
Mat. Sbornik Math. USSR Sbornik

Tom 92 (134) (1973), No. 1 Vol. 21 (1973), No. 1

ELLIPTIC BOUNDARY VALUE PROBLEMS ON MANIFOLDS
WITH A PIECEWISE SMOOTH BOUNDARY

UDC 517.949.9

A. I. KOMEC

Abstract. In this paper general boundary value problems for second-order ellip-
tic differential equations are considered on manifolds with edges. It is assumed
that in the neighborhood of an edge point the manifold is diffeomorphic to the interior
of a convex dihedral angle. Effective conditions for normal solvability of these
boundary value problems are obtained and the parametrix is constructed. The meth-
ods make use of the theory of analytic functions of several variables and automorphic
functions.

Bibliography: 17 items.

Introduction

In this paper boundary value problems are considered on a compact «-dimensional

manifold %. with a piecewise smooth boundary. These problems are of the form

Au0 (x) + Ku2 (x) = f0 (x), x 6 Jeot

Buo(x) + Lu2(x) = f1(x), j e e A . (0«D

Tu0 (x) + J^ {x) = h (*), x € -Kv

Here mQ is the interior of %, %. is the smooth part of the boundary and m2 is the edge

of codimension 2. It is assumed that m_ is a smooth (n — 2)-dimensional manifold and

that the tangent spaces to l l j at points of %2
 a r e intersected transversally. An ex-

ample of an admissible manifold /1Ϊ is represented in Figure 1.

<M2

Figure 1
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The letter Λ in (0.1) denotes a second-order differential opeartor on )ΙΪ with smooth

coefficients; R denotes a differential operator of arbitrary order whose coefficients are

smooth on %. { but may have discontinuities of the first kind on fii2. In turn, Κ and L

are operators of potential type, Τ is a boundary operator of codimension two (Definition

7.3) and J is a pseudodifferential operator on the edge. All functions occurring in (0.1)

belong to spaces of Sobolev type.

We assume that Λ is an elliptic operator and that the pair (Λ, B) satisfies the

classical Sapiro-Lopatinskil condition on the smooth parts of the boundary up to the

edge when approaching it from each side.

Problem (0.1) has not been considered in full generality up to now. The class of

problems of the form

Auo(x) -fo(x), x£Jl0,
(0.2)

Buo(x) -fi(x), χ£.Μχ,

has been partially studied.

In the case η = 2 problem (0.2) has been investigated in a whole series of papers:

S. L. Sobolev [1], V. V. Fufaev [2], G. E. Silov [3], N. I. Mushelisvili [4], M. S. Birman

and G. E. Skvorcov [5], E. A. Volkov [6]. The most complete results for η = 2 were

obtained by G. I. Eskin [7] and V. A. Kondrat'ev [8]. For η > 3 problem (0.2) was

partially studied by M. S. Hanna and K. T. Smith [10], Kondrat'ev [13] and V. S. Maz'ja

and B. A. Plamenevskil [16]. In [10] there are isolated qualitative results on the

Dirichlet problem for the Laplace operator in convex polytopes. In [13] results are ob-

tained on the smoothness of the solution of the Dirichlet problem for a second-order

operator with real coefficients. Finally, in [16] effective conditions were first indicated

in order that problem (0.2) be Noetherian when Λ is the Beltrami-Laplace operator and

β is a differential operator of first order at most with real coefficients (see also [17]).

Such contrast between the cases η = 2 and η = 3 stems from the fact that to estab-

lish the Noetherian property for problem (0.2) when η > 3 it is necessary to construct

the inverse operator for a problem of the same type with a parameter and constant coef-

ficients in a quadrant of the plane. Consequently for problem (0.2) with constant coef-

ficients in a plane quadrant it is necessary to be able to find the kernel and cokernel

exactly. But from results of [l]-^[8] only the Noetherian property of such problems fol-

lows. Exact computation of their kernel and cokernel involves considerable difficulties.

In the special case when Λ is a second-order operator with real coefficients and Β is

an operator of first order at most with real coefficients, this problem was solved in [16].

In this paper, for a second-order operator A we find, in the general case itself,

the kernel and cokernel of the problem with a parameter and constant coefficients in a

quadrant. To do this we apply a new method based on variables dual to χ in the com-

plex plane and the use of automorphic functions. With the aid of this method we find

the kernel and cokernel of the problem with a parameter, and explicit formulas for its

solution. This permits us to investigate problems (0.1) and (0.2) for a second-order
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operator A without assuming that coefficients are real and without restriction on the

order of the boundary operator B, We assume that η > 3, since problem (0.2) has been

well studied in the case η = 2.

We note that the method of automorphic functions, which we apply to partial dif-

ferential equations, was first applied to difference equations in a quadrant by V. A.

Malysev[12].

For lack of space we omit proofs of some assertions in the first and seventh sec-

tions. Detailed proofs of these assertions will be published elsewhere by the author.

We shall employ the following notation: d is the differentiation vector (d^, · · · ., d )

in R* and in Cn, and D = id. Ν denotes the set {0, 1, 2, · · · }, R+ the real half-line

χ > 0 and. C" the complex half-plane Im ζ ? 0. For a real number s, [s] denotes its

integral part. If X and Υ are smooth spaces, C°°(X, V) is the space of smooth im-

beddings of X in Y. A set Β C C°°n(X, Y) is called bounded if Β C C~(X, Y) and the

derivatives of arbitrary order of functions effecting imbeddings of Β in local coordinates

are uniformly bounded on every compact set. As usual, G(X) = C°°(X) and lD(X) =

C^(X); 3)'(X) is the dual of 5A X) of generalized functions (distributions). The Fourier

transform of the generalized function u in Rw is denoted by u or Fu. If Κ is a set

in Rn, S'(RW, K) is the space of tempered distributions in W concentrated in K.

For Ω C Cn we denote by UQ the ring of functions holomorphic on Ω. For A €

U , V(A) denotes the set of zeros of the function A. If Ρ is a polynomial in one

variable, deg Ρ denotes its degree.

We define the norm for elements of a finite-dimensional linear space to be any of

the equivalent norms. For example, for polynomials of bounded degree the sum of the

moduli of the coefficients can be taken as norm.

If X and Υ are two sets and h: XQ -> Υ is a mapping of XQ C X into Y, X Un Υ

denotes the union Χ υ Υ in which the points xQ & XQ and hxQ e Υ are identified. If

X = Y, then X U^ Υ is denoted by X/h.

By a covering we mean a fibering in Serre's sense with discrete fiber.

The author expresses profound gratitude to M. I. Visik for posing the problem and

for valuable advice, and also to A. 1. Snirel man for useful discussion.

§1. Boundary value problems in a quadrant of the plane

In this section we reduce the general boundary value problem itself in a quadrant

to an equivalent system of equations on a Riemann surface. Let Κ be the first quadrant

of the plane: Κ = R χ R . In Κ we consider a general boundary value problem of the

form

A (D) u (x) = f (x), x{ > 0, JC2 > 0,

B, (D) a (xv 0) = fx (xx), Xl^0, (1.1)

Here A(D) is a scalar differential operator of order m and Β fiD), for / = 1, 2, is a

differential operator with constant vector coefficients:
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(1.2)

where the η, are natural numbers and the Bl(D) are scalar operators of order ml. We

assume that / € Η (Κ), where s - m > —%, Suppose also that /, e φ . ί ί j i y(R ),
s—m ι ] s — τη,— /ι

with s - m, — Vt > 0, where m, = max .ml. We shall seek a solution « of problem (1.1)

in Hs(K).

Let us extend the function u to R by setting it equal to zero on R \K. Then

A(D)u(x) = f'(x), x£R\ (1.3)

where / ' € S'(R , K). Fourier transformation carries (1.3) into

{ζ) = Τ(ζ), z€R2. (1.4)

We shall assume that A(D) is a strongly elliptic operator, i.e. that for ζ € R

|i4(z)|>C(l + | z | r . (1-5)

Under this condition u is uniquely determined by (1.4). Consequently, to find the

general solution of (1.1) it sufficies in this case to describe the image of the opera-

tor A(D): Η (Κ) -» S'(R , Κ). We give such a description at once by using the Fourier

transform of / ' and the complex characteristics of A(D).

We introduce the notation

αα = J_ D°A (0), a° (zO = — D«A (zlf 0) and αα

ζ (z2) = -i- DU (0, z2).
a! a'· a "

Then

A (z) = 2 αα (~ ̂ ) a = S «χσ (ΖΊ) ( - ύ-ζΤ - 2 «° (zj ( - ' > / , (1.6)

A (D) = J a a ^ a = 2 a ? (Di) a° = Σ a° (D2) dl (1.7)
a a a

Let CK be the tubular domain dual to K:

O, I m z 2 > 0 } . (1.8)

We denote by J*(A) the principal ideal A(z)G * of the ring of functions holomorphic

in CK*. Now we are able completely to describe the space A(D)H (K). We note that

/ (z) is holomoφhic in CK .

Theorem 1.1. (i). // s -m > l/2 and (' e A(D)H (K), then J' 6 J*(A) and for

ζ e CK*
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(1.9)

2 «"(^)^(^)(-^rM+7(^),

where f € Η s_ (K), f 7 € // « ,,(R ), the f are complex numbers and the following

compatibility conditions hold: there exist constants ν € C, 0 < |/3| < s — 1, satis-

fying the system of equations

s — | β | > 1 , 0 < P a < / n —I,
(1.10)

2 a a y P' s —m — μ | > 1 ,
α-β=Α:

where / = (1, 1).

(ii). Conversely, suppose f € J (A) and conditions (1.9). <z«i/(l. 10) ôZ<i. //

A(D) is « strongly elliptic operator of order m and s is not an integer, then / ' = A(D)u,

where u € Η (Κ). Here the functions vf are Cauchy data for u:

£(x1) = $u(x1, 0), Λ;Χ>0,
(1.11)

, 0<β</η—1,

and the constants v^ are equal to the derivatives of u at the vertex of the quadrant:

vV = dVu(0). (1.12)

The function u is determined by (1.4); moreover

Lemma 1.1. Let A(D) be a strongly elliptic operator of order m. Then the sys-

tem (1.10) of linear equations is solvable if and only if m · [s] linearly independent

orthogonality conditions hold on the constants f and on the derivatives at zero of the

functions f and vf, 0 < β < m — 1, / = 1, 2.

In consequence of Theorem 1.1 and Lemma 1.1, for a strongly elliptic operator

A(D) of order m the first equation of (1.1) is equivalent to the system of conditions

(1.14)
Lj (f, dot (0), dv2 (0), df (0)) = 0, 1 < / < m [s],

where / is of the form (1.9) and the L . are independent linear functionals. In (1.4)

we have used the notation
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f={f*|0<|/i|<m-2}f

(1.15)

— m —

A one-to-one correspondence between solutions of the system (1.14) and the first equa-

tion of (1.1) is effected by (1.4).

From (1.11) it follows that besides the known function / and the constants / only

the Cauchy data for the solution u figure in the first condition of the system (1.14).

But the operator A(D) is elliptic and consequently does not have real characteristics.

Therefore all normal derivatives of u on the boundary of the quadrant can be expressed

in terms of the Cauchy data and the derivatives of /. We set u^(x^) = d^uix^ 0) for

xl > 0 and u^x^ = d^u(0, * 2 ) for x2 > 0. Then, as in the Cauchy-Kowalewski theorem,

from the first equation of (1.1) for β > m we obtain the recurrence relation

^ ( L 1 6 )

A similar relation also holds for the functions «^(x-).

From what has been said it follows that the boundary conditions for (1.1) can be

expressed in terms of the Cauchy data for the solution in the following way: for I = 1, 2

*i>0, (1.17)

where P^iD^ = (̂ /«(£>/)> * * * ·» Ρΐβ(&p) a r e differential operators with constant vector

coefficients belonging to C l and φ{ is the sum of f{ and the derivatives of / on the

boundary. For example, if m^ < m — 1, then

and φ, = f,. In the general case the symbols Ρ ,η(ζ,) and functions φΧχ,) are com-

puted using the recurrence relations (1.16).

Remark 1.1. (i) From (1.16) it follows that

2 Ρ ιβ (2i) ( — izzf = Bi (?) m o d A (Z) (1.19)

and similarly

2 p* (za) Η izif =B2 & m°d Λ {ζ). ( ι . 20)

(ii). If / = 0, then φι = fl for / = 1, 2.
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(iii) The degree of the polynomial PL· does not exceed m^ - β.

Applying the Fourier transformation to (1.17), we obtain

for / = 1, 2, where φ^ 6 C l.

Finally, we note that the first condition in the system (1.14) is equivalent to the

equality / (z) = 0 on the complex characteristics of A(D) situated in CK , provided

the polynomial A(z) is irreducible. Then we arrive at the following equivalent state-

ment of the boundary value problem (1.1). We denote by V (A) the part of the charac-

teristic A(z) = 0 lying in CK .

Theorem 1.2. Let A(D) be a strongly elliptic operator of order m and suppose its

symbol is irreducible. Then

(i). The boundary value problem (1.1) is equivalent to the following problem. Find

functions v'J e //_s_o_1/(R ), 1=1,2, z andO <β<™ — 1, satisfying the system of equa-

tions

- 2 ^(^^(^(-^r^1- 2 /*(-*>*

= ο. z e ν Μ

2 p® (zdvf (zi) - 5i (zi) + Pi (z,), 2/ € C+, / = 1, 2,
η-ι

L, (f, dv1 (0), 5ϋ2 (0), 5/ (0)) = 0 , I < / < m [s],

where the f are arbitrary constants and the Ρ. are arbitrary polynomials of degree

not exceeding m, — 1, with coefficients in C Κ

(ii). A one-to-one correspondence between solutions of the problems (1.22) and

(1.1) is effected by the formula

mor0over the estimate (1.13) is valid.

Proof. If Μ is a solution of (1.1), then by virtue of (1.11) and (1.12) the functions

yP = uj and constants fk = Σα_^_/=^βα(9^Μ(0) satisfy (1.22). Conversely, from the first

equation of (1.22) and the compatibility conditions L ( . . . ) = 0 it follows by Theorem

1.1 and Lemma 1.1 that u, defined by formula (1.23), belongs to Ηs(K) and satisfies

the first equation of (1.1). But by (1.11) we have νJ = -uj. Therefore, from the second

and third equations of (1.22) it follows that the boundary conditions of problem (1.1)

are also satisfied. Theorem 1.2 is proved.
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§2. Reduction of the boundary value problem in a quadrant for a

second-order elliptic equation to an algebraic

equation with a shift

In §§2—6 we shall fully investigate the boundary value problem (1.1) for a second-

order strongly elliptic operator A(D) and scalar operators Β,(D) of arbitrary order m..

Thus we now consider the problem

Bx (D) u (xlt 0) = h (*,), x, > 0, (2.1)

in which { e Η .,(Κ) and {, e Η ,/(H+), with s > 3/2, s - m, -l/2> 0 and s

nonintegral. There is a solution u in the space Η (Κ). We set

aeia) (Κ) = //s_2 (K) e ffs^-v. S + ) θ //s-m2-v2 (R+)· ( 2 · 2 )

Then (2.1) can be written briefly in the form

Au=f, (2.3)

where Ϊ e K, ,(K).

Since m = 2, strong ellipticity of the operator A(D) means that for ζ € R

|4(2)|>C(l + |z|)2. (2.4)

From (2.4) follows the irreducibility of A(z). In fact, if A(z) = A1(z)A2(z), where the

A ,(z) are polynomials, then the A, are strongly elliptic and therefore have even degree,

equal to 0 or 2.

For brevity we denote V (A) by V and V(A) by V. Since A(z) is irreducible,

from Theorem 1.2 it follows that problem (2.1) is equivalent to the following system

of algebraic equations:

7(2) + II (Zl) (oj (Ζχ) - ίζ2α!) + »ί fc) αϊ

+ » ; (z2) ( f l; (z2) - iz^ + yx

2 (z2) fl; - / » = ο, ζ e v\

Pn («ι) "ι (Zi) + ^10 (Ζι) οί (zO = Φι (zO + P x (Zl) f z t 6 C+, ( 2 > 5 )

p 2 1 (z2) u> &) -ι- p 2 0 (z2)n; (z2) = φ2 ( z 2 ) + P 2 (z2), 22 e c

Li (f°, do, (0), du2 (0), df (0)) = 0, 1 < / < 2 [s]..·
Here die 0^ € // _i/(R ) and in correspondence with (1.15)

(0) = { d M (0) | s - Ι β I > 1, β, =, 0, 1}, (2.6)

It is assumed that the v^ e Ηs_ ο ,.(R ), /° is an arbitrary constant and the P ; are
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arbitrary polynomials of degree not exceeding m. — 1, with complex coefficients.

In view of statement (i) of Remark 1.1, for ζ € V

By virtue of (iii) of the same remark, deg P u < πιχ - 1 and deg P 1 Q < m^. We now

note that for the a priori estimate

2 || f ||s+e_m/ _Vi + || u \\\
1=1,2 *

(2.8)

to hold for at least one e > 0 it is necessary that problem (2.1) satisfy the Sapiro-

Lopatinskil condition on the smooth parts of the boundary of the quadrant. For (2.1)

this condition on %2 = 0 is equivalent to

Βιο(ζ)φΟ (2-9)

for ΑΛζ) = 0, 2τ1 e R\{0| and z2 e C , while on x^ = 0 it is equivalent to

Β20{ζ)φ0 (2.10)

for AQ(z) = 0, z2 £ R\|0 { and ζ^ € C . Here B^o denotes the leading homo-

geneous part of degree m^ of the polynomial β,, and AQ is the leading

homogeneous part of A. From (2.7) and (2.9) it follows that equality holds in at least

one of the relations deg P n < πιχ - 1 and deg Ρ1Q <m^. Suppose, for example,

degP 1 0 = m1. (2.11)

Let us also assume that

d = m2. (2.12)

The cases when P j Q and Pj\ o r ^ n an<^ ^21 have maximum degree are examined

similarly.

Thus, suppose (2.11) and (2.12) are satisfied. We eliminate the functions ν , from

the first three equations of (2.5). Then we obtain one equation in two unknown func-

tions:

Sl (z) v\ fo) + S2 (z)~v\ (z2) = g (z), zeV\ (2.13)

Here we have used the notation
,1

(2.14)

7 Τ

where φ} = φ{ + Ρ r Note that «̂  Φ 0 for I = 1, 2 in view of (2.4).

As an algebraic equation in the functions ν ,, relation (2.13) is underdetermined.

But it can be raised to a well-posed problem if we take into account the fact that ν !

is holomorphic in V^ = \z € V\z. 6 C I and depends only on ζ,. The latter property
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is expressed analytically as the invariance of ν , with respect to the monodromy group

of the covering p.: V, -* C effected by the coordinate function:

pt? = Zt. (2.15)

The monodromy group of the covering p, is isomorphic to Ζ 2 · In fact, its generator h,

transposes the roots of the equation A{z) - 0 with the same coordinates ζ.. Conse-

quently by Viete's formulas

(2.16)

V α ι Ι
and similarly

V = j — i^~-~- Ζ» 22 ) . (2.17)

The monodromy group of p. acts transitively in its fibers; consequently (2.13) is

equivalent to the system

Sx (z) vx (z) + 5 2 (z) oa (ζ) = φ (2), 2 6 V*,

uf* (ζ) = ϋχ (ζ), zevt , (2·1 8)

under theassumption that ν^ζ^) € //̂ __ . (R ). In(2.18) we have used the exponential

notation for the action of the automorphisms bl in the space of functions on Vl:

(2.19)

To simplify the investigation of (2.18) we reduce the consideration of (2.1) to the

case / = 0. For this we find a particular solution of the equation

A(D)u+(x) = f(x), *!>(), * 2 >0, (2.20)

belonging to Hs(K). Since u+ € Hs(K), the boundary value problem (2.1) is equivalent

to

(2.21)

0,

where w° = u - u+, {\{χχ) = f^xj - B^DUJx^ 0) and /°(x2) = f2(xj -B2(D)u+(0, xj.

Thus we may assume that / = 0. In addition, in view of statement (ii) of Remark 1.1

8 = — PxoP2of + P20 (αϊ - ^fli") 7; + Λο («2 - i^flj 7ί· ( 2 · 2 2 )

Let us find the general solution of (2.18) for such a function g. First we find func-

tions f j , meromorphic in V, and satisfying (2.18) in the case / = 0 . Then we com-

pute the general solution v7J of the same system in the case r = 0 and f ! =0 under

the assumption that νγ,(ζ,) + ν2Λζ,) € Η _, ,_(R ) for / = 1, 2. Then the sum ν,, +
V2l ~ vl w ^^ k e the general solution of (2.18). As we shall show in the remaining

part of this section, v^2 and v2 ^ are solutions of linear algebraic equations with a

shift on Riemann surfaces.



ELLIPTIC BOUNDARY VALUE PROBLEMS 101

First of all consider the case / 2 = 0. Then

= 8i (?) = ~ * W ° + P«o (αϊ - ίζ*ί)7ί fc)· ( 2 · 2 3 )

Obviously g 1 is analytic in V r The function v l l is meromorphic in V1 by assump-

tion. Therefore, from the first equation of the system (2.18) it follows that ^2^12 * s

also meromorphic in Vl. But from (2.14), the irreducibility of A(z) and the conditions

(2.11) and (2.12), by the Hubert Nullstellensatz it follows that

(2.24)

on V for / = 1, 2. Consequently vl2

 c a n be continued to a meromorphic function in

W = Vj U Vj, and as before the equality

Si (*) on (2) + 5 2 (z) v12 (z) = ft (ζ), ζ 6 UP+, (2.25)

holds.

Let us apply the automorphism h. to both sides of (2.25). Then in view of the

second equation of (2.18) we obtain

S i V (z) + Si1 (2) ofi (z) = gi1 (z), 2 6 n · (2.26)

Taking account of (2.24) we find that under (2.23) the system (2.18) is equivalent to

Si (2) On (2) + S2 (z) o l a (z) = ft (ζ), ζ € V\,

^(ζ)υη(ζ) + SiVziuJKz) = gi'(z), ze W, (2.27)

o;i(z) = oJ2(z), zeVt
Eliminating v^ 1 from the first two equations of (2.27), we arrive at the equivalent

(via (2.24)) system

Si (z) vxl (z) + 5 2 (z) v12 (z) = ft (ζ), ζ e Vi,

Sf' (ζ) 5 2 (ζ) Ό1% (ζ) - 5X (e) Sh

2> (z) o{i (z) - Si 1 (z)gx (z) - Sx (z) gj 1 (ζ), ζG Vj, (2.28)

From the first equation of (2.18) we have deduced that v^2 is meromorphic in

W - V •, U V2' The second equation of this system has also been used to derive (2.26).

We now consider the third equation of (2.18), i.e. the invariance of v^2 with respect

to h>2 in V2' We shall show that from this invariance it follows that t>12 is meromor-

phic in the multisheeted region W- = W U,# h.W , where h' is the restriction of h7

ι r>2 L L ι

to V2.

The space W_ is a covering of W2 = W U h>2W with projection p. We set W 2 =

W U ŵ /?2W , where /?2 is the restriction of h2 to V2· If iy W -» W2 and z'2:

/»2W -» W are the natural imbeddings, then

1 J_ (2.29)
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Let h2 be a lifting of h2 to W2, i.e. an automorphism that makes the diagram

(2.30)

commutative. Obviously h2 is, like h2, an involution:

h\=\. (2.31)

We denote by V, the sheet of the covering W2 lying in i,W over V,. The auto-

morphism hl carries Vl into itself and therefore it can be lifted to hl on Vv In this

connection the diagram

I" I" (2.32)
— hi —

is commutative and h^ is an involution:

Λ ϊ = 1 . (2.33)

Let ν,j D e a lifting of v^2 to i-.W :

On (») = ^ N . ay€iiW+. (2-34)

From the commutativity of (2.30) it follows that ^ 2 on V2 is invariant with respect

to h_. Therefore i^12 can be continued to a meromorphic function on W2, invariant

with respect to h2:

%(«')= i i H W£WZ. (2.35)

Now we proceed to examine (2.28). Let us write its second equation in the form

Q1(2)^2(z)-Qi1^(2)=G1(4 zeVj. (2·36)
Obviously

Gh^(z)=-G1(z), zfVt. (2.37)

We now use (2.35) to reduce (2.36) to an algebraic equation on W2 with shift h = h^h^.

In §3 we shall show that for the fundamental domain flj of the group generated by

h this equation is the Haseman problem [ll] and by passage to the quotient space Π-^/h it

can be reduced to the Riemann problem. In §4 we shall solve the latter problem in quadratures.

Remark 2.1. Relation (2.36) itself is an equation with shift hv But after identi-

fying the boundary of V, by means of ^ a nonanalytic space is obtained, since h-^

carries Vx into itself. Therefore (2.36) cannot be reduced to the Riemann problem by

the method of conformal identification. Equation (2.36) is called a one-sided Carleman

problem and it can be reduced to a Fredholm equation of the first kind [ l l ] .
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Let us lift equation (2.36) to Wr Let Ql be a lifting of Q j to W2 and GL a

lifting of Gj to v | . Taking account of (2.35), we transform (2.36) into

Qi («0 u12 (w) - Qj1 (O>) vi (w) = G1 (w), w<cV\, (2- 38)

where h = hJo,. In (2.38) we have used the commutativity of (2.32).

Obviously the system of equations (2.38) and (2.35) is equivalent to the last two

equations in (2.28). Solving (2.38) and (2.35) simultaneously, we then determine v^ j

from the first equation of (2.28), since 5 ^ 0 on V.

We shall show that in fact (2.35) "follows" from the structure of (2.38).

Theorem 2.1. // the function v2 satisfies (2.38), then v2

2 is also a solution of

this equation, and the function lA(v2 + v2

 2) satisfies (2.38) as well as (2.35).

Proof. In view of (2.3D, (2.33) and (2.37), for w e v\

Qx (w) ̂  H - Q j 1 {wfv1\hw)= QL (W) d2 fcoy-Qi (hxw) v2 (^te;)=—Gx fcw) = Gx(w).

(2.39)

Thus it suffices to find a solution of (2.38) meromorphic in W. Hence the con-

sideration of (2.18) in the case / =0 under the assumption that the v ^ are mero-

morphic in V̂  has brought us to the linear algebraic equation (2.38) with shift h on

the Riemann surface W9. Since in the case /, = 0 we shall seek a solution νΊ1 of

(2.18) under the assumption that ν .,+ ν 2i
 e ^s-λ/Ί- ^' th e f u n c t i ° n s V2i a r e a ^ s o

meromorphic in V,. Consequently v2-, satisfies a linear equation with a shift similar

to (2.38) on the corresponding Riemann surface W,.

§3. Reduction of a linear algebraic equation with a shift
to the Riemann conjugation problem

To solve equation (2.38) it is necessary to inquire into the topology of the space

W2 and the action of the automorphism h on W2.

We first consider the algebraic curve V. The covering V, -» (] + can be extended
ρ , L·

to a covering V -» C in accordance with formula (2.15). Let V be the projectiviza-

tion of the affine algebraic curve V. Then the covering can in turn be extended to a

covering V -* CP . Obviously the last covering is two-sheeted and has two double

branchpoints z, and z{. These points are distinct, since A(z) is irreducible. They

are not real (because A(z) is strongly elliptic) and consequently finite. The mono·
• ρ , p j ι

dromy groups of the coverings V, -» C and V -> CP are isomorphic (and isomorphic
to Z 2 ) . Their "common" generator h{ acts according to formulas (2.16) and (2.17).

Lemma 3.1. (i) The projective algebraic curve V is birationally equivalent to

CP . The equivalence is given by a mapping χ: CP -» V in accordance with the

formulas

Zi = p{l(λ) = ω/ (Βιλ + —) + ch 1----1, 2. (3.1)
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The inverse mapping has the form

λ = ψ (ζ) = α^Ζγ -f- oigZg -\- α0. (3.2)

(ii) The automorphisms h, go into h, = φh,y under this equivalence:

hl\ = J—. (3.3)

(iii) The mapping φ establishes a holomorphic equivalence of the affine algebraic

curve V with the Riemann surface C\{0}.

Proof. By means of the affine transformation

z = cl-\-d (3.4)

the polynomial A(z) is brought into the form

where bQ Φ 0. In fact, the quadratic form occurring in A(z) can be reduced to a sum of

squares by a nonsingular linear transformation. The form is nondegenerate by virtue of

the strong ellipticity of A, since the polynomial

can have real roots in z2 for any ζ, and arbitrarily small complex e. In consequence

of the nondegeneracy of the quadratic form, the linear terms in the symbol disappear

under a suitable shift. Furthermore, from the irreducibility of A(z) follows the irreduci-

bility of Α ^(ζ); therefore bQ Φ 0.

Thus the surface V is the graph of the root ζ ^ - \]-ζ2 - bQ of Α^ζ). Therefore

it is a double covering of CP with projection q2'. ζ^ ζ2 and double branch points

-ibn.. Now it is easy to establish a homeomorphism φ of the covering q2 with the

double covering /: CP -» CP effected by Zukov's function

(3.7)

In fact / (as well as q2) branch at HbQ; consequently there exists a homeomorphism

φ: V -» CP for which the diagram

ι /ι
CP1

is commutative. Except for qZ (±ibQ) and ;~ (±z6Q) the local coordinates of both

covering spaces are obviously equivalent to ζ2, and at the exceptional points they are

equivalent to \ζ2 +ζ&0· Consequently φ is a holomorphic equivalence.

Let us find formulas for the mapping χ = φ~ . Since ζ2 = /(λ) =-zfeQ(A + ΐ/λ)/2,

it follows that
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(3.9)

To define χ uniquely, let χ(Ο = (ibQ, 0). Then

ζι = Α/λ_1\ (3.io)

From (3.7) and (3.10) it follows that

λ = . ζ ι ~ t t a . (3.11)

Thus the birational equivalence of V and CP is established. In addition, from (3.11)

and the invertibility of the substitution (3.4) follows (3.2).

From (3.4), by virtue of (3-7) and (3-10), we obtain

Ζ = CU 4- CL = ΟΛΚ -AT — A- a. yj' Δ)

1 λ

The covering p,χ is two-sheeted; therefore the vectors Cj and c 2 have nonzero com-

ponents and consequently (3-12) can be transformed into the form (3.1).

To prove formula (3· 3) we note that the automorphism h. permutes the roots of the

equation

Zl —- (ύι Ι "/Λ/ -p ι -\- Ο ι. υ · ί
 J)

Consequently by Viete's formulas

λ./ιΖ*λ = — . (3.14)

θ/2

Lemma 3.1 is proved.

Now let us consider the space W . For convenience we identify V with CP by

means of the birational equivalence ψ. Thus h. is identified with h,. We introduce

the notation

Γι* = PIXR η v?t r? = P^R η vf. (3· 15)

Evidently

hiTf = TT- (3-16)

for / = 1, 2. From the strong ellipticity of A(z) it follows that Γ,~ are smooth con-

nected curves. Let Γ. = Γ, U Γ,.

Lemma 3.2. (i) For I - 1, 2 the curves Γ, join the points 0 and oo in CP

and do not intersect.

(ii) For I = 1, 2 i/?e curves Γ, #re smooth and intersect transversally at the

points 0 βη<5? oo.
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Figure 2

(iii) The branch points of the covering p, lie on different sides of the real axis.

Proof. From (3.15) it follows that

F/ = pr1RPI. Ο.17)

Since the branch points of p, are finite and not real, Γ, are smooth curves. Each of

the curves F^ passes through 0 and °o and has at most two connected components.

But from the strong ellipticity of A(z) it follows that the curves Vl and F 2 cannot

intersect at any points different from 0 and oo and cannot be tangent at these inter-

section points. This is possible only if they are connected. In this case the points

0 and oo split Γ, into two nonintersecting curves Γ,, which proves (i). Assertion

(ii) has already been proved, and (iii) follows from the connectedness of Γ, and for-

mula (3-1). The lemma is proved.

Now we can reduce equation (2.38) to Riemann's conjugation problem. From (3.16)

it follows that for h = h2h l

hVf(ZVt. (3.18)

Therefore

ΛΓ? Π Γ ? - - 0 - (3.19)

Next, by virtue of (3.3)

Λλ = θ2λ, (3.20)

where Θ = Θ^/θ2· From (ii) of Lemma 3.2 and from (3.18) it follows that

a r g 0 ^ O . (3.21)

In addition, it is possible to assume that

| a r g 0 | < J i . (3.22)

Equality (3.20) means that hYT as well as Γ7 join 0 and f». But, in view of (i) of

Lemma 3.2 the space W2 is contractible. We denote by Ilj the region in W2 included

between Γ̂ " and ^Γ^, where Γ̂ " is the counterimage of F"j" in i ^W . Then equation

(2.38) is equivalent to the following

Qi(w)9I2(w) — $(wfvf2(w) ,, &L(w), w C: l\, (3-23)
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under the assumption that t>12 is meromorphic in II j . Here

$1 (w) = G± (w) -f 2 ^ P 6 ( p ) ^w ~Wk)> ( 3 · 2 4 )

where the w, are the poles of ι) 1 2 on £Γ^" of orders p^. The boundary values of the

function ν 1 2 on Γ]" and hT"^ are regarded as the limiting values approaching from

within Ilj in the space Φ '(dfij).

Let us state the equivalence of problems (2.38) and (3.23) more precisely.

Theorem 3.1. (i) Every solution of equation (3.23) can be extended to a meromor-

phic function in W2 and satisfies equation (2.38).

(ii) // ν. 7 has a finite set of poles in Π, and the sum in (3.24) is finite, then v.j

has a finite set of poles in W2-

Proof. Since W and W_ are simply connected by virtue of Lemma 3.2, we can

identify W2 with a region on the universal covering surface V of the curve V. From

(iii) of Lemma 3.1 it follows that the universal covering for V is the complex plane

C, and

w = \nl (3.25)

can be taken as uniformizing parameter on V. The automorphisms />2 and h^ can be

extended from W and V,, respectively, to automorphisms of V — C, and by virtue of

(3.3) they act according to the formulas

hfJu = — w -t- 2wh (3.26)

where w, = In Θ, is a fixed point of h,. Obviously w^ £ V, and

PlP'J)l = z'l, (3.27)

where z, is the branch point of the covering p, lying in C . This follows from the

fact that w, is a fixed point of h.—it lies over the fixed point of h,.

Let Γγ be the counterimages of Γ Γ in i.W . From (i) and (ii) of Lemma 3.2 it

follows that Γ̂ ~ are smooth curves in the complex plane having asymptotes parallel

to the real axis. Since h,V{ = V, and h,Γτ = Γ, , by (3.26) V, is centrally symmetric

with respect to w. and Γ, and Γ7 are centrally symmetric to each other with respect

to w,. Similarly W2 is centrally symmetric with respect to w'



108 Α. Ι. KOMEC

Im w

Re w

From (3.26) it. follows that

Figure 3

hw = w 4- 2w
o»

(3.28)

where wQ = w 2 — w^ = In Θ. From (3-21) and (3.22) it follows that

0 < | l m t e > 0 | < r t . (3.29)

Consequently IIj is the fundamental domain of the group of translations of the complex

plane generated by h. Since Vl and hVj lie in V2, the regions Vl and ITχ lie on

one side of F"j". Consequently

Vt= Ukftt ΓΊ^Πι)· (3.30)

Now we can prove Theorem 3· l· Obviously it suffices to demonstrate that if v,2

has a finite set of poles in IL and the sum in (3.24) is finite, then v,2 can be ex-

tended to a meromorphic function in V, and has a finite set of poles there. In fact

G^{w) i s holomorphic in V^ by (2.23) and (2.28). Therefore if ν,2 i s meromorphic in

Vp then from (3.23), using the principle of analytic continuation by continuity, we ob-

tain that v,2 can be continued across Γ. to a meromorphic function in IL U hV, = W2.

Finiteness of the set of poles of v^2 in W2 follows from the birational equivalence of

V and CP and from (2.24), and (2.38) follows from the uniqueness of analytic con-

tinuation.

Finally, we show by induction that v^2 can be extended to a meromorphic func-

tion in each domain

K.n= U (3.31)

with η > 0 and has a finite set of poles there. For η = 0 the assertion follows directly

from the hypothesis. Let us assume that it is true for some η > 0. We shall show that

In fact

(3.32)

(3.33)

since otherwise we would have w' €-V γ for some point w 6 V^D hn TI ,̂ while h~ w £ Vy
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But h~^w' € hnt[. for η > 0. Consequently w' and h~ w' lie on one side of

and on different sides of Γ χ . But h~ V^ lies on one side of Τχ, since

by (3.19), and A F j lies on the same side of Γ χ as F ^ . From (3-33), evidently,

follows (3-32).

Now we can define ν 1 2 in Vj D ^ " + flj by the relation

Qx (w) vn (w) - Qf* (a;) of, (ta;) = Gx (a>), w € /Γ1 (V? Π ^ 4 ) . (3.35)

In V r | n ^ n + f t 1 the function v12 is meromorphic by (2.24) and has a finite number of

poles there. We show that v,~ is meromorphic and has a finite set of poles in Vγ j .

In fact the intersection of the boundaries of the regions hn+ Π 1 and V1 n is equal to

hnY~^ Π Vl. Assume that η > 0. Then from (3-23) and the uniqueness of analytic con-

tinuation we obtain that

(3.36)

where the tv1^" are the poles of v,2

 o n hn~ Γ1 "̂ of orders p?~ . The boundary val-

ues of ν, 2 are regarded as the limiting values from within hnli^ in the space

2) '(^(^"Ilj)). Therefore from (3.35) it follows that the difference of the traces of vl2

as hnY"^ Π Vγ is approached from different sides is equal to a sum of δ-functions and

their derivatives. This sum is finite by the inductive assumption. In consequence of

the principle of analytic continuation by continuity, ν,_ is meromorphic on ^ η Γ7 Π Vj

and has a finite set of poles there. In the case η = 0 the proof is completed analogously.

Theorem 3-1 is proved.

Problem (3.23) is a Haseman conjugation problem for meromorphic functions on

IIj with translation h (see [ll])» It is equivalent to a Riemann conjugation problem for

meromorphic functions on the surface EL = IL/o along the contour ΓΤ = Γ7 Ur hY"7.

We denote the quotient mapping Π 1 -» Π^ by Φ,. Let i?12(O t*e t n e image of the func-

»«(0 = "ι. (ΦΓ'Ο. * € ΠχΧΪΤ. (3.37)

tion vl2(w) on

We orient Γ"̂  consistently with.IIj, i.e. IIj is on the left when moving along Γ 7 . Then

the contour F j = ΦιΓ7 is also oriented. For the function ν defined on Π,\Γ7 we

shall denote by ϊ>~ the limiting values of ν as Γ^ is approached from the left and

from the right, respectively, in the space Φ'(Γ^). Then it is possible to write problem

(3.23) in the form

Ql Φ υ» (t) - Q7 (t) υ~12 φ = \ (t), t e rr. (3.38)

+ Λ Λ h
Here Q^(t) are the values of the functions Q^ and Q^, respectively, at the point
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= Φ "̂ t Π Γ~, and § j(i) is the "value" of § j at the same point. In other words,w
for t € f

(3.39)

where the branch with values in Γ7 is taken for Φ7 .

§4. Solution of the Riemann conjugation problem for
meromorphic functions on a Riemann surface

As in the classical scheme for solving the Riemann problem (see [ll]) we first

find a nonzero solution T 2 ( 0 of the homogeneous problem

Qt (t) τ+

2 (t) - Q- it) τ; (t) = o, / e rr, ( * «

corresponding to (3 .38) , meromorphic in I L . Then we obta in v,2

 a s a so lut ion of t h e

s a l t u s problem

The problem of factoring (4.1) also reduces by a standard method (taking the logarithm)

to the saltus problem.

First of all we consider the problem of factoring (4.1):

(4.3)

From (2.28) it follows that R^(t) is a lifting to Γ "̂ of the function

Λ (4.4)

which is rational on V. In view of (2.24) this function is not identically zero on V.

For further analysis of problem (2.1) it is necessary to use its nondegeneracy, i.e.

the Sapiro-Lopatinskil condition. Obviously (2.9) and (2.10) are equivalent to th'e

estimates

Γ , *€17, | z |>C. (4.5)

where C is a constant. By Lemma 3-1 the mapping ψ is a birational equivalence of

V and CP , and by virtue of Lemma 3.2 the curves Γ7 join the points 0 and <».

Therefore from (4.5) and (3.1) it follows that the rational function Β^(χ(λ)) has poles

of the same order m, at 0 and <χ>. But from (2.14), (2.16) and (2.7) it follows that

S^-P^al^. (4.6)
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Similarly
c _ ρo 2 — — fl0

2Rh* (4.7)

Taking (3-3) into account, we find that the functions 5 ; (χ(λ)) and S 1(-χ(λ)) have p o l e s

of the same order at 0 and oo, equal to Wj + m2. Therefore R^yW) i s regular and

different from zero at 0 and oo, and

( 4 · 8 >

by (3.3) and (4.4).

Next, the surface fij is holomorphically equivalent to the Riemann sphere less

two points. In fact the mapping

if m —

-*x = e w\ (4.9)

carrying Π 1 into C\{Oj is by definition equivalent to the quotient mapping Φ ^ flj -» flj.

This means that there exists a holomorphic equivalence K: Il j -» C\|0} under which the

diagram

is commutative. The linear-fractional function τ -* t = (r - l)/(r + 1) transforms C \ | 0 |

into CP \ { - 1 , 1}. Therefore the mapping

W

ni —

e — 1 . _ w

ni 2L
e W°

is also holomorphically equivalent to Φ ^ We identify Π 1 with CP \{—1, 1}, using the

holomorphic equivalence 2 ° K. Then Φ 1 is identified with S ο 3*t and p ~ becomes

a contour in CP joining the points —1 and 1:

Figure 4

Equality (4.8) passes into the relation

^1(_1) = __J . (4.12)

Let us now prove the following factorization theorem.
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Theorem 4.1. (i) There exists a nonzero meromorphic function T 2 ( 0 in Γ^ΧΓ^,

analytic up to Γ7 as Γ7 is approached from both sides, whose limiting values satisfy

the relation

ll^- = Rx{t), tetl (4.13)

(ii) The function ΤΛιυ) — T~(t) lifted to Πj — can be extented to a meromorphic

function on V and has a finite number of zeros and poles in W7.

(iii) As t € Π,\Γ7 approaches ΓΤ from either side the function ΤΛί) exhibits the asympto-

tic behavior

T2(t)~(f + 1 ) * 2 Ttp {t + l ) 6 l n p ( t + l ) , t - + ± \ , (4.14)
06Δ

where Ο < Re μ2 < 1 and Δ = \v k + ;/2| &, / e Λ/} u/z/6 R e v > Ο and in addition

Tfo=f=Q. (4.15)

(iv) A factorization with properties (i)—(iii) is unique up to a nonzero constant

factor.

(v) The function T(w) is invariant with respect to h>2 up to sign:

TKt (w)= ±f (w), w£V. (4.16)

Proof. We introduce the function %(t)—^an arbitrary branch, meromorphic in

CP \Γ"7, of the function inverse to Zukov's function:

) - j - — ) . (4 · 1 7 )

Evidently #(O is a holomorphism_of CP \ Γ ^ and of the contractible region in CP

with boundary Vl = % (Γ7) - ^"(PT) not passing through 0 or oo. By Viete's theorem

,+ /Λ «- u\ __. j tf'V~. (4· 18)

Consequently

= ± 2π. (4.19)

Let t_ be the initial and t+ the terminal point of the contour Γ7 . Clearly \t_, t+\ =

{l, — 1}. For definiteness we shall assume that %(°°) = •<». Then by (4.18) and (4.19)

Varargs =·=(/)= + Λ (4.20)
r~

in the case when t±= ±1. We define a function tb(t) in CP \Γ7 by
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Μη^Λ · (4.21)
ai f ( t ) J

We let / = In Ri(t_) and require that 0 < Im /_ < 2π. From (4.20) and the condition

2(oo) = 00 it follows that tb(t) is analytic and the function

satisfies the relation

flu(-l) = flu(+l)=l ( 4 2 3 )

by virtue of (4.12;.
^ — 1

Now we "unwind" the symbol i ? u ( / ) . We denote by T^ a contour in CP that

joins —1 with 1 and lies in a sufficiently small neighborhood of Γ^". In addition,

Γ7 goes around the zeros of Rj lying on Γ "̂ to the left and around the poles to th-e

right. Let
κ2 = — Var arg Rn (t). (4.24)

2π -ρ-
1

Then the function

has zero change of argument along Γ7 by (4.20), and consequently has a logarithm on

Γ7 that is analytic and equal to zero at the ends. Therefore we obtain a factorization

of R 1 0 ( i ) from a solution of the saltus problem

1ηΤ0

+ (ή — In T~ (/) = In Rl0 (ή, t € Κ ( 4 · 26)

By the Sohockii-Plemelj formulas it is possible to set

in r0 (0 = - ^ [l^Hldf ( 4 2 7 )

Γ

for ί e I l j X r r . The function Τ At) is holomorphic on Π,\ΓΓ up to Γ7 by virtue of

the special choice of branch for In RlQ(t).

Let

Γ,(0=Γο (/)-£&-. (4.28)

Evidently T 2 satisfies (i) of Theorem 4.1. Furthermore, assertion (ii) is the multiplic-

ative analog of Theorem 3.1.

Let us determine the asymptotic behavior of Τ2(t) as (-> +1. As already noted,

the rational function Rj(x(A)) is regular at zero and at infinity. Consequently
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η /γ Λ\\ ^ \Π D*! =*=* 1 ±1 _ . Λ (Α 9ΟΛ

Let ν = wQ/ni. Then

f ( i + 1)'1)', / - > ± 1 , (4.30)

for / € f ~ by (4.9) and (4.11). Hence

£ i ( 0 ~ 2 **/(* +i ) v + * + / . / - + i . (4-3D

In (4.31) we have used the notation

v + f v, Rev>0,

I—v, Rev<0.

From (4.22), (4.25), (4.17) and (4.21) it is now easy to obtain the asymptotic formula

*ioΦ - Σ r*i« + UV+k¥ll*> ί-*±1· (4·33)

Correspondingly for In R,Q(t) we have

2 L%{t^\y+k+il\ / - * ± l . (4.34)

Substituting (4.34) in (4.27) and integrating term by term we obtain that for t € Π,\Γ"Γ

l n To (0 - 2 '* (/ + 1)*ϊπ (/ + 1) + J < (̂  + 1)V+A+//2, / - ± 1. (4.35)

Exponentiating (4.35) and taking account of (4.28), (4.17) and (4.21), we obtain the re-

quired asymptotic formula (4.14). Here

μ2 = -=:, Tf0 ~ exp mf0. (4 36)
ZJtl

Finally, (iv) follows from the principle of analytic continuation by continuity and

the theorem on a removable singularity. Assertion (v) is the multiplicative analog of

Theorem 2*1 and can be proved using (iv) and the fact that hj is an involution. The-

orem 4.1 is proved.

Let us return to equation (3·38). From (4.3) it follows that it is equivalent to

^ V P . / . ^ W . t&;, (4.37)

where an arbitrary solution of

&(/), / e r \ , (4.38)

in the space 2)'(Γ^) stands on the right side.

Remark 4.1. Let v2 and t>2 be any two solutions of (2.38). Then
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υ'2 — ΌΙ = Τ2Φ, (4.39).

where Ϊ is meromorphic on W r The function 3JI on ΓΙt is a lifting of a function 3JI

meromorphic on Π 1 · In fact let # 2 and v"2 be the images of v2 and £ 2 on IIj. Then

from (4.37) it follows that (v'2 - v'2')/T2 is meromorphic on fij. Now it remains to

use (ii) of Theorem 4.1.

Since we are free in choosing the constants Gfe in (3.24), we set them equal to

zero. Then § , = G, and by the Sohockil-Plemelj formulas the solution of (4.37) is an

integral of Cauchy type

of — It')

•'• QX d(. (4.40)

At points within the contour T"^ this integral is regularized in the sense of gen-

eralized functions, and in the neighborhood of the points ±1 it converges absolutely

in the Lebesgue sense. To prove absolute convergence of the integral in (4.40) in the

neighborhood of the points ±1 it is essential that s > 3/2 and Re μ2 < 1.

§5. Investigation of the general solution of the system (2.18)

From Theorem 3.1 it follows that the function v2 , (ιν) = ν,ΛΦιυ) can be extended

from IL to a function v.Jw) meromorphic in W2- But by Theorem 2.1 the function

»12 iW) = "Γ (U12 Η + "Μ (KW)) (5. 1)

is a solution of the system of equations (2.38) and (2.35). Consequently the function

012(2) = Vuip-ty, Z£W+, (5.2)

satisfies the last two equations of (2.28) if the branch with values in i ,W is taken

for p~ . Thus we satisfy (2.28) if we let

i i (2)

Hence we have found a particular solution (vn, f 1 2 ) of (2.18) for the case / = 0 ,

/ 2 = 0 under the assumption that v,, is meromorphic in V,.

Completely analogously we determine the general solution (v2., ^ 2 2 ) of this

system for the case / = 0, / =0 and / | = 0 under the assumption that fjj + v2l £

Η _α/2(R )» I - 1> 2. In fact from (4.40), assertion (ii) of Theorem 3.1, assertion (ii)

of Theorem 4.1 and the special choice of the constants in (3.24) it follows that v^2

has a finite set of poles in W . Therefore from (5.3) and (2.24) it follows that v l l

has a finite number of poles in Vy Now from the assumption that ν u + t>2, e

Η^_, ,2(R ) it evidently follows that v2, is meromorphic and has a finite number of

poles in V^. Consequently to determine the functions v2, we can apply the methods

used above to find the functions ν...
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In the first place we see that ^ 2 1 , like ^ 1 2> * s m e fomorphic in W and has a

finite number of poles there. Hence we immediately obtain an important corollary.

Namely, from (5.3) it follows that the first component v^ of the general solution of

(2.18) in the case / = 0 has the form

Using (2.23) and (4.6) we obtain that, modulo meromorphic functions on V^vT^,

a\ — iz2a\ r

But by virtue of the strong ellipticity of A(z)

(5.6)

for ζ ε Fj, since otherwise

Α (^, 0) = Α (ζ) + /22 (ai - ^ 2 α|) = 0 (5.7)

for real Zj. Consequently, in order that problem (2.1) be Noetherian it is necessary

that

Bfc(z)=f=0 (5.8)

for ζ € F j . In fact, by (5-5) only in this case will the function νji-Zj) be locally sum-

mable on the real axis when a finite number of orthogonality conditions hold for Λ and

f2- From (3.16) it follows that (5.8) is equivalent to the condition

Β^φΟ, 2€ΓΓ. (5.9)

Now we can formulate the definition of strong ellipticity for problem (2.1).

Definition 5.1. The boundary value probelm (2.1) in a quadrant is called strongly

elliptic if

\Bt{z)\

for / = 1, 2.

By virtue of (4.5), from the arguments presented above it follows that strong el-

lipticity of problem (2.1) is necessary in order that it be Noetherian in conjunction with

the a priori estimate (2.8). In this and the following sections we shall show that, con-

versely, under condition (5.10) the problem (2.1) is Noetherian and its solution satis-

fies (2.8) for all s (except a locally finite set) with e > 0 depending on s. For this

we find the general form of the solution (^2i> ̂ 22^ °^ t ' i e s v s t e m (2.18) in the case

/ = 0 and f^ = 0. In this connection

£ = £*= Ρίο (flJ — iZial)J2. (5.11)

We trace briefly and with obvious changes in notation the reasoning oX §§2—4

adapted to this case. Let v2l be a lifting of ν21 from Vl to Vγ. Then v2l is. mero-
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morphic on W, and satisfies an algebraic equation with a shift of the type in (2.38). The

function v2l is a lifting of the solution of the conjugation problem of type (3.38) for the

meromorphic function v2V If § 2 = G2, then a particular solution v'2l of this conjuga-

tion problem is given by an integral of the type (4.40):

-ψΐ (0 = ~ f Sill dt'. (5.12)

Here ΓΓ is a contour in EL » CP \{— 1, 1} joining 1 with —1. Let ι)21 denote a lifting

of v,2 to IL. By Theorem 3.1 the function v2i is meromorphic on Wj, has a finite num-

ber of poles there and satisfies the same algebraic equation with a shift as £_,. As

shown in Theorem 2.1, the function

l>2i Η = — (v[i (W) + v'n (hjW)) (5.13)

also satisfies this equation. In consequence of Remark 4.1

where 3JI is a lifting to Π 2 of the function 3R meromorphic in EL.

The function ν2 ^ is invariant with respect to h.. Therefore the invariance of i)-2,

with respect to h. is equivalent to

i i (5.15)

by virtue of (4.16). The sign in (5.15) coincides with the sign in (4.16).

In addition, the singularities of v2l and v2-i on W^ are known. Therefore the

singularities of T ^ are also known: for each point w € W^ an integer § is assigned

such that

(wf) = ^ ck (w' — w)k (5.16)

in a neighborhood of w. Let dw denote the multiplicity of the zero of Tl at w. Then

from (5.16) it follows that Si has a pole at w of order no higher than § + d . Let

9r
i = p^ + 5^ for t = Φ 2 ^ , with ^ € Π 2 \ Γ ~ . Then Έί has a pole at ί e Π2 of order no

higher than q (. Since v2i and ν * t have a finite set of pole's on W1, the integer ^ is

positive only for a finite set of points w 6 Π 2 \Γ~. Moreover, analyzing the proof of

Theorem 3.1 it is easy to see that §w depends only on the symbols Α, β χ and B2. In

addition

2 Pw<oo. (5.17)



118 Α. Ι. KOMEC

Next, from (ii).of Theorem 4.1 it follows that d > 0 only for a finite set of points

w € Wl. Therefore the set of t £ Π2 for which q > 0 is finite. Below we shall show

that from the assumption v l l + v2l
 e ^s-3/2^ ^ follows the regularity of 351 at the

points ±1. Thus we arrive at the following assertion.

Lemma 5.1. (i) The integer q depends only on the symbols A, B, and B~, and

2#<°°· (5.18)
ten*

(ii) The function UUl belongs to the finite-dimensional space of rational functions

on CP with poles of order q at t € CP . The dimension of this space is

d== Σ V+1· (5.19)
ten?

We have already proved (i), and 3J? is holomorphic at ±1 because 5ft is square sum·

mable in the neighborhood of these points. To prove this we study the functions ν-, ,

and ^2 1* ^ e ^ r s t prove two important lemmas. Let μ2 = Re μ2 and ν = Re ν .

Lemma 5.2. (i) The function v'~Jt) is meromorphic in CP \Γ"Γ and has a finite

set of poles there; in the neighborhood of the contour ΓΓ in CP it admits the estimate

lM9l<cP-«(/,fD (5.20)

with constants C and a, where ρ is distance in CP .

(ii) Suppose s is not an integer and is different from 1 +(μ2 + k)/v for k = 1, 2, · · · .

Then in the neighborhood of the points ±1 there exists a finite expansion

l), (5.21)

where ν' is square summable in the neighborhood of ±1 with weight \t — 1|~ ^s~ '" dt

on any smooth arc γ in CP \Γ]" passing through 1 or —1, and

Δμ2 = Δ U (Δ + μ2)· (5· 22)

(iii) // the curve γ passes through 1 or — 1, is sufficiently short and belongs to

an arbitrary bounded set in C™ ([0, l ] , CP ), then

II ,/ + II Pi II + If 0 1) ( 5 · 2 3 )

and the constants v~* also admit this estimate,pb

Proof. We apply the Euler substitution \t + l | - e in the neighborhood of the

points ±1 on the contours γ and Γ^. Then the operator (4.40) is transformed into a

ρ seu do differential operator on the line. Its symbol, computed in the coordinate r, can

be studied by the methods of [15]. Namely, this symbol admits the expansion described

in Lemma 4.1 of [15]. Therefore the arguments of §5 of [15] and Theorem A.I of the
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Appendix of this paper yield the required expansion (5.21). The parameter s occurring

in the statement of Lemma 5.1 of [15] is equal to zero in our case, and the parameter

h equals v°(s - 1) — μ2- Consequently the restriction h 4 0, 1, 2, · · · of [15] is equiv-

alent to the inequalities s ^ 1 + (μ 2 + 'k)/v , & =-0, 1, · · · „

Lemma 5.3. (i) The junction G, is holomorphic in V-, and admits the estimate

Ορ-«(λ>5Κί) (5.24)

with constants C and a, where ρ is distance in CP ^ V.

(ii) // 5 is not an integer, then G* admits a finite expansion

Gi(W = G l 0(X)+ 2 <&** (5.25)
2(/77 l+mI)-S+l<&<2 (Wt+mj)

in the neighborhood of the points 0~ in V,, where G ,Q is square summable in the

neighborhood of 0±l with weight A ± ( s ~ 3 / 2 " 2 ( / 7 2 l + m 2 ) ) ^ + l

 o n a n y smooth arc γ in

V\ passing through 0 or oo, and k is an integer.

(iii) // the curve γ passes through 0 or oo, is sufficiently short and belongs to an

arbitrary bounded set in C°° ([0, l], Vγ), then

J | G10 (λ) π λ-(-3/*-^-2)> a - 1 < c (ϋ/, i u r l / 2 +« P, \\ +1 f |) (5.26)
V

and the constants G^ also admit this estimate.

Proof. Recall that G γ(ζ) =-sJ1(z)g1U) - S χ{ζ) ξ\\ζ). The expansion (5.25) fol-

lows from Theorem A.I and from (2.23). The estimate (5.24) is trivial and (5.26) fol-

lows from properties of an intergral of Cauchy type, as in Lemma 5.2.

Now we can completely describe the properties of the functions v^..

Theorem 5.1. (i) The function v,2 is meromorphic in W , has a finite set of poles

there and admits the estimate

in the neighborhood of the points λ = 0 ~ , with constants C and a.

(ii) // s is not an integer and is different from 1 + (μ^ + k)/v°, k = 0, 1, 2, · · · ,

then there exists a finite expansion

Σ ? ± β (5.28)

in the neighborhood of λ = 0 ~ , where ν is square summable in the neighborhood of

λ-0~ with weight λ ( s ~3/ )j^+ o n any smooth a r c γ ιη ψ passing through

0 or oo, pg and p are integers, and

V ( D *-0.1.2,..., Ο.29)
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where (μ2/ν) is defined analogously to (4.32).

(iii) // the curve γ is sufficiently short, belongs to an arbitrary bounded set in

C?°n([0, l ] , W ) and passes through 0 or °o, then

and the constants ν g also satisfy this estimate.

Proof. For the function ν|2 in fij outside a neighborhood of hVj the estimate

(5.27), expansion (5.28) and estimate (5.30) follow from Lemmas 5.2 and 5.3 and from

(5.10). In a neighborhood of hVj and in M^YOj the assertions (5.27)—(5.30) are easy

to prove by analyzing the proof of Theorem 3.1. All of these assertions are carried over

to ν 1 2 using (5.1).

Let us now complete the proof of Lemma 5.1. Let γ be a short arc in Π 2 \ΓΓ

issuing from the point ±1. We assert that ν., and #_, are square summable on γ with

weight |/ - 1| fXldt. This is easy to prove for vll using (5.3) and the description of

i>12 obtained in Theorem 5.1. The function t>21 is studied in exactly the same way as

V\2- Furthermore, by assumption the sum v^ = v, j + v,2 belongs to Η _-ι/2- Hence it

is easy to deduce that v^ and consequently TjSJl = v, — ν-^γ — # 2 i a r e S ( I u a r e summable

on γ with weight \t — l | ^idt. Therefore Έί is square summable on γ with weight

\t —l\^ldt. Moreover, integrals of |2Jl| \t -l\^l\dt\ along arcs γ are bounded if y

is sufficiently short, belongs to an arbitrary bounded set in C°° ([0, l ] , CP 1) and passes

through 1 or —1. Thus it follows that 501 is square summable in the neighborhood of

±1 with weight \t + l\fMl~1dtdt Since μ°γ < 1, 1 is analytic at ±1.

Hence 3JI is regular at ±1 and consequently the general solution of the system

(2.18) depends on d arbitrary constants. These constants are subject to condition

(5.15) involving the nonbranching of ν2ν ^n addition, SJl is subject to the condition

vl e i / s _ 3 / 2 (R + ) , /= 1, 2. Let

S = | l -Η μ ] * \l= 1,2; feeNJ. (5.31)

From Theorem 5.1 we obtain, by virtue of (5.4), the following basic assertion.

Theorem 5.2. Suppose problem (2.1) is strongly elliptic. Then (i) the function

νΛζ.) =-v.. + v2l + T-M- is meromorphic in C and for large \zA admits the estimate

r . (5.32)

(ii) // s is not an integer and s £ S, then νγ(ζ,) admits a finite expansion
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in the half-plane C , in which vlQ is analytic in C , belonging to the space H s _ , /2(R);

Z, is a finite set of points in C , pg <2«ί/ <?ζ are finite, and p and q are integers.

(iii) We have

K I U . < C ( 2 (lH-w/-v. + lp'D + lSRl + l'ol)· ( 5 · 3 4 )

and the constants νL g fl«u? r ' * also admit this estimate.

(iv) The sets Δ σ tfrcfl? Z ^ a s well as the numbers pg and q\, depend only on the

symbols A, Bl and B2> Here

{ϊ)Ί *-ο.ι.2..... (,35)
Proof. In consequence of (5.4) and (5.14)

θι = *Γ~Ό* + Ό« + Τ&' (5.36)

But by Theorem 5-1 the function ν 1 2 satisfies conditions (5.32)—(5-35). It is clear that

v2. also possesses similar properties. Let us now take into account the regularity of

3)1 at ±1 and the asymptotics (4.14). Then from (5.10) and Theorem A.I it follows that

v, also satisfies (5.32)—(5.35). Assertion (iv) is verified by direct computation. The

theorem is proved.

Let us assume that problem (2.1) is strongly elliptic, s is not an inxeger and s ^ S.
-ν- +

Then from Theorem 5.2 and Theorem A.I it follows that v^ belongs to Hs_^,2^ ) ^
and only if the following system of conditions holds:

^ 6 = 0 for δ 6 Α σ and R e 6 < s - 1 , if 6 = f l , 2 , . . . or 1 < ρ < / ? δ ,
(5.37)

rqi — 0 for ζ^ΐι and 1 < q •< ί/ζ.

Under these conditions, from (iii) of Theorem 5.2 and (ii) of Theorem A.I we obtain the

estimate

< c f 2 (II // I U r v . + 1 p ' ID + II ** I + 1Π)· (5.38)
V / l 2 /

Evidently ν g and r g are continuous linear functionals of g and 501. In turn g

depends linearly and continuously on / , /, and P.. Consequently (5.37) is equivalent

to the system

L)1 (f, P l f Pv 9») = R}1 (flt /2), / = 1, . . . , Nil (s), (5.39)

where L. and R. are continuous linear functionals of their arguments. Completely

analogously the function ^2 = ^2 1 + ^2 2 ^ 6 1 ο η β 5 t o ^ s - i / 2 ^ ^ ^ a n <^ οη^Υ ^

^/M (Λ ^1 . ̂ 2, 3») = Rj1 (/χ, f2), / = 1, - · · , NHs). (5.40)

Let us state the main result of this section.

Theorem 5.3. Suppose problem (2.1) is strongly elliptic, s is not an integer, s 4 S

and / = 0 . Then
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(i) A solution of equation (2.13) exists if and only if there is a meromorphic function

3JI on CP , with poles at t £ CP of order no higher than q , satisfying conditions

(5.15), (5.39) and (5.40).

(ii) The general solution of equation (2.13) has the form

(5.41)

where v 1 2 is determined from (5.1) and ν2, from (5.13).

(iii) Under conditions (5.39) <z«i/(5.40) û e Atfi/e the estimate

(5.42)

(iv) Strong ellipticity of problem (2.1) is necessary in order that it be Noetherian in

conjunction with the a priori estimate (2.8).

Proof. Formulas (5.41) follow from (5.14), while (5.42) and assertion (iv) have been

proved above.

§6. Investigation of the general solution of the boundary value
problem in a quadrant

Recall that in §2 we reduced the investigation of the boundary value problem (2.1)

to the system (2.5) of equations equivalent to it. In addition we have shown that it suf-

fices to consider the case / = 0, and under this condition we have exhaustively studied

equation (2.13). Since this equation was obtained by eliminating "v . from the system

(2.5), it is now possible to compute these functions: taking (ii) of Remark 1.1 into ac-

count, we obtain

ν ι = . (6.1)

Mo

Assuming that v} € # S _3/ 2 (R )» ^ e t u s clarify under what conditions &l belongs to
HS_1/2(R\

In view of (6.1) and (5.41)

' η (Si *->2 * t T [ m l

1 — Pii\— — — v12 + υ + TxWl

p10

(6.2)

7,0

v1 =

»! =
7; - p« (? - 1 1 κ

•P20

Taking (2.23) and (4.6) into account, we obtain
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where SJt̂  is a meromorphic function on W . But in consequence of (2.7) and (2.16)

Hence

By virtue of (5.10) it therefore follows that if l (and iX2) is locally summable on the

real line under a finite number of conditions on / , f ^, / 2, P j , P 2 and 3L Let zi be

the zeros of the polynomial P.Q lying in C and k}. their multiplicity. Then 'ν ,, de-

fined by (6.1), has poles only at z\ of orders no higher than kl. From Theorem A.I and

conditions (2.11) and (2.12) it follows that tf^ € ^s-\/2 ^ anc* o n ^ ^ a ^ r e s idues of

ν , at the points zi are zero. Let us write these conditions in a form similar to (5.39)

and (5.40):

L}° (f, P l f P 2 , ξ0?) = /?f (flf / 2 ) , / = 1 N10. (6.3)

By Theorem A.I, under these conditions we have the estimate

Thus we have completely investigated problem (2.1) in the case / = 0. Let us

state the result in the form of a theorem. For uniformity we write condition (5.15) in

the form of a system

= 0, / = 1 , . . . , d,

where the S. are linear functionals.

Theorem 6.1. Suppose problem (2.1) is strongly elliptic, s is not an integer,

s / S and / = 0 . Then

(i) Problem (2.1) is solvable if and only if the system of linear algebraic equations

L ? ( I ° , P i , P i , m = R?{fi,fz), / = 1 , . . · , N l \ s ) , / = 1 , 2 , β = 0 , 1 ,

Jy(gR) = O, / = 1 , . . . . d, (6.5)

^ (/°f Pv P 2 , SR) = /?;(flf f2), / = 1, . . . , 2 · [s],

zs solvable, where the functionals L. and R. are determined from the relations

L'j ( . . . ) - Ζ?) (...) = ^/(/ J , dvi (0), ay2 (0), 0).

(ii) To each solution of the system (6.5) corresponds in a one-to-one manner a
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solution of the boundary value problem (2.1) according to the formula

u = F -1 ^ ( Q ' ~ l Z ^ + ^ ' +~V°2 (Q* - hial) + ^ ~~ f° (6 6)

where the functions v^ are determined from (5.41) and (6.2).

(ill). Let e < min([s] + 1 - s, p(s)), where

p(s)= min (δ° —s + 1). (6.7)

If u e Hs(K) is a solution of (2.1) and fl e Hs^_m _ 1 / 2 ( R + ) for / = 1, 2, /£<?« a e

// (K) and we have the a priori estimate

Proof. Assertion (i) has been proved above, and (ii) follows from (ii) of Theorem

1.2. To prove (iii) we note that the compatibility conditions (6.5) are the same for s

and s + e, while the norms \f | , ||JPx | |» ]|P2II a n <^ IÎ H c a n ^ e estiraated from above by

| |a| |^. Then reference to (ii) of Theorem 1.2 and the estimates (5.42) and (6.4) completes

the proof.

Let us write the system (6.5) briefly in the form

Z, (f, Plt P2, m) = tf; (fv /2), 1 < / < Ν (s), (6.9)

where =L . and ,7\. are continuous linear functionals of their arguments and N{s) is the

number of equations in the system (6.5): N(s) - ΣΝ ^(S) + d + 2-[s]. The number of un-

knowns in (6.5) is 1 + m^ + m~ + d; we denote the last sum by M. Then the functionals

generate a linear operator £ acting from C to C ' . The system (6.9) is solvable

if and only if its right side is orthogonal to all solutions of the homogeneous adjoint

system:

r , (6.10)

where %(f\, f2) denotes the vector (iR;.(/lt / 2 ) ) ; = 1 N(s)- Let {5M/!alf . . . f Z . be

a basis in Ker £ . Then (6.10) is equivalent to the homogeneous linear system

< s ' , ^ ( A J 2 ) > - o , i = \ , ..., r. ( 6 . Π )

By Theorem 6.1 the conditions (6.11) are necessary and sufficient for the solvability

of (2.1) in the case / = 0.

Let us turn, finally, to the general case when / 4 0. Here the condition of solv-

ability of (2.1) is equivalent to the system of equations

<ο^, f) = <S\ M(fu f°)> = 0, i = 1, . . . , Γ, (6.12)

where J =•(/, /,, /2) and the /^ are determined as in (2.20). We write formula (6.6)

briefly in the form
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u= R (fv /2, f\ P l f P2, $?). (6.13)

Then under condit ion (6.12) to e a c h solut ion of t h e system £ ( / , P j , Ρ 2 , 3JI) = ,Ή(/ l t / 2 )

c o r r e s p o n d s in a one-to-one manner a solut ion of (2 .1) , namely

u = w+ + /? (ft ft /·, p l f p2, a»), (6. Η )

where u+ is defined in (2.20). Let us state the final result.

Theorem 6.2. (i) Suppose problem (2.1) is strongly elliptic, s is not an integer

and s £ S. Then

1) The kernel of the operator fi is isomorphic to the kernel of £ and dim Ker fi =

dim Ker L· = M. — rank X., and its cokernel is isomorphic to the space spanned by the

functionals o.; moreover dim Coker fi < / < N(s).

2) A solution of (2.1) can be found by means of formula (6.14). If u € Η (Κ) is a

solution of (2.1) and ? 6 H, »(K), /fcew Μ € Η (Κ) for 0 < e < min([s] + 1 - s, p(s))

have the a priori estimate

ils+e-2 ~̂ 2 (llfrlls+e-m V ^ ~̂  II ^
Z=l,2 S '

(ii) In order that the boundary value problem (2.1) ^e Noetherian and its solution admit

the a priori estimate (2.S) it is necessary and sufficient that this problem be strongly elliptic.

As is well known, a Noetherian operator can be modified via a finite-dimensional

one to an invertible operator. Specifically, if fi: Ηs -» K.̂ v is a Noetherian operator,

then there exist nonnegative integers r and r* and operators Κ, Τ and / such that the

operator

« = M'^V φ_^ ̂ s ) (6.16)
\ Τ Τ I r-*

\i "J f Cr

is an isomorphism. In fact, for invertibility of 51 it is necessary and sufficient that

the operator

\yi, Λ) . VE7 —^ol(s) (.Ο.17)

cr*
be an epimorphism and the operator

(Γ, J) : Ker (Λ, X) -* Cr (6.18)

be an isomorphism. Let k* = dim Coker fl amd k = dim Ker fi. Then the operator

(6.17) can be an epimorphism when r*>k*, while (6.18) can be inveritble when r - r* =

ind.fi, where ind fi = k - k*. Note that Κ = (KJ, · · · , Κ \*)t where Kj e K{s).

We shall state the results of this section in the form in which they will be needed

for studying boundary value problems on a manifold with piecewise smooth boundary
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Theorem 6.3. Suppose problem (2.1) is strongly elliptic, s is not an integer and

s i S. Then

(i) For r* > k* and r - r* = k - k* there exist operators Κ, Τ and J such that

the operator 21 in (6.16) is an isomorphism.

(ii) Invertibility of U is equivalent to the following system of conditions:

/
(6.19)

det(7\ /) 0^=0,

where (T, J)Q denotes the restriction of the operator (T, /) to the kernel of (u, K)

in the space Hs θ Cr*.

Proof. Assertion (i) follows from the fact that U. is Noetherian. The first condi-

tion in (6.19) is equivalent to the fact that the operator (6.17) is an epimorphism; the

second to the invertibility of (6.18).

§7. Function spaces and classes of operators on manifolds with

piecewise smooth boundary

Let Μ be a smooth compact η-dimensional space. We assume that it is stratified,

i.e. %'.» y ? . . ! , , where m, is a smooth manifold of dimension η — k and % . Π % . -

0 for i 4 /· We shall assume that %k = 0 for k > 2. Then

M = jeo\JJC1\J Mv (7.1)

In addition we shall assume that η > 3.

Definition 7.1. The space % has a piecewise smooth boundary if

(i) % has the form (7.1).

(ii) Each point χ e%^ has a neighborhood in 1̂Ϊ diffeomorphic to a half-ball

B + inR w : B+ = \x e R"| |x| < 1, Χχ > 0 | .

(iii) Each point χ € %2 has a neighborhood in 1̂1 diffeomorphic to a quarter-ball

B++ in R":
B++={xeB+|x2^0}. (7.2)

Thus % is the interior of '̂ 1 and d% =%lU %2. The stratum ffij consists of

regular points of the boundary and Μ is the edge of codimension two in M.

The manifold m, is canonically diffeomorphic to the interior of a smooth space

%.? determined up to a diffeomorphism. Namely, a boundary point of %.? consists of a

point χ € d%, = W2
 anc* o n e °^ ϋ ^ ε n o r m a l s t o ^? a t x ^iecte(^ m t o ^ j · From this

definition it follows that G>(M?) is a space of smooth functions on 7R j having, togeth-

er with all derivatives, discontinuities of the first kind on M2· For convenience we

set )1Ϊ̂  = )1Ϊ and %2=%r

Let s(x) be an arbitrary locally constant function on %?. We shall denote by

Η / Λ ( ^ Ο the Sobolev space of functions on ΪΗΓ having locally constant "smoothness".

We shall consider differential operators on 1̂1 with smooth coefficients. In addi-

tion we need boundary differential operators acting from &(%) to ©(M.p. Let χ be
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local coordinates on Μ defined in a neighborhood of a point of dm.

Definition 7.2. A boundary differential operator has the form

Bu (x) = B{x, D) u (x) =-- 2 Ba (*) Dau(x), χ e - < ,

in local coordinates, where u e GvTC) and Ba(x) is a function in &{%^). The function

m(x) is assumed to be locally constant on m1^ and is called the order of the operator B.

Lemma 7.1. (i) The class of boundary differential operators is invariant with respect

to change of variables.

(ii) A boundary differential operator of order m(x) acts continuously from HS/X\($Q

t o "sW-mW-K^V if 4x) -nix) -%><) for x e%°.

Besides differential operators we introduce certain Fourier operators "concen-

trated on m~". Let m, and %, be strata of % and let Ρ be a continuous linear

operator acting from GvK?" ) to &(Μ'Γ ). Let ύρ 1=1, 2, be smooth functions on m

such that coordinates of type (7.2) are defined in supp ϋ^ U supp ι>2· Then x, = x2 =

0 is the local equation for M_, and m, coincides locally with )R2 χ Κ,, where Κ· is

a smooth submanifold in R . Let χ' =·(* 1 , x2) and x"~(x.i · · · , κ ). Evidently

fl2P V (x) = -j^pr j <Γ'<*·.*·>Ρ (χ", ε") ιι (2") ί/2" (7.3)

for ω € ^ν^Γ ^ a n < ^ x e supp ι?2· Here η " = dim %2 = η — 2,

u (ζ") •= \ βι<ζ"-ί'">Ό'1 (ί/) u (y) dy",

and Ρ(χ", ζ") is a smooth function on R n with values in the set of continuous lin-

ear operators from Ĝ ICT) to ^(Kp.

Let n, denote the codimension of 71Ϊ_ in m., : n^ = 2 — έ.. In the following we

shall assume that « | ^ 1 . Consequently either K^ = 0 (when n'^ =0) or K^ is a quad-

rant of the plane (when n* = 2). Let ?w( x) and ?(*) be locally constant real functions

on m, . For a function ω € 2)(Kp let /w be an arbitrary extension of u to a function

Definition 7.3. An operator Ρ: δ(%^ ) -> β(")1ί̂  ) is called a Fourier operator of

codimension two, degree m{x) and class r{x) if it has the form (7.3) in local coor-

dinates and for u € JXKT) and x' € K^

( 2 π > , ;

where the function P(x, z) has the following properties:

r <\Ρ(χ,ζ)Ια(ζ')άζ', (7.4)

;
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1) There exists a function Ρσ(χ, y'; z) such that

Ρ(χ,ζ) = Ρσ{χ,χ'\ζ\ (7.5)

where Ρ σ i s a smooth function on mf x K^x R analytic in ζ ' in — CKi and

2) for any Ν, β, ο. , α and α' there exists C such that

(1 + ( H - | z"1) I y' | f | D*D«}d«}d%Pa (x, y'; ζ) \

'··» (M_ | z ,)^-i«i (7.6)

for all (*, y ' , z) e )1ΐ£ χ Kjx (-CK*) χ Rw". The function Ρσ is called the symbol

of the operator Ρ in the coordinates x.

By the Paley-Wiener theorem it follows from 1) and 2) that the integral in (7.4) de-

pends only on u and not on lit. We shall employ the notation

Ρ(χ",ζ") = Ρσ(χ,χ';Ο',ζ") (7.7)

for the operator (7.4).

Theorem 7.1. (i) The set of Fourier operators of codimension two, degree m(x)

and class r(x) is invariant with respect to change of variables.

(ii) A Fourier operator of codimension two, degree m(x) and class r(x) acts con-

tinuously from the space Hs(x)(%°) to tfs(x)_m(x)_(w/ ^/jftlj for s(x) - r(x)-

«j/2 > 0 if «j' ^ 0 and for any s if «J = 0.

(iii) Under the same relations between s(x) and r(x) as in (ii), the operator i>.PA

is infinitely smoothing if 0. or ϋ7 is equal to zero in a neighborhood of %.-.

We now consider Fourier operators of codimension two with homogeneous symbols.

Definition 7.4. A Fourier operator Ρ of codimension two, degree m(x) and class

r(x) is called homogeneous in its principal part if the symbol Ρσ of Ρ admits a de-

composition Ρ = PQ + Pj in local coordinates, where the P. are symbols of Fourier

operators of codimension two, degree m.(x) and class r(x), with mAx) - m(x),

m^x) < m(x) - 1 and for t > 1 and \z"\ > 1

Ρο

σ (χ, y'; z', tf) = tml(x)+n2P°0(x, ty'; z'ft, z"). (7-8)

The function PZ is called the principal homogeneous part of the symbol Ρ .

Let ζ(ζ") be a function in fb(Rn ) such that

We denote by W, the bundle of inner normals to %~ in %, and by Τ, the restriction

of the bundle of cotangent spaces to %, on %2· Recall that η > 3.
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Theorem 7.2. (i) The set of Fourier operators Ρ, homogeneous in their principal

part, of codimension two, degree m(x) and class r(x) is invariant with respect to

change of variables.

(ii) The function

is invariantly defined on the bundle Ν2 χ Τ^ if we identify χ and y with coordinates

in the base and fiber, respectively, of the bundle /V2> and ζ with the coordinate in

the fiber of T*.

(iii) // the function PQ(X, y '', z ', co ') is defined on m? χ Κ Τ χ (—CK. ) χ Sn ~

in local coordinates, is analytic in ζ and for any CL , α, , α , β and Ν admits the

estimates

| (1 + |V \)ND&

xDpdaJd£P0(x, y'; z\ ω") | < C ( 1 + W i P " ' " 1 ' , (7.10)

then the Fourier operator of codimension two with symbol

Ρσ

0(χ, y ; z) = i{z')\z'\m(x)+nkPl(x, \z'\y'; ^ ) (7.11)

is homogeneous in its principal part and has degree m(x) and class r(x).

§8. Boundary value problems on manifolds with

piecewise smooth boundary

In this section we consider the boundary value problem (0.1):

Au0 (x) 4- Ku2 (x) = f0 (χ), χ 6 Jt0,

Bu0 (x) + Lu2 (x) = ft (χ), χ e Jllt (8.1)

TuQ (x) -f- Ju2 (x) = f2 (χ), χ e M%.

For convenience we write this problem in the form

{Λ+%)%=&, (8.2)

where U = (uQ,u2) and 5 =-(/0, fv f2). The operator (A, B) is denoted by (Ϊ. We

shall assume that

A = A{x,D)= 2 Aa(x)Da, (8.3)

|a|^2

where A € G^MI). β denotes a boundary differential operator of order mJx):

B = B(x,D)= 2 Ba(x)Da. (8.4)
\a\<mt(x)

The operator S is a matrix of Fourier operators, homogeneous in their principal part,

oi codimension two:
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£ = (^/)Α==0,ι,2· (8-5)
1=0,2

The operator %, , acts from G> ^(Mj) to G> ̂ (Hlf), h a s matrix symbol (S/7>), matrix de-

gree m, , = (ml1,) and matrix c l a s s r, . = (r1,1,), where 1 < / < ri* and 1 < ι < r,.

For simplicity we restrict ourselves to the case when the edge Hl2 i s connected.

We assume that fQ e H( (Hi) and {λ e Ht ( j c ) (Hip, while /2 = (/2, · · · , / p belongs to

the space H. (Hi.) =G$r--M.i (Hi.,), where i 7 i s the vector (tl, - · · , / ' ) . We seek

the function un in Η (Hi), wliile a . belongs to iR r

= 1 f/ ;(Hl_). Thus r* = rn = r, = 1,

2 = r ' r 2 = r* a n < ^ r * =

For brevity we denote the operator d + S by ?I.

Theorem 8.1. Lei sQ - m^x) - ]/2 > 0 <z«<s? 5Q - r2 Q - 1 > 0. Then the operator

continuously from Κ ()R) = Η (ίΐϊ) θ // ()1L) ίο Κ Λ ) = Hf (Λΐ) θ //, (Hi,)θ

2)
 f / / o r Μ = 0, 1, 2

/or all χ e Hi J, 1 < / < r* β«ύ? 1 < i < rk.

Proof. The assertion follows from (ii) of Theorem 7.1.

In the following we shall assume that the hypotheses of Theorem 8.1 are satisfied.

From classical results it follows that for the a priori estimate

II«. U < c βAu" IUe-«+1 s"o Ι,.-.,,»,-./. +1 "o U <8·7>
to hold with e > 0 it is necessary that the ellipticity condition for A and the Sapiro-

Lopatinskil condition hold up to the boundary. From (iii). of Theorem 7.1 it follows

that these same conditions are also necessary for the a priori estimate

Ellipticity of A means that for (χ, ζ) e S Hi

A,(*.S)^O, (8.9)

where AQ(x, ^) =·Σι α\-2Α
α(χ)ξα' and S*Hl is the bundle of cotangent spheres to Hi. We

now state the Sapiro-Lopatinskil condition. For our case, when the boundary is not

smooth, it can be formulated in the following way. Let Nj be the bundle of inner

conormals to Hl̂  in Hi and let π'Νl be a lifting of Λ/j to S Hl^ using the projection

π: S m^-»Hl^. Let BQ(x, ζ) be the principal part of the symbol of B:

B0(x,l)^ 2 Ba(x)la. (8.10)

|o|=/flW

Then the Sapiro-Lopatinskil condition consists in the fact that

*Β0(χ,ξ',ζ)φ0 (8.11)

for (χ, ζ'·, z) e Cir'/Vj if AQ(x, ζ', z) = 0 and Im z < 0. Here Cn'Ν ι is the complexi-
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fication of the bundle π'Νj, (χ, ζ'', r̂) is a point of this bundle with projection (χ, ζ ) €

S*%.Z and z is the complex variable dual to the normal to %°^ at the point x, directed

into %.

Recall that in [131 inner and boundary symbols were defined for boundary value

problems on manifolds with a smooth boundary. We now connect the biboundary symbol

with problem (8.1). Let ύ, € 5)(M) for I = 1, 2 and let χ be the coordinates in suppt^U

supp # 2 used in Definition 7.3. The operator t^&t^ admits a representation (7.6) with

symbol 21 (%", ζ") that is a smooth function of (χ ', ζ") € Τ =ΊΙΪ - with values in the

set of boundary value problems in a quadrant:

Λ4 (*; D', ξ") Ka(x,x';O\

Ψ* (Χ", ξ") = Β (χ; D\ I") La (χ, χ'; ξ") . (8.12)

\T°{x"-D', ξ") J°(x';l") )

Let K%2 be the bundle of quadrants formed by the inner normals to %2 in )R, Let

K'%2 be a lifting to 5 m2 of the bundle K"3li2, and let ΦΚ*%2 be a bundle of operators

acting in the bundle of functions on K'%2.

Lemma 8.1. Under the identification of the quadrant x, > 0, x. > 0 with the fiber

of the bundle K'%2 lying over (χ", ζ") £ S m2, the operator

$ 0 (x\ I") - ^ (x") Φ71 (JO €o12 (Α:", ξ") (8.13)

zs invariantly defined by a cross-section of the bundle ΦΚ'Μ. if Ul2(x", ζ") is the

operator in the quadrant constructed from the principal parts of the symbols A, · · · , ]σ

frozen at the origin of the quadrant:

(x";D',l") Kao(x",x'',l") \

»{x\ V)= B0(x" + Ox'; D', ξ") L°0(x" + 0*', x'\ ξ") . (8.14)

Proof. This lemma follows from (ii) of Theorem 7.2.

Definition 8.1. The biboundary symbol of problem (8.1) is the cross-section of the

bundle ΦΚ1%2 equal to &0(x", ξ") at those points (χ", ξ') € S*<M2 at which tyx") tyx") ̂

We now note that the operators KQ, LQ, J and tQ are finite-dimensional. Con-

sequently 21 „ differs from the operator

only by a finite-dimensional operator. But just such operators in a quadrant were con-

sidered in §§2—6 of this paper. Evidently 3Q(x", ζ") is a strongly elliptic operator

for ξ".φ. 0 in the sense of Definition 5.1 if conditions (8.9) and (8.11) are satisfied.

Consequently by Theorem 6.2 it is Noetherian if sQ is not an integer and s. £

S(x', ξ"). In accordance with (5.31)
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(8.16)

We state the definition of ellipticity for problem (8.1). Suppose s is not an inte-

ger. For convenience we introduce the notation

/ ^ 1

Definition 8.2. Problem (8.1) is called elliptic if the following conditions hold:

I. The symbol AQ is elliptic: for (χ, ζ) 6 S*%

Λ0(χ,1)φ0. (8.18)

II. The symbols AQ and BQ satisfy the condition: for (χ, ζ') € S %°^

Β0(χ,1',ζ)φ0, (8.19)

if AQ(x, ξ', ζ) = -0 and Im ζ < 0.

III. For all (*", <f") 6 S %2 the set S(x", ζ") does not contain sQ and

rang < ξ? (χ", ξ"), Cw[ (χ", ξ")> = k* (χ", ξ"),
i = i l*(x",l")

/=1 r*

det (f0 (Α;", ξ"),. / 0 (χ", ξ"))0 =f 0, (8.20)

where Sz(x", ζ") is a basis in the cokernel of the operator dQ(x", ζ") and (TQ, / Q ) o

is the restriction of (TQ, / O ) to the kernel of (CL, KQ) in the space K^(K):

Ms (R) = //So (Κ) Θ //«,(+ ο,ο) (R+) θ #Sl(o,+o) (R+) Θ Cr*. (8.21)

Conditions I and II are equivalent to invertibility of the inner and boundary sym-

bols, respectively, of problem (8.1). They are algebraic conditions on the symbols.

Condition III is equivalent to invertibility of the biboundary symbol of the problem un-

der consideration. It is effective by virtue of the results of the second part of this

paper. In fact, formula (6.12) permits us to construct a basis in the cokernel of the

operator UtJx", ζ"). Verification of (8.20) reduces to solving a finite system of linear

equations in a finite number of unknowns, since we constructed the operator inverse

to (fo(x", ξ") in §6 (formulas (6.14), (6.6), (6.2) and (5.41)).

Let us state the main result of this paper.

Theorem 8.2. Suppose the hypotheses of Theorem 8.1 are satisfied. If sQ is not

an integer and problem (8.1) is elliptic, then

(i) this problem is Noetherian;

(ii) if ll € Κ (IK) satisfies problem (8.1), then, for some e > 0 depending on sQ,

ll e Κ (%) follows from $ € Κ (fll), and the a priori estimate
S +C t -|-c

holds.
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Proof. Using the method of freezing coefficients it is possible to construct the

parametrix for problem (8.1). In this connection assertion (ii) of Theorem 7.2 plays the

role of commutation lemma. In addition, it is essential that the principal parts of the

symbols of all operators in (8.1) be homogeneous.

Thus we have found a condition that problem (8.1) be well posed. We now set our-

selves the problem of when there exist, for given operators A and B, Fourier operators

of codimension two completing problem (0.2) to the elliptic problem (0.1). An answer to

this question can be stated in terms of the K-functor similarly to the way this was done

in [9] and [14] for the case of a smooth boundary. But to do this we need Fourier oper-

ators of codimension two acting in cross-sections of vector bundles. Let QQ(X » ζ ) de-

note the biboundary symbol corresponding to problem (0.2). Suppose conditions I and II

of Definition 8.2 are satisfied. We assume that sQ is sufficiently large, not an integer

and s £ S(x", ζ") for (χ", ζ") € S )Ii2. Then by Theorem 6.2 the symbol dQ defines

a Fredholm complex on S M2. The Euler characteristic of this complex is an element

of the ring K(jKS) and is denoted by ind uL. Let π be the projection of S jR2 onto !)TC2,

and let π' be the induced ring homomorphism K(m ) -> K(5m 2 ) .

Now let the S, . in (8.5) be the Fourier operators of codimension two acting in the

Sobolev spaces of cross-sections of finite-dimensional vector bundles.

Theorem 8.3. // the operators A and Β and the number s_ satisfy the requirements

enumerated above, then we have an elliptic boundary value problem of the type (8.1) if

and only if

Proof. This theorem is proved similarly to Theorem 5.14 of [14], using Theorem 6.3

and (iii) of Theorem 7.2.

In the form we have stated it, problem (8.1) corresponds to the case when the op-

erators S, . act in cross-sections of trivial bundles. Then the existence condition for

a well-posed problem is formulated similarly to that in [9]: we have an elliptic boundary

value problem (8.1) if and only if for some integral nonnegative κ

ind Jo = ± C x χ Jl2.

Appendix

Recall that in §5 we repeatedly used the following theorem:

Theorem A.I. (i) // g e Ηs(R ), where s is not a half-integer and s > -l/2, then

si?) =£*{*)+ Σ gk(z+i)\

ο +

with gQ e Ηs(R ) and k an integer. In addition

Ul. + 2 |g*l<cs|g|l
Hs
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(ii) Conversely, if g has an expansion (A.I), then g € Ηs(R ) and

*\* + 2 \gk\).

Proof. This theorem follows from the fact that the Mellin transform of a function

in Η (R ) is meromorphic in the strip -lA. < Im ζ < s - lA and the transform of a func-
f ο +

tion in Η (R ) is holomorphic in the same strip.
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