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1 Introduction

In this paper we consider the asymptotic completeness of scattering in the nonlinear Lamb
system for the case of nonzero oscillator mass m > 0. In [?]-[?] we have analyzed the case of
m = 0.

This system describes a string coupled to a n-dimensional nonlinear oscillator with the force
function F (y), y ∈ IRn{

ü(x, t) = u′′(x, t), x ∈ IR \ {0},

mÿ = F (y(t)) + u′(0+, t)− u′(0−, t); y(t) := u(0, t),
(1.1)

where m > 0. Here u̇ :=
∂u

∂t
, u′ :=

∂u

∂x
. The solution u(x, t) takes the values in IRn with n ≥ 1.

The system (??) has been introduced originally by H. Lamb [?] in the linear case when
F (y) = −ω2y and n = 1. The Lamb system with general nonlinear function F (y) and the
oscillator of mass m ≥ 0 has been considered in [?] where the questions of irreversibility and
nonrecurrence were discussed. The system was studied further in [?] where the global attraction
to stationary states has been established for the first time, and in [?] where metastable regimes
were studied for the stochastic Lamb system.

We consider the Cauchy problem for the system (??) with the initial conditions

(1.2) u|t=0 = u0(x); u̇|t=0 = v0(x), ẏ|t=0 = p0,

where y(t) := u(0, t). Let us denote Y (t) = (u(x, t), u̇(x, t), ẏ(t)). Then the Cauchy problem
(??), (??) formally reads

(1.3) Ẏ (t) = F(Y (t)) for t > 0, Y (0) = Y0,

where Y0 = (u0, v0, p0) is the initial data, and

F(Y (t)) = ((u̇(·, t), u′′(x, t)|x 6=0, F (y(t)) + u′(+0, t)− u′(−0, t)).

The following scattering asymptotics with a diverging free wave were established in [?] for m = 0
and in [?] for m > 0:

(1.4) Y (t) = S+ +W (t)Ψ+ + r+(t), t ≥ 0

with some limit stationary state S+ = (z+, 0, 0). Here W (t) is a dynamical group of the free
wave equation, and Ψ+ is an asymptotic state. The remainder is small in the global energy
norm. The exact formulation can be found in Section 2.

In the present paper we continue the study of asymptotic completeness in nonlinear scattering
for the Lamb system with a nonzero mass. The case m = 0 for n = 1 was studied in [?] under
condition F ′(z+) 6= 0. The case of all n > 1 was completed in [?].

We will call (S+,Ψ+) the scattering data of the solution Y (t). Our goal is to describe all
admissible pairs (S+,Ψ+) such that there exists Y (t) satisfying (??) for m > 0. For m = 0 we
have solved this problem in Theorem 5.1 from [?]).
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In paper [?] we have proved that for any n ≥ 1 and m = 0 a pair (S+,Ψ+) is admissible if the
stationary state S+ is hyperbolic, i.e. detF ′(z+) 6= 0, and Ψ+ is arbitrary from an appropriate
space. In this paper we prove the corresponding result for the case of m > 0.

The asymptotic completeness for nonlinear wave equations was considered in [?] for small
initial states. We prove the asymptotic completeness without the smallness assumption.

The paper is organized as follows. In Section 2 we introduce basic notations, and we recall
some statements and constructions from [?, ?, ?, ?]. In Section 3 we introduce the inverse reduced
ODE, and we reduce the asymptotic completeness to the existence of incoming trajectory of a
reduced ODE. In Section 4 we introduce the hyperbolicity condition. In Section 5 we prove the
existence of the incoming trajectory for small perturbations. First, we prove this for linear F ,
and then for nonlinear F using the Inverse Function Theorem. In Section 6 we extend the results
of Section 5 to arbitrary perturbations without the smallness assumption. First, the solution is
constructed for large t, and then it is continued back using a priori estimates. In Section 7 we
give a counterexample which show that the hyperbolicity condition is essential.

2 Scattering asymptotics for the Lamb system

Denote by ‖ · ‖L2 the norm in the Hilbert space L2(IR+, IR
n).

Definition 2.1. The phase space E of finite energy states for the system (??) is the Hilbert
space of the triples (u(x), v(x), p) ∈ C(IR+, IR

n) ⊕L2(IR+, IR
n) ⊕ IRd with u′(x) ∈ L2(IR+, IR

n)
and the global energy norm

(2.1) ‖(u, v, p)‖E = ‖u′‖+ |u(0)|+ ‖v‖+ |p|.

The stationary states S(x) = (s(x), 0, 0) ∈ E for (??) are evidently determined by

(2.2) s(x) ≡ z ∈ Z := {z ∈ IRn : F (z) = 0}.

We denote by S the set of all stationary states of system (??). We assume that

F (u) = −∇V (u), V (u) ∈ C2(IRn, IR), and V (u)→ +∞, |u| → ∞,(2.3)

and the following limits exist:

(2.4) u+0 := lim
x→+∞

u0(x), u−0 := lim
x→−∞

u0(x), v0 :=

∫ ∞
−∞

v0(y)dy.

Definition 2.2. E∞ is the space of (u, v, p) ∈ E such that the limits (??) exist.

Each solution to the first equation of (?? admits the d’Alembert representation

(2.5) u(x, t) = f±(x, t) + g±(x+ t), ±x > 0, f±, g± ∈ C(IR, IRn).

Here f±(z), g±(z) for ±z > 0 are given by the d’Alembert formulas

(2.6) f±(z) :=
u0(z)

2
− 1

2

∫ z

0
v0(y) dy, g±(z) :=

u0(z)

2
+

1

2

∫ z

0
v0(y) dy, ±z > 0.
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These formulas imply that

(2.7) f ′±(z), g′±(z) ∈ L2(IR±, IRd)

since (u0, v0) ∈ E . The formulas (??) , (??) give the solution for |x| > t > 0. For |x| < t the
solution is expressed in the reflected waves f+(z) for z < 0 and g−(z) for z > 0 given by

(2.8) f+(−t) := y(t)− g+(t), g−(t) := y(t)− f−(−t), t > 0

since y(t) := u(0, t) = f+(−t) + g+(t) = f−(−t) + g−(t). Hence, for |x| < t the solution reads

u(x, t) =

{
y(t− x) + g+(x+ t)− g+(t− x), 0 < x < t
y(t+ x) + f−(x− t)− f−(−x− t), − t < x < 0

∣∣∣∣ t > 0.(2.9)

The function y(t) can be determined from the Cauchy problem for the “reduced equation” (see

[?])

(2.10) mÿ(t) = F (y(t))− 2ẏ(t) + 2ẇin(t), t > 0; y(0) = u0(0); ẏ(0) = p0,

where

(2.11) win(t) = g+(t) + f−(−t), t > 0

is the “incident wave”. Note that

(2.12) ẇin ∈ L2(IR+, IRn)

by (??), hence the Cauchy problem (??) admits a unique solution for all t > 0, and a priori
bound holds:

(2.13) supt>0|y(t)|+m sup
t>0
|ẏ(t)|+

∫ ∞
0
|ẏ(t)|2dt ≤ B <∞,

where B is bounded for bounded ‖(u0, v0, p0)‖E .
These arguments imply that the Cauchy problem (??) admits a unique solution Y (t) =

(u(x, t), u̇(x, t), ẏ(t)) ∈ C(IR, E) for any Y0 ∈ E , where u(x, t) is defined by (??), (??), and (??)
(see [?]).

Let W (t) be the dynamical group of the free wave equation. Introduce the local energy
norm: for R > 0

‖(u, v)‖E,R := ‖u′‖R + |u(0)|+ ‖v‖R for (u, v) ∈ C(IR, IRn)⊕ L2(R, IRn),

where ‖ · ‖R stands for the norm in L2((−R,R); IRd).

Theorem 2.3. Let m ≥ 0 and the assumptions (??) and (??) hold, the set Z be a discrete
subset in IRd, and initial state Y0 ∈ E∞. Then the scattering asymptotics (??) holds, where
i) The dispersive wave W (t)Ψ+ converges to zero in local energy seminorms, i.e.

(2.14) ‖W (t)Ψ+‖E,R → 0, t→∞, ∀R > 0,
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and W (t)Ψ+ admits the representation W (t)Ψ+ = (Wout(x, t), Ẇout(x, t)) where

(2.15) Wout(x, t) = C0 + f+(x− t) + g−(x+ t), C0 :=
u+0 + u−0 + v0

2
− 2z+.

ii) The rermainder admits the following asymptotics

(2.16) ‖r+(t)‖E → 0, t→∞.

iii) The asymptotic state Ψ+ = (Ψ0,Ψ1) ∈ E∞, i.e. there exist the finite limits

(2.17) Ψ+
0 = lim

x→+∞
Ψ0(x), Ψ−0 = lim

x→−∞
Ψ0(x), Ψ1 =

∫ ∞
−∞

Ψ1(y)dy ,

and the following identity holds:

(2.18) Ψ+
0 + Ψ−0 + Ψ1 = 0.

Proof (??) implies that there exists z+ ∈ Z such that

(2.19) y(t) := u(0, t)→ z+, t→∞.

The statements i)-ii) follow from (??) and (??), see [?, Theorem 4.5 ii) b)] for m > 0 , (and
in [?, Theorem 3.1.], and [?, Theorem 3.2], for m = 0.)

Let us prove iii). Substituting the expressions (??), (??) into (??), we obtain that the
asymptotic state Ψ+ = (Ψ0,Ψ1) ∈ E∞ is expressed in the initial data (u0, v0) ∈ E∞ by the
formulas

(2.20) Ψ0(x) = C0 +


y(x) +

u0(x)− u0(−x)

2
− 1

2

∫ x

−x
v0(y)dy , x ≥ 0

y(−x) +
u0(x)− u0(−x)

2
+

1

2

∫ x

−x
v0(y)dy , x ≤ 0

(2.21) Ψ1(x) =


y′(x)− u′0(x)− u′0(−x)

2
+
v0(x)− v0(−x)

2
, x > 0

y′(−x) +
u′0(x)− u′0(−x)

2
+
v0(x)− v0(−x)

2
, x < 0.

The existence of the limits (??) follows from (??) and (??) by (??) and (??). Finally, the identity
(??) follows from the d’Alembert formula

(2.22) Wout(x, t) =
Ψ0(x− t) + Ψ0(x+ t)

2
+

1

2

∫ x+t

x−t
Ψ1(y)dy

since Wout(x, t)→ 0 as t→∞ for all x ∈ IR by (??).
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3 Asymptotic completeness via the reduced equation

Let Y (t) ∈ C(IR, E) be a solution to (??) with Y0 ∈ E∞. Let us define the wave operator

(3.1) W+Y0 := (S+,Ψ+) ∈ S × E+∞,

where Ψ+ , S+ are the corresponding asymptotics from (??). For Ψ+ = (Ψ0,Ψ1) ∈ E+∞, let us
set

(3.2) w(t) = Wout(0, t) :=
Ψ0(t) + Ψ0(−t)

2
+

1

2

∫ t

−t
Ψ1(y)dy, t > 0.

Let us note that

(3.3) ẇ ∈ L2(IR+, IR
n)

since Ψ+ ∈ E+∞. In [?] we have proved the following lemma for m = 0. For m > 0 the proof is
similar.

Lemma 3.1. [[?], Lemma 3.1] Let Y (t) ∈ C(IR, E) be a solution of (??) with Y (0) = Y0 ∈ E∞
and (??) holds with S+ =: (z+, 0, 0). Then the function y(t) := u(0, t) satisfies the conditions

(3.4)
1

2
mÿ(t)− ẏ(t) =

1

2
F (y(t))− ẇ(t), t > 0 ; ẏ ∈ L2(IR+, IR

n) ; y(t)→ z+, t→ +∞.

We call the differential equation (??) the inverse reduced equation.

Definition 3.2. The Lamb system (??) is asymptotically complete at a stationary state S+ if
for any Ψ+ ∈ E+∞ there exists initial data Y0 ∈ E∞ such that (??) holds.

Lemma 3.3. Let S+ ∈ S, (??) holds and w(t) is given by (??). Then the Lamb problem (??) is
asymptotically complete at the stationary state S+ iff for any w(t) with ẇ ∈ L2(IR+, IR

n) there
exists an incoming trajectory y(t) = u(0, t) satisfying conditions (??).

Remark 3.4. This Lemma has been proved in [?] for m = 0. For m > 0 the proof is similar.

It plays a crucial role in the proof of the asymptotics completeness.

4 Hyperbolic stationary states

The equation (??) is equivalent to the following system:{
ẏ = p
1
2mṗ = 1

2F (y) + p− ẇ(t),

which in the vector form reads

(4.1) Q̇ = F(Q, t), F(Q, t) =

(
0

1
2F (y) + 2

mp−
2
m ẇ(t)

)
, Q =

(
y
p

)
.
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Let us consider z+ ∈ Z. Without loss of generality we will assume in the following that z+ = 0.
Then F (0) = 0 by (??), and

F (y) = F ′(0)y +G(y), |G(y)| ≤ Cy2, y → 0.

The linear homogeneous system corresponding to (??) reads:{
ẏ = p
ṗ = 1

mF
′(0)y + 2

mp,

or in the vector form: Q̇ = AQ, where

A =



0 ... 0 1 ... 0
... ...

0 ... 0 0 ... 1
1
mV11 ... 1

mV1n
2
m ... 0

... ...
1
mVn1 ... 1

mVnn 0 ... 2
m

 , Vlk := ∂l∂kV (0), l, k ≤ n.

Respectively, system (??) reads:

(4.2) Q̇ = AQ+N(Q) +B(t),

where

(4.3) N(Q) =



0
...
0

G1(y)
...

Gn(y)

 , B(t) =



0
...
0

−ẇ1(t)
...

−ẇn(t)

 .

Let us find the eigenvalues of matrix A. First, consider the case n = 1. Then

A =

(
0 1

1
mF

′(0) 2
m

)
.

We have:

A− λI =

 −λ 1
1
mF

′(0) 2
m − λ

.

 .

The characteristic equation reads:

(4.4) λ2 − 2

m
λ− 1

m
F ′(0) = 0.

Hence,

(4.5) λ1,2 =
1

m
±
√

1

m2
+
F ′(0)

m
.
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Obviously,

(4.6) Reλ1,2 6= 0, iff F′(0) = V′′(0) 6= 0.

Now consider the case n > 1. Then the matrix A− λI takes the form

A− λI =



−λ ... 0 1 ... 0
... ...

0 ... −λ 0 ... 1
1
mV11 ... 1

mV1n
2
m − λ ... 0

... ...
1
mVn1 ... 1

mVnn 0 ... 2
m − λ

 ,

where
Vlk = ∂l∂kV (0), l, k ≤ n.

Definition 4.1. The stationary state S+ = (0, 0, 0) is hyperbolic if Reλj 6= 0, ∀j = 1, ..., n.

Lemma 4.2. The stationary state S+ = (0, 0, 0) is hyperbolic iff detV ′′(0) 6= 0.

Proof. After a nondegenerate change of variable y = Ty1 we transform the matrix F ′(0) =
V ′′(0) to a diagonal form:

T−1V ′′(0)T = K =

K1 ... 0
...

0 ... Kn

 .

Obviously,

(4.7) detK = detF ′(0),

In this case the matrix A− λI is transformed to the matrix

−λ ... 0 1 ... 0
... ...

0 ... −λ 0 ... 1
1
mK1 ... 0 2

m ... 0
... ...

0 ... 1
mKn 0 ... 2

m

 .

Hence,

det(A− λI) =

n∏
1

(λ2 − 2

m
− 1

m
Ki).

Then Reλj 6= 0 for all l = 1, ...2n iff Ki 6= 0, i = 1, 2...n, by (??). This condition is equivalent
to condition the detK 6= 0. This implies Lemma ?? by (??).

5 Incoming trajectories

In this section we prove the existence of a solution to (??) for small ‖B‖L2 in the case of
hyperbolic stationary state S+ = (z+, 0, 0). We adapt to our case the methods of [?] and [?]
for the construction of stable and unstable invariant manifolds in the hyperbolic case. First we
prove the existence for a linear F (y) and then for a nonlinear F (y) with small ‖B‖L2 . Further,
we will extend these results to arbitrary perturbations B ∈ L2(IR, IRn) in the next section.
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5.1 Linear equation

Let A be a linear operator IR2n → IR2n and

Reλ 6= 0, λ ∈ Spec (A).

Then
Spec A = σ− ∪ σ+,

where Reλ < 0 for all λ ∈ σ− and Reλ > 0 for all λ ∈ σ+. Let ε > 0 be such that

(5.1) |Reλ| > ε, λ ∈ Spec (A).

Denote by P± the projectors of IR2n to the subspaces generated by the eigenvectors corresponding
to σ± respectively. Then the operator A is decomposed as

A = A+ +A−, A± = P±A.

Let us denote

L2 := L2(IR+, IR
2n) , C0

b := {y ∈ Cb(IR+, IR
2n) : Q(t)→ 0, t→ +∞}.

Definition 5.1. Define the Banach space Q := L2 ∩ C0
b , with the norm

(5.2) ‖Q‖Q := ‖Q‖L2 + ‖Q‖Cb
, Q ∈ Q.

Consider the equation

(5.3) Q̇(t) = AQ(t) +B(t), t ≥ 0,

where B(t) is defined in (??).

Lemma 5.2. For any B ∈ L2 the solution Q ∈ Q to equation (??) exists and Q = RB, where
R : L2 → Q is a continuous linear operator.

Proof. Let us introduce a fundamental solution of system (??)

E(t) := θ(−t)eA+tP+ + θ(t)eA−tP−.

By (??) we have

(5.4) |E(t)| ≤ Ce−ε|t|, t ∈ IR.

Obviously,

(5.5) Q = RB := E ∗B

is a solution to (??). It remains to check that Q ∈ Q.

i) First, let us prove that Q ∈ C0
b . By (??) we have:

(5.6) |Q(t)| = |(E ∗B)(t)| ≤ C
∞∫
−∞

e−ε|t−s||B(s)|ds ≤ C‖B‖L2
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by the Cauchy-Schwartz inequality. Let us prove that Q(t) → 0, as t → ∞. By (??) it suffices
to check that

t/2∫
−∞

e−ε|t−s||B(s)|ds→ 0,

∞∫
t/2

e−ε|t−s||F (s)|ds→ 0, t→∞.

The second limit follows from the Cauchy-Schwartz inequality since

‖B‖L2(t/2,∞) → 0, t→∞.

It remains to prove the first limit. The limit holds since

t/2∫
−∞

e−ε|t−s||B(s)|ds ≤ Ce−εt/2‖B‖L2 → 0, t→∞.

ii) It remains to check that Q ∈ L2. Denote M(t) := |B(t)|. Using (??) and (??) we obtain

‖Q‖L2 ≤ ‖e−ε|t| ∗M(t)‖L2 ≤
∫
e−ε|t|dt · ‖M‖L2 .

5.2 Nonlinear term

Now, let us consider the nonlinear term N(Q) in equation (??). Conditions (??) imply that

(5.7) N ∈ C2(IR2n, IR2n), N(0) = 0 and N ′(0) = 0.

Define the functional map N : Q → Q for Q ∈ Q, by

N (Q)(t) := N(Q(t)), t ∈ IR.

Lemma 5.3. i) The map N : Q → Q is continuous.

ii) There exists the Frechet derivative N ′(Q0) ∈ L(Q,Q) for Q0 ∈ Q.

(5.8) N ′(Q0)Q(t) = ∇N(Q0)Q(t)

iii) Moreover, N ′(0) = 0.

iv) N ′ ∈ C(Q,L (Q,Q)).

Proof. i) Conditions (??) imply that for any δ > 0

(5.9) |N(Q)| ≤ Cδ|Q|2, |Q| < δ.

Hence N (Q) ∈ Q for Q ∈ Q. The Lagrange formula implies that the map N is continuous from
Q to Q by (??).

ii) By (??) we have

N(Q)−N(Q0) = N ′(Q0)(Q−Q0) + r(Q,Q0), |r(Q,Q0)| ≤ C|Q−Q0|2, |Q|+ |Q0| ≤ δ.
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for any δ > 0. Hence,

|r(t)| := |r(Q(t), Q0(t))| ≤ C|Q(t)−Q0(t)|2.

Therefore,
‖r‖Cb

≤ C‖Q−Q0‖2Cb
, ‖r‖L2 ≤ C‖Q−Q0‖Cb

‖Q−Q0‖L2 .

Hence,

(5.10) N (Q)−N (Q0) = N ′(Q0)(Q−Q0))+r(Q,Q0), ‖r‖Q ≤ C‖Q−Q0‖2Q, ‖Q‖Q+‖Q0‖Q ≤ δ,

which implies (??).

iii) Let us check that N ′(0) = 0. By (??) it suffices to prove that

‖N (Q)‖Q
‖Q‖Q

→ 0, ‖Q‖Q → 0.

This follows from (??) with Q0 = 0.

iv) We should prove that the map Q→ N ′(Q) is continuous: Q → L(Q,Q), i.e.

(5.11) ‖N ′(Q1)−N ′(Q2)‖L(Q,Q) → 0, ‖Q1 −Q2‖Q → 0.

Indeed, (??) means that

(5.12) sup
‖Q‖Q≤1

‖[N ′(Q1)−N ′(Q2)]Q‖Q → 0, ‖Q1 −Q2‖Q → 0.

Now (??) implies that (??) is equivalent to

sup
t∈IR
|∇N(Q1(t))−∇N(Q2(t))| → 0, ‖Q1 −Q2‖Q → 0.

Finally, this follows from (??). .

5.3 Nonlinear equation and Inverse function theorem

By Lemma ??, equation (??) with Q ∈ Q is equivalent to Q = R(NQ+BQ), or to

(5.13) Φ(Q) = RB ∈ Q,

where
Φ(Q) := Q− (RN )(Q).

The mapRN : Q → Q is continuous and admits the Fréchet differential (RN )′ ∈ C(Q,L (Q,Q))
by Lemma ??, and

(RN )′ = RN ′, (RN )′(0) = 0.

Therefore, the map Φ is continuous Q → Q, Φ′ ∈ C(Q,L(Q,Q)), and Φ′(0) = I by Lemma ??
iii), where I is the identity operator.

Theorem 5.4. Let B ∈ L2. There exist ε > 0, C > 0 such that equation (??) admits a unique
solution Q ∈ Q with ‖Q‖Q < C for ‖B‖L2 < ε. This solution depends continuously on B ∈ L2.

Proof. The map Φ : Q → Q is continuously differentiable, Φ(0) = 0 and Φ′(0) = I. Hence, by
the Inverse Function Theorem (Theorem 10.4, [?]) there exist ε, C > 0 such that for ‖RB‖ < ε
there exists a unique Q ∈ Q with ‖Q‖Q < C satisfying (??) and depending continuously on
RB ∈ Q. It remains to note that R is a continuous operator L2 → Q by Lemma ??.
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6 Asymptotic completeness

In this section we prove asymptotic completeness for any hyperbolic stationary state. First,
we construct the incoming trajectory for large t using Theorem ??, and next we continue the
trajectory backwards using a priori estimate.

Theorem 6.1. Let conditions (??) hold, and a stationary state S+ = (z+, 0, 0) ∈ S be hyperbolic.
Then system (??) is asymptotically complete at S+.

Proof. We assume that z+ = 0 as above. According to Lemma ??, it suffices to prove that
there exists y(t), t > 0 satisfying (??). Let us recall that the equation (??) is equivalent to
equation (??).

i) First, we construct a solution Q ∈ Q to (??) for large t > 0. Let T > 0 be such that
‖B‖L2(T,∞) < ε, for t ≥ T , where ε is chosen as in Theorem ?? and B is given by (??). Let us
define

B1(t) = B(T + t), t ≥ 0.

Then by Theorem ?? there exists Q1(t) =

(
y1(t)
p1(t)

)
∈ Q satisfying the inverse reduced equation

(??) for t ≥ 0 with B1 instead of B. In particular, y1 satisfies (??).

ii) It remains to construct a solution y2(t) to equation (??) for t ∈ [0, T ] with w(T + t)
instead of w(t) such that

(6.1) ẏ2 ∈ L2(0, T ), y2(T ) = y1(0), ẏ2(T ) = ẏ1(0).

It suffices to prove a priori estimate for y2 and ẏ2 for t ∈ [0, T ]. First, we prove the a priori
estimate for y2. Multiplying equation (??) for y2 by 2ẏ2(t) and using (??), we obtain

1

2
m
d

dt
|ẏ2(t)|2 − |ẏ2(t)|2 = −∇V (y2(t))− ẇ(t)ẏ2(t), 0 ≤ t ≤ T.

Integrating and using the initial condition, we obtain

1

2
m|ẏ2(T )|2 − 1

2
m|ẏ2(t)|2 −

T∫
t

|ẏ2(t)|2 = V (y2(t))− V (y2(T ))− 2

T∫
t

ẇ(t)ẏ2(t)dt.

Hence,

V (y2(t) =
1

2
m|ẏ2(T )|2 − 1

2
m|ẏ2(t)|2 −

T∫
t

ẏ2(t)
2dt+ V (y2(T )) + 2

T∫
t

ẇ(t)ẏ2(t)dt

Using the Young inequality, we estimate the last term on the right hand side as

2

∣∣∣∣∣∣
T∫
t

ẇ(τ)ẏ2(τ)dτ

∣∣∣∣∣∣ ≤
T∫
t

|ẇ(τ)|2dτ +

T∫
t

|ẏ2(τ)|2dτ.
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Hence,

(6.2) V (y2(t) ≤
1

2
m|ẏ2(T )|2−1

2
m|ẏ2(t)|2−

T∫
t

|̇y2(t)|2dt+V (y2(T ))+

T∫
t

|ẇ(τ)|2dτ+

T∫
t

|ẏ2(τ)|2dτ,

and so

(6.3) V (y2(t) ≤
1

2
m|ẏ2(T )|2 − 1

2
m|ẏ2(t)|2 + V (y2(T )) +

T∫
t

|ẇ(τ)|2dτ ≤ B <∞, t ∈ [0, T ],

since ẇ ∈ L2(IR+) by (??). Therefore, y2(t) is bounded for t ∈ [0, T ] by (??).
It remains to prove a priori estimate for ẏ2. From (??) we obtain

1

2
m|ẏ2(t)|2 ≤ −V (y2(t) +

1

2
m|ẏ2(T )|2 + V (y2(T )) +

T∫
t

|ẇ(τ)|2dτ, t ∈ [0, T ].

Hence

(6.4) ẏ2(t) is bounded in [0, T ],

since y2(t) is bounded there, V is continuous by (??), and ẇ ∈ L2(IR+, IR
n). Now (??) follows.

iii) Finally, defining

(6.5) y(t) :=

{
y2(t), t ∈ [0, T ]
y1(t− T ), t > T

we obtain that y(t) satisfies (??) by (??), since y1(t) satisfies (??) by (??) and (??).

7 Counterexample

In this section we give an example which shows that the incoming solution may not exist for
nonhyperbolic stationary state. This means that the system is not asymptotically complete in
this state.

Example 7.1. Let us consider equation (??) with F satisfying (??), and such that

(7.1) F (0) = 0, F (y) ≥ 0 for |y| < 1.

Then F ′(0) = 0, so z+ = 0 is the nonhyperbolic stationary point. Let us choose

(7.2) ẇ(t) =
1

1 + t
∈ L2(IR+).

In this case a trajectory satisfying condition

(7.3) y(t)→ 0, t→∞, ẏ ∈ L2(IR+)

does not exist.
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Proof Let y satisfy (??) with z+ = 0

m

2
ÿ − ẏ = F (y) +

1

1 + t
, t > 0.

Then by (??) and (??) there exists T > 0 such that |y(t)| < 1 for t > T , hence

m

2
ÿ ≥ ẏ +

1

1 + t
, t > T.

Integrating, we obtain

m

2
(ẏ(t)− ẏ(0)) ≥ y(t)− y(0) + log(1 + t), t ≥ 0.

Then (??) implies that
m

2
ẏ(t) ≥ log(1 + t) + C,

hence
ẏ 6∈ L2(IR+),

which contradicts (??).
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