it is necessary to use its nondegeneracy, i.e.
the §apiro-LopatinskiI condition. Obviously (2.9) and (2.10) are equivalent to the

estimates
[Bi@|>C|z|", 26Ty, |2]>C, (4.5)

where C is a constant. By Lemma 3.1 the mapping ¥ is a birational equivalence of
V and CP!, and by virtue of Lemma 3.2 the curves I’/ join the points 0 and e.
Therefore from (4.5) and (3. ¥) it follows that the rational function Bl(x()\)) has poles
of the same order m; at 0 and . But from (2.14), (2.16) and (2.7) it follows that

S, = — P, aiBi. (4.6)
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Similarly
Sy = — P, aiBi. (4.7)

b
Taking (3.3) into account, we find that the functions S()(A)) and § 1()(()0) have poles
of the same order at 0 and o, equal to my +m, . Therefore Rl(x()\)) is regular and
different from zero at 0 and «, and
R, (X(0)) = (4.8)
OV =g (x( Ry (1 (o))
by (3.3) and (4.4).

Next, the surface ﬁl is holomorphically equivalent to the Riemann sphere less

two points. In fact the mapping
w>t=e¢ (4.9

carrying fI* into C\{0} is by definition equivalent to the quotient mapping ®,: f]l - fll.
This means that there exists a holomophic equivalence H: fll » C\{0} under which the
diagram
Q;/HI\J (4‘10)
Hl ———)C \0

is commutative. The linear-fractional function 7 1 t=(r - 1)/(r+ 1) transforms C\{0}

into CP'\{~1, 1}. Therefore the mapping

Qo m% .
w—t =% =T itann-2_ (4.11)
ni% Wy
e 41

is also holomorphically equivalent to ®,. We identify ﬁl with CP1\{~1, 1}, using the
holomorphic equivalence 92 o H. Then ®, is identified with. @ 0 J, and f‘; becomes

a contour in CP! joining the points —~1 and 1:

I, =CP\{-1.7}
Figure 4
Equality (4.8) passes into the relation
Ri(—1=——. (4.12)
Ri{+1)

Let us now prove the following factorization theorem.
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Theorem 4.1. (i) There exists a nonzero meromorphic function T,(t) in lzll\f‘;,
analytic up to f'; as IV“I' is approached from both sides,whose limiting values satisfy
the relation

T ()

2 — R, tely. (4.13)
TS (¢)

(i). The function %z(w) =T, lifted to ﬁl—can be extented to a meromorphic
function on V and bas a finite number of zeros and poles in ﬁ’z.

(iii) As ¢ € I,\I'] approaches I'5 from either side the function T (t) exhibits the asympto-
tic behavior

T,O)~¢F D" S Tep¢F VIne¢=F1), -1, (4.14)
OS%E\<ARe6
where 0 <Rep, <1 and A= 'k + /2| ky j € N} with Rev™ >0 and in addition
To:<=0. (4.15)

(iv) A factorization with properties (i)—(iii) is unique up to a nonzero constant
factor.

~

(v) The function T(w) is invariant with respect to h, up to sign:
)= +T@, wel. (4.16)

Proof. We introduce the function 3(f)—an arbitrary branch, meromorphic in

CPI\FI, of the function inverse to Zukov’s function:

=0+ k)

Evidently 3(t) is a holomorphism of CPl\f'; and of the contractible region in CP!
with boundary l—'{ = 3+(l—‘1') - 3"(f‘;) not passing through 0 or . By Viéte’s theorem

FOr@=1, telr (4.18)
Consequently
Vararg § = =+ 2m. (4.19)
v

1

Let t_ be the initial and ¢, the teminal point of the contour f‘; Clearly {t_, t,i=
{1, - 1}. For definiteness we shall assume that 3(x) =.0c. Then by (4.18) and (4.19)

Vararg3* () = ¥ =« (4.20)
Ma

1

in the case when ¢, = t1. We define a function &(2) in CPl\f'; by
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2 —1
= 4.21
& (f) = exp (2ml 70 ) . (4.21)

We let I_ =1n Rl(t_) and require that 0 <Im /_ < 27. From (4.20) and the condition
3(o0) = oo it follows that &t) is analytic and the function

&
Ry () = %‘g R, () (4.22)
satisfies the relation
Rl]_(—'l):Rll(‘I‘ 1): l (4-23)

by virtue of (4.12).
Now we ‘'unwind’’ the symbol R, ,(¢). We denote by I'T a contour in CP! that
joins —1 with 1 and lies in a sufficiently small neighborhood of l!‘; In addition,

I'] goes around the zeros of fel lying on I'T to the left and around the poles to the

right. Let
Xy = %ng arg Ry, (f). (4.24)
Then the function
Ry () = ( f(’t)) ) Ru () (4.25)

has zero change of argument along I'T by (4.20), and consequently has a logarithm on
I’ that is analytic and equal to zero at the ends. Therefore we obtain a factorization

of R;,(¢) from a solution of the saltus problem

InTy () — InT, () = In R, (), €T (4.26)
By the Sohockii-Plemelj formulas it is possible to set
1 In Ry (£ ,,
InT,(t) = — \ —2——dt .
o) 2ni5 t—t (4.27)
-

1

~

for t € ﬁl\f'{ “The function To(t) is holomorphic on Hl\f‘; up to ﬁ; by virtue of
the special choice of branch for In R, (2).

Let

T,)=T (t) . (4.28)
”z
(t)

Evidently T, satisfies (i) of Theorem 4.1. Furthermore, assertion (ii) is the multiplic-
ative analog of Theorem 3.1.

Let us determine the asymptotic behavior of T,(¢) as t-» f1. As already noted,

the rational function R,(x(A)) is regular at zero and at infinity. Consequently
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RO ~ SIRER™:, A% 0, (4.29)
o<k
Let v =w, /mi. Then
A=w~@¢FDTINAFF D, (- +1, (4.30)
0<f
for t € I'T by (4.9) and (4.11). Hence
Ry~ 3 RECF1™, 1~ + 1. (4.3D)
o<k, j
In (4.31) we have used the notation
v { v, Rev2>0, (4.32)
—wv, Re v<0.
From (4.22), (4.25), (4.17) and (4.21) it is now easy to obtain the asymptotic formula
R~ S rs@= 1™k s 1. (4.33)
oCh,j

Correspondingly for In R,,(t) we have

R, ()~ S| LEEF 1) 1 11, (4.34)

0k
o<kyj

Substituting (4.34) in (4.27) and integrating term by term we obtain that for ¢ € fll\l!‘;

InTy) ~ Nl ¢F V¢ F 1) + 3 mi ™" 121, (435

1<k 0Ch,j
Exponentiating (4.35) and taking account of (4.28), (4.17) and (4.21), we obtain the re-
quired asymptotic formula (4.14). Here

Py ===, Too ~ €Xp M. (4.36)

Finally, (iv) follows from the principle of analytic continuation by continuity and
the theorem on a removable singularity. Assertion (v) is the multiplicative analog of
Theorem 2.1 and can be proved using (iv) and the fact that };2 is an involution. The-
orem 4.1 is proved.

Let us retumn to equation (3.38). From (4.3) it follows that it is equivalent to

- + v - >
) g — ﬂz_) - S0, tely, (4.37)
() 0 (3] 0=pt g0 e

2

where an arbitrary solution of

ATX ()= 9,0, ey, (4.38)

in the space fD'(f"{) stands on the right side.
Remark 4.1. Let 0, and ©, be any two solutions of (2.38). Then
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An

vy — vy = T, M, (4.39)

where ﬁl is meromorphic on ﬁ/ The function M on ﬁ is a Iifting of a function M

meromorphic on ﬁl In fact let v2 and vé’ be the images of v, and 5;’ on II;. Then

from (4.37) it follows that (v2 - 17" )/T is meromosphic on ﬁl. Now it remains to
use (ii). of Theorem 4.1.

Since we are free in choosing the constants G, in (3.24), we set them equal to
zero. Then 91 = G, and by the Sohockii-Plemelj formulas the solution of (4.37) is an
integral of Cauchy type

v

G,
% p. i (t')
et (t)jig AT ar. (4.40)
T C2mi _———7—:—
r

At points within the contour I'T this integral is regularized in the sense of gen-
eralized functions, and in the neighborhood of the points f1 it converges absolutely
in the Lebesgue sense. To prove absolute convergence of the integral in (4.40) in the

neighborhood of the points *1 it is essential that s > 3/2 and Re py <L

$5. Investigation of the general solution of the system (2.18)

From Theorem 3.1 it follows that the function ﬁzll(w) = 13{2((1)10) can be extended
from ﬁl to a function 1’)1'2(11/) meromorphic in Wz' But by Theorem 2.1 the function

- 1 ~- Ar A

Uy (@) = 5 (V12 (@) + vy (hyw)) (5.1

is a solution of the system of equations (2.38) and (2.35). Consequently the function
U (d) = v (p7%2), zEWH, (5.2)

satisfies the last two equations of (2.28) if the branch with values in i1W+ is taken
for p~ 1 Thus we satisfy (2.28) if we let

Ui (2) = &0 -Sszé)Z) U1z @) , 26 VI. (5.3)
1

Hence we have found a particular solution (v,;, v,,) of (2.18) for the case / =0,
' . . A +
{5 =0 under the assumption that v, is meromorphic in V;.

Completely analogously we determine the general solution (v, ,, v,,) of this
System for the case =0, f and fl' =0 under the assumption that v, + v,; €
HS 3/2(R ), { =1, 2. In fact from (4.40), assertion (ii) of Theorem 3.1, assertion (ii)
of Theorem 4.1 and the special choice of the constants in (3.24) it follows that vy
has a finite set of poles in W*. Therefore from (5.3) and (2.24) it follows that vy,
has a finite number of poles in Vl' Now from the assumption that v, + v,; €
HS 3/2(R ) it evidently follows that v,, is meromorphic and has a finite number of
poles in V. Consequently to determine the functions v,; we can apply the methods

used above to find the functions vy
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In the first place we see that v, ,, like v} 5y is meromorphic in W* and has a
finite number of poles there. Hence we immediately obtain an important corollary.
Namely, from (5.3) it follows that the first component v, of the general solution of
(2.18) in the case [ =0 has the form

&1 S, (2
U= Uy = 2= — —— U1, (2) + 0y (3). 5.4
1 1t U 5,0 5.0 12(0) + 02 () (5.4
Using (2.23) and (4.6) we obtain that, modulo meromorphic functions on V:\F;,
al —iza® -
v, = ——_1_.2__,1_1]’1 (5.5)
a8y
But by virtue of the strong ellipticity of A(z)
a; — iz,a <=0 (5.6)
for z € F;, since otherwise

Az,0)= A(2) + iz, (@3 — iz,07) = 0 (5.7)

for real z;. Consequently, in order that problem (2.1) be Noetherian it is necessary

that
B (@0 (5.8)

for z € F;. In fact, by (5.5) only in this case will the function v,(2,) be locally sum-
mable on the real axis when a finite number of orthogonality conditions hold for f, and

{5+ From (3.16) it follows that (5.8) is equivalent to the condition

B (90, z¢TIy. (5.9)
Now we can formulate the definition of strong ellipticity for problem (2. 1).
Definition 5.1. The boundary value probelm (2.1) in a quadrant is called strongly
elliptic if

|Bi@)|>C(l +[2)™, zeTy, (5.10)

for =1, 2.

By virtue of (4.5), from the arguments presented above it follows that strong el-
lipticity of problem (2.1) is necessary in order that it be Noetherian in conjunction with
the a priori estimate (2.8). In this and the following sections we shall show that, con-
versely, under condition (5.10) the problem .(2.1) is Noetherian and its solution satis-
fies (2.8) for all s (except a locally finite set) with € >0 depending on s. For this
we find the general form of the solution (vu, 022) of the system (2.18) in the case

fO =0 and /{ = 0. In this connection
g = g2 = Pyy (@ — i) fu. (511

We trace briefly and with obvious changes in notation the reasoning of $52-4

. ~ g . + ot ~ .
adapted to this case. Let v,; be a lifting of v,; from V; to V. Then v, is mero-
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morphic on ﬁ/l and satisfies an algebraic equation with a shift of the type in (2.38). The
function 521 is a lifting of the solution of the conjugation problem of type (3.38) for the
meromorphic function ¥,,. If @2 = G,, then aparticular solution 1)’2'1 of this conjuga-

tion problem is given by an integral of the type (4.40):

dt’. (5.12)

1
2mi

) v —t

Here F is a contour in H ~ CP\{-1, 1} Jommg 1 with —1. Let 1121 denote a lifting
of vlz to H By Theorem 3 1 the function v“ is meromorphic on Wl, has a finite num-
ber of poles there and satisfies the same algebraic equation with a shift as vn. As

shown in Theorem 2.1, the function
~x 1 ~- ~r ~ .
Va1 (@) = Y (V21 (@) + vy (MyW)) (5.13)
also satisfies this equation. In consequence of Remark 4.1
621 = 2’:1 + T1$-§?, (5.14)

where Ml is a lifting to II, of the function I meromorphic in II,.
. ~%k . . . . T . . ~
The function v, is invariant with respect to h,. Therefore the invariance of v,

with respect to b, is equivalent to
R (@) = + M), weW,, (5.15)

by virtue of (4.16). The sign in (5.15) coincides with the sign in (4.16).
In addition, the singularities of ¥, and 17’;1 on Wl are known. Therefore the
singularities of %19)1 are also known: for each point w € WI an integer p_ is assigned

such that

T (') = S @ —w)f (5.16)

—};wg k

in a neighborhood of w. Let ‘?w denote the multiplicity of the zero of ';‘1 at w. Then
from (5.16) it follows that  has apole at w of order no higher than § + z?w. Let
q,=b,+d, for t =0, w, with w € ﬁz\f‘z-’ Then M has apoleat ¢ € flz of order no
higher than ¢,. Since 1')21 and 17;‘1 have a gﬂitf set of polés on Wl, the integer [?w is
positive only for a finite set of points w € HZ\F;' Moreover, analyzing the proof of
Theorem 3.1 it is easy to see that ﬁw depends only on the symbols A, B, and B,. In
addition

D Po< oo, (5.17)

wE@l
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Next, from (ii) of Theorem 4.} it follows that 2’w >0 only for a finite set of points
w € W,. Therefore the set of ¢ € H2 for which ¢,> 0 is finite. Below we shall show
that from the assumption v, +v,, € Hs_3/2(ﬁ+) follows the regularity of It at the

points *1. Thus we arrive at the following assertion.

Lemma 5.1, (i) The integer q, depends only on the symbols A, B, and B,, and

> e oo (5.18)

tell,

(ii) The function M belongs to the finite-dimensional space of rational functions
on CP' with poles of order q, at t € CP. The dimension of this space is
d= Mg+l (5.19)
t€1I2
We have already proved (i), and l is holomorphic at *1 because I is square sum-
mable in the neighborhood of these points. To prove this we study the functions v,

* . . +
and v,,. We first prove two important lemmas. Let yg = Rep, and V) =Rev’.

Lemma 5.2. (i). The function 1‘)’;1(:) is meromorphic in CP 1\1:‘; and has a finite
set of poles there; in the neighborbood of the contour f‘; in CP! it admits the estimate
[0 () [ < Como ¢, TY) (5.20)
with constants C and o, where p is distance in CP!.
(ii) Suppose s is not an integer and is different from 1 +(ug + /A0 fork=1,2,+--.

Then in the neighborhood of the points 1 there exists a finite expansion

v v Ya o118 —
V12 () = 0o (6) + 2 vps(t F1)Ino(t 1), (5.21)
BEA N, Red v0(s-1)
o< p<CRed+1
where 50' is square summable in the neighborhood of t1 with weight |t2 - 1|-2VO(S" D=-14
on any smooth arc y in CPI\F; passing through 1 or -1, and

A, = AU A+ py) (5.22)
(iii) If the curve y passes through 1 or -1, is sufficiently short and belongs to
an arbitrary bounded set in C: ({o, 11, CPY), then

Cloe@ P2 — 1 ™02 dt | <C (U fulpyyy, + 1P 1D (5.23)

+ . . .
and the constants ﬁt;s also admit this estimate.

Proof. We apply the Euler substitution |# 71| = " in the neighborhood of the
points t1 on the contours y and f‘l' Then the operator (4.40) is transformed into a
pseudodifferential operator on the line. Its symbol, computed in the coordinate 7, can
be studied by the methods of [15]. Namely, this symbol admits the expansion described
in Lemma 4.1 of [15]. Therefore the arguments of $5 of [15] and Theorem A.1 of the
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Appendix of this paper yield the required expansion (5.21). The parameter s occurring
in the statement of Lemma 5.1 of [15] is equal to zero in our case, and the parameter
h equals vo(s —-1) - yg. Consequently the restriction b £#0; 1, 2, -+ of [15] is equiv-
alent to the inequalities s # 1 + (#g RO, E=0,1,-0-.

Lemma 5.3. (i) The function G, is holomorphic in VI and admits the estimate
|G, (\)| < Co~@ (A, 0V7) (5.24)

with constants C and a, where p is distance in CP1~ V.

(ii) If s is not an integer, then G, admits a finite expansion

GV =Gy (M) + S G~ (5.25)

2(Mytmy)—s+1KhK2 (Mmy+my)

in the neighborhood of the points 0! in V;, where G, is square summable in the
neighborhood of 0% with weight A*($=3/2=2tmismMNF 1 op 4ny smooth arc y in
V: passing through 0 or oo, and k is an integer.

(iii). If the curve y passes through 0 or o, is sufficiently short and belongs to an
arbitrary bounded set in C?‘; (fo, 11, \_/;), then

[1G @y plasseleeemd =0 < Cf Ly, PP (5.26)

v

and the constants G’f also admit this estimate.

Proof. Recall that Gl(z) = S’;I(z)gl(z) - Sl(z)g}; 1(z). The expansion (5.25) fol-
lows from Theorem A.l and from (2.23). The estimate (5.24) is trivial and (5.26) fol-
lows from properties of an intergral of Cauchy type, as in Lemma 5.2.

Now we can completely describe the properties of the functions v ,.

Theorem 5.1. (i) The function v,. is meromorphic in W', has a [inite set of poles

there and admits the estimate

12

M= AU A+ py) -27)
in the neighborbood of the points A =0 il, with constants C and Q.
(ii) If s is not an integer and is different from 1 + (yg + R/ k=0,1,2,0--,

then there exists a finite expansion

MW =00+ X vsA*lneh (5.28)
8€A2,Red<s—1
0<p<p(152

in the neighborbood of A = 0* 1 where v, is square summable in the neighborhood of
A=0%1 with weight AFAs=3/DPFL o any smooth arc y in w* passing through
0 or oo, p%z and p are integers, and

Az,__(k 4 i)u<k +L+_+_ (”_2)“), E=0,1,2, -, (5.29)

2v+ 2v v
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where (pz/v)+is defined analogously to (4.32).
(iid). If the curve y is sufficiently short, belongs to an arbitrary bounded set in
ct (o, 11, W") and passes through 0 or o, then

Nlog W BIAT dAF | < C (Ifu sy, 1P 1PD (5.30)

v

+ . : .
and the constants Vys also satisfy this estimate.

Proof. For the function v{z in fIl outside a neighborhood of i;f‘; the estimate
(5.27), expansion (5.28) and estimate (5.30) follow from Lemmas 5.2 and 5.3 and from
(5.10). In a neighborhood of i;qu and in Wz\ﬁl the assertions (5.27)—(5.30) are easy
to prove by analyzing the proof of Theorem 3.1. All of these assertions are carried over
to vy, using (5.1).

Let us now complete the proof of Lemma 5.1. Let y be a short arc in flz\f‘;
issuing from the point *1. We assert that ¢, and 1'/:1 are square summable on y with
weight |12 —1]7#1dt. This is easy to prove for ¥, using (5.3) and the description of
v, obtained in Theorem 5.1. The function 1‘3’;1 is studied in exactly '&he same way as
¥y ,- Furthemmore, by assumption the sum vy =v;, +v;, belongsto H__,,,. Hence it
is easy to deduce that ¥, and consequently T,T = U, ~ Uy, — ¥, are square summable
on y with weight |t ~ 1]™#1dt. Therefore M is square summable on y with weight
|t = 1|#1ds. Moreover, integrals of |T|?|t2 - 1|#1|dt| along arcs y are bounded if y
is sufficiently short, belongs to an arbitrary bounded set in CT;([O, 1], CP!) and passes
through 1 or —1. Thus it follows that I is square summable in the neighborhood of
1 with weight |t T1|*17!dsde Since pd <1, is analytic at *1.

Hence M is regular at *1 and consequently the general solution of the system
(2.18) depends on d arbitrary constants. These constants are subject to condition
(S.ISLinvolving the nonbranching of v, ,. In addition, I is subject to the condition

vy € Hy_5,, (RN, 1=1,2. Let

Wtk

40

S—:{l+ |l=1,2;keN}. (5.31)

From Theorem 5.} we obtain, by virtue of (5.4), the following basic assertion.

Theorem 5.2. Suppose problem (2.1) is strongly elliptic. Then (i) the function
vy(z)) = vy, +'v;1 + TN is meromorphic in C* and for large |z, admits the estimate

lov(@) | <ClaPlimz ™. (5.32
(ii) If s is not an integer and s £ S, then v,(z;) admits a finite expansion
vy (2) = Uy, (2y) + D vtz g+ )0+ D rh@—07%  (5.33)

86A%,Reb<Ts—1 : t€z, X
0Py 194t
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Y
in the half-plane C*, in which vy, is analytic in ct, belonging to the space HS_3/2(R);
Z . is a [inite set of points in C+, pé and qé are finite, and p and q are integers.

(ii1) We have

910k, SC( 20 (Uil + 1P+ IR+ IPI) (539

=1,2

1

and the constants 1/1;5 and r;! also admit this estimate.

(iv) The sets A° and zZ,,

symbols A, B, and B,. Here
k k k B+

A — (—+ ——) U { U (—’2—+—+ (—’) )} k=0,1,2 . (5.3

2 2yt I=1,2 2vt Y

as well as the numbers pé and q'g, depend only on the

Proof. In consequence of (5.4) and (5. 14)

v, = %— — %vm + vy 4 Ty (5.36)
1 1

But by Theorem 5.1 the function v,, satisfies conditions (5.32)—(5.35). It is clear that
”;1 also possesses similar properties. Let us now take into account the regularity of
M ac *1 and the asymptotics (4.14). Then from (5.10) and Theorem A.1 it follows that
v, also satisfies (5.32)—(5.35). Assertion (iv) is verified by direct computation. The
theorem is proved.

Let us assume that problem (2.1) is strongly elliptic, s is not an integer and s £ S.
Then from Theorem 5.2 and Theorem A.1 it follows that v, belongs to Es-a/z(ﬁ+) if
and only if the following system of conditions holds:

-1

vls=0 for €A’ and Red<s—1, if 61,2, ... o 1 <Lp<Lps,
(5.37)
rgg =10 for T€Z, and 1 <q<qi.
Under these conditions, from (iii) of Theorem 5.2 and (ii) of Theorem A.l we obtain the
estimate
1 .
[0l SC[ 2 Uil + 1PD IR 1P} (5.38)
=1,2
Evidently U;S and ’;3 are continuous linear functionals of g and M. In tum g
depends linearly and continuously on 2, f; and P, Consequently (5.37) is equivalent
to the system

L}l(io’ Pl’ P2’ m):R}l(fl, fg)) ]: 1, c ey N“(S), (5-39)

" n . . . .
where L]. and R]. are continuous linear functionals of their arguments. Completely
~

analogously the function v, = v,; + v,, belongs to Hs_3/2(f—{+) if and only if
Li' (P, Py Py, M) = R} (fu fo), j=1, ..., NP(s). (5.40)
Let us state the main result of this section.

Theorem 5.3. Suppose problem (2.1) is strongly elliptic, s is not an integer, s ¢ S
and [=0. Then
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(i) A solution of equation (2.13) exists if and only if there is a meromorphic function
M on CPY, with poles at t € CP! of order no higher than q,, satisfying conditions

(5.15), (5.39) and (5.40).
(ii) The general solution of equation (2.13) has the form

~ S .
=58 _ 2 Upg + U + TiM,

1

s, S,
(5.41)
~. S *
vy = %2;'“—5;—(021 + T\ ) + vy,
where vy, is determined from (5.1) and vzl from (5.13).
(iii). Under conditions (5.39) and (5.40) we have the estimate
[0ty SC( 20 QUfell e, +1PeD + 11+ () (542

kR=1,2

(iv) Strong ellipticity of problem (2.1) is necessary in order that it be Noetherian in

conjunction with the a priori estimate (2.8).

Proof. Formulas (5.41) follow from (5.14), while (5.42) and assertion (iv) have been

proved above.
$6. Investigation of the general solution of the boundary value
problem in a quadrant

Recall that in §2 we reduced the investigation of the boundary value problem (2.1)
to the system (2.5) of equations equivalent to it. In addition we have shown that it suf-
fices to consider the case [ =0, and under this condition we have exhaustively studied
equation (2.13). Since this equation was obtained by eliminating ’15'(1) from the system
(2.5), it is now possible to compute these functions: taking (ii) of Remark 1.1 into ac-

count, we obtain

~ ~
fr —Puo;

~0
v = 6.1)
Py
’{\Jssumin.g_:hat vl' € Hs-slz(ﬁ+)’ let us clarify under what conditions 17’? belongs to
Hs— 1/2(R ).
In view of (6.1) and (5.41)
~ S
-~ fl‘Pll(il——s_zvlg l’vl (Tlg)t)
0 . 1
U = ’
Pio
(6.2)
~ Sy -
- fo— P (%N’J(U;“*‘Tzw)‘i*vu)
v = 2 S '
) P20

Taking (2.23) and (4.6) into account, we obtain
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2 ph 1 ty 2
a; Bi* + Py (a; — izya))

2nh
Pyoa,Byt

;}g == fl + mg,

where m‘i is a meromorphic function on w'. But in consequence of (2.7) and (2.16)

al
Bl =P, (— ;;— + izz) + Py
1

Hence

I fi

U = -
B

+ M.

By virtue of (5.10) it therefore follows that 'ﬁ‘? (and ?/g) is locally summable on the
real line under a finite number of conditions on [0, fis /2, Pl’ P, and M. Let z{ be
the zeros of the polynomial P, lying in C* and k; their multiplicity. Then ?J'?, de-
fined by (6.1), has poles only at z} of orders no higher than k}. From Theorem A.} and
conditions (2.11) and (2.12) it follows that 'z\f(l) € ’l}lls_ 1/2 if and only if all residues of
'1\1'? at the points z/ are zero. Let us write these conditions in a form similar to (5. 39)

1
and (5.40):
Li’o(foyplypzr 9)}):‘]?jo(fpfz)) i:l) sy Nm- (6'3)

By Theorem A.l, under these conditions we have the estimate

\,

o ||S_1,,<c(gzalfkus-mk_,,;r [P+ P+ 1) (6.4)

Thus we have completely investigated problem (2.1) in the case f=0. Let us
state the result in the form of a theorem. For uniformity we write condition (5.15) in

the form of a system
@ =0, j=1, ..
where the g]. are linear functionals.

Theorem 6.1, Suppose problem (2.1) is strongly elliptic, s is not an integer,
s ¢S and {=0. Then

(i) Problem (2.1) is solvable if and only if the system of linear algebraic equations

B 8 , B
Li P, P, =R, f,f i=1 ..., N (5, 1=12 =01,
Ji@® =0, j=1,...,4d, (6.5)
Li (", Py Pey M) = Ri(fu ), j=1, -0, 2T6],
is solvable, where the functionals L; and R].' are determined from the relations
Li(.-) —Rj(-.)=L;(f, 0v,(0), dv, (0), 0).

(i) To each solution of the system (6.5) corresponds in a one-to-one manner a
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solution of the boundary value problem (2.1) according to the formula

~o . ~ ~ . -
0} (@] — iz,a}) + vla} + 03 (a} — iz,a?) 4 vla® — fo

u=F1-2 )
1) ) (6.6)
where the functions vf are determined from (5.41) and (6.2).
(iii). Let e <min([s] + 1 - s, (s)), where
p(s)= min @ —s+1). (6.7)
0< §%-s+1
80gReAd

If u € Hs(l—() is a solution of (?.1) and fieH (_R+) for =1, 2, then u ¢

Hs“(l-() and we have the a priori estimate

ke <C( 2 Vihseomy, + bey)- (6.8)

I=1,2

s+€-mj-1/2

Proof. Assertion (i). has been proved above, and (ii) follows from (ii) of Theorem
" 1.2. To prove (iii) we note that the compatibility conditions (6.5) are the same for s
and s + ¢, while the noms |/°|, 1P NI, |1P,]l and |M|| can be estimated from above by
flull ;- Then reference to (ii) of Theorem 1.2 and the estimates (5.42) and (6.4) completes
the proof.
Let us write the system (6.5) briefly in the form

Zi ([ Py, Py, M) = F; (i, o), 1<j<N(s), (6.9)

where QJ. and fR]. are continuous linear functionals of their arguments and N(s) is the
number of equations in the system (6.5): N(s) = ENI'B(S) +d + 2-[s]. The number of un-
knowns in (6.5) is 1 + m, + m, + d; we denote the last sum by M. Then the functionals
generate a linear operator £ acting from CM* to CN(®). The system (6.9) is solvable
if and only if its right side is orthogonal to all solutions of the homogeneous adjoint
system:
R (fy, f) | Ker Z', (6.10)

where 5((/1, {,) denotes the vector (Rj(/l, fz)),'=1,, .. N(s) Let {s? }i=l, ... be
a basis in Ker £*. Then (6.10) is equivalent to the homogeneous linear system

SCEG ) =0, i=1,..., " (6.11)

By Theorem 6.1 the conditions (6.11) are necessary and sufficient for the solvability
of (2.1) in the case f=0.
Let us tum, finally, to the general case when f# 0. Here the condition of solv-

ability of (2.1) is equivalent to the system of equations
S Fy=<S, A P> =0, i=1,..,1, (6.12)

where F = (J, f1s /) and the f? are detemmined as in (2.20). We write formula (6.6)
briefly in the form
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u:R(flvfzv fo’ P, P, 9)2) (6.13)
Then under condition (6.12) to each solution of the system £(/°, P,, P,, M) = fR(/(i,/g)

corresponds in a one-to-one manner a solution of (2. 1), namely

u=u, -+ R, fa° P, Py, W), (6.14)

where u, is defined in (2.20). Let us state the final resule.

Theorem 6.2. (i) Suppose problem (2.1) is strongly elliptic, s is not an integer
and s ¢ S, Then

1) The kemel of the operator ( is isomorphic to the kemel of ® and dim Ker @ =
dim Ker £ = M - rank £, and its cokernel is isomorphic to the space spanned by the
functionals Si; moreover dim Coker @ < r* < N(s).

2) A solution of (2.1) can be found by means of formula (6.14). If u € Hs(l_() isa
solution of (2.1) and F € }((SK)(K), then u € HSK(K) for 0 <e <min([s] + 1 — s, p(s))

and we have the a priori estimate

4

[ehae <C (Wlhvea 2 Uil oy) k) (6.15)

I=1,2

(i1) In order that the boundary value problem (2.1) be Noetherian and its solution admit
the a priori estimate (2.8) it is necessary and sufficient that this problem be strongly elliptic.

As is well known, a Noetherian operator can be modified via a finite-dimensional
one to an invertible operator. Specifically, if @: H - H(s) is a Noetherian operator,
then there exist nonnegative integers r and 7* and operators K, T and | such that the

operator

: — (6.16)
T 7 © S5

szx:(/l.%,r) Hy Ay
¢ C

is an isomorphism. In fact, for invertibility of ¥ it is necessary and sufficient that

the operator

H
(A, &) gar*—h%(s) (6.17)

be an epimorphism and the operator
(T, J): Ker(A4, #)—C’ (6.18)
be an isomorphism. Let &* = dim Coker @ amd & = dim Ker (. Then the operator

(6.17) can be an epimorphism when 7*> k*, while (6.18) can be inveritble when r — 7* =
ind @, where ind @ = & — k*. Note that K = (K}, -, K '1*), where K7 ¢ }((s).
We shall state the results of this section in the form in which they will be needed

for studying boundary value problems on a manifold with piecewise smooth boundary

in §8
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Theorem 6.3. Suppose problem (2.1) is strongly elliptic, s is not an integer and
s £S. Then

(i) For r* > k* and r —1* = k — k* there exist operators K, T and | such that
the operator U in (6.16) is an isomorphism.

(ii) Invertibility of U is equivalent to the following system of conditions:

fank <$l’ ‘%.]>l'=1,...,l = k*,
=1,..., r*

(6.19)
det (T, J), %0,

where (T, ]), denotes the restriction of the operator (T, J) to the kermel of (@, X)
in the space H_@ cr.

Proof. Assertion (i) follows from the fact that @ is Noetherian. The first condi-
tion in (6.19) is equivalent to the fact that the operator (6.17) is an epimorphism; the
second to the invertibility of (6.18).

$7. Function spaces and classes of operators on manifolds with

piecewise smooth boundary

Let M be a smooth compact n-dimensional space. We assume that it is stratified,
ie. M= Uz=omk, where Wk is a smooth manifold of dimension n —:k and mi ﬁm]. =
@ for i £ j. We shall assume that mk = for k> 2. Then

M= My Ay | My (7.1)
In addition we shall assume that n > 3. ‘

Definition 7.1. The space N has a piecewise smooth boundary if

(i) M has the form (7.1).

(ii) Each point x € W, has a neighbothood in M diffeomorphic to a half-ball
B inR% B'={x € R"| || <1, x, >0}

(iii). Each point x € mz has a neighborhood in M diffeomorphic to a quarter-ball
B™ in R™

B++= {x€B+|x,=>0}. (7.2

Thus mo is the interior of M and M = mlu mz. The stratum ml consists of
regular points of the boundary and mz is the edge of codimension two in M.

The manifold ?lll is canonically diffeomorphic to the interior of a smooth space
m({ detemined up to a diffeomorphism. Namely, a boundary point of ‘Il‘{ consists of a

point x € aml =-m2 and one of the normals to M, at x directed into ml. From this

definition it follows that &N c{) is a space of smf)oth functions on ml having, togeth-
er with all derivatives, discontinuities of the first kind on )T(z. For convenience we
set mg=)ﬂ and mg:mz.
Let s(x) be an arbitrary locally constant function on mz. We shall denote by
H (m:) the Sobolev space of functions on )I(,j having locally constant ‘‘smoothness’’.
We shall consider differential operators on M with smooth coefficients. In addi-

tion we need boundary differential operators acting from &M to &(m‘{). Let x be
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local coordinates on M defined in a neighborhood of a point of .

Definition 7.2, ‘A boundary differential operator has the form

Bu(x) = B(x, Dyu(x) = 2 Be(x)D%(x), x€ .3,

Jalsm(x)

in local coordinates, where u € &) and B%(x) is a function in &NJ). The function

m(x) is assumed to be locally constant on m‘? and is called the order of the operator B.

Lemma 7.1. (i) The class of boundary differential operators is invariant with respect
to change of variables.
(i1). A boundary differential operator of order m(x) acts continuously from H

y M) if () ~ ) 15> 0 for x € M.

s(x)
10 H gy mm(x)-
Besides differential operators we introduce certain Fourier operators *‘concen-
trated on mz”. Let mkl and mk be strata of M and let P be a continuous linear
operator acting from é}(mgl) to )ﬂ,‘:z). Let 9, 1 =1, 2, be smooth functions on M

such that coordinates of type (7.2) are defined in supp ¢, U supp 9,. Then x; = x, =

0 is the local equation for M., and mkl coincides locally with mz x K;, where K, is

2’
a smooth submanifold in R%. Let x' = (x5 %,) and x".=-(x3, »++ 4 % ). Evidently

0,P0,u (x) — Y eI IP (7, ') i (27) d2 (7.3

”
R n

@n)"
for u € &WZI) and x € supp 02. Here n" = dim mz =n-2,

i@y = | ewre, @uwdy,
R"

and P(x", z") is a smooth function on R2"" with values in the set of continuous lin-
ear operators from &KT) to &Kg).

Let n; denote the codimension of mz in mkl: nl' =2~ k. In the following we
shall assume that n; # 1. Consequently either K =0 (when n{ =0) or K{ is a quad-
rant of the plane (when n{ = 2). Let m(x) and #x) be locally constant real functions
on mzz. For a function u« € ED(K(IT) let Iu be an arbitrary extension of # to a function
in DRD).

Definition 7.3. An operator P: &m:l) > 6(‘)1122) is called a Fourier operator of
codimension two, degree m(x) and class fx) if it has the form (7.3) in local coor-
dinates and for u € fD(K?) and x' € K(Z7

1

P, 2)u) = P2 lu@)dz, (7.4)

@n)

rR™M

where the function P(x, z) has the following properties:
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1) There exists a function P%(x, y'; 2) such that
P(x,2) = P (x, x'; 2, (7.5)

where PY is a smooth funcuon on mk X Kax R”! analytic in z' in -CK* and
2) forany N, BB, a l’ 2' and a” there exists C such that

1+ +1Z D1y V| DEDROSOFP (x, y'; 2)|

m(x)+ng=r(x)+|agf-la”) rx)=ja,(

<CQ+1]2) (1 +z]) (7.6)

for all (x,y',2) € m: x KJ x (—CK*) x R™. The function P is called the symbol
of the operator P in the coordmates x.

By the Paley-Wiener theorem it follows from 1) and 2) that the integral in (7.4) de-
pends only on « and not on /u. We shall employ the notation

Pw,2y=P°(x,x"; D', 2) (7.7)
for the operator (7.4).

Theorem 7.1, (i). The set of Fourier operators of codimension two, degree m(x)
and class r(x) is invariant with respect to change of variables.

(ii). A Fourier operator of codimension two, degree m(x) and class r(x) acts con-
tinuously from the space Hs(x)(m 1) to Hs(x) ()= (] +n )/z(m ) for s(x) —7(x) -
n,/2>0 if n; #0 and for any s if n; =0.

(iii) Under the same relations between s(x) and r(x) as in (ii), the operator 02P "1

is infinitely smoothing if 9, or 9, is equal to zero in a neighborhood of Wz.

We now consider Fourier operators of codimension two with homogeneous symbols.
Definition 7.4. A Fourier operator P of codimension two, degree m(x) and class
r(x) is called homogeneous in its principal part if the symbol P’ of P admits a de-
composition PU=1P3+ P;’ in local coordinates, where the P? are symbols of Fourier
operators of codimension two, degree mi(x) and class r(x), with mo(x) = m(x),
my(x) <m(x) —1 andfor t> 1 and 2"l > 1

Pi(x,y;2,t2)= tm"*’*"2P:,’ (x, ty'; 2'Jt, 2). (7.8)

The function P is called the principal homogeneous part of the symbol P,
Let £(z") be a function in &R”) such that

09 IZ”I <1/2’

Z") =
¢ 1, |z’|>1.

We denote by N the bundle of inner normals to W in “'( and by Tl the restriction
of the bundle of cotangent spaces to mkl on m Recall tl!lat n> 3.
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Theorem 7.2. (i) The set of Fourier operators P, homogeneous in their principal
part, of codimension two, degree m(x) and class r(x) is invariant with respect to
change of variables.

(ii) The function

0 ()0 () P, 95 2) (7.9)

is invariantly defined on the bundle N; X TT if we identify x" and y' with coordinates
in the base and fiber, respectively, of the bundle N;, and z with the coordinate in
the fiber of T].

(iii) If the function PJ(x,y'; z's ") is defined on MY x K§ x (-CK}) x s7' =1
in local coordinates, is analytic in z' and for any a”, 0“1' , a; » B and N admits the

estimates
|1+ |4 )V DEDRS %P, (v, o' 7, o) | <C(1+ |2 )7, (7.10)

then the Fourier operator of codimension two with symbol
’ g " ( s 5 o’ 7
P g9 = 5@ " (6121 5 (7.11)

is homogeneous in its principal part and has degree m(x) and class r(x).

$8. Boundary value problems on manifolds with

piecewise smooth boundary

In this section we consider the boundary value problem (0. 1):

Auy (x) 4 Kuy (x) = o (x),  x€ Sy,
Buy (x) -+ Luy (x) = [ (%), x€.ty, 8.1
Tuy(x) + Juy (x) = fy(x), x€ .4,

For convenience we write this problem in the form
A+YU=F, (8.2)

where U = (ug,u,) and ¥ = (fy» {15 {;)- The operator (A, B) is denoted by Q. we
shall assume that

A=A D)= D A%x)D° (8.3)
fal<e2
where A% € &M). B denotes a boundary differential operator of order m(x):
B=B(x D)= 2 B*(x)D" (8.4)
laf<my(x)

The operator £ is a matrix of Fourier operators, homogeneous in their principal part,

of codimension two:
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T @, 5.5)
1=0,2

The operator £, acts from 6’l(m;’) to g'k(mZ), has matrix symbol (SZ’I'), matrix de-
gree m,; =(m,}) and matrix class r,; = (r]), where 1<j<s]and 1< i<r,.

For simplicity we restrict ourselves to the case when the edge WZ is connected.
We assume that f, € H, (‘Jﬂ) and f; € H, (x)(m ), while [, = (fz, -+, {}) belongs to
the space H (mz) —® H z(m ), where t, is the vector (t ree, t;). We seek
o in H (711), while u, belongs to @ Hsyz(mz). Thus 7§ =1, =1, =1,
r,="1, 7% =7* and 7} =0.

For brevity we denote the operator @ + $ by .

the function

Theorem 8.1. Let Sy = ml(x) -Y%>0 and Sy =Ty = 1 >0: Then the operator
W acts continuously /rom K 011) =H_ (m)@ H (?H ) to H (m) =H, (W) ® H, N )(WT( )@

H oMy if for ky 1=0,1, 2

th (%) = 8 (¥) — mih (x),"‘_g—._{ (8.6

/orallxem 1<7<r1 and 1<i<r,.

Proof. The assertion follows from (ii) of Theorem 7.1.
In the following we shall assume that the hypotheses of Theorem 8.1 are satisfied.

From classical results it follows that for the a priori estimate

" ) "so+a <C (“ Auo “so+a-—2 + U Buo IL,,+e—m,(x)—'/, + “ Uy “s,,) (8.7)

to hold with ¢ >0 it is necessary that the ellipticity condition for A and the Sapiro-
Lopatinskii condition hold up to the boundary. From (iii) of Theorem 7.1 it follows

that these same conditions are also necessary for the a priori estimate
[t lsyre < C (Wit [6l,). (8.8)
Ellipticity of A means that for (x, &) € $™M
Ay (x, &) =0, (8.9)
where A (x, &) = Elal YA ()& and SM is the bundle of cotangent spheres to M. We

now state the Sapiro-Lopatinskii condition. For our case, when the boundary is not
smooth, it can be formulated in the following way. Let N1 be the bundle of inner
conormals to ')T(‘l7 in M and let ﬂ!N’; be a lifting of NT to s*‘)ﬂf using the projection
m: S*m‘; »W(IT. Let By(x, &) be the principal part of the symbol of B:

By(x,®= 2 B @)t". (8.10)

[a]=m(x)

Then the Sapiro-Lopatinskii condition consists in the fact that

'By(x, &, 2)5=0 (8.11)

for (x, &l z) € CN!NT if Ao(x, f', z) =0 and Im z < 0. Here Cv! NT is the complexi-
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fication of the bundle rr!NT, (x, &', 2) is a point of this bundle with projection (x, £') €
S*m{; and z is the complex variable dual to the normal to m‘{ at the point x, directed
into M.

Recall that in [13] inner and boundary symbols were defined for boundary value
problems on manifolds with a smooth boundary. We now connect the biboundary symbol
with problem (8.1). Let 9, € PM) for I =1, 2 and let x be the coordinates in supp 9, U
supp ¥, used in Definition 7.3. The operator 029101 admits a representation (7.6) with
symbol f112(x" £") that is a smooth function of (x", &) € T*"ﬂz with values in the
set of boundary value problems in a quadrant:

A D, E) K@ x5 E)
¥, 8) =B D, E) L xaE)). (8.12)
T @, D', E) I &)
Let sz be the bundle of quadrants formed by the inner normals to mz in . Let
K!mz be a lifting to S*mz of the bundle sz, and let (I)K!mz be a bundle of operators

acting in the bundle of functions on K!'mz.

Lemma 8.1. Under the identification of the quadrant x; >0, x, >0 with the fiber
of the bundle K!m2 lying over (x", £") € S*mz, the operator
§IO (x.r’ gn) _ ,&1—1 (x//) 'ﬁ';l (xn) 31;2 (xﬂ’ g//) (8. 13)
is invariantly defined by a cross-section of the bundle (I)K!m2 if ﬁé Ax", £ is the

operator in the quadrant constructed from the principal parts of the symbols A, -+, J°

frozen at the origin of the quadrant:

A, (x"; D', &) Ko (x", x5 &) \
W2, &= | By(x" + 0x'; D', &) Lo (¥ +0x', %, E")) . (8.14)
Ty (x'; D', &) Jo (x5 &)

Proof. This lemma follows from (ii). of Theorem 7.2.

Definition 8.1. ‘The biboundary symbol of problem (8.1) is the cross-section of the
bundle (I)K!m2 equal to SZlo(x", £") at those points (x”, £") € 5*3“2 at which "l(x”) 1’2(96") #0.

We now note that the operators 120, I:o, fo and ’fo are finite-dimensional. Con-

sequently ?AIO differs from the operator

A, (x5 D', E) ) 8.15)

A, ¥) = 07 (¢) 97 () ( B 1 0% D' £
only by a finite-dimensional operator. But just such operators in a quadrant were con-
sidered in §§2—6 of this paper. Evidently éo(x", £") is a strongly elliptic operator
for £" £0 in the sense of Definition 5.1 if conditions (8.9) and (8.11) are satisfied.
Consequently by Theorem 6.2 it is Noetherian if s, is not an integer and s, ¢

S(x"', £™). In accordance with (5.31)
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ny (", &)+ k

11:1,2; k:O,l,...}. (8.16)
W (", &)

@, g)={s=1+

We state the definition of ellipticity for problem (8.1). Suppose s is not an inte-

ger. For convenience we introduce the notation

182N ERY
7" ” K (x’g)
A E) = (E;(x'f §")) <j<r™ (8.17)
0 1)

Definition 8.2. Problem (8.1) is called elliptic if the following conditions hold:
I. The symbol A, is elliptic: for (x, £) € SN

A4, (x, B)=0. (8.18)
I The symbols A, and B, satisfy the condition: for (%, ') € S*MY
BO (x’ gl’ Z) # 09 (8' 19)

if Ao(x, £',2)=0 and Im z < 0.
II. Forall (x", £ € S*mz the set S(x", £") does not contain s, and

rang < (\y-l (x”, Eﬂ), :72.{] (x", Eﬂ) >/ — k& (xll’ gu)y
i=1,...1* ( " &")
j=1,...,

det (T, (x", "), Jo (" Ee 50, (8.20)

where Sl(x", £") is a basis in the cokemel of the operator (f (x", &" and (TO, fo)o .
is the restriction of (TO’ ] ) to the kemel of (@ }( ) in the space }{S(K)

%s (K) = Hso (K) @ Hs,(+ 0,0) (R+) @ Hs,(o,+0) (—R+) @ Cr*- (8- 21)

Conditions I and II are equivalent to invertibility of the inner and boundary sym-
bols, respectively, of problem (8.1). They are algebraic conditions on the symbols.
Condition III is equivalent to invertibility of the biboundary symbol of the problem un-
der consideration. It is effective by virtue of the results of the second part of this
paper. In fact, formula (6. ¥2) permits us to construct a basis in the cokemel of the
operator G.’O(x", ™. Verification of (8.20) reduces to solving a finite system of linear
equations in a finite number of unknowns, since we constructed the operator inverse
to @y(x", £") in $6 (formulas (6. 14), (6.6), (6.2) and (5.41).

Let us state the main result of this paper.

Theorem 8.2. Suppose the hypotheses of Theorem 8.1 are satisfied. If s, is not
an integer and problem (8.1) is elliptic, then

(i) this problem is Noetherian;

(i) if Ue }(S(m) satisfies problem (8.1), then, for some € >0 depending on s,
U e }(m(m) follows from g e }(t“(m), and the a priori estimate

1% gye <CUF e + 1%L (8.22)

S+E

holds.
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Proof. Using the method of freezing coefficients it is possible to construct the
parametrix for problem (8.1). In this connection assertion (ii). of Theorem 7.2 plays the
role of commutation lemma. In addition, it is essential that the principal parts of the
symbols of all operators in (8.1) be homogeneous.

Thus we have found a condition that problem (8.1) be well posed. We now set our-
selves the problem of when there exist, for given operators A and B, Fourier operators
of codimension two completing problem (0.2) to the elliptic problem (0.1). An answer to
this question can be stated in terms of the K-functor similarly to the way this was done
in [9] and [14] for the case of a smooth boundary. But to do this we need Fourier oper-
ators of codimension two acting in cross-sections of vector bundles. Let &O(x", £ de-
note the biboundary symbol corresponding to problem (0.2). Suppose conditions I and II
of Definition 8.2 are satisfied. We assume that s is sufficiently large, not an integer
and s, £ S(x", ") for (x", ") € s"“)llz. Then by Theorem 6.2 the symbol @0 defines
a Fredholm complex on S*mz. The Euler characteristic of this complex is an element
of the ring K(mz) and is denoted by ind @O' Let 7 be the projection of s*‘m2 onto M
and let 7' be the induced ring homomorphism K(M) » K(s*,).

Now let the Skl in (8.5) be the Fourier operators of codimension two acting in the

2

Sobolev spaces of cross-sections of finite-dimensional vector bundles.

Theorem 8.3. If the operators A and B and the number s, satisfy the requirements

0
enumerated above, then we have an elliptic boundary value problem of the type (8.1) if

and only if
ind A, € 0K ().

Proof. This theorem is proved similarly to Theorem 5.14 of [14], using Theorem 6.3
and (iii) of Theorem 7.2.

In the form we have stated it, problem (8.1) corresponds to the case when the op-
erators gkl act in cross-sections of trivial bundles. Then the existence condition for
a well-posed problem is formulated similarly to that in [9]: we have an elliptic boundary

value problem (8.1) if and only if for some integral nonnegative «
ind 4y = + C* x .4,
Appendix
Recall that in §5 we repeatedly used the following theorem:

Theorem A.1. (i) If g € HS(E+), where s is not a half-integer and s > ~Y4, then
2@ =g+ D gtz+i
—s+3/ChS-1

Q =
with g, € HS(R+) and k an integer. In addition

el + 3 gt <Culgly,

—s+3/,<R1
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(i1) Conversely, if g has an expansion (A.1), then g € Hs(f_{+) and
ey, < C:(lealy + X [e]).

s —s+3/pCh

Proof. This theorem follows from the fact that the Mellin transform of a function
in HS(R+) is meromorphic in the strip —% <Im z < s — % and the transform of a func-

tion in ﬁs(ﬁ+) is holomorphic in the same strip.
Received 4/JAN/73
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