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Abstract. We establish soliton-like asymptotics for finite energy solutions to the Schrédinger
equation coupled to a nonrelativistic classical particle. Any solution with initial state close to
the solitary manifold converges to a sum of a travelling wave and an outgoing free wave. The
convergence holds in global energy norm. The proof uses spectral theory and the symplectic
projection onto the solitary manifold in the Hilbert phase space.
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1. INTRODUCTION

We continue the study of coupled systems of wave fields and particles. In [10], the Klein—
Gordon equation coupled to a relativistic particle was considered. Here we extend the result to
the Schrodinger equation coupled to a nonrelativistic particle. We prove the long-time convergence
to the sum of a soliton and a dispersive wave. The convergence holds in global energy norm for
finite-energy solution with initial state close to the solitary manifold.

We consider the Schrodinger wave function () in R3, coupled to a nonrelativistic particle with
position ¢ and momentum p, governed by

Z'"L/‘}(:Ii,t) = —AT/J(%t) + m21/1(:1:,t) + p(l’ - Q(t))v

ilt) = 5 [ 909 p(e — a(t)) + ¥(a, V(o — g(t)]

z € R3, (1.1)

where m > 0. Write ¢y = Re, 9 =Im1), p; = Rep, po = Imp. Then system (1.1) becomes

’(/.11(33‘,t) = _Aw2($7t) + m21[)2(:v,t) + :02(33 - Q(t))a
'(2}2(3370 = Awl('rvt) - m21[)1($,t) - :01(33 - Q(t))a x € R3_ (1‘2)

i) = [ (62(e.Vp o~ a(6) + (o) Vpale - a(0)d,
This is a Hamiltonian system with the Hamiltonian functional
. 1 2 2 2 2 2 2
R ) = 5 [ (P61 @F + V@) + m?un () + @) do

+ [ (n@me—a) + val@hpale - 9))do + 5lP. (13)
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We consider the Cauchy problem for the Hamiltonian system (1.2), which we write as
Y(t)=F(Y(t), teR; Y(0)=Yo. (1.4)

Here

Y (t) = (¥1(t),¥2(t), q(t), p(t)), p(t) == q(t), Yo = (Yo1, %02, qo, Po),

and all derivatives are understood in the sense of distributions. Below we always deal with column
vectors, but often write them as row vectors. System (1.2) is translation invariant and admits the
soliton solutions

You(t) = (Vo1 (x — vt — a), Y2 (x — vt — a), vt + a,v), (1.5)

for all a,v € R? with |v| < 2m. The states S, := Y, (0) form the solitary manifold
S :={Suw : a,v € R? |v| < 2m}. (1.6)
Our main result is the soliton asymptotics of type
P(x,t) ~ Py, (x —vet —ag) + Wo(t)y, t — +oo, (1.7)

for solutions to (1.1) with initial data close to the solitary manifold S. Here v,, = 1,1 + 1%y, 2,
Wo(t) stands for the dynamical group of the free Schrédinger equation, ¥4 are the corresponding
asymptotic scattering states, and the asymptotics hold in the global energy norm, i.e., in the norm
of the Sobolev space H!(R?). For the particle trajectory, we prove that

q(t) — vy, q(t) ~vet+ay, t — +oo. (1.8)

The results are established under the following conditions on the complex-valued charge distribu-
tions p:
(L+[2))’p, (L+|2)"Vp, (L+[x))’VVp € L*(R?), (1.9)

with some (3 > 3/2. We assume that all “modes” of the wave field are coupled to the particle, this
is formalized by the Wiener condition

p(k) = (2m)~3/2 / " p(x)dr #0 forall ke R3. (1.10)

This is an analog of the Fermi Golden Rule: the coupling term p(z — ¢) is not orthogonal to the
eigenfunctions e?** of the continuous spectrum of the linear part of the equation (cf. [4, 21-23]).

Similar results were first proved by Buslaev and Perelman [2, 3] for 1D translation-invariant
Schrodinger equation, and extended by Cuccagna [6] for nD case, n > 3. In [10], the Klein—Gordon
equation coupled to a particle is considered.

For the proofs of the asymptotics (1.7) and (1.8), we develop the approach of [10] based on
the Buslaev and Perelman methods [2, 3], namely, the symplectic orthogonal decomposition of
dynamics near the solitary manifold, the time decay for the linearized equation, etc. Our problem
differs from that in [10] in the following points.

i) The speed of propagation for the Schrodinger equation is infinite, and solitons exist only
for the velocities |v] < 2m.
ii) We consider a nonspherically symmetric coupled function p(z). In this case, we need addi-
tional arguments for the absence of eigenvalues embedded in the continuous spectrum.
iii) We also consider the coupling function p(z) with possibly noncompact support. Correspond-
ingly, when proving the time decay for the linearized equation, we use the Jensen—Kato
results [14, 15] and the Agmon weighted norms [1].

Remark 1.1. The term m? in the Schrodinger equation appears automatically in the nonrel-
ativistic limit of the Klein—Gordon equation and, traditionally, it is removed by a gauge transfor-
mation. We keep the term to provide the existence of nonzero solitons.
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2. MAIN RESULTS
2.1. Existence of Dynamics

To formulate our results precisely, we need some definitions. Introduce a suitable phase space
for the Cauchy problem corresponding to (1.2) and (1.3). Let H° = L2, and let H! be the Sobolev
space H' = {4y € L? : |V¢| € L?} with the norm

[l = [IV[lL2 + [l 22
We also introduce the weighted Sobolev spaces H;, s = 0,1, a € R, with the norms
[¥]s,a := 11 + |z[)* | =

Definition 2.1. i) The phase space & is the real Hilbert space H! © H' @ R® © R? of states
Y = (¢1,%2, q,p) with the finite norm

IYlle = llallmr + v2llar + lal + [pl.
ii) &, is the space H. @ H. © R? @ R? with the norm
1Yo = 1Y lea = ¥1ll1,a + [[¥2ll1,a + |al + [p].
iii) £ is the space H? ® H? ® R @ R? with the norm

Y11 = luller + I2llae + lal + lpl.

For 1; € L?, we have

1

2 2

m m* 4+ 1

——5lpill7z < =172 + (), 05 (- — @) <
2m 2

1
—— 51172 + S llosllze. (2.1)
2 2

Therefore, £ is the space of finite-energy states. The Hamiltonian functional H is continuous on
the space &, and the lower bound in (2.1) implies that the energy (1.3) is bounded below.

System (1.2) looks like the Hamiltonian system

—_

Y = JDH(Y), J:= ;Y =(¢Y1,92,q,p) €, (2.2)

col o
coom

coo
o—oo

-1

where DH is the Fréchet derivative of the Hamiltonian functional (1.3).

Proposition 2.1. Let (1.9) be satisfied. Then the following assertions hold.

(i) For every Yy € &, the Cauchy problem (1.4) has a unique solution Y (t) € C(R,E).
(ii) For everyt € R, the mapping U(t) : Yo — Y () is continuous on &.
(iii) The energy is conserved, i.e.,

H(Y () = H(Ys), teR. (2.3)
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Proof. Step i). Let us fix an arbitrary b > 0 and prove assertions (i)—(iii) for any Yy € &€ such
that [|Yp|le < b and for |t| < e = (), where £(b), e(b) > 0, is sufficiently small. Let us rewrite the
Cauchy problem (1.4) as follows:

Y(t) = F(Y(t) + Fy(Y (), teR;  Y(0) =Yy, (2.4)

where Fi: Y — ((—A +m?)¥y, (A — m?)¥y,0,0). The Fourier transform provides the existence
and the uniqueness of a solution Yi(¢) € C(R,€) to the linear problem (2.4) with Fy = 0. Let

Ui(t): Yo — Yi(t) be the corresponding strongly continuous group of bounded linear operators
on &. Then (2.4) for Y (¢) € C(R, &) is equivalent to

Y (1) = Uy ()Y + / ds Uy (t — 5)Fy(Y (), (2.5)

because F5(Y(+)) € C(R,€) in this case. The last assertion follows from the local Lipschitz conti-
nuity of the mapping F5 in &£, namely, for each b > 0, there exists a s = »(b) > 0 such that

[F2(Y) — Fo(2)[le < ||Y — Z||¢

for all Y, Z € & with ||[Yle, ||Z]|le < b. Therefore, by the contraction mapping principle, equa-
tion (2.5) has a unique local solution Y (-) € C([—¢,¢],€) with ¢, € > 0, depending on b only.

Step ii). Let us now use the energy conservation to ensure the existence of a global solution and
the continuity of this solution. Let us first consider a Yy € &. := C§° & C$°* & R3 @ R3. In this case,
we have Y (t) € £T since Uy (¢)Yy, Fa(Y(t)) € €T by (1.9). The energy conservation law follows
by (2.2) and from the chain rule for the Fréchet derivatives,

%H(Y(t)) = (DH(Y (1)), Y (1)) = (DH(Y (1)), JDH(Y (1))) =0,  tE€R,

since the operator J is skew-symmetric by (2.2), and DH(Y (t)) € L?® L?®R3*@R3 for Y(t) € £T.
Inequality (2.1) implies

1 m2 1 1
H> §||V¢||%2 + T||7/J||2L2 + §|p|2 - W”PH%%

Hence, by the energy conservation, we have

1 2 m? 2 L 9 1 2
SIVGIB: + Tl + 516l = — ol < MY (6) = H(V)

for |t| < e. This implies the a priori estimate
[l +Ipl < B for [t <e, (2.6)

with B depending on the norm ||Yy|l¢ of the initial data and on ||p||z2 only. An arbitrary initial
data Yy € £ can be approximated by initial data in £.. The corresponding solution exists due to
the representation (2.5) by contraction mapping principle, and then (2.6) follows by passing to the
limit.

Step iii). Properties (i)-(iii) for arbitrary ¢ € R now follow from the same properties for small
values of |t| and from the a priori bound (2.6).
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2.2. Solitary Manifold and Main Result

Let us compute the solitons (1.5). The substitution to (1.1) gives the stationary equations

—iv- Vb (y) = (A +m?)v, (y) + p(y),

_ 2.7
p=v, 0= —/ (Vo,(W)p(y) + Vi (y)ply)) dy. 27

The first equation now implies
Ay (y) = [~A+m® +iv- Vi (y) = —p(y),  yeR®. (2.8)

For |v] < 2m, the operator A is an isomorphism H*(R?) — H?(R3). Hence, it follows from condi-
tions (1.9) that

Uy (y) = —A""p(y) € HY(R?). (2.9)

If v is given and |v| < 2m, then p, can be found from the second equation in (2.7).
The function v, can be computed by the Fourier transform. The soliton is given by the formula

(2.10)

2
1 [ e VM= Tlz—ulgig (@) 543
() = / p(y) y

T 4r |z —y]

Below, in Appendix A, we prove that the last equation in (2.7) also holds. Hence, the soliton
solution (1.5) exists and is defined uniquely for any pair (a,v) with |v| < 2m. Write V := {v € R3:
|v| < 2m}, ¥y1 = Reth,, and 1,0 = Imp,,.

Definition 2.2. A soliton state is S(0) := (Yy1(x — b), Y2 (x — b),b,v), where o := (b,v) with
beR3andv eV,

Obviously, the soliton solution admits the representation S(o(t)), where
o(t) = (b(t),v(t)) = (vt + a,v). (2.11)

Definition 2.3. The solitary manifold is the set S := {S(c): 0 € L :=R3 x V}.
The main result of our paper is the following theorem.

Theorem 2.1. Let (1.9) and the Wiener condition (1.10) hold. Let 3 > 3/2 be the number
in (1.9), and let Y (t) be the solution to the Cauchy problem (1.4) with an initial state Yy that is
sufficiently close to the solitary manifold,

po < 2m, do := distg, (Yo, S) < 1. (2.12)

Then the following asymptotic formulas hold as t — Foo:

§(t) = v + O([t|7%),  q(t) = vit +ax + O(|t|7*/?); (2.13)
'(ﬁ(a,} t) = wyi(m — vgt — ai) + Wg(t)’(ﬁi + Ti(m,t) (2.14)

with
I+ ()l = O]/, (2.15)

It suffices to prove the asymptotic formulas (2.13) and (2.14) as t — +oo since system (1.2) is
time reversible.
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3. SYMPLECTIC PROJECTION ONTO THE SOLITARY MANIFOLD

Let us identify the tangent space of £, at every point, with the space £. Consider the symplectic
form €2 defined on &€ by the rule

Q= /dwl (x) A dipa(z) do + dg A dp,

ie.,
Q(Y1,Ys) = (Y1, JYs), Y1, € €&, (3.1)
where
(Y1,Y2) := (Y11, ¢12) + (Y21, %22) + q1G2 + p1p2
and

(11, ¥12) = /1/111(@1/112(33) dz,
etc. It is clear that the form (2 is nondegenerate, i.e.,
Q(Y1,Y5) =0 forevery Yoe& — Y, =0.

Definition 3.1. i) The symbol Y7 1 Y5 means that Y; € &£, Yo € &£, and Y7 is symplectic
orthogonal to Y3, i.e., Q(Y7,Ys) = 0.

ii) A projection operator P : £ — & is said to be symplectic orthogonal if Y7 1 Ys for any
Y; € KerP and Y5 € Im P.

Consider the tangent space 7g(,)S of the manifold S at a point S(). The vectors 7; := 9,,5(0),
where 0y, := 0, and 0, , := 0,; with j =1,2,3, form a basis in 7,8S. In detail,

Tj =Tj (’U) = 8bjS(a) = (_0]'711)1)1 (y)7 —81'1/%2(@/)7 €5, 0)

Tjts = Tj4+3(v) 1= 8ij(U) = ( avjwvl(y)v 8ijvz(y)707ej)

where y := x—bis the “moving frame coordinate,” e; = (1,0, 0), etc. Let us stress that the functions
7; are always regarded as functions of y rather than those of x.

Formulas (2.10) and conditions (1.9) imply that
Ti(v) €&y, veEV, j=1,...,6, Va<p. (3.3)

i=123, (3.2)

Lemma 3.1. The matriz with the elements Q(7;(v),7;(v)) is nondegenerate for any v € V.

Proof. The elements are computed in Appendix B. As the result, the matrix Q(7;,7;) has the
form

9(0) = @ )ise = (ol To” ). (3.4
where the 3 x 3-matrix Q1 (v) is
Ot (v) = K+ E. (3.5)

Here K is a symmetric 3 x 3-matrix with the elements

R (2 mE (P  al?) + k) (i — b)) dk
= | (&7 m?)? = (o)? |

where the “hat” stands for the Fourier transform (cf. (1.10)). The matrix K is the integral of
the symmetric nonnegative definite matrix & ® k = (k;k;) with a nonnegative weight. (The last

statement is true since [(hy1 +ithys |2 = [o1 |2 + [U2|? —i(tho1 1 yg — Vuathy;) = 0 and k2 4+m?2 > |(kv)]
for |v] < 2m.) Hence, the matrix K is also nonnegative definite. Since the identity matrix F is
positive definite, the matrix Q7 (v) is symmetric and positive definite, and hence nondegenerate.
Therefore, the matrix (7, 7;) is also nondegenerate.

(3.6)
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Let us introduce the translations

Ty: (¢1(')>¢2(')7q3p) = (@01( - a)an(' - (I),q + a,p), a & RS'

Note that the manifold § is invariant with respect to the translations.

Definition 3.2. i) For any a € R and p < 2m, write
ga(ﬁ) = {Y = (7/)177/12761719) € ga : |p| < Z_)}
Set  £(p) = &(P).
ii) For any 7 < 2m, write

X(@) = {o = (b,v) : b€ R, |v| < 7T}.

The next lemma shows that, in a small neighborhood of the soliton manifold S, a “symplectic
orthogonal projection” onto S is well defined. The proof is similar to that of Lemma 3.4 in [10].

Lemma 3.2. Let (1.9) hold, and let o« € R. Then the following assertions hold.

i) There exists a neighborhood O, (S) of S in E, and a mapping IL : Oy (S) — S such that II
is uniformly continuous in the metric of €, on the set On(S) N E(P) with p < 2m,

Iy =Y for YeS8, and Y —St7sS, where S =IIY. (3.7)
i) Ou(S) is invariant with respect to the translations T, and
7,Y = T,IIY, for Y € Oy(S) and a <€ R3.
iii) For any D < 2m, there exists a U < 2m such that the relation
IIY = S(o)

holds with o € () for any Y € O (S) N EL(P)-
iv) For any U < 2m, there exists an r(v) > 0 such that

S(o)+Z € 04(S) if c0e€X(W) and ||Z]a < 7ra(D).

We refer to IT as the symplectic orthogonal projection onto S.
Corollary 3.1. Condition (2.12) implies that Yo = S + Zy, where S = S(o¢) = I1Y, and

120lls < 1. (3.8)

Proof. Lemma 3.2 implies that I1Yy = S is well defined for small dy > 0. Furthermore, condition
(2.12) means that there exists a point S1 € S such that ||Yy—5S1||3 = do. Hence, we have the inclusion
Y0, 51 € Os(S) N Eg(p) with some p < 2m, which does not depend on dy for sufficiently small dp.
On the other hand, ILS; = S7, and hence the uniform continuity of the mapping IT implies that

|S1 =S|lg—0 as dy—0.
Therefore, for small dy, we finally have

1Z0llg = [[Yo = Sllp < 1Yo = Sillg + 151 = Slls < do +o(1) < 1.
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4. LINEARIZATION ON THE SOLITARY MANIFOLD

Let us consider a solution to the system (1.2) and split it as the sum
Y(t)=S(a(t) + Z(1), (4.1)

where o(t) = (b(t),v(t)) € ¥ is an arbitrary smooth function of ¢ € R. In detail, we can write
Y = (¢1,1%9,q,p) and Z = (¥, Vs, @, P). Then (4.1) means that

1(@,t) = Yo (z = b)) + Wiz = b(t),1),  q(t) = b(t) + Q(1),

bal, 1) = buya( — (O) + Talw — B(E,0),  plt) = v(t) + P(D). (4.2)

Substitute (4.2) into (1.2) and linearize the equations in Z. Below we shall choose S(o(t)) = ITIY (%),
i.e., Z(t) will be symplectic orthogonal to Tg(,())S-

By setting y = x — b(t), which is the “moving frame coordinate,” we see from (4.2) and (1.2)
that . . . .
¢1 =0- vvwvl(y) —b- v¢v1(y) + \Ill(y7t) —b- vq’l(yat)
= _szﬂ(y) + m2¢u2(?/) - A\IJ2(y7 t) + nglQ(yv t) + p?(y - Q)?
1/‘}2 =0- vvva(y) - b : unz(y) + \112(y7t) - b ! V\PQ(yv t)

2 2 (43)
= A1 (y) — m o (y) + AV (y,t) —m Vi (y,t) — p1(y — Q),
G=b+Q=v+P,
p="10+P=—(V(t;(y) + ¥;(y,1)), p;(y — Q))-
Let us extract the terms linear in (). Note first that
pily — Q) =p;iy) — Q- Vp;(y) + N;(Q),  j=12
where N;(Q) = pj(y — Q) — pj(y) + @ - Vp;(y). Condition (1.9) implies that the bound
IN;(@)llo,s < C3(@)Q%  j =12, (4.4)

holds for N;(Q) uniformly with respect to |@Q| < Q for any chosen @, where 3 is the parameter
in Theorem 2.1. By using equations (2.7), we obtain from (4.3) the following equations for the
components of the vector Z(t):

Wl(yvt) = _A\IIZ(y7t) + nglQ(yvt) + b : V‘I’l(y,t) - Q : sz(y)
+ (b= v) - Viho1(y) — 0 Votbui (y) + N,
Uy(y,t) = AW, (y, 1) — m> Ty (y,t) +b- Vs (y,t) + Q- Vpi(y)

. (4.5)
+ (b —v) - Vihya(y) — 0 - Vythya(y) — Na,
Q(t) =P+ (v ),
P(t) = (U;(y. ), Vo; () + (Vuj (1), Q - Vp;(y)) = 0 + Na(v, Z),
where
Nu(v, Z) = =(Viby, N;(Q)) + (V¥;, Q- Vip;) = (V¥ N;(Q)).
Clearly, the following estimate holds for N4(v, Z):
INu(v, Z)] < Cp(p,0,Q) |Q* + [W1]l1,—5|Q| + [[2]|1,-6] QI | (4.6)
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uniformly with respect to |v| < ¥ and |Q| < Q for any chosen ¥ < 2m. We can represent equations
(4.5) as follows:

Zt) =AM ZEt) +T{t)+N(1t), teR. (4.7)

Here the operator A(t) = A, (t) depends on two parameters, v = v(t), and w := b(t), and can be
written in the form

\Ifl w -V —(A —m2) —V,Og' 0 \Ifl
Uy | _ | A—m? w-V Vpr- 0 vy
Avw Q| 0 0 0 E Q (4.8)
P (.Vp1)  (-.Vp2)  (Viby;,-Vp;) 0 P
Further, T'(t) = Ty, (t) and N(t) = N(t,0,Z) in (4.7) stand for
(”UJ—’U)‘V¢1,1—Z.}'VU?,[)U1 NQ(Z)
T, ..= (w =) Vb — 0 - Vyihyo N(o,Z) = —Ni(Z) (4.9)
v, w v — w ) ) 0 ’ .
—v N4(U7 Z)

where v = v(t), w = w(t), o = o(t) = (b(t),v(t)), and Z = Z(t). Estimates (4.4) and (4.6) imply
that —

IN(o, 2)lls < C(@,Q)IZ]2 4, (4.10)
uniformly in ¢ € £(7) and || Z]|_g < r_3(v) for any fixed v < 2m.

Remark 4.1. i) The term A(t)Z(t) on the right-hand side of equation (4.7) is linear in Z(t),
and N (t) is a high-order term in Z(t). On the other hand, T'(t) is a zero-order term that does not
vanish at Z(t) = 0 since S(o(t)), generally, is not a soliton solution if (2.11) fails to hold (though
S(o(t)) belongs to the solitary manifold).

ii) Formulas (3.2) and (4.9) imply
3
@) = - Z[(w —v)im + VT3], (4.11)
=1

and hence T'(t) € Tg(ot)S, t € R. This fact suggests the unstable character of the nonlinear
dynamics along the solitary manifold.

5. LINEARIZED EQUATION

Here we collect some Hamiltonian and spectral properties of the generator (4.8) of the linearized
equation. First, let us consider the linear equation

X(t) = Ay X(t), teR, veV, weR3 (5.1)

Lemma 5.1 (cf. [10]). i) For any v € V and w € R3, equation (5.1) can be represented as the
Hamiltonian system (cf. (2.2)),

X(t) = JDHy0(X (1)), t € R, (5.2)

where DH,, 4, stands for the Fréchet derivative of the Hamiltonian functional,

1
HawlX) = 5 [ (VO 4 [0+ [T 2oy + W30 Py + [ 53 0)Q - Ty
1 1
F5P =@ V(). @ Vo)), X = (¥1,05,Q,P) € £, (53)
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ii) The energy conservation law holds for the solutions X (t) € C1(R,E™),

Hyw(X(t)) = const, teR. (5.4)

iii) The skew-symmetry relation holds,

Q(Ay X1, Xo) = —Q(X1, A, 0 X2), X1,X2€€. (5.5)
iv) The operator A, ., acts on the vectors T;(v) tangent to the solitary manifold as follows:
Apw[mi(0)] = (w =) - V7;(v), Aywlrjps(v)] = (w —v) - V7s(v) + 75(v), j =1,2,3. (5.6)
We shall apply Lemma 5.1 mainly to the operator A, , corresponding to w = v. In this case,

the linearized equation has the following additional specific features.

Lemma 5.2. Assume that w =v € V. Then the following assertions hold.

i) The tangent vectors 7;(v) with j = 1,2,3 are eigenvectors, and 7;13(v) are root vectors of the
operator A, , that correspond to the zero eigenvalue, i.e.,

A, [T (v)] =0, Ay o[Tips()] =75(v), j=1,2,3. (5.7)

ii) The Hamiltonian function (5.3) is nonnegative definite since
1 1
Hyo(X) = 3 /‘A1/2(\If1 +iWy) — ATY2Q - V(py + z’pg)fd;p + 5P2 > 0. (5.8)

Here A stands for the operator (2.8), which is symmetric and nonnegative definite in L?(R3) for
|v| < 2m, and A2 s the nonnegative definite square root defined in the Fourier representation.

Proof. The first statement follows from (5.6) with w = v. In order to prove ii), we can rewrite
the integral in (5.8) as follows:

1
§<A1/2(\111 +iWy) — AY2Q - V(p1 +ipe), A2 (W1 +iWy) — A™Y2Q - V(py +ip2))
1 . . 1, . .
= §<A(‘IJ1 +iVy), Uy + W) — (V;,Q - Vpj;) + §<A 'Q-V(p1+ip2),Q - V(p1 +ip2)) (5.9)

since the operator A'/2? is symmetric in L?(R3). All the terms of expression (5.9) can now be
identified with the corresponding terms in (5.3) since

1 1
5 (A1 +0W2), Uy + W) = S ([-A+ m? 4 v - V(U1 +i0y), (U] +i0y))
1 1
- §<[_A + m2]§1171111> + §<[_A + mQ]\IJ27\IJ2> + <\I’2,’U : V\If1>

and we have A7 (p1 +ip2) = —(Yu1 + ithy2) by (2.8) and (2.9).

Remark 5.1. For a soliton solution of the system (1.2), we have b = v and v = 0, and hence
T'(t) = 0. Thus, equation(5.1) is the linearization of system (1.2) on a soliton solution. In fact, we
linearize (1.2) on a trajectory S(o(t)), where o(t) is nonlinear with respect to ¢, rather than on a
soliton solution. We shall show below that T'(¢) is quadratic in Z(t) if we choose S(c(t)) to be the
symplectic orthogonal projection of Y'(¢). In this case, (5.1) is a linearization of (1.2) again.
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6. SYMPLECTIC DECOMPOSITION OF DYNAMICS

Here we decompose the dynamics into two components, along the manifold S and in the transver-
sal direction. Equation (4.7) is obtained without any assumption on o(¢) in (4.1). We are going to
specify S(o(t)) := IIY (t). However, in this case, we must know that

Y(t) € O_5(S), teR (6.1)

This is true for t = 0 by our main assumption (2.12) with sufficiently small dy > 0. Then we have
S(o(0)) = IIY(0) and Z(0) = Y (0) — S(0(0)) are well defined. We shall prove below that (6.1)
holds if dy is sufficiently small. Let us choose an arbitrary v such that |v(0)] < ¥ < 2m, and let us
denote § =T — |v(0)|. Denote by r_3(v) the positive numbers in Lemma 3.2 iv) which correspond
to « = —f. Then S(o) + Z € O_3(S) if 0 = (b,v) with |v| < T and ||Z]|_3 < r_s(7). Note that
| Z(0)||-p < r—p(D) if dy is sufficiently small. Therefore, S(o(t)) = IIY (t) and Z(t) = Y (¢t)—S(o(t))
are well defined for the sufficiently small times ¢ > 0 (for which |v| < T and [|Z(¢t)||-5 < r_g(7)).
This argument can be formalized by using the following standard definition.

Definition 6.1. Let ¢, be the “exit time,” i.e.,
te =sup{t > 0:||Z(s)||-p <r_5([@), |v(s) —v(0)] <6, 0<s <t} (6.2)

One of our main goals is to prove that ¢, = oo if d is sufficiently small. This would follow if we
could show that

1ZB)|l—p < r_s(@)/2,  |o(s) —v(0)| <§/2, 0<t<t. (6.3)

Note that o
Q)] < Q :=r_p(v), 0<t <t (6.4)

Now, by (4.10), the quantity N(¢) in (4.7) satisfies the following estimate:
IN®lls < Cs@IZB)25,  0<t <t (6.5)

6.1. Longitudinal Dynamics: Modulation FEquations

From now on, we choose the decomposition Y (t) = S(o(t)) + Z(t) for 0 < t < t, by setting
S(o(t)) = ITIY (t), which is equivalent to the symplectic orthogonality condition of type (3.7),

Z(t) J[ Ts(g(t))s, 0<t <t,. (66)

This enables us to drastically simplify the asymptotic analysis of the dynamical equations (4.7)
for the transversal component Z(t). As the first step, we derive the longitudinal dynamics, i.e.,
find the “modulation equations” for the parameters o(t). Thus, let us derive a system of ordinary
differential equations for the vector o(t). For this purpose, we write (6.6) in the form

A(Z(), (1) =0, j=1,....6, 0<t<t, (6.7)

where the vectors 7;(t) = 7;(0(t)) span the tangent space Tg(,(1))S. Note that o(t) = (b(t),v(t)),
where
lu(t)] < T < 2m, 0 <t <ts, (6.8)

by Lemma 3.2 iii). It would be convenient for us to use some other parameters (c,v) instead of
o = (b,v), where
t .
c(t) =b(t) — / v(T)dr and é(t) = b(t) — v(t) = w(t) — v(t), 0<t<t,. (6.9)
0
We do not need an explicit form of the equations for (c,v), except for the following statement,
whose proof is similar to that of Lemma 6.2 in [10].
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Lemma 6.1. Let Y (t) be a solution to the Cauchy problem (1.4), and let (4.1) and (6.7) hold.
Then (c(t),v(t)) satisfies the equation

) =N(o(t), Z(t)), 0<t<ty, (6.10)
where
N(o,Z)=0(|Z|” ) (6.11)

uniformly in o € (7).

6.2. Decay for the Transversal Dynamics

In Section 11, we shall show that our main Theorem 2.1 can be derived from the following time
decay of the transversal component Z(t).

Proposition 6.1. Let all conditions of Theorem 2.1 hold. Then t, = oo, and

C(pvﬁv dU)

Z)|-p € m——r379>
125 < s

t>0. (6.12)

We shall derive (6.12) in Sections 7-11 from our equation (4.7) for the transversal component
Z(t). This equation can be specified by using Lemma 6.1. Indeed, the lemma implies that

ITOls <C@IZMONZ, — 0<t<ts, (6.13)
by (4.9) since w — v = ¢é. Thus, equation (4.7) becomes

Zt)=AMZ({t)+ N(@1), 0<t<t,, (6.14)
where A(t) = Ay, w(t), and N(t) := T(t) + N(t) satisfies the estimate

IN®)|ls < Clz)? s, 0 <t <ts. (6.15)

In the remaining part of our paper, we mainly analyze the basic equation (6.14) to establish the
decay (6.12). We are going to derive the decay by using the bound (6.15) and the orthogonality
condition (6.6).

First, we reduce the problem to the analysis of the frozen linear equation,

X(t)=A1X(t), teR, (6.16)

where A; is the operator A, ,, defined by (4.8) with v; = v(¢1) and a chosen ¢; € [0,t,). We can
now apply well-known methods of scattering theory and then estimate the error by the method of
majorants.

Note that, even for the frozen equation (6.16), the decay of type (6.12) for all solutions does not
hold without the orthogonality condition of type (6.6). Namely, by (5.7), equation (6.16) admits
the secular solutions

3 3
X(t) =) Cimi(v) + Y Djlrj(v)t +7145(v)], (6.17)
1 1

which also arise by differentiating the soliton (1.5) with respect to the parameters a and v in
the moving coordinate y = x — vit. Hence, we must consider the orthogonality condition (6.6) to
avoid the secular solutions. To this end, we shall apply the corresponding symplectic orthogonal
projection that kills the “runaway solutions” (6.17).

Remark 6.1. The solution (6.17) belongs to the tangent space Tg(,)S with o1 = (b1, v1) (for
an arbitrary b; € R), which suggests the unstable character of the nonlinear dynamics along the
solitary manifold (cf. Remark 4.1 iii).
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Definition 6.2. i) For v € V, denote by ITI, the symplectic orthogonal projection of £ onto the
tangent space 7g(,S and write P, = I — IL,.

ii) Denote by Z, = P,& the space symplectic orthogonal to 7g(,)S with o = (b,v) (for an
arbitrary b € R).

Note that, by the linearity,
IL,Z =) M(v)r(0)n().2), ZeE, (6.18)

with some smooth coefficients IT;;(v). Hence, the projection IT, does not depend on b in the variable
y = x — b, and this explains the choice of the subscript in II,, and P,,.

We now have the symplectic orthogonal decomposition
£ = Ts(U)S + Zy, o= (b,v), (619)
and the symplectic orthogonality (6.6) can be represented in the following equivalent forms,

HU(t)Z(t) =0, Py(t)Z(t) = Z(t), 0<t <t,. (620)

Remark 6.2. The tangent space 7g(,)S is invariant under the operator A, , by Lemma 5.2 i),
and hence the space Z, is also invariant by (5.5), namely, A, ,Z € Z, for any sufficiently smooth
Z € Z,.

In Sections 12-18 below, we prove the following proposition, which is one of the main ingredients
in the proof of (6.12). Let us consider the Cauchy problem for equation (6.16) with A = A4, ,, for a
chosen v € V. Recall that the parameter 3 > 3/2 is also chosen.

Proposition 6.2. Let conditions (1.9) and (1.10) hold, let |v| < T < 2m, and let Xo € €. Then
the following assertions hold.

i) Equation (6.16), with A = A, ,, admits a unique solution e Xy := X(t) € C(R,E) with the
ingtial condition X (0) = X,.
ii) For Xy € Z, N &g, the solution X (t) has the following decay,

Cs(v)

At
Xoll-p € ———5%—
”6 0” B (1 + |t|)3/2

[Xollg, teR. (6.21)

7. FROZEN TRANSVERSAL DYNAMICS
Now let us choose an arbitrary t; € [0,t,), and rewrite the equation (6.14) in “frozen form,”

Z2(t) = A Z(t) + (A(t) — ADZ(E) + N(t),  0<t<ts, (7.1)

where Ay = Ay (1,),0(t,) and

[w(t) —v(t1)] -V 0 0 0
Alt) - A = 8 [w(t) — iof(h)] Y 8 8
0 0 (V(thu(ty; = Yuer)s)s Vi) 0

The next trick is important since it enables us to kill the “bad terms” [w(t) —v(t1)] - V in the
operator A(t) — Aj.
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Definition 7.1. Let us change the variables (y,t) — (y1,t) = (y + d1(t),t), where

Ay (1) = /t(w(s) Co(t))ds,  0<i<ty. (7.2)
t1
Next, let us write
Zy(t) = (¥1(y1 — da(t), 1), Ua(yr — da(t), 1), Q(2), P(t)). (7.3)
Then we obtain the final form of the “frozen equation” for the transversal dynamics,
Zi(t) = A1 Z1(t) + Bi(1) Z,(t) + Ni(t),  0<t<ty, (7.4)
where Ni(t) = N(t) is expressed in terms of y = y; — dy (t), and
0 0 0 0
B =0 0 0 0
00 {V{¥uw)i —Po(tn)i): Vo) 0

Lemma 7.1 (see [10]). For (U1, V5, Q, P) € &, with any o < 3, the following estimate holds:
1(¥1(y1 = di), Wa(yr — d1),Q, P)la < [[(¥1, W2, Q, P)[la(l + |di]) !, d R’ (7.5)

Corollary 7.1. The following bounds hold for 0 <t < ty:

INi(®)lls < NZO121+ 1)), I1Bi(t)Z1(b)]ls < Ol Z(¢ )Hﬁ/t izt )2 gdr . (7.6)

8. INTEGRAL INEQUALITY

Equation (7.4) can be represented in the following integral form:

t
Zu(t) = e 2, (0) + / M= [B, 7, (s) + Nu(s)]ds,  0<t<tr (8.1)
0

Now let us apply the symplectic orthogonal projection Py := Py, to both sides of (8.1). The space
Z, := P& is invariant with respect to ' by Proposition 6.2 ii) (cf. also Remark 6.2). Therefore,
P, commutes with the group e4'* and, applymg (6.21), we obtain

(1 +t 3/2 1+|t—s|)3/2
The operator P; = I —II; is continuous in g by (6.18). Hence, using (7.6), we obtain
C(di(0) |,
P.Z < ———5
= ' 1 " 2 2
+ O () / T [”Z(S)HB |1z s+ 122 a5, 0<e<n, (82

where dy (t) := suppc < [d1(s)]-
Definition 8.1. Let ¢/ be the exit time,
t. =sup{t € [0,t.) : di(s) <1, 0 < s < t}. (8.3)

Now it follows from (8.2) that, for t; < ¢/,

C
P121 (1)l < WIIZ(O)H;?

! 1 h 2 2
w0 [ i 1200 [ 1200 i+ 12612 ds. 0<t<n. sa)
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9. SYMPLECTIC ORTHOGONALITY

Finally, we are going to replace Py Z; (t) by Z(t) on the left-hand side of (8.4). We shall prove that
this replacement is possible indeed by using the fact dg < 1 in (2.12) again. For the justification,
we reduce the exit time further. First, introduce the “majorant”

m(t) = sup (14521 Z(s)|s . e 0.1, 01)
s€10,t]

Denote by ¢ a chosen positive number (which will be specified below).

Definition 9.1. Let ¢” be the exit time,

! =sup{t € [0,¢,) : m(s) <&, 0<s <t (9.2)

The following important bound (9.3) enables us to replace the norm of P Z;(¢) on the left-hand
side of (8.4) by the norm of Z(t).

Lemma 9.1 (cf. [10]). For any sufficiently small € > 0, we have
125 < CIPA AWM s, O<t<t, (93

for any t, < t!, where C' depends on p and v only.

Proof. Since |dy(t)| < 1fort <ty <t <t it follows from Lemma 7.1 that it suffices to prove
the inequality
122(0)-p <2[P1Z1(@)] -5, 0<tE<t (9-4)

Recall that P17, (t) = Z1(t) — ITy,)Z1(t). Then estimate (9.4) will follow from

1
Moy 2@ < S1Z0 -5, 0<Et<H (9.5)
The symplectic orthogonality (6.20) implies the relation
y)1Z:(t) =0, te€[0,t], (9.6)

where IT, ) 1Z1(t) is the term IT, ) Z(t) expressed in terms of the variable y; =y + dy(t). Hence,
(9.5) follows from (9.6) if the difference IT,,) — IT,),1 is small uniformly in ¢, i.e.,

||Hv(t1) — Hv(t),l” < 1/2, 0<t <t (97)
It remains to justify (9.7) for any sufficiently small ¢ > 0. Formula (6.18) implies the following

relation:
Ty ),1 Z1(t) = > T (0(8) 750 (0(£) U711 (0(t)), Z1 (1)), (9.8)

where the terms 7; 1 (v(t)) are the vectors 7;(v(t)) expressed via the variables ;. Since the functions
|di(t)] <1 and V7; are smooth and rapidly decaying at infinity, Lemma 7.1 implies that

1751 (v(t) = 75 ((®)]ls < Clr(®))?,  0<t<t, (9.9)

for all j =1,2,...,6. Furthermore,

73 (0() — 75(0(t)) = / Lis) - Vs (0(s))ds,
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and therefore,
t1
75 (v(t)) — 75 (v(t:1))lls < C/ [0(s)lds,  0<t <ty (9.10)
t

Similarly,

Ly (0(t)) — T(o(t1))| = / Cis) - VoILy (v

since |V, IL;;(v(s))| is uniformly bounded by (6.8). Hence, the bounds (9.7) will follow from (6.18),
(9.8) and (9.9)—(9.11) if we shall prove that |d;(¢)| and the integral on the right-hand side of (9.10)
can be made as small as desired by choosing a sufficiently small £ > 0.

To estimate d;(t), note that

c/ s)lds,  0<t<t, (9.11)

w(s) —v(t1) = w(s) —v(s) +v(s) —v(ty) = ¢é(s) + / lb(T)dT (9.12)
by (6.9). Hence, equality (7.2), Lemma 6.1, and the definition in (9.1) imply that
/ (w(s) —v(t1))ds

i (1) = ; </:1 <\c'(s)|+/:l \z';(r)|d7-> ds

b hodr
< 2 — S — < 2(t1) < Ce? <t <
\Cm (tl)/t <(1+$)3+/S (1+T)3>d8\0m (tl)\OE, O\t\tl,

since t; < t7/. Similarly,

o b s
/t [9(s)|ds < CmQ(tl)/t (e < Ce?, 0<t<ty. (9.14)

10. DECAY OF THE TRANSVERSAL COMPONENT

Here we prove Proposition 6.1.

Step 1). Choose an ¢ > 0 and a t// = t/(¢) for which Lemma 9.1 holds. Then a bound of type (8.4)
holds with [|P1Z;(t)||—s replaced by ||Z(t)||—5 on the left-hand side,

125 < (1+t)3/2\\ )l
+0/ 1+|t T [||Z(s>||_ﬁ/1||Z(T>||2Bdr+||z<s)||2ﬁ} ds, 0<t<t;, (10)

for t; < t,. This implies an integral inequality for the majorant m(t) defined in (9.1). Namely,
multiplying (10.1) by (1 +¢)3/2 and taking the supremum in ¢ € [0,¢;], we obtain

Eo(1+1)32 m(s) om2(r)dr m2(s)
m(t1) < C|Z(0)]|s + Ctes[légl}/o (1 +t—s) [(1 ¥ s5)32 /5 (1+7)3 T 1+ ) ds

for t; < t!/. Taking into account that m(t) is a monotone increasing function, we see that

m(t1) < CIZ(0)||g + Clm?(t1) + m*(t1))I(t1), 1 <t (10.2)
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where

t 3/2 t1
(1+1) [ 1 / dr 1 -
I(t)) = + ds < I < o0.
(h) tSES,‘?ﬂ/o (I+]t—sD)32 A+ ), U3 1+973" >

Therefore, (10.2) becomes
m(t1) < CIZ(0)||g + CI[m3(t1) + m*(t1)],  t <t (10.3)
This inequality implies that m(t;) is bounded for ¢; < ¢/ and, moreover,
m(t) < CillZ(0)llp,  ta <, (10.4)

since m(0) = ||Z(0)||g is sufficiently small by (3.8).

Step ii). The constant C; in the estimate (10.4) does not depend on ¢, ¢, and t? by Lemma 9.1.
We choose a small dy in (2.12) such that ||Z(0)||g < ¢/(2C1). This is possible by (3.8). In this
case, estimate (10.4) implies that ¢!/ = ¢/, and therefore (10.4) holds for any ¢; < t,. Then the
bound (9.13) holds for any ¢ < t/,. Choose a small € such that the right-hand side in (9.13) does not
exceed one. Then t/, = t,. Therefore, (10.4) holds for any ¢; < t., and hence the first inequality in
(6.3) also holds if || Z(0)|| g is sufficiently small by (9.1) and (9.14). Finally, this implies that ¢, = oo,
and hence we also have t!/ = ¢/, = 0o, and (10.4) holds for any ¢; > 0 if dy is small enough.

11. SOLITON ASYMPTOTICS

Here we prove our main theorem, Theorem 2.1, under the assumption that the decay (6.12)
holds. Let us first prove the asymptotics (1.8) for the vector components, and then the asymptotics
(1.1) for the fields.

Asymptotics for the vector components. It follows from (4.3) that ¢ = b+ @, and from
(6.14), (6.15), and (4.8) that @ = P + O(||Z||? 5). Thus,

G=0b+Q=v(t)+c(t)+ Pt) + O(|Z||* ). (11.1)
Equation (6.10), together with the estimates (6.11) and (6.12), implies that

< Ol(p767 dU)

[c@)] + [o(t)] < T t>0. (11.2)

Therefore, c(t) = ¢y + O(t™2) and v(t) = vy + O(t™?), t — oo. Since |P| < || Z]|-s, the estimate
(6.12) and relations (11.2) and (11.1) imply that

§(t) = vy +O@3?). (11.3)

Similarly,

t
b(t) = c(t) + / v(s)ds = vyt +ay + Ot 1), (11.4)

0

and hence the second part of (1.8) follows,
q(t) =b(t) + Q(t) = vyt +ay + O(t™), (11.5)

since Q(t) = O(t=3/?) by (6.12).
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Asymptotics for the fields. We apply the approach developed in [12], see also [10]. For the
field part of the solution, ©(x,t) = ¥i(x,t) + iha(x,t), let us define the accompanying soliton
field as vy (z — q(t)), where we now set v(t) = ¢(t), cf. (11.1). In this case, for the difference

z(x,t) = (x,t) — Yy (z — q(t)), we obtain the equation
i2(z,t) = (A + m®)z(x, 1) — iV - Vitby (@ — g(t)).

Then
z(t) = Wo(t)z(0) — /0 Wo(t = s)[iv(s) - Vytby(s) (- — q(s)))ds. (11.6)

To obtain the asymptotics (2.14), it suffices to prove that z(t) = Wq ()t +ry (t) for some ¢, € H*
and that |7, (t)|| g1 = O(t~'/2). This is equivalent to the relation

Wo(—t)z(t) =y + 1/ (t), (11.7)

where |7/, (t)|| g2 = O(t~1/2), since WO(¢) is a unitary group on the Sobolev space F by the energy

conservation for the free Schrodinger equation. Finally, formula (11.7) holds since (11.6) implies
that

Wo(—t)Z(t)ZZ(O)—/O Wo(=s)f(s)ds, — f(s) =¥(s) - Vithy(s) (- = q(s)),

where the integral on the right-hand side converges in the Hilbert space F with rate of convergence
O(t~1/?), which holds since ||[Wo(—s)f(s)||z1 = O(s~3/2) by the unitarity of Wy(—s) and by the
decay rate ||f(s)||m: = O(s~3/?). Let us prove that this rate of decay holds indeed. It suffices to
prove that [v(s)| = O(s~3/2), or, equivalently, [p(s)| = O(s~3/?). Substituting (4.2) into the last
equation of (1.2) gives

p(t) = / (Yo (T = (1) + ¥, (x = b(t), t)] Vpj(z = b(t) — Q(t))dx
= / Vo) () V5 (y)dy + / Vo) (W) [Vpi(y — Q(t) — Vp;(y)| dy + / 5y, ) Vp;(y — Q(t))dy.

The first integral on the right-hand side is zero by the stationary equations (2.7). The second
integral is O(t3/2), which follows from conditions (1.9) on p and the relation Q(t) = O(t=3/?).
Finally, the third integral is of order O(t~3/2) by estimate (6.12). This completes the proof.

12. DECAY FOR THE LINEARIZED DYNAMICS

In the remaining sections, we prove Proposition 6.2 to complete the proof of the main result
(Theorem 2.1). Here we discuss the general strategy of proving the proposition. We apply the
Fourier—Laplace transform

X()\):/O e MX (t)dt, Re )\ > 0, (12.1)

to (6.16). According to Proposition 6.2, we can expect that the solution X (¢) will be bounded in
the norm || - ||_s. Then the integral (12.1) converges and is analytic for Re A > 0. We shall write A
and v instead of A; and v; in the remaining part of the paper. After the Fourier-Laplace transform,
(6.16) becomes

AX(\) = AX(\) + Xo, Rel > 0. (12.2)
Let us stress that (12.2) is equivalent to the Cauchy problem for the functions
X(t) € Cp([0,00); ).
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Hence, the solution X (t) is given by
X\ =—-(A-XN"1'X;,  Rer>0, (12.3)

if the resolvent R(\) = (A — \)~! exists for Re A > 0.

Let us comment on our following strategy in proving the decay (6.12). We shall first construct
the resolvent R(\) for Re A > 0 and prove that this resolvent is a continuous operator on £_g. In
this case, X (A) belongs to £_g and is an analytic function for Re A > 0. After this, we must justify
that there exists a (unique) function X (¢) € C([0,00); E_p) satisfying (12.1).

The analyticity of X (\) and the Paley~Wiener arguments (see [16]) should provide the existence
of an £_g-valued distribution X (¢), t € R, with a support in [0, c0). Formally,

1

T o

X(t) / et X (iw + 0)dw, teR. (12.4)
R

However, to establish the continuity of X (t) for ¢ > 0, we need an additional bound for X (iw + 0)
for large values of |w|. Finally, for the time decay of X (¢), we need additional information on the
smoothness and decay of X (iw 4+ 0). More precisely, we must prove that the function X (iw+0) has
the following properties:
i) it is smooth outside w = 0 and w = +u, where u = u(v) > 0;
ii) it decays in a sense as |w| — oo;
iii) it admits the Puiseux expansion at w = £ y;
iv) it is analytic at w =0 if Xy € Z, :== P,€ and X, € &;.
Then the decay (6.12) will follow from the Fourier-Laplace representation (12.4).
We shall check properties of type i)-iv) only for the last two components Q()\) and P(\) of the
vector

X() = (T1(N), U2(X), Q(N), P(N)).

These properties provide the decay (6.12) for the vector components Q(t) and P(t) of the so-
lution X(t). After this, for the field components ¥ (x,t) and Wo(z,t), we shall use well-known
properties of the free Schrédinger equation.

13. CONSTRUCTING THE RESOLVENT

Here we construct the resolvent as a bounded operator on £_g for Re A > 0. We shall write
(U1(y), ¥a(y), Q, P) instead of (V1 (y, A), Ua(y, A), Q(A), P(N\)) to simplify the notation. Then (12.2)

reads

51 501
(A=) QQ _ Qooz
P Py

This gives the system of equations

vV (y) — (A =m?)Ws(y) — Q- Vp — ATy (y) = —Vo1(y),
(A —=m?)Wy(y) +v-VUs(y) + Q- Vo1 — AWa(y) = —Voa(y),
P-2Q=-Q,
—(VV;(y), pi (W) + (Vibu; (), Q - Vpj(y)) — AP = =P,

y € R>. (13.1)

Step i). Let us study the first two equations. In the Fourier space, they become
—(ikv + N U1(k) + (K + m?) o (k) = —Dou (k) — iQkpa,
— (k% + m2) Wy (k) — (kv + N Wy (k) = =Ty (k) + iQkp,.
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Let us invert the matrix of the system, obtaining

( - ((zil;TmA?)) —IijJ; v 2)\) ) = (G AP 4 (6 ( —ég’fi o ‘_({Zfii +m;)) > :

Taking the inverse Fourier transform, we find the corresponding fundamental solution
(v V=X A-m?
ORI CINAC S PO (13.3
where

1 1
=F! =F! :
) = oy G T — (o —inE L= (2 L — o £ (R R o — )

(13.4)

Note that the denominator on the right-hand side of (13.4) does not vanish for Re A > 0 and k € R3.

Moreover, it does not vanish for Re A > 0 and k € C? for sufficiently small | Im k|. Therefore, g5 (y)
decays exponentially by the Paley—Wiener arguments. Let us compute the entries of the matrix Gy
explicitly,

11N _ 22/, _ =1 —thv — A
G)\ (y)_G)\ (y)_F (k2+m2)2—(kv—i)\)2
_ 1 ( 1/2i B 1/2i ) _ eblzizy gme-lultigy
SRR 4 m2 — kv 4N k24 m24+kv—iN)  Sinlyl Simly| (13.5)
k2 4+ m? '
21 _ 12/, _ -1
G)\ (y)__G/\ (y)_F (kg_i_mg)g_(kv_i)\)g
S Y2y _ iy i
F=y\E2 +m2 — kv +iX k2 4+ m?2 + kv — i) 87yl 8rly|

where

2
sep = \/m? — UZ +i), Resy > 0. (13.6)

This implies the following assertion.

Lemma 13.1. i) The operator G 5 with the integral kernel G x(y—y') is continuous as an operator
from H*(R?) ® H'(R?) to H*(R3) @ H?(R?) for ReA > 0.

ii) Formulas (13.5) and (13.6) imply that, for any chosen y, the matriz function G x(y), Re A > 0,
admits an analytic continuation with respect to \ to the Riemann surface of the algebraic function

V112 + A2 with the branching points X = 4iu, where u:= m? —v? /4.

Thus, relations (13.2) and (13.3) imply the convolution representation

\1/1 = —Gil * \1101 — G}\Q * \IJOQ — (G}\Q * Vpl) . Q + (Gil * sz) . Q7

13.7
\1/2 :G}\z*\ygl—G}\l*\yog—(G}\l*vpl)Q—(G}\Q*VPQ)Q ( )

Step ii). Let us now proceed to the last two equations (13.1),
NQ+P=-Qo, (Vs Q- Vpj) — (VU p;) — AP = — P, (13.8)

Let us rewrite equations (13.7) in the form V; = V;(Q) + V;(¥o1, ¥o2), where

Uy (o, Ugp) = —GA * Ugy — G52 % U, U1(Q) = (=G3? + Vp1 + G)' x Vo) - Q,
Wy (Vor, Woo) = G2+ Uoy — G * Wog, Us(Q) = —(GX' * Vp1 + G3Z * Vp2) - Q.
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Then we have (VV;, p;) = (VV;(Q),p;) + (V¥;(¥o1,Vo2), pj), and the last equation in (13.8)
becomes

<V¢vj, Q : vp]> - <V\IJJ(Q)7PJ> — AP = _PO + <V\I’j(\1101, quQ)vpj> = _P(;
Let us first compute the term
(Vo1 Q- V) = Y (Vtbus, Quips) = > (Vibyj, 01pj) Qi
1j 1
Applying the Fourier transform F,_,j, the Parseval identity, and (19.3), we see that
D (Ot 0ipy) = > (—ikithug, —ikips)
J J
(K2 +m?)py + ikvpy | —ikvpr — (K> +m?)pa .
= (ki (2 L m2)2 — (ko) apn) + (ki (2 + m2 )2 — (kv)? az)
kil (2 + m?) (17 + 12+ i) (015 = popi))ab o
__/ (k2 + m?)? — (kv)? = —La. (139)

As a result, (Vi),;,Q - Vp;) = —LQ, where L is the 3 x 3 matrix with the matrix elements L;;.
Let us now compute the term —(VV;(Q), p;) = (¥;(Q), Vp;). We have

(W;(Q),0ip5) = > <<—G§2 * Qp1 + G x D2, Dipr) — (GR' * Bipy + G52 * Dipa, (91',02>>Qz

l
= Ha(NQ,
l

and, by the Parseval identity again,
Hy(N) : = (—G32 % Oipy + Gy % Qipa, 0ip1) — (GX" * Oyp1 + G52 % Oyp2, 0;p2)
= ([(k* +m?)pr — (ikv + N)palgaki, kipr) + ([(ikv + N1 + (B2 + m?)palgakn, ki)
[ ik (k2 4 m2) (512 4 |62f?) + (ko + M) (9155 — papn) )dk
(k2 +m?2)? — (kv —i\)? ’

The matrix H is well defined for Re A\ > 0 since the denominator does not vanish. As a result,
—(V¥,(Q),p;) = HQ, where H is the matrix with the matrix elements H;;. Finally, the equations
(13.8) become

(13.10)

M(N) (g) — (%g) where  M(\) = <L_Afm) ;g) (13.11)

Assume for a moment that the matrix M()) is invertible (later we shall prove that this is the
case indeed). Then

<§§> — M) <§§g> Re A > 0. (13.12)

Finally, formula (13.12) and formulas (13.7), where @ is expressed by (13.12), give the expression
for the resolvent R(\) = (A — X)~1, ReX > 0.

Lemma 13.2. The matriz function M(X) (M~Y(X)), where Re A > 0, admits an analytic (mero-
morphic) continuation to the Riemann surface of the function \/u? + X%, X € C.

Proof. The analytic continuation of M(\) exists by Lemma 13.1 ii) and the convolution ex-
pressions in (13.10) by (1.9). The inverse matrix is then meromorphic, since it exists for large values
of Re A (which follows from (13.11) since H(A) — 0 as Re A — oo by (13.10)).
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14. ANALYTICITY ON THE HALF-PLANE

Here we prove the following assertion.
Proposition 14.1. The operator-valued function R(\): € — £ is analytic for Re A > 0.

Proof. It suffices to prove that the operator A — A : £ — £ has bounded inverse operator for
Re A > 0. Recall that A = A, ,,, where |v| < 2m.

Step 1). Let us prove that Ker(A — \) = 0 for Re A > 0. Indeed, assume that the function
Xa=(Un1, ¥, Qx, Py) €E

satisfies the relation (A — X)X, = 0, i.e.,, X, is a solution to (13.1) with ¥y; = WY = 0 and
Qo = Py = 0. We must prove that X, = 0.

Let us first show that Py = 0. Indeed, the trajectory X := X,eM € C(R,&) is the solution
to the equation X = AX, which is equation (5.1) with w = v. Then H,, ,(X(t)) grows exponen-
tially by (5.8). This growth contradicts the conservation of H, ,. This conservation follows from
Lemma 5.1 ii) since X (t) € C1(R,ET), which follows from Lemma 13.1 because (¥ 51, ¥ o) satisfies
equations (13.7) with ¥y; = Ugo =0 and Q = Q.

We now have AQ\ = P\ = 0 by the third equation of (13.1), and hence @, = 0 because A # 0.
Finally, ¥ ; = 0 and ¥,y = 0 by equations (13.7) with Q@ = Q, = 0.

Step ii). Write A — X\ = Ay + T, where

v- V=X —(A-m?) 0 0 0 0 —-Vpa 0

A | A-m* v Vv-Xx 0 0 T_ 0 0 V1 0
0 0 0 -x 0’ 0 0 0 9
0 0 0 —A (,Vp1) (-,Vp1) (Viby;,-Vp;) 0

The operator T is finite-dimensional, and the operator A, !is bounded on € by Lemma 13.1. Finally,
A-X= Ay (I+A61T), where AalT is a compact operator. Since we know that Ker(I—I—AalT) =0,
the operator (I + Ay 'T) is invertible by Fredholm theory.

Corollary 14.1. The matriz M(X) of (13.11) is invertible for Re A > 0.

15. REGULARITY ON THE IMAGINARY AXIS

Let us first describe the continuous spectrum of the operator A = A, ,, on the imaginary axis.
By definition, the continuous spectrum corresponds to w € R such that the resolvent R(iw + 0) is
not a bounded operator in €. By formulas (13.7), this is the case if the Green function G x(y — y’)
fails to have exponential decay. Thus, iw belongs to the continuous spectrum if

lw| > p=m?—v?/4.

By Lemma 13.2, the limit matrix

M(iw) == M(iw + 0) = (L_If;‘(’fuw) Z;%) wER, (15.1)

exists, and its entries are continuous functions of w € R that are smooth for |w| < p and for |w| > p.
Recall that the point A = 0 belongs to the discrete spectrum of the operator A by Lemma 5.2 i),
and hence M (iw + 0) is (probably) not invertible either at w = 0.
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Proposition 15.1. Let p satisfy condition (1.9) and the Wiener condition (1.10), and let
|v| < 2m. Then the limit matrizx M(iw + 0) is invertible for w # 0, w € R.

Proof. Let us consider the three possible cases 0 < |w| < p, w = p, and |w| > p, separately.
We can assume that v = (|v],0,0). Write F(w) := —L + H(iw+0), M = m? + k% a = |p1]* +|p2|?,
and b = i(p1py — p2py). Then the entries of the matrix F' become

1 1
F, = ik M —
g /’“ by k| Ma (M? (ol T w2 ME- <|v|k1>2>
L vk +w B |v|k1
M2—(]v]k1 +w)2 ]\42—(|v|k:1)2

B / kik;dk " 1 N 1 B 1 B 1
N 2 M—|vlky —w M+k+w M-—|vlky M+ vk

1 1 1 1
+b - — + . 15.2
<M — ”U’kl —w M + |U|k1 +w M — ”U’kl M + ’U’k1>] ( )

Since a is even and b is odd, we see that

/dkgdkg/ kik; dk, af1 +bf2] (15.3)
where
e 1 . 1 . 1 . 1 2 2
VT M —olki—w | MA+|olki+w  MA+|vlki—w  M—|vlki+w M—|vlky M+|olk;’
(15.4)
5 1 - 1 . 1 - 1 2
2T M-k —w M+jolkitw  M—|ulki+w M+|olki—w M—|vlky  M+|olk;

Then, by (15.1),

W 0 0 -1 0 0
0 w 0 0 -1 0
0 0 w 0 0 -1

det M(iw) = det “Fy —Fi —Fs iw 0 0

—Fi9 —Fyy —F3 0 iw 0
—Fy3 —Fy3 —Fj3 0 0 W

. . 3 ) Fyy Fip I3
= —W —w Z jj — w Z ii JJ z] — det F12 F22 F23 (155)
= i<j Fi3 Fa3 P33

since Fl] = F]l
I. First, let us consider the case 0 < |w| < p. Then the invertibility of M (iw) results from the
following assertion.

Lemma 15.1. For 0 < |w| < p, the matriz F is positive definite.

Proof. First, let us note that all denominators in (15.4) are positive for |w| < g = m? —v?/4
and |v| < 2m. Indeed,

2 2
(m2 + k)2 — (w + [ok1)? = ((k — v/2)? + m —Uz—w)((k:—l—v/2) m _UZ“’) > 0.
Second, f1 > fo > 0if |v] < 2m and 0 < |w| < p. This is proved in Appendix C.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 2 2006



Finally, the Wiener condition implies
a+b=|p1(k) Fip2(k)|* >0, VkeR. (15.6)

Therefore, afi; + bfs > 0 and (15.3) is the integral of the symmetric nonnegative definite matrix
k ® k = (k;k;) with positive weight. Hence, the matrix F' is positive definite.

I1. w = +4. For example, consider the case w = = m? — |[v|?/4. Then formula (13.10) reads
, kik; (Ma — (kv + u)b)dk
H;j;(ip) = / s 2]( S ( U)2) 5 S )
((kzl — ly2 4 g2 +k:3) ((k1 + Lo 4 g2 4 k2 +2u)

Now the integrand has a unique singular point. The singularity is integrable, and hence det M (iw)
is also negative by the representations (15.5). Hence, the matrix M(iu) is also invertible.

ITI. |w| > p. Here we apply other arguments. The invertibility of M (iw) now follows from (15.5)
by virtue of the following lemma (cf. [10]).

Lemma 15.2. If (1.10) holds and if w > p (w < —p), then the matrix Im F(w) is negative
(positive) definite.

Proof. Consider the case w > p (the case w < —p can be treated similarly). Let us calculate
the imaginary part of Fj;. Since F;; = H;;(iw+0) — L;; and L;; is real, we shall consider the value
H;;(iw + 0) only. For € > 0, we have

, kik;(Ma+ (kv +w —ie))dk 1 [ kikj(@+b)dk 1 [ kik;(a — b)dk
H;,; - J —— J - J
s +e) / M? — (kv +w — ig)? 2 M—kv—w+i€+2 M+ kv+w—ie
= Hjj(iw +¢) + H(iw + ). (15.7)

It suffices to study the first summand in (15.7) only, since the second summand is real for ¢ = 0.
Consider the denominator .
D (k) = k> + m? — kv — w + ie.

Note that Do(k‘) = 0 on the ellipsoid T, given by
T, = {k:: ‘k—g‘ =R:= \/w—u}.
Then the Plemelj formula for C! functions implies that

Tm H, (iw + 0) = —f/ kikj(a+b) o (15.8)
2 Jr, [VDo(k)|

where dS is the surface area element. Hence, the matrix Im H ! (iw +0) is negative definite by (15.6).
Now let us prove that the limit matrix M (iw + 0) is invertible. Recall that

M(iw 4 0) = ( —Fé;qu-i- 0) Z;%)

Then the equation
- Q) _
M(iw + 0) <P =0.

becomes
w@ — P =0, —FQ +iwP =0. (15.9)

Then (F + w?)Q = 0, which implies that @Q = 0 and then P = 0, since the matrix Im F is negative
definite for w > p. This completes the proof of Proposition 15.1.

Corollary 15.1. Proposition 15.1 implies that the matriz M~ (iw) is smooth with respect to
w € R outside the three points w = 0, £u.
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16. SINGULAR SPECTRAL POINTS

Recall that formula (13.12) expresses the Fourier-Laplace transforms Q()), P(\). Hence, the
components are given by the Fourier integral

<ggg> _ %/ei“’t/\/l_l(iw +0) <%‘)}> dw (16.1)

if it converges in the sense of distributions. Corollary 15.1 by itself is insufficient to prove the
convergence and decay of the integral. Namely, we need additional information about the regularity
of the matrix M~1(iw) at the singular points w = 0,4u and about some bounds at |w| — oc.
We shall study these points separately.

I. First consider the points +u.

Lemma 16.1. The matriz M~'(iw) admits the following Puiseuz expansion in a neighborhood
of u: there exists an €1 > 0 such that

M (iw) = Z RE(wF p)k/2, lwF pl <ex, weR. (16.2)
k=0

Proof. Tt suffices to prove a similar expansion for M(iw). Then (16.2) holds for M ~!(iw) as
well, since the matrices M(+iu) are invertible. The asymptotics for M (iw) holds by the convolution
representation (13.10),

H;;(\) = —<G§\2 * Opp1 + Gl x 8lp2,8ip1> - <G§1 % Oypy + GA2 * alpg,ﬁip2>, (16.3)

since the entries Gij admit the corresponding Puiseux expansions by formula (13.5).

I1. Second, we study the asymptotic behavior of M ~1()) at infinity. Let us recall that M~1())
was originally defined for Re A > 0, and it admits a meromorphic continuation to the Riemann

surface of the function \/m?2 —v2/4 + i\ (see Lemma 13.2).

Lemma 16.2. One can find a matriz Ry and a matriz function Ry(w) such that

R
M iw) = 70 +Ri(w), Jwl=p+1, weR,
where
k Ck

for every k=0,1,2, ..

Proof. By the structure (15.1) of the matrix M (iw), it suffices to prove the following estimate
for the elements of the matrix H(iw) := H (iw + 0):

0% H,;(iw)| < %' weER, |wl=p+1, j=1,2,3. (16.5)
Note that
G+ f= (D' NF = D' ), G f = S(DF O)f + D ),
where

Di(\) = —-A+m? —iw-V+i\,  Dy(\)=-A+m?+iv-V—i)\, Rel>0,
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and D;l()\), j = 1,2, are bounded operators on L?(R?). Estimate (16.5) immediately follows from
a more general bound

Cr(R)
|w|

105D (iw +0)fll 2 < Ifllzz,  weR, |w|>p+1, (16.6)

which holds for o > 3/2. Namely, by (1.9), formula (16.5) follows from formula (16.6) applied to
the functions f(y) = dp;(y) € L2.
The bound (16.6) was proved in [1, bound (A.2")] (see also [15, Th. 8.1]).

III. Finally, consider the point w = 0, which is the most singular. This is an isolated pole of
finite degree by Lemma 13.2, and hence the Laurent expansion holds,

M (iw) = Mo ™+ Hw),  |w| < e, (16.7)
k=0

where M, are 6 x 6 complex matrices, g > 0, and H(w) is an analytic matrix valued function for
complex w with |w| < gg.

17. TIME DECAY OF THE VECTOR COMPONENTS
Here we prove the decay (6.12) for the components Q(¢) and P(¢).
Lemma 17.1 (cf. [10]). Let Xy € Z, 3. Then Q(t) and P(t) are continuous and

C(ﬂ? 67 dO)

Q)1+ 1PW)| < T i

t>0. (17.1)

Proof. Expansions (16.2), (16.4), and (16.7) imply the convergence of the Fourier integral (16.1)
in the sense of distributions to a continuous function of ¢ > 0. Let us prove inequality (17.1). Note
first that the condition X, € Z, 3 implies that the entire trajectory X (t) lies in Z,, 3. This follows
from the invariance of the space Z, g under the generator A, , (cf. Remark 6.2). Note that, for
Xo not belonging to Z, g, the components @Q(t) and P(t) can contain nondecaying terms that
correspond to the singular point w = 0. Indeed, we know that the linearized dynamics admits the
secular solutions without decay, see (6.17). The formulas (3.2) give the corresponding components
Qs (t) and Pg(t) of the secular solutions,

(%0)-a(s)-xol(s)- ()] o

We claim that the symplectic orthogonality condition leads to (17.1). Let us split the Fourier
integral (16.1) into three terms by using the partition of unity ¢;(w) + (2(w) + (3(w) =1, w € R,

(ggg) ! /ei“’t(gl(w)—l—@(w)—i—cg(w))/\/l1(iw+0)<%9>dw:fl(t)‘l’lz(t)"'l?)(t)a (17.3)

T or
where the functions (;(w) € C*°(R) are supported by

supp(; C{w e R:¢p/2 < |w| < p+ 2},

17.4
supp(e C {w € R: |w| > p+ 1}, supp (s C {w € R : |w| < egp}. (174)

Then
i) The function I (t) decays like (1 4 [¢|)~3/2 by the Puiseux expansion (16.2).
ii) The function I(t) decays faster than any power of ¢ due to Proposition 16.2.
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iii) Finally, the function I3(t) generally does not decay if n > 0 in the Laurent expansion (16.7).
Namely, the contribution of the analytic function H(w) decays faster than any power of ¢. On the
other hand, the contribution of the Laurent series,

(gf&)) = / () ;;Mk(w —i0) k1 (%?) e tel e

is a polynomial function of £ € R of a degree < n, modulo functions decaying faster than any power
of t. Let us note that formula (17.2) gives an example of polynomial function arising from (17.5).

We must show that the symplectic orthogonality condition eliminates the polynomial functions.
Our main difficulty is that we know nothing about the order n of the pole and about the Laurent
coefficients M, of the matrix M~!(iw) at w = 0.

Our crucial observation has the following form.

a) The components (17.2) of the secular solutions form a linear space L g of dimension dim Lg = 6.
b) The polynomial functions in (17.5) belong to a linear space L, of dimension dim £}, < 6 since
(Qo, P}) € RS.

c) Lg C L since any function (17.2) admit a representation of the form (17.5). The validity of

this representation follows from the fact that the secular solutions (6.17) can be reproduced by our
calculations with the Laplace transform.

Therefore, we can conclude that
L =CLs. (17.6)

It remains to note that the secular solutions are forbidden since X € Z, 3. Hence, the polynomial
terms in (17.5) vanish, which implies the decay (17.1).

More precisely, we know that X(¢) = P,X(¢) for any ¢ € R. On the other hand, identity
(17.6) implies that X (t) can be corrected by a secular solution X g(¢) such that the corresponding
components Qa (t) and Pa(t) (of the difference A(t) := X (t)—Xg(t)) decay. Hence, the components
Q(t) and P(t) of X(t) =P, X(t) = P,[X(t) — Xs(t)] also decay.

18. TIME DECAY OF FIELDS

Here we prove the decay of the field components ¥y (x,t), Ua(x,t) corresponding to (6.12). The
first two equations of (6.16) can be represented as a single equation,

iW(t) = (~A+m?+iv-V)U —Q(t) - Vp, (18.1)

where U(t) = Uy(-,t) +iVs(-,t). By Lemma 17.1, we know that @ is continuous function of ¢ > 0
and
C(p7 v, dO)

Q)| < T2

t>0. (18.2)

Hence, Proposition 6.2 is reduced now to the following assertion.

Proposition 18.1. i) Let Q(t) € C([0,00);R?) and Wy € H}. Then equation (18.1) admits a
unique solution ¥(t) € C(]0,00); Hé) with the initial condition ¥(0) = V.
i) If Uy € Hé and if the decay (18.2) holds, then the corresponding fields also decay uniformly with
respect to v,
C(p,v,do, [|Yoll1,8)

Tt g < ,
|| ()Hl, B (1—|—|t|)3/2

t>0, (18.3)

for |v| < T with any v € (0,2m).
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Proof. The statements follow from the Duhamel representation
t
U(t)=W(t)¥o— / W(t—s)Q(s)-Vp ds, t>0, (18.4)
0

where W (t) is the dynamical group (propagator) of the free equation
iU(t) = (A +m? +iv-V)U().
Lemma 18.1. Let |v| < U with any v € (0,2m). Then
IW(©)olli,—5 < @A+ It) 21 Tollp, >0, (18.5)
for any ¥y € Hé
Proof. Note that W (t)¥, = e_i(mz_‘”'2/4)tei””/2q)(t), where ®(¢) is a solution to the free Schro-

dinger equation ‘ A
id(t) = —AD(t),  D(0) = /2.

It is well known that ®(t) satisfies the estimate ||®(t)||1,_5 < C(1 + [t])73/2||®(0)[l1.5, t = 0 (see,
for example, [15]).

Now (18.3) follows from condition (18.2) and from the Duhamel representation (18.4).

19. APPENDIX

A. Solitary waves

Let us verify the last equation in (2.7),

0= / (Vo1 () p1(y) + Vibua (y) p2(y)) dy. (19.1)

After passing to the Fourier representation, we set

(k) = (2m) /2 / ekop(z)d.

We readily see that

—ikvihyr + (K% + m*)hps = —po, (k% + m?)h1 + ikvhye = —p1. (19.2)
Therefore,
o =R m)puk) Fikopa(k) o —ikopu(k) — (K2 + m?)pa(k)
Y1 (k) = 02+ m2)2 — (hv)? y o Yua(k) = 02 2 m2)? — (ko) . (19.3)

By the Parseval identity, formula (19.1) becomes

== ki [— (k> + m®)(1p1]* + |p2|?) + ikv(papy — p1py)] dk

which is true since the integrand is odd.
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B. Computing Q(7;,7;)

Let us justify formulas (3.4)—(3.6) for the matrix Q. For j,I = 1,2,3, it follows from (3.2)
and (3.1) that

Qry, 1) = (0j%v1, Ohn2) — (0%v2, O1tu1), (19.4)
Q(Tj+37 Tl+3) = <8vj wvh 81/1 ¢U2> - <8vj ¢U27 avl ¢v1>7 (195)
Q(75, T143) = —(0j%u1, Op, Vu2) + (0jVv2, 0, Vu1) + €5 - €. (19.6)

Differentiating (19.2), we obtain

o gk — ik (k2 + m2) e ik (k2 +m?),1 + kv,

v; Yo 5 v-AU = ) .:1727 .
O; P (k2 1+ m2)2 — (kv)?2 Ou; Y2 (k2 + m2)2 — (kv)? J 3
(19.7)
Then, for j,1 = 1,2,3, we see from (19.4) by the Parseval identity that
Q(TjaTl) = /kjkl dk@ul”&vz - T/szizvl) =0, (19.8)

since the function ¥, = 1[17]1%]2 - zﬁyggvl is odd. Similarly, by (19.5) and (19.7),

(MTH%’H+3):_i/mykm2uk +m ﬂmﬂ?éy.f;gﬁjilég;ij7n) HEDP W)l o

Finally, by (19.6),

Eiky (k2 4+ m2)(|tho1 |2 + [thea]?) + ikvidye) dk
Q(Tj’mg):/ al m(z;gf;'ﬂ)z ‘_Qp(?v))2 kot +ej- e (19.10)

This completes the proof of (3.4)—(3.6).

C. Positivity of f1 and fo

Here we prove the inequalities used above in the proof of Lemma 15.1,

1) f—< 1 + 1 2 )
AM ki —w M=ok +w M — vk

1 1 2
+( + - ) >0,
M+ vk —w M+ |vlky +w M+ vk

1 1 2
2 = _
) (M—|v|k1—w+M—yvyk1+w M—]v[kl)
1 1 2
_ - >0 19.11
<M+|v|k1—w+M+]v]k1 +w M—i—|v|k1) ( )

under the conditions |v| < 2m, 0 < |w| < u = m? — v?/4. First, let us note that every bracketed
expression is positive, since

1,1 2 2a? =0
b—a b+a b (b+a)b—a)b

ifb—a,b+a >0 and b > 0, and this immediately implies that f; > 0. Next, the first summand
on the left-hand side of (19.11) is obviously not less than the second summand since |v|k; > 0.
Therefore, fo > 0 and f5 < f1.
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