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Abstract. We establish soliton-like asymptotics for finite energy solutions to the Schrödinger
equation coupled to a nonrelativistic classical particle. Any solution with initial state close to
the solitary manifold converges to a sum of a travelling wave and an outgoing free wave. The
convergence holds in global energy norm. The proof uses spectral theory and the symplectic
projection onto the solitary manifold in the Hilbert phase space.
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1. INTRODUCTION

We continue the study of coupled systems of wave fields and particles. In [10], the Klein–
Gordon equation coupled to a relativistic particle was considered. Here we extend the result to
the Schrödinger equation coupled to a nonrelativistic particle. We prove the long-time convergence
to the sum of a soliton and a dispersive wave. The convergence holds in global energy norm for
finite-energy solution with initial state close to the solitary manifold.

We consider the Schrödinger wave function ψ(x) in R3, coupled to a nonrelativistic particle with
position q and momentum p, governed by







iψ̇(x, t) = −∆ψ(x, t) +m2ψ(x, t) + ρ(x− q(t)),

q̈(t) =
1

2

∫

[

ψ(x, t)∇ρ(x − q(t)) + ψ(x, t)∇ρ(x− q(t))
]

dx,

∣

∣

∣

∣

∣

∣

x ∈ R3, (1.1)

where m > 0. Write ψ1 = Reψ, ψ2 = Imψ, ρ1 = Re ρ, ρ2 = Im ρ. Then system (1.1) becomes



















ψ̇1(x, t) = −∆ψ2(x, t) +m2ψ2(x, t) + ρ2(x− q(t)),

ψ̇2(x, t) = ∆ψ1(x, t) −m2ψ1(x, t) − ρ1(x− q(t)),

q̈(t) =

∫

(

ψ1(x, t)∇ρ1(x− q(t)) + ψ2(x, t)∇ρ2(x− q(t))
)

dx,

∣

∣

∣

∣

∣

∣

∣

∣

∣

x ∈ R3. (1.2)

This is a Hamiltonian system with the Hamiltonian functional

H(ψ1, ψ2, q, q̇) =
1

2

∫

(

|∇ψ1(x)|2 + |∇ψ2(x)|2 +m2|ψ1(x)|2 +m2|ψ2(x)|2
)

dx

+

∫

(

ψ1(x)ρ1(x− q) + ψ2(x)ρ2(x− q)
)

dx+
1

2
|q̇|2. (1.3)
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SCATTERING OF SOLITONS FOR THE SCHRÖDINGER EQUATION 159

We consider the Cauchy problem for the Hamiltonian system (1.2), which we write as

Ẏ (t) = F (Y (t)), t ∈ R; Y (0) = Y0. (1.4)

Here
Y (t) = (ψ1(t), ψ2(t), q(t), p(t)), p(t) := q̇(t), Y0 = (ψ01, ψ02, q0, p0),

and all derivatives are understood in the sense of distributions. Below we always deal with column
vectors, but often write them as row vectors. System (1.2) is translation invariant and admits the
soliton solutions

Ya,v(t) = (ψv1(x− vt− a), ψv2(x− vt− a), vt+ a, v), (1.5)

for all a, v ∈ R3 with |v| < 2m. The states Sa,v := Ya,v(0) form the solitary manifold

S := {Sa,v : a, v ∈ R3, |v| < 2m}. (1.6)

Our main result is the soliton asymptotics of type

ψ(x, t) ∼ ψv±
(x− v±t− a±) +W0(t)ψ±, t→ ±∞, (1.7)

for solutions to (1.1) with initial data close to the solitary manifold S. Here ψv±
= ψv±1 + iψv±2,

W0(t) stands for the dynamical group of the free Schrödinger equation, ψ± are the corresponding
asymptotic scattering states, and the asymptotics hold in the global energy norm, i.e., in the norm
of the Sobolev space H1(R3). For the particle trajectory, we prove that

q̇(t) → v±, q(t) ∼ v±t+ a±, t→ ±∞. (1.8)

The results are established under the following conditions on the complex-valued charge distribu-
tions ρ:

(1 + |x|)βρ, (1 + |x|)β∇ρ, (1 + |x|)β∇∇ρ ∈ L2(R3), (1.9)

with some β > 3/2. We assume that all “modes” of the wave field are coupled to the particle, this
is formalized by the Wiener condition

ρ̂(k) = (2π)−3/2

∫

eikxρ(x)dx 6= 0 for all k ∈ R3 . (1.10)

This is an analog of the Fermi Golden Rule: the coupling term ρ(x − q) is not orthogonal to the
eigenfunctions eikx of the continuous spectrum of the linear part of the equation (cf. [4, 21–23]).

Similar results were first proved by Buslaev and Perelman [2, 3] for 1D translation-invariant
Schrödinger equation, and extended by Cuccagna [6] for nD case, n > 3. In [10], the Klein–Gordon
equation coupled to a particle is considered.

For the proofs of the asymptotics (1.7) and (1.8), we develop the approach of [10] based on
the Buslaev and Perelman methods [2, 3], namely, the symplectic orthogonal decomposition of
dynamics near the solitary manifold, the time decay for the linearized equation, etc. Our problem
differs from that in [10] in the following points.

i) The speed of propagation for the Schrödinger equation is infinite, and solitons exist only
for the velocities |v| < 2m.

ii) We consider a nonspherically symmetric coupled function ρ(x). In this case, we need addi-
tional arguments for the absence of eigenvalues embedded in the continuous spectrum.

iii) We also consider the coupling function ρ(x) with possibly noncompact support. Correspond-
ingly, when proving the time decay for the linearized equation, we use the Jensen–Kato
results [14, 15] and the Agmon weighted norms [1].

Remark 1.1. The term m2 in the Schrödinger equation appears automatically in the nonrel-
ativistic limit of the Klein–Gordon equation and, traditionally, it is removed by a gauge transfor-
mation. We keep the term to provide the existence of nonzero solitons.
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160 A. KOMECH, E. KOPYLOVA

2. MAIN RESULTS

2.1. Existence of Dynamics

To formulate our results precisely, we need some definitions. Introduce a suitable phase space
for the Cauchy problem corresponding to (1.2) and (1.3). Let H 0 = L2, and let H1 be the Sobolev
space H1 = {ψ ∈ L2 : |∇ψ| ∈ L2} with the norm

‖ψ‖H1 = ‖∇ψ‖L2 + ‖ψ‖L2 .

We also introduce the weighted Sobolev spaces H s
α, s = 0, 1, α ∈ R, with the norms

‖ψ‖s,α := ‖(1 + |x|)αψ‖Hs .

Definition 2.1. i) The phase space E is the real Hilbert space H 1 ⊕ H1 ⊕ R3 ⊕ R3 of states
Y = (ψ1, ψ2, q, p) with the finite norm

‖Y ‖E = ‖ψ1‖H1 + ‖ψ2‖H1 + |q| + |p|.

ii) Eα is the space H1
α ⊕H1

α ⊕ R3 ⊕ R3 with the norm

‖Y ‖α = ‖Y ‖Eα
= ‖ψ1‖1,α + ‖ψ2‖1,α + |q| + |p|.

iii) E+ is the space H2 ⊕H2 ⊕ R3 ⊕ R3 with the norm

‖Y ‖+
E = ‖ψ1‖H2 + ‖ψ2‖H2 + |q| + |p|.

For ψj ∈ L2, we have

− 1

2m2
‖ρj‖2

L2 6
m2

2
‖ψj‖2

L2 + 〈ψj , ρj(· − q)〉 6
m2 + 1

2
‖ψj‖2

L2 +
1

2
‖ρj‖2

L2 . (2.1)

Therefore, E is the space of finite-energy states. The Hamiltonian functional H is continuous on
the space E , and the lower bound in (2.1) implies that the energy (1.3) is bounded below.

System (1.2) looks like the Hamiltonian system

Ẏ = JDH(Y ), J :=







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0






, Y = (ψ1, ψ2, q, p) ∈ E , (2.2)

where DH is the Fréchet derivative of the Hamiltonian functional (1.3).

Proposition 2.1. Let (1.9) be satisfied. Then the following assertions hold.

(i) For every Y0 ∈ E, the Cauchy problem (1.4) has a unique solution Y (t) ∈ C(R, E).
(ii) For every t ∈ R, the mapping U(t) : Y0 7→ Y (t) is continuous on E.
(iii) The energy is conserved, i.e.,

H(Y (t)) = H(Y0), t ∈ R. (2.3)
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Proof. Step i). Let us fix an arbitrary b > 0 and prove assertions (i)–(iii) for any Y0 ∈ E such
that ‖Y0‖E 6 b and for |t| 6 ε = ε(b), where ε(b), ε(b) > 0, is sufficiently small. Let us rewrite the
Cauchy problem (1.4) as follows:

Ẏ (t) = F1(Y (t)) + F2(Y (t)), t ∈ R; Y (0) = Y0, (2.4)

where F1 : Y 7→ ((−∆ + m2)Ψ2, (∆ − m2)Ψ1, 0, 0). The Fourier transform provides the existence
and the uniqueness of a solution Y1(t) ∈ C(R, E) to the linear problem (2.4) with F2 = 0. Let
U1(t) : Y0 7→ Y1(t) be the corresponding strongly continuous group of bounded linear operators
on E . Then (2.4) for Y (t) ∈ C(R, E) is equivalent to

Y (t) = U1(t)Y0 +

∫ t

0

ds U1(t− s)F2(Y (s)), (2.5)

because F2(Y (·)) ∈ C(R, E) in this case. The last assertion follows from the local Lipschitz conti-
nuity of the mapping F2 in E , namely, for each b > 0, there exists a κ = κ(b) > 0 such that

‖F2(Y ) − F2(Z)‖E 6 κ‖Y − Z‖E

for all Y,Z ∈ E with ‖Y ‖E , ‖Z‖E 6 b. Therefore, by the contraction mapping principle, equa-
tion (2.5) has a unique local solution Y (·) ∈ C([−ε, ε], E) with ε, ε > 0, depending on b only.

Step ii). Let us now use the energy conservation to ensure the existence of a global solution and
the continuity of this solution. Let us first consider a Y0 ∈ Ec := C∞

0 ⊕C∞
0 ⊕R3 ⊕R3. In this case,

we have Y (t) ∈ E+ since U1(t)Y0, F2(Y (t)) ∈ E+ by (1.9). The energy conservation law follows
by (2.2) and from the chain rule for the Fréchet derivatives,

d

dt
H(Y (t)) = 〈DH(Y (t)), Ẏ (t)〉 = 〈DH(Y (t)), JDH(Y (t))〉 = 0, t ∈ R,

since the operator J is skew-symmetric by (2.2), and DH(Y (t)) ∈ L2⊕L2⊕R3⊕R3 for Y (t) ∈ E+.
Inequality (2.1) implies

H >
1

2
‖∇ψ‖2

L2 +
m2

4
‖ψ‖2

L2 +
1

2
|p|2 − 1

m2
‖ρ‖2

L2 .

Hence, by the energy conservation, we have

1

2
‖∇ψ‖2

L2 +
m2

4
‖ψ‖2

L2 +
1

2
|p|2 − 1

m2
‖ρ‖2

L2 6 H(Y (t)) = H(Y0)

for |t| 6 ε. This implies the a priori estimate

‖ψ‖H1 + |p| 6 B for |t| 6 ε, (2.6)

with B depending on the norm ‖Y0‖E of the initial data and on ‖ρ‖L2 only. An arbitrary initial
data Y0 ∈ E can be approximated by initial data in Ec. The corresponding solution exists due to
the representation (2.5) by contraction mapping principle, and then (2.6) follows by passing to the
limit.

Step iii). Properties (i)-(iii) for arbitrary t ∈ R now follow from the same properties for small
values of |t| and from the a priori bound (2.6).
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2.2. Solitary Manifold and Main Result

Let us compute the solitons (1.5). The substitution to (1.1) gives the stationary equations

−iv · ∇ψv(y) = (−∆ +m2)ψv(y) + ρ(y),

p = v, 0 = −
∫

(

∇ψv(y)ρ(y) + ∇ψv(y)ρ(y)
)

dy.
(2.7)

The first equation now implies

Λψv(y) := [−∆ +m2 + iv · ∇]ψv(y) = −ρ(y), y ∈ R3. (2.8)

For |v| < 2m, the operator Λ is an isomorphism H4(R3) → H2(R3). Hence, it follows from condi-
tions (1.9) that

ψv(y) = −Λ−1ρ(y) ∈ H4(R3). (2.9)

If v is given and |v| < 2m, then pv can be found from the second equation in (2.7).
The function ψv can be computed by the Fourier transform. The soliton is given by the formula

ψv(x) = − 1

4π

∫

e−
√

m2− v2

4
|x−y|ei v

2
(x−y)ρ(y)d3y

|x− y| . (2.10)

Below, in Appendix A, we prove that the last equation in (2.7) also holds. Hence, the soliton
solution (1.5) exists and is defined uniquely for any pair (a, v) with |v| < 2m. Write V := {v ∈ R3 :
|v| < 2m}, ψv1 = Reψv, and ψv2 = Imψv .

Definition 2.2. A soliton state is S(σ) := (ψv1(x− b), ψv2(x− b), b, v), where σ := (b, v) with
b ∈ R3 and v ∈ V .

Obviously, the soliton solution admits the representation S(σ(t)), where

σ(t) = (b(t), v(t)) = (vt+ a, v). (2.11)

Definition 2.3. The solitary manifold is the set S := {S(σ) : σ ∈ Σ := R3 × V }.
The main result of our paper is the following theorem.

Theorem 2.1. Let (1.9) and the Wiener condition (1.10) hold. Let β > 3/2 be the number
in (1.9), and let Y (t) be the solution to the Cauchy problem (1.4) with an initial state Y0 that is
sufficiently close to the solitary manifold,

p0 < 2m, d0 := distEβ
(Y0,S) � 1. (2.12)

Then the following asymptotic formulas hold as t→ ±∞:

q̇(t) = v± + O(|t|−2), q(t) = v±t+ a± + O(|t|−3/2); (2.13)

ψ(x, t) = ψv±(x− v±t− a±) +W0(t)ψ± + r±(x, t) (2.14)

with
‖r±(t)‖H1 = O(|t|−1/2). (2.15)

It suffices to prove the asymptotic formulas (2.13) and (2.14) as t → +∞ since system (1.2) is
time reversible.
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3. SYMPLECTIC PROJECTION ONTO THE SOLITARY MANIFOLD

Let us identify the tangent space of E , at every point, with the space E . Consider the symplectic
form Ω defined on E by the rule

Ω =

∫

dψ1(x) ∧ dψ2(x) dx + dq ∧ dp,

i.e.,
Ω(Y1, Y2) = 〈Y1, JY2〉, Y1, Y2 ∈ E , (3.1)

where
〈Y1, Y2〉 := 〈ψ11, ψ12〉 + 〈ψ21, ψ22〉 + q1q2 + p1p2

and

〈ψ11, ψ12〉 =

∫

ψ11(x)ψ12(x) dx,

etc. It is clear that the form Ω is nondegenerate, i.e.,

Ω(Y1, Y2) = 0 for every Y2 ∈ E =⇒ Y1 = 0.

Definition 3.1. i) The symbol Y1 - Y2 means that Y1 ∈ E , Y2 ∈ E , and Y1 is symplectic
orthogonal to Y2, i.e., Ω(Y1, Y2) = 0.

ii) A projection operator P : E → E is said to be symplectic orthogonal if Y1 - Y2 for any
Y1 ∈ KerP and Y2 ∈ ImP.

Consider the tangent space TS(σ)S of the manifold S at a point S(σ). The vectors τj := ∂σj
S(σ),

where ∂σj
:= ∂bj

and ∂σj+3
:= ∂vj

with j = 1, 2, 3, form a basis in TσS. In detail,

τj = τj(v) := ∂bj
S(σ) = (−∂jψv1(y),−∂jψv2(y), ej , 0)

τj+3 = τj+3(v) := ∂vj
S(σ) = ( ∂vj

ψv1(y), ∂vj
ψv2(y), 0, ej)

∣

∣

∣

∣

∣

j = 1, 2, 3, (3.2)

where y := x−b is the “moving frame coordinate,” e1 = (1, 0, 0), etc. Let us stress that the functions
τj are always regarded as functions of y rather than those of x.

Formulas (2.10) and conditions (1.9) imply that

τj(v) ∈ Eα, v ∈ V, j = 1, . . . , 6, ∀α 6 β. (3.3)

Lemma 3.1. The matrix with the elements Ω(τl(v), τj(v)) is nondegenerate for any v ∈ V .

Proof. The elements are computed in Appendix B. As the result, the matrix Ω(τl, τj) has the
form

Ω(v) := (Ω(τl, τj))l,j=1,...,6 =

(

0 Ω+(v)
−Ω+(v) 0

)

, (3.4)

where the 3 × 3-matrix Ω+(v) is
Ω+(v) = K +E. (3.5)

Here K is a symmetric 3 × 3-matrix with the elements

Kij =

∫ kjkl

(

(k2 +m2)(|ψ̂v1|2 + |ψ̂v2|2) + i(kv)(ψ̂v1ψ̂v2 − ψ̂v2ψ̂v1)
)

dk

(k2 +m2)2 − (kv)2
, (3.6)

where the “hat” stands for the Fourier transform (cf. (1.10)). The matrix K is the integral of
the symmetric nonnegative definite matrix k ⊗ k = (kikj) with a nonnegative weight. (The last

statement is true since |ψ̂v1 +iψ̂v2|2 = |ψ̂v1|2+ |ψ̂v2|2−i(ψ̂v1ψ̂v2−ψ̂v2ψ̂v1) > 0 and k2+m2 > |(kv)|
for |v| < 2m.) Hence, the matrix K is also nonnegative definite. Since the identity matrix E is
positive definite, the matrix Ω+(v) is symmetric and positive definite, and hence nondegenerate.
Therefore, the matrix Ω(τl, τj) is also nondegenerate.
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Let us introduce the translations

Ta : (ψ1(·), ψ2(·), q, p) 7→ (ψ1(· − a), ψ2(· − a), q + a, p), a ∈ R3.

Note that the manifold S is invariant with respect to the translations.

Definition 3.2. i) For any α ∈ R and p < 2m, write

Eα(p) = {Y = (ψ1, ψ2, q, p) ∈ Eα : |p| 6 p}.

Set E(p) := E0(p).

ii) For any v < 2m, write

Σ(v) = {σ = (b, v) : b ∈ R3, |v| 6 v}.

The next lemma shows that, in a small neighborhood of the soliton manifold S, a “symplectic
orthogonal projection” onto S is well defined. The proof is similar to that of Lemma 3.4 in [10].

Lemma 3.2. Let (1.9) hold, and let α ∈ R. Then the following assertions hold.

i) There exists a neighborhood Oα(S) of S in Eα and a mapping Π : Oα(S) → S such that Π
is uniformly continuous in the metric of Eα on the set Oα(S) ∩ Eα(p) with p < 2m,

ΠY = Y for Y ∈ S, and Y − S - TSS, where S = ΠY. (3.7)

ii) Oα(S) is invariant with respect to the translations Ta and

ΠTaY = TaΠY, for Y ∈ Oα(S) and a ∈ R3.

iii) For any p < 2m, there exists a v < 2m such that the relation

ΠY = S(σ)

holds with σ ∈ Σ(v) for any Y ∈ Oα(S) ∩ Eα(p).
iv) For any v < 2m, there exists an rα(v) > 0 such that

S(σ) + Z ∈ Oα(S) if σ ∈ Σ(v) and ‖Z‖α < rα(v).

We refer to Π as the symplectic orthogonal projection onto S.

Corollary 3.1. Condition (2.12) implies that Y0 = S + Z0, where S = S(σ0) = ΠY0 and

‖Z0‖β � 1. (3.8)

Proof. Lemma 3.2 implies that ΠY0 = S is well defined for small d0 > 0. Furthermore, condition
(2.12) means that there exists a point S1 ∈ S such that ‖Y0−S1‖β = d0. Hence, we have the inclusion
Y0, S1 ∈ Oβ(S) ∩ Eβ(p) with some p < 2m, which does not depend on d0 for sufficiently small d0.
On the other hand, ΠS1 = S1, and hence the uniform continuity of the mapping Π implies that

‖S1 − S‖β → 0 as d0 → 0.

Therefore, for small d0, we finally have

‖Z0‖β = ‖Y0 − S‖β 6 ‖Y0 − S1‖β + ‖S1 − S‖β 6 d0 + o(1) � 1.
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4. LINEARIZATION ON THE SOLITARY MANIFOLD

Let us consider a solution to the system (1.2) and split it as the sum

Y (t) = S(σ(t)) + Z(t), (4.1)

where σ(t) = (b(t), v(t)) ∈ Σ is an arbitrary smooth function of t ∈ R. In detail, we can write
Y = (ψ1, ψ2, q, p) and Z = (Ψ1,Ψ2, Q, P ). Then (4.1) means that

ψ1(x, t) = ψv(t)1(x− b(t)) + Ψ1(x− b(t), t), q(t) = b(t) +Q(t),

ψ2(x, t) = ψv(t)2(x− b(t)) + Ψ2(x− b(t), t), p(t) = v(t) + P (t).
(4.2)

Substitute (4.2) into (1.2) and linearize the equations in Z. Below we shall choose S(σ(t)) = ΠY (t),
i.e., Z(t) will be symplectic orthogonal to TS(σ(t))S.

By setting y = x − b(t), which is the “moving frame coordinate,” we see from (4.2) and (1.2)
that

ψ̇1 = v̇ · ∇vψv1(y) − ḃ · ∇ψv1(y) + Ψ̇1(y, t) − ḃ · ∇Ψ1(y, t)

= −∆ψv2(y) +m2ψv2(y) − ∆Ψ2(y, t) +m2Ψ2(y, t) + ρ2(y −Q),

ψ̇2 = v̇ · ∇vψv2(y) − ḃ · ∇ψv2(y) + Ψ̇2(y, t) − ḃ · ∇Ψ2(y, t)

= ∆ψv1(y) −m2ψv1(y) + ∆Ψ1(y, t) −m2Ψ1(y, t) − ρ1(y −Q),

q̇ = ḃ+ Q̇ = v + P,

ṗ = v̇ + Ṗ = −〈∇(ψvj(y) + Ψj(y, t)), ρj(y −Q)〉.

(4.3)

Let us extract the terms linear in Q. Note first that

ρj(y −Q) = ρj(y) −Q · ∇ρj(y) +Nj(Q), j = 1, 2,

where Nj(Q) = ρj(y −Q) − ρj(y) +Q · ∇ρj(y). Condition (1.9) implies that the bound

‖Nj(Q)‖0,β 6 Cβ(Q)Q2, j = 1, 2, (4.4)

holds for Nj(Q) uniformly with respect to |Q| 6 Q for any chosen Q, where β is the parameter
in Theorem 2.1. By using equations (2.7), we obtain from (4.3) the following equations for the
components of the vector Z(t):

Ψ̇1(y, t) = −∆Ψ2(y, t) +m2Ψ2(y, t) + ḃ · ∇Ψ1(y, t) −Q · ∇ρ2(y)

+ (ḃ− v) · ∇ψv1(y) − v̇ · ∇vψv1(y) +N2,

Ψ̇2(y, t) = ∆Ψ1(y, t) −m2Ψ1(y, t) + ḃ · ∇Ψ2(y, t) +Q · ∇ρ1(y)

+ (ḃ− v) · ∇ψv2(y) − v̇ · ∇vψv2(y) −N1,

Q̇(t) = P + (v − ḃ),

Ṗ (t) = 〈Ψj(y, t),∇ρj(y)〉 + 〈∇ψvj(y), Q · ∇ρj(y)〉 − v̇ +N4(v, Z),

(4.5)

where
N4(v, Z) = −〈∇ψvj , Nj(Q)〉 + 〈∇Ψj , Q · ∇ρj〉 − 〈∇Ψj , Nj(Q)〉.

Clearly, the following estimate holds for N4(v, Z):

|N4(v, Z)| 6 Cβ(ρ, v,Q )
[

Q2 + ‖Ψ1‖1,−β |Q| + ‖Ψ2‖1,−β |Q|
]

, (4.6)
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uniformly with respect to |v| 6 v and |Q| 6 Q for any chosen v < 2m. We can represent equations
(4.5) as follows:

Ż(t) = A(t)Z(t) + T (t) +N(t), t ∈ R. (4.7)

Here the operator A(t) = Av,w(t) depends on two parameters, v = v(t), and w := ḃ(t), and can be
written in the form

Av,w







Ψ1
Ψ2
Q
P






=







w · ∇ −(∆ −m2) −∇ρ2· 0
∆ −m2 w · ∇ ∇ρ1· 0

0 0 0 E
〈 · ,∇ρ1〉 〈 · ,∇ρ2〉 〈∇ψvj , ·∇ρj〉 0













Ψ1
Ψ2
Q
P






. (4.8)

Further, T (t) = Tv,w(t) and N(t) = N(t, σ, Z) in (4.7) stand for

Tv,w =







(w − v) · ∇ψv1 − v̇ · ∇vψv1

(w − v) · ∇ψv2 − v̇ · ∇vψv2
v − w
−v̇






, N(σ,Z) =







N2(Z)
−N1(Z)

0
N4(v, Z)






, (4.9)

where v = v(t), w = w(t), σ = σ(t) = (b(t), v(t)), and Z = Z(t). Estimates (4.4) and (4.6) imply
that

‖N(σ,Z)‖β 6 C(v,Q )‖Z‖2
−β , (4.10)

uniformly in σ ∈ Σ(v) and ‖Z‖−β 6 r−β(v) for any fixed v < 2m.

Remark 4.1. i) The term A(t)Z(t) on the right-hand side of equation (4.7) is linear in Z(t),
and N(t) is a high-order term in Z(t). On the other hand, T (t) is a zero-order term that does not
vanish at Z(t) = 0 since S(σ(t)), generally, is not a soliton solution if (2.11) fails to hold (though
S(σ(t)) belongs to the solitary manifold).

ii) Formulas (3.2) and (4.9) imply

T (t) = −
3
∑

l=1

[(w − v)lτl + v̇lτl+3], (4.11)

and hence T (t) ∈ TS(σ(t))S, t ∈ R. This fact suggests the unstable character of the nonlinear
dynamics along the solitary manifold.

5. LINEARIZED EQUATION

Here we collect some Hamiltonian and spectral properties of the generator (4.8) of the linearized
equation. First, let us consider the linear equation

Ẋ(t) = Av,wX(t), t ∈ R, v ∈ V, w ∈ R3. (5.1)

Lemma 5.1 (cf. [10]). i) For any v ∈ V and w ∈ R3, equation (5.1) can be represented as the
Hamiltonian system (cf. (2.2)),

Ẋ(t) = JDHv,w(X(t)), t ∈ R, (5.2)

where DHv,w stands for the Fréchet derivative of the Hamiltonian functional,

Hv,w(X) =
1

2

∫

[

|∇Ψ1|2 +m2|Ψ1|2 + |∇Ψ2|2 +m2|Ψ2|2
]

dy +

∫

Ψ2w · ∇Ψ1dy +

∫

ρj(y)Q · ∇Ψjdy

+
1

2
P 2 − 1

2
〈Q · ∇ψvj(y), Q · ∇ρj(y)〉, X = (Ψ1,Ψ2, Q, P ) ∈ E . (5.3)
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ii) The energy conservation law holds for the solutions X(t) ∈ C 1(R, E+),

Hv,w(X(t)) = const, t ∈ R. (5.4)

iii) The skew-symmetry relation holds,

Ω(Av,wX1, X2) = −Ω(X1, Av,wX2), X1, X2 ∈ E . (5.5)

iv) The operator Av,w acts on the vectors τj(v) tangent to the solitary manifold as follows:

Av,w[τj(v)] = (w − v) · ∇τj(v), Av,w[τj+3(v)] = (w − v) · ∇τj+3(v) + τj(v), j = 1, 2, 3. (5.6)

We shall apply Lemma 5.1 mainly to the operator Av,v corresponding to w = v. In this case,
the linearized equation has the following additional specific features.

Lemma 5.2. Assume that w = v ∈ V . Then the following assertions hold.
i) The tangent vectors τj(v) with j = 1, 2, 3 are eigenvectors, and τj+3(v) are root vectors of the

operator Av,v that correspond to the zero eigenvalue, i.e.,

Av,v [τj(v)] = 0, Av,v [τj+3(v)] = τj(v), j = 1, 2, 3. (5.7)

ii) The Hamiltonian function (5.3) is nonnegative definite since

Hv,v(X) =
1

2

∫

∣

∣Λ1/2(Ψ1 + iΨ2) − Λ−1/2Q · ∇(ρ1 + iρ2)
∣

∣

2
dx+

1

2
P 2

> 0. (5.8)

Here Λ stands for the operator (2.8), which is symmetric and nonnegative definite in L2(R3) for
|v| < 2m, and Λ1/2 is the nonnegative definite square root defined in the Fourier representation.

Proof. The first statement follows from (5.6) with w = v. In order to prove ii), we can rewrite
the integral in (5.8) as follows:

1

2
〈Λ1/2(Ψ1 + iΨ2) − Λ−1/2Q · ∇(ρ1 + iρ2),Λ

1/2(Ψ1 + iΨ2) − Λ−1/2Q · ∇(ρ1 + iρ2)〉

=
1

2
〈Λ(Ψ1 + iΨ2),Ψ1 + iΨ2〉 − 〈Ψj , Q · ∇ρj〉 +

1

2
〈Λ−1Q · ∇(ρ1 + iρ2), Q · ∇(ρ1 + iρ2)〉 (5.9)

since the operator Λ1/2 is symmetric in L2(R3). All the terms of expression (5.9) can now be
identified with the corresponding terms in (5.3) since

1

2
〈Λ(Ψ1 + iΨ2),Ψ1 + iΨ2〉 =

1

2
〈[−∆ +m2 + iv · ∇](Ψ1 + iΨ2), (Ψ1 + iΨ2)〉

=
1

2
〈[−∆ +m2]Ψ1,Ψ1〉 +

1

2
〈[−∆ +m2]Ψ2,Ψ2〉 + 〈Ψ2, v · ∇Ψ1〉

and we have Λ−1(ρ1 + iρ2) = −(ψv1 + iψv2) by (2.8) and (2.9).

Remark 5.1. For a soliton solution of the system (1.2), we have ḃ = v and v̇ = 0, and hence
T (t) ≡ 0. Thus, equation(5.1) is the linearization of system (1.2) on a soliton solution. In fact, we
linearize (1.2) on a trajectory S(σ(t)), where σ(t) is nonlinear with respect to t, rather than on a
soliton solution. We shall show below that T (t) is quadratic in Z(t) if we choose S(σ(t)) to be the
symplectic orthogonal projection of Y (t). In this case, (5.1) is a linearization of (1.2) again.
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6. SYMPLECTIC DECOMPOSITION OF DYNAMICS

Here we decompose the dynamics into two components, along the manifold S and in the transver-
sal direction. Equation (4.7) is obtained without any assumption on σ(t) in (4.1). We are going to
specify S(σ(t)) := ΠY (t). However, in this case, we must know that

Y (t) ∈ O−β(S), t ∈ R. (6.1)

This is true for t = 0 by our main assumption (2.12) with sufficiently small d0 > 0. Then we have
S(σ(0)) = ΠY (0) and Z(0) = Y (0) − S(σ(0)) are well defined. We shall prove below that (6.1)
holds if d0 is sufficiently small. Let us choose an arbitrary v such that |v(0)| < v < 2m, and let us
denote δ = v − |v(0)|. Denote by r−β(v) the positive numbers in Lemma 3.2 iv) which correspond
to α = −β. Then S(σ) + Z ∈ O−β(S) if σ = (b, v) with |v| < v and ‖Z‖−β < r−β(v). Note that
‖Z(0)‖−β < r−β(v) if d0 is sufficiently small. Therefore, S(σ(t)) = ΠY (t) and Z(t) = Y (t)−S(σ(t))
are well defined for the sufficiently small times t > 0 (for which |v| < v and ‖Z(t)‖−β < r−β(v)).
This argument can be formalized by using the following standard definition.

Definition 6.1. Let t∗ be the “exit time,” i.e.,

t∗ = sup{t > 0 : ‖Z(s)‖−β < r−β(v), |v(s) − v(0)| < δ, 0 6 s 6 t}. (6.2)

One of our main goals is to prove that t∗ = ∞ if d0 is sufficiently small. This would follow if we
could show that

‖Z(t)‖−β < r−β(v)/2, |v(s) − v(0)| < δ/2, 0 6 t < t∗. (6.3)

Note that
|Q(t)| 6 Q := r−β(v), 0 6 t < t∗. (6.4)

Now, by (4.10), the quantity N(t) in (4.7) satisfies the following estimate:

‖N(t)‖β 6 Cβ(v)‖Z(t)‖2
−β , 0 6 t < t∗. (6.5)

6.1. Longitudinal Dynamics: Modulation Equations

From now on, we choose the decomposition Y (t) = S(σ(t)) + Z(t) for 0 < t < t∗ by setting
S(σ(t)) = ΠY (t), which is equivalent to the symplectic orthogonality condition of type (3.7),

Z(t) - TS(σ(t))S, 0 6 t < t∗. (6.6)

This enables us to drastically simplify the asymptotic analysis of the dynamical equations (4.7)
for the transversal component Z(t). As the first step, we derive the longitudinal dynamics, i.e.,
find the “modulation equations” for the parameters σ(t). Thus, let us derive a system of ordinary
differential equations for the vector σ(t). For this purpose, we write (6.6) in the form

Ω(Z(t), τj(t)) = 0, j = 1, . . . , 6, 0 6 t < t∗, (6.7)

where the vectors τj(t) = τj(σ(t)) span the tangent space TS(σ(t))S. Note that σ(t) = (b(t), v(t)),
where

|v(t)| 6 v < 2m, 0 6 t < t∗, (6.8)

by Lemma 3.2 iii). It would be convenient for us to use some other parameters (c, v) instead of
σ = (b, v), where

c(t) = b(t) −
∫ t

0

v(τ)dτ and ċ(t) = ḃ(t) − v(t) = w(t) − v(t), 0 6 t < t∗. (6.9)

We do not need an explicit form of the equations for (c, v), except for the following statement,
whose proof is similar to that of Lemma 6.2 in [10].
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Lemma 6.1. Let Y (t) be a solution to the Cauchy problem (1.4), and let (4.1) and (6.7) hold.
Then (c(t), v(t)) satisfies the equation

(

ċ(t)
v̇(t)

)

= N (σ(t), Z(t)), 0 6 t < t∗, (6.10)

where
N (σ,Z) = O(‖Z‖2

−β) (6.11)

uniformly in σ ∈ Σ(v).

6.2. Decay for the Transversal Dynamics

In Section 11, we shall show that our main Theorem 2.1 can be derived from the following time
decay of the transversal component Z(t).

Proposition 6.1. Let all conditions of Theorem 2.1 hold. Then t∗ = ∞, and

‖Z(t)‖−β 6
C(ρ, v, d0)

(1 + |t|)3/2
, t > 0. (6.12)

We shall derive (6.12) in Sections 7–11 from our equation (4.7) for the transversal component
Z(t). This equation can be specified by using Lemma 6.1. Indeed, the lemma implies that

‖T (t)‖β 6 C(v)‖Z(t)‖2
−β , 0 6 t < t∗, (6.13)

by (4.9) since w − v = ċ. Thus, equation (4.7) becomes

Ż(t) = A(t)Z(t) + Ñ(t), 0 6 t < t∗, (6.14)

where A(t) = Av(t),w(t), and Ñ(t) := T (t) +N(t) satisfies the estimate

‖Ñ (t)‖β 6 C‖Z(t)‖2
−β , 0 6 t < t∗. (6.15)

In the remaining part of our paper, we mainly analyze the basic equation (6.14) to establish the
decay (6.12). We are going to derive the decay by using the bound (6.15) and the orthogonality
condition (6.6).

First, we reduce the problem to the analysis of the frozen linear equation,

Ẋ(t) = A1X(t), t ∈ R, (6.16)

where A1 is the operator Av1,v1
defined by (4.8) with v1 = v(t1) and a chosen t1 ∈ [0, t∗). We can

now apply well-known methods of scattering theory and then estimate the error by the method of
majorants.

Note that, even for the frozen equation (6.16), the decay of type (6.12) for all solutions does not
hold without the orthogonality condition of type (6.6). Namely, by (5.7), equation (6.16) admits
the secular solutions

X(t) =

3
∑

1

Cjτj(v) +

3
∑

1

Dj [τj(v)t+ τj+3(v)], (6.17)

which also arise by differentiating the soliton (1.5) with respect to the parameters a and v in
the moving coordinate y = x − v1t. Hence, we must consider the orthogonality condition (6.6) to
avoid the secular solutions. To this end, we shall apply the corresponding symplectic orthogonal
projection that kills the “runaway solutions” (6.17).

Remark 6.1. The solution (6.17) belongs to the tangent space TS(σ1)S with σ1 = (b1, v1) (for
an arbitrary b1 ∈ R), which suggests the unstable character of the nonlinear dynamics along the
solitary manifold (cf. Remark 4.1 iii).
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Definition 6.2. i) For v ∈ V , denote by Πv the symplectic orthogonal projection of E onto the
tangent space TS(σ)S and write Pv = I−Πv.

ii) Denote by Zv = PvE the space symplectic orthogonal to TS(σ)S with σ = (b, v) (for an
arbitrary b ∈ R).

Note that, by the linearity,

ΠvZ =
∑

Πjl(v)τj(v)Ω(τl(v), Z), Z ∈ E , (6.18)

with some smooth coefficients Πjl(v). Hence, the projection Πv does not depend on b in the variable
y = x− b, and this explains the choice of the subscript in Πv and Pv.

We now have the symplectic orthogonal decomposition

E = TS(σ)S + Zv, σ = (b, v), (6.19)

and the symplectic orthogonality (6.6) can be represented in the following equivalent forms,

Πv(t)Z(t) = 0, Pv(t)Z(t) = Z(t), 0 6 t < t∗. (6.20)

Remark 6.2. The tangent space TS(σ)S is invariant under the operator Av,v by Lemma 5.2 i),
and hence the space Zv is also invariant by (5.5), namely, Av,vZ ∈ Zv for any sufficiently smooth
Z ∈ Zv.

In Sections 12–18 below, we prove the following proposition, which is one of the main ingredients
in the proof of (6.12). Let us consider the Cauchy problem for equation (6.16) with A = Av,v for a
chosen v ∈ V . Recall that the parameter β > 3/2 is also chosen.

Proposition 6.2. Let conditions (1.9) and (1.10) hold, let |v| 6 v < 2m, and let X0 ∈ E. Then
the following assertions hold.

i) Equation (6.16), with A = Av,v, admits a unique solution eAtX0 := X(t) ∈ C(R, E) with the
initial condition X(0) = X0.

ii) For X0 ∈ Zv ∩ Eβ, the solution X(t) has the following decay,

‖eAtX0‖−β 6
Cβ(v)

(1 + |t|)3/2
‖X0‖β , t ∈ R. (6.21)

7. FROZEN TRANSVERSAL DYNAMICS

Now let us choose an arbitrary t1 ∈ [0, t∗), and rewrite the equation (6.14) in “frozen form,”

Ż(t) = A1Z(t) + (A(t) −A1)Z(t) + Ñ(t), 0 6 t < t∗, (7.1)

where A1 = Av(t1),v(t1) and

A(t) −A1 =







[w(t) − v(t1)] · ∇ 0 0 0
0 [w(t) − v(t1)] · ∇ 0 0
0 0 0 0
0 0 〈∇(ψv(t)j − ψv(t1)j),∇ρj〉 0






.

The next trick is important since it enables us to kill the “bad terms” [w(t)−v(t1)] · ∇ in the
operator A(t) −A1.
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Definition 7.1. Let us change the variables (y, t) 7→ (y1, t) = (y + d1(t), t), where

d1(t) :=

∫ t

t1

(w(s) − v(t1))ds, 0 6 t 6 t1. (7.2)

Next, let us write

Z1(t) := (Ψ1(y1 − d1(t), t),Ψ2(y1 − d1(t), t), Q(t), P (t)). (7.3)

Then we obtain the final form of the “frozen equation” for the transversal dynamics,

Ż1(t) = A1Z1(t) +B1(t)Z1(t) + Ñ1(t), 0 6 t 6 t1, (7.4)

where Ñ1(t) = Ñ(t) is expressed in terms of y = y1 − d1(t), and

B1(t) =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 〈∇(ψv(t)j−ψv(t1)j),∇ρj〉 0






.

Lemma 7.1 (see [10]). For (Ψ1,Ψ2, Q, P ) ∈ Eα with any α 6 β, the following estimate holds:

‖(Ψ1(y1 − d1),Ψ2(y1 − d1), Q, P )‖α 6 ‖(Ψ1,Ψ2, Q, P )‖α(1 + |d1|)|α| , d1 ∈ R3. (7.5)

Corollary 7.1. The following bounds hold for 0 6 t 6 t1:

‖Ñ1(t)‖β 6 ‖Z(t)‖2
−β(1 + |d1(t)|)β , ‖B1(t)Z1(t)‖β 6 C‖Z(t)‖−β

∫ t1

t

‖Z(τ)‖2
−βdτ . (7.6)

8. INTEGRAL INEQUALITY

Equation (7.4) can be represented in the following integral form:

Z1(t) = eA1tZ1(0) +

∫ t

0

eA1(t−s)[B1Z1(s) + Ñ1(s)]ds, 0 6 t 6 t1. (8.1)

Now let us apply the symplectic orthogonal projection P1 := Pv(t1) to both sides of (8.1). The space

Z1 := P1E is invariant with respect to eA1t by Proposition 6.2 ii) (cf. also Remark 6.2). Therefore,
P1 commutes with the group eA1t and, applying (6.21), we obtain

‖P1Z1(t)‖−β 6 C
‖P1Z1(0)‖β

(1 + t)3/2
+ C

∫ t

0

‖P1[B1Z1(s) + Ñ1(s)]‖β ds

(1 + |t− s|)3/2
.

The operator P1 = I−Π1 is continuous in Eβ by (6.18). Hence, using (7.6), we obtain

‖P1Z1(t)‖−β 6
C(d1(0))

(1 + t)3/2
‖Z(0)‖β

+ C(d1(t))

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−β

∫ t1

s

‖Z(τ)‖2
−βdτ + ‖Z(s)‖2

−β

]

ds, 0 6 t 6 t1, (8.2)

where d1(t) := sup06s6t |d1(s)|.
Definition 8.1. Let t′∗ be the exit time,

t′∗ = sup{t ∈ [0, t∗) : d1(s) 6 1, 0 6 s 6 t}. (8.3)

Now it follows from (8.2) that, for t1 < t′∗,

‖P1Z1(t)‖−β 6
C

(1 + t)3/2
‖Z(0)‖β

+ C1

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−β

∫ t1

s

‖Z(τ)‖2
−βdτ + ‖Z(s)‖2

−β

]

ds, 0 6 t 6 t1. (8.4)
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9. SYMPLECTIC ORTHOGONALITY

Finally, we are going to replace P1Z1(t) by Z(t) on the left-hand side of (8.4). We shall prove that
this replacement is possible indeed by using the fact d0 � 1 in (2.12) again. For the justification,
we reduce the exit time further. First, introduce the “majorant”

m(t) := sup
s∈[0,t]

(1 + s)3/2‖Z(s)‖−β , t ∈ [0, t∗). (9.1)

Denote by ε a chosen positive number (which will be specified below).

Definition 9.1. Let t′′∗ be the exit time,

t′′∗ = sup{t ∈ [0, t′∗) : m(s) 6 ε, 0 6 s 6 t}. (9.2)

The following important bound (9.3) enables us to replace the norm of P1Z1(t) on the left-hand
side of (8.4) by the norm of Z(t).

Lemma 9.1 (cf. [10]). For any sufficiently small ε > 0, we have

‖Z(t)‖−β 6 C‖P1Z1(t)‖−β , 0 6 t 6 t1, (9.3)

for any t1 < t′′∗ , where C depends on ρ and v only.

Proof. Since |d1(t)| 6 1 for t 6 t1 < t′′∗ < t′∗, it follows from Lemma 7.1 that it suffices to prove
the inequality

‖Z1(t)‖−β 6 2‖P1Z1(t)‖−β , 0 6 t 6 t1. (9.4)

Recall that P1Z1(t) = Z1(t) −Πv(t1)Z1(t). Then estimate (9.4) will follow from

‖Πv(t1)Z1(t)‖−β 6
1

2
‖Z1(t)‖−β , 0 6 t 6 t1. (9.5)

The symplectic orthogonality (6.20) implies the relation

Πv(t),1Z1(t) = 0, t ∈ [0, t1], (9.6)

where Πv(t),1Z1(t) is the term Πv(t)Z(t) expressed in terms of the variable y1 = y + d1(t). Hence,
(9.5) follows from (9.6) if the difference Πv(t1) −Πv(t),1 is small uniformly in t, i.e.,

‖Πv(t1) −Πv(t),1‖ < 1/2, 0 6 t 6 t1. (9.7)

It remains to justify (9.7) for any sufficiently small ε > 0. Formula (6.18) implies the following
relation:

Πv(t),1Z1(t) =
∑

Πjl(v(t))τj,1(v(t))Ω(τl,1(v(t)), Z1(t)), (9.8)

where the terms τj,1(v(t)) are the vectors τj(v(t)) expressed via the variables y1. Since the functions
|d1(t)| 6 1 and ∇τj are smooth and rapidly decaying at infinity, Lemma 7.1 implies that

‖τj,1(v(t)) − τj(v(t))‖β 6 C|d1(t)|β , 0 6 t 6 t1, (9.9)

for all j = 1, 2, . . . , 6. Furthermore,

τj(v(t)) − τj(v(t1)) =

∫ t1

t

v̇(s) · ∇vτj(v(s))ds,
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and therefore,

‖τj(v(t)) − τj(v(t1))‖β 6 C

∫ t1

t

|v̇(s)|ds, 0 6 t 6 t1. (9.10)

Similarly,

Πjl(v(t)) −Πjl(v(t1))| =

∣

∣

∣

∣

∫ t1

t

v̇(s) · ∇vΠjl(v(s))ds

∣

∣

∣

∣

6 C

∫ t1

t

|v̇(s)|ds, 0 6 t 6 t1, (9.11)

since |∇vΠjl(v(s))| is uniformly bounded by (6.8). Hence, the bounds (9.7) will follow from (6.18),
(9.8) and (9.9)–(9.11) if we shall prove that |d1(t)| and the integral on the right-hand side of (9.10)
can be made as small as desired by choosing a sufficiently small ε > 0.

To estimate d1(t), note that

w(s) − v(t1) = w(s) − v(s) + v(s) − v(t1) = ċ(s) +

∫ t1

s

v̇(τ)dτ (9.12)

by (6.9). Hence, equality (7.2), Lemma 6.1, and the definition in (9.1) imply that

|d1(t)| =

∣

∣

∣

∣

∫ t

t1

(w(s) − v(t1))ds

∣

∣

∣

∣

6

∫ t1

t

(

|ċ(s)| +
∫ t1

s

|v̇(τ)|dτ
)

ds

6 Cm2(t1)

∫ t1

t

(

1

(1 + s)3
+

∫ t1

s

dτ

(1 + τ)3

)

ds 6 Cm2(t1) 6 Cε2, 0 6 t 6 t1,
(9.13)

since t1 < t′′∗ . Similarly,

∫ t1

t

|v̇(s)|ds 6 Cm2(t1)

∫ t1

t

ds

(1 + s)3
6 Cε2, 0 6 t 6 t1. (9.14)

10. DECAY OF THE TRANSVERSAL COMPONENT

Here we prove Proposition 6.1.

Step i). Choose an ε > 0 and a t′′∗ = t′′∗(ε) for which Lemma 9.1 holds. Then a bound of type (8.4)
holds with ‖P1Z1(t)‖−β replaced by ‖Z(t)‖−β on the left-hand side,

‖Z(t)‖−β 6
C

(1 + t)3/2
‖Z(0)‖β

+ C

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−β

∫ t1

s

‖Z(τ)‖2
−βdτ + ‖Z(s)‖2

−β

]

ds, 0 6 t 6 t1, (10.1)

for t1 < t′∗. This implies an integral inequality for the majorant m(t) defined in (9.1). Namely,
multiplying (10.1) by (1 + t)3/2 and taking the supremum in t ∈ [0, t1], we obtain

m(t1) 6 C‖Z(0)‖β + C sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2

[

m(s)

(1 + s)3/2

∫ t1

s

m2(τ)dτ

(1 + τ)3
+

m2(s)

(1 + s)3

]

ds

for t1 6 t′′∗ . Taking into account that m(t) is a monotone increasing function, we see that

m(t1) 6 C‖Z(0)‖β +C[m3(t1) +m2(t1)]I(t1), t1 6 t′′∗ , (10.2)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 2 2006



174 A. KOMECH, E. KOPYLOVA

where

I(t1) = sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2

[

1

(1 + s)3/2

∫ t1

s

dτ

(1 + τ)3
+

1

(1 + s)3

]

ds 6 I <∞.

Therefore, (10.2) becomes

m(t1) 6 C‖Z(0)‖β + CI[m3(t1) +m2(t1)], t1 < t′′∗ . (10.3)

This inequality implies that m(t1) is bounded for t1 < t′′∗ and, moreover,

m(t1) 6 C1‖Z(0)‖β , t1 < t′′∗ , (10.4)

since m(0) = ‖Z(0)‖β is sufficiently small by (3.8).

Step ii). The constant C1 in the estimate (10.4) does not depend on t∗, t
′
∗, and t′′∗ by Lemma 9.1.

We choose a small d0 in (2.12) such that ‖Z(0)‖β < ε/(2C1). This is possible by (3.8). In this
case, estimate (10.4) implies that t′′∗ = t′∗, and therefore (10.4) holds for any t1 < t′∗. Then the
bound (9.13) holds for any t < t′∗. Choose a small ε such that the right-hand side in (9.13) does not
exceed one. Then t′∗ = t∗. Therefore, (10.4) holds for any t1 < t∗, and hence the first inequality in
(6.3) also holds if ‖Z(0)‖β is sufficiently small by (9.1) and (9.14). Finally, this implies that t∗ = ∞,
and hence we also have t′′∗ = t′∗ = ∞, and (10.4) holds for any t1 > 0 if d0 is small enough.

11. SOLITON ASYMPTOTICS

Here we prove our main theorem, Theorem 2.1, under the assumption that the decay (6.12)
holds. Let us first prove the asymptotics (1.8) for the vector components, and then the asymptotics
(1.1) for the fields.

Asymptotics for the vector components. It follows from (4.3) that q̇ = ḃ + Q̇, and from

(6.14), (6.15), and (4.8) that Q̇ = P + O(‖Z‖2
−β). Thus,

q̇ = ḃ+ Q̇ = v(t) + ċ(t) + P (t) + O(‖Z‖2
−β). (11.1)

Equation (6.10), together with the estimates (6.11) and (6.12), implies that

|ċ(t)| + |v̇(t)| 6
C1(ρ, v, d0)

(1 + t)3
, t > 0. (11.2)

Therefore, c(t) = c+ + O(t−2) and v(t) = v+ + O(t−2), t → ∞. Since |P | 6 ‖Z‖−β , the estimate
(6.12) and relations (11.2) and (11.1) imply that

q̇(t) = v+ + O(t−3/2). (11.3)

Similarly,

b(t) = c(t) +

∫ t

0

v(s)ds = v+t+ a+ + O(t−1), (11.4)

and hence the second part of (1.8) follows,

q(t) = b(t) +Q(t) = v+t+ a+ + O(t−1), (11.5)

since Q(t) = O(t−3/2) by (6.12).
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Asymptotics for the fields. We apply the approach developed in [12], see also [10]. For the
field part of the solution, ψ(x, t) = ψ1(x, t) + iψ2(x, t), let us define the accompanying soliton
field as ψv(t)(x − q(t)), where we now set v(t) = q̇(t), cf. (11.1). In this case, for the difference
z(x, t) = ψ(x, t) − ψv(t)(x− q(t)), we obtain the equation

iż(x, t) = (−∆ +m2)z(x, t) − iv̇ · ∇vψv(t)(x− q(t)).

Then

z(t) = W0(t)z(0) −
∫ t

0

W0(t− s)[iv̇(s) · ∇vψv(s)(· − q(s))]ds. (11.6)

To obtain the asymptotics (2.14), it suffices to prove that z(t) = W0(t)ψ++r+(t) for some ψ+ ∈ H1

and that ‖r+(t)‖H1 = O(t−1/2). This is equivalent to the relation

W0(−t)z(t) = ψ+ + r′+(t), (11.7)

where ‖r′+(t)‖H1 = O(t−1/2), since W 0(t) is a unitary group on the Sobolev space F by the energy
conservation for the free Schrödinger equation. Finally, formula (11.7) holds since (11.6) implies
that

W0(−t)z(t) = z(0) −
∫ t

0

W0(−s)f(s)ds, f(s) = iv̇(s) · ∇vψv(s)(· − q(s)),

where the integral on the right-hand side converges in the Hilbert space F with rate of convergence
O(t−1/2), which holds since ‖W0(−s)f(s)‖H1 = O(s−3/2) by the unitarity of W0(−s) and by the
decay rate ‖f(s)‖H1 = O(s−3/2). Let us prove that this rate of decay holds indeed. It suffices to
prove that |v̇(s)| = O(s−3/2), or, equivalently, |ṗ(s)| = O(s−3/2). Substituting (4.2) into the last
equation of (1.2) gives

ṗ(t) =

∫

[

ψv(t)j (x− b(t)) + Ψj(x− b(t), t)
]

∇ρj(x− b(t) −Q(t))dx

=

∫

ψv(t)j(y)∇ρj(y)dy +

∫

ψv(t)j(y) [∇ρj(y −Q(t)) −∇ρj(y)] dy +

∫

Ψj(y, t)∇ρj(y −Q(t))dy.

The first integral on the right-hand side is zero by the stationary equations (2.7). The second
integral is O(t−3/2), which follows from conditions (1.9) on ρ and the relation Q(t) = O(t−3/2).
Finally, the third integral is of order O(t−3/2) by estimate (6.12). This completes the proof.

12. DECAY FOR THE LINEARIZED DYNAMICS

In the remaining sections, we prove Proposition 6.2 to complete the proof of the main result
(Theorem 2.1). Here we discuss the general strategy of proving the proposition. We apply the
Fourier–Laplace transform

X̃(λ) =

∫ ∞

0

e−λtX(t)dt, Reλ > 0, (12.1)

to (6.16). According to Proposition 6.2, we can expect that the solution X(t) will be bounded in
the norm ‖ · ‖−β . Then the integral (12.1) converges and is analytic for Re λ > 0. We shall write A
and v instead of A1 and v1 in the remaining part of the paper. After the Fourier–Laplace transform,
(6.16) becomes

λX̃(λ) = AX̃(λ) +X0, Re λ > 0. (12.2)

Let us stress that (12.2) is equivalent to the Cauchy problem for the functions

X(t) ∈ Cb([0,∞); E−β).
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Hence, the solution X(t) is given by

X̃(λ) = −(A− λ)−1X0, Reλ > 0, (12.3)

if the resolvent R(λ) = (A− λ)−1 exists for Reλ > 0.

Let us comment on our following strategy in proving the decay (6.12). We shall first construct
the resolvent R(λ) for Reλ > 0 and prove that this resolvent is a continuous operator on E−β . In

this case, X̃(λ) belongs to E−β and is an analytic function for Reλ > 0. After this, we must justify
that there exists a (unique) function X(t) ∈ C([0,∞); E−β) satisfying (12.1).

The analyticity of X̃(λ) and the Paley–Wiener arguments (see [16]) should provide the existence
of an E−β-valued distribution X(t), t ∈ R, with a support in [0,∞). Formally,

X(t) =
1

2π

∫

R

eiωtX̃(iω + 0)dω, t ∈ R. (12.4)

However, to establish the continuity of X(t) for t > 0, we need an additional bound for X̃(iω + 0)
for large values of |ω|. Finally, for the time decay of X(t), we need additional information on the

smoothness and decay of X̃(iω+0). More precisely, we must prove that the function X̃(iω+0) has
the following properties:

i) it is smooth outside ω = 0 and ω = ±µ, where µ = µ(v) > 0;
ii) it decays in a sense as |ω| → ∞;
iii) it admits the Puiseux expansion at ω = ±µ;
iv) it is analytic at ω = 0 if X0 ∈ Zv := PvE and X0 ∈ Eβ .

Then the decay (6.12) will follow from the Fourier–Laplace representation (12.4).

We shall check properties of type i)–iv) only for the last two components Q̃(λ) and P̃ (λ) of the
vector

X̃(λ) = (Ψ̃1(λ), Ψ̃2(λ), Q̃(λ), P̃ (λ)).

These properties provide the decay (6.12) for the vector components Q(t) and P (t) of the so-
lution X(t). After this, for the field components Ψ1(x, t) and Ψ2(x, t), we shall use well-known
properties of the free Schrödinger equation.

13. CONSTRUCTING THE RESOLVENT

Here we construct the resolvent as a bounded operator on E−β for Re λ > 0. We shall write

(Ψ1(y),Ψ2(y), Q, P ) instead of (Ψ̃1(y, λ), Ψ̃2(y, λ), Q̃(λ), P̃ (λ)) to simplify the notation. Then (12.2)
reads

(A− λ)







Ψ1
Ψ2
Q
P






= −







Ψ01
Ψ02
Q0
P0






.

This gives the system of equations

v · ∇Ψ1(y) − (∆ −m2)Ψ2(y) −Q · ∇ρ2 − λΨ1(y) = −Ψ01(y),

(∆ −m2)Ψ1(y) + v · ∇Ψ2(y) +Q · ∇ρ1 − λΨ2(y) = −Ψ02(y),

P − λQ = −Q0,

−〈∇Ψj(y), ρj(y)〉 + 〈∇ψvj(y), Q · ∇ρj(y)〉 − λP = −P0,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y ∈ R3. (13.1)

Step i). Let us study the first two equations. In the Fourier space, they become

−(ikv + λ)Ψ̂1(k) + (k2 +m2)Ψ̂2(k) = −Ψ̂01(k) − iQkρ̂2,

−(k2 +m2)Ψ̂1(k) − (ikv + λ)Ψ̂2(k) = −Ψ̂02(k) + iQkρ̂1.
(13.2)
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Let us invert the matrix of the system, obtaining

(

−(ikv + λ) k2 +m2

−(k2 +m2) −(ikv + λ)

)−1

= [(ikv + λ)2 + (k2 +m2)2]−1

(

−(ikv + λ) −(k2 +m2)
k2 +m2 −(ikv + λ)

)

.

Taking the inverse Fourier transform, we find the corresponding fundamental solution

Gλ(y) =

(

v · ∇ − λ ∆ −m2

−∆ +m2 v · ∇ − λ

)

gλ(y), (13.3)

where

gλ(y) = F−1
k→y

1

(k2 +m2)2 − (kv − iλ)2
= F−1

k→y

1

(k2 +m2 − kv + iλ)(k2 +m2 + kv − iλ)
. (13.4)

Note that the denominator on the right-hand side of (13.4) does not vanish for Reλ > 0 and k ∈ R3.
Moreover, it does not vanish for Re λ > 0 and k ∈ C3 for sufficiently small | Im k|. Therefore, gλ(y)
decays exponentially by the Paley–Wiener arguments. Let us compute the entries of the matrix Gλ
explicitly,

G11
λ (y) = G22

λ (y) = F−1 −ikv − λ

(k2 +m2)2 − (kv − iλ)2

= F−1
k→y

( 1/2i

k2 +m2 − kv + iλ
− 1/2i

k2 +m2 + kv − iλ

)

=
e−κ+|y|−i v

2
y

8iπ|y| − e−κ−|y|+i v
2

y

8iπ|y| ,

G21
λ (y) = −G12

λ (y) = F−1 k2 +m2

(k2 +m2)2 − (kv − iλ)2

= F−1
k→y

( 1/2

k2 +m2 − kv + iλ
+

1/2

k2 +m2 + kv − iλ

)

=
e−κ+|y|−i v

2
y

8π|y| +
e−κ−|y|+i v

2
y

8π|y| ,

(13.5)

where

κ± =

√

m2 − v2

4
± iλ, Re κ± > 0. (13.6)

This implies the following assertion.

Lemma 13.1. i) The operator Gλ with the integral kernel Gλ(y−y′) is continuous as an operator
from H1(R3) ⊕H1(R3) to H2(R3) ⊕H2(R3) for Reλ > 0.

ii) Formulas (13.5) and (13.6) imply that, for any chosen y, the matrix function Gλ(y), Reλ > 0,
admits an analytic continuation with respect to λ to the Riemann surface of the algebraic function
√

µ2 + λ2 with the branching points λ = ±iµ, where µ := m2 − v2/4.

Thus, relations (13.2) and (13.3) imply the convolution representation

Ψ1 = −G11
λ ∗ Ψ01 −G12

λ ∗ Ψ02 − (G12
λ ∗ ∇ρ1) ·Q+ (G11

λ ∗ ∇ρ2) ·Q,
Ψ2 = G12

λ ∗ Ψ01 −G11
λ ∗ Ψ02 − (G11

λ ∗ ∇ρ1) ·Q− (G12
λ ∗ ∇ρ2) ·Q.

(13.7)

Step ii). Let us now proceed to the last two equations (13.1),

−λQ+ P = −Q0, 〈∇ψvj , Q · ∇ρj〉 − 〈∇Ψj , ρj〉 − λP = −P0. (13.8)

Let us rewrite equations (13.7) in the form Ψj = Ψj(Q) + Ψj(Ψ01,Ψ02), where

Ψ1(Ψ01,Ψ02) = −G11
λ ∗ Ψ01 −G12

λ ∗ Ψ02, Ψ1(Q) = (−G12
λ ∗ ∇ρ1 +G11

λ ∗ ∇ρ2) ·Q,
Ψ2(Ψ01,Ψ02) = G12

λ ∗ Ψ01 −G11
λ ∗ Ψ02, Ψ2(Q) = −(G11

λ ∗ ∇ρ1 +G12
λ ∗ ∇ρ2) ·Q.
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Then we have 〈∇Ψj , ρj〉 = 〈∇Ψj(Q), ρj〉 + 〈∇Ψj(Ψ01,Ψ02), ρj〉, and the last equation in (13.8)
becomes

〈∇ψvj , Q · ∇ρj〉 − 〈∇Ψj(Q), ρj〉 − λP = −P0 + 〈∇Ψj(Ψ01,Ψ02), ρj〉 =: −P ′
0.

Let us first compute the term

〈∇ψvj , Q · ∇ρj〉 =
∑

lj

〈∇ψvj , Ql∂lρj〉 =
∑

lj

〈∇ψvj , ∂lρj〉Ql.

Applying the Fourier transform Fy→k, the Parseval identity, and (19.3), we see that
∑

j

〈∂iψvj , ∂lρj〉 =
∑

j

〈−ikiψ̂vj ,−iklρ̂j〉

=
〈

ki
−(k2 +m2)ρ̂1 + ikvρ̂2

(k2 +m2)2 − (kv)2
, klρ̂1

〉

+
〈

ki
−ikvρ̂1 − (k2 +m2)ρ̂2

(k2 +m2)2 − (kv)2
, klρ̂2

〉

= −
∫ kikl

(

(k2 +m2)(|ρ̂1|2 + |ρ̂2|2) + i(kv)(ρ̂1ρ̂2 − ρ̂2ρ̂1)
)

dk

(k2 +m2)2 − (kv)2
=: −Lil. (13.9)

As a result, 〈∇ψvj , Q · ∇ρj〉 = −LQ, where L is the 3 × 3 matrix with the matrix elements Lil.
Let us now compute the term −〈∇Ψj(Q), ρj〉 = 〈Ψj(Q),∇ρj〉. We have

〈Ψj(Q), ∂iρj〉 =
∑

l

(

〈−G12
λ ∗ ∂lρ1 +G11

λ ∗ ∂lρ2, ∂iρ1〉 − 〈G11
λ ∗ ∂lρ1 +G12

λ ∗ ∂lρ2, ∂iρ2〉
)

Ql

=
∑

l

Hil(λ)Ql,

and, by the Parseval identity again,

Hil(λ) : = 〈−G12
λ ∗ ∂lρ1 +G11

λ ∗ ∂lρ2, ∂iρ1〉 − 〈G11
λ ∗ ∂lρ1 +G12

λ ∗ ∂lρ2, ∂iρ2〉
= 〈[(k2 +m2)ρ̂1 − (ikv + λ)ρ̂2]ĝλkl, kiρ̂1〉 + 〈[(ikv + λ)ρ̂1 + (k2 +m2)ρ̂2]ĝλkl, kiρ̂2〉

=

∫ kikl

(

(k2 +m2)(|ρ̂1|2 + |ρ̂2|2) + (ikv + λ)(ρ̂1ρ̂2 − ρ̂2ρ̂1)
)

dk

(k2 +m2)2 − (kv − iλ)2
. (13.10)

The matrix H is well defined for Re λ > 0 since the denominator does not vanish. As a result,
−〈∇Ψj(Q), ρj〉 = HQ, where H is the matrix with the matrix elements Hil. Finally, the equations
(13.8) become

M(λ)

(

Q
P

)

=

(

Q0

P ′
0

)

, where M(λ) =

(

λE −E
L−H(λ) λE

)

. (13.11)

Assume for a moment that the matrix M(λ) is invertible (later we shall prove that this is the
case indeed). Then

(

Q
P

)

= M−1(λ)

(

Q0

P ′
0

)

, Reλ > 0. (13.12)

Finally, formula (13.12) and formulas (13.7), where Q is expressed by (13.12), give the expression
for the resolvent R(λ) = (A− λ)−1, Reλ > 0.

Lemma 13.2. The matrix function M(λ) (M−1(λ)), where Reλ > 0, admits an analytic (mero-

morphic) continuation to the Riemann surface of the function
√

µ2 + λ2 , λ ∈ C.

Proof. The analytic continuation of M(λ) exists by Lemma 13.1 ii) and the convolution ex-
pressions in (13.10) by (1.9). The inverse matrix is then meromorphic, since it exists for large values
of Reλ (which follows from (13.11) since H(λ) → 0 as Reλ→ ∞ by (13.10)).
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14. ANALYTICITY ON THE HALF-PLANE

Here we prove the following assertion.

Proposition 14.1. The operator-valued function R(λ) : E → E is analytic for Re λ > 0.

Proof. It suffices to prove that the operator A − λ : E → E has bounded inverse operator for
Re λ > 0. Recall that A = Av,v , where |v| < 2m.

Step i). Let us prove that Ker(A− λ) = 0 for Reλ > 0. Indeed, assume that the function

Xλ = (Ψλ1,Ψλ2, Qλ, Pλ) ∈ E

satisfies the relation (A − λ)Xλ = 0, i.e., Xλ is a solution to (13.1) with Ψ01 = Ψ02 = 0 and
Q0 = P0 = 0. We must prove that Xλ = 0.

Let us first show that Pλ = 0. Indeed, the trajectory X := Xλe
λt ∈ C(R, E) is the solution

to the equation Ẋ = AX, which is equation (5.1) with w = v. Then Hv,v(X(t)) grows exponen-
tially by (5.8). This growth contradicts the conservation of Hv,v. This conservation follows from
Lemma 5.1 ii) since X(t) ∈ C1(R, E+), which follows from Lemma 13.1 because (Ψλ1,Ψλ2) satisfies
equations (13.7) with Ψ01 = Ψ02 = 0 and Q = Qλ.

We now have λQλ = Pλ = 0 by the third equation of (13.1), and hence Qλ = 0 because λ 6= 0.
Finally, Ψλ1 = 0 and Ψλ2 = 0 by equations (13.7) with Q = Qλ = 0.

Step ii). Write A− λ = A0 + T , where

A0 =







v · ∇ − λ −(∆ −m2) 0 0
∆ −m2 v · ∇ − λ 0 0

0 0 −λ 0
0 0 0 −λ






, T =







0 0 − · ∇ρ2 0
0 0 ·∇ρ1 0
0 0 0 E

〈 · ,∇ρ1〉 〈 · ,∇ρ1〉 〈∇ψvj , ·∇ρj〉 0






.

The operator T is finite-dimensional, and the operator A−1
0 is bounded on E by Lemma 13.1. Finally,

A−λ = A0(I+A−1
0 T ), where A−1

0 T is a compact operator. Since we know that Ker(I+A−1
0 T ) = 0,

the operator (I +A−1
0 T ) is invertible by Fredholm theory.

Corollary 14.1. The matrix M(λ) of (13.11) is invertible for Re λ > 0.

15. REGULARITY ON THE IMAGINARY AXIS

Let us first describe the continuous spectrum of the operator A = Av,v on the imaginary axis.
By definition, the continuous spectrum corresponds to ω ∈ R such that the resolvent R(iω + 0) is
not a bounded operator in E . By formulas (13.7), this is the case if the Green function Gλ(y − y′)
fails to have exponential decay. Thus, iω belongs to the continuous spectrum if

|ω| > µ = m2 − v2/4.

By Lemma 13.2, the limit matrix

M(iω) := M(iω + 0) =

(

iωE −E
L−H(iω + 0) iωE

)

, ω ∈ R, (15.1)

exists, and its entries are continuous functions of ω ∈ R that are smooth for |ω| < µ and for |ω| > µ.
Recall that the point λ = 0 belongs to the discrete spectrum of the operator A by Lemma 5.2 i),
and hence M(iω + 0) is (probably) not invertible either at ω = 0.
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Proposition 15.1. Let ρ satisfy condition (1.9) and the Wiener condition (1.10), and let
|v| < 2m. Then the limit matrix M(iω + 0) is invertible for ω 6= 0, ω ∈ R.

Proof. Let us consider the three possible cases 0 < |ω| < µ, ω = µ, and |ω| > µ, separately.
We can assume that v = (|v|, 0, 0). Write F (ω) := −L+H(iω+0), M = m2 + k2, a = |ρ̂1|2 + |ρ̂2|2,
and b = i(ρ̂1ρ̂2 − ρ̂2ρ̂1). Then the entries of the matrix F become

Fij =

∫

kikj dk

[

Ma

(

1

M2 − (|v|k1 + ω)2
− 1

M2 − (|v|k1)2

)

+ b

( |v|k1 + ω

M2 − (|v|k1 + ω)2
− |v|k1

M2 − (|v|k1)2

)

]

=

∫

kikjdk

2

[

a

(

1

M − |v|k1 − ω
+

1

M + |v|k1 + ω
− 1

M − |v|k1
− 1

M + |v|k1

)

+ b

(

1

M − |v|k1 − ω
− 1

M + |v|k1 + ω
− 1

M − |v|k1
+

1

M + |v|k1

)

]

. (15.2)

Since a is even and b is odd, we see that

Fij =
1

2

∫

dk2dk3

∫ +∞

0

kikj dk1

[

af1 + bf2

]

, (15.3)

where

f1 :=
1

M−|v|k1−ω
+

1

M+|v|k1+ω
+

1

M+|v|k1−ω
+

1

M−|v|k1+ω
− 2

M−|v|k1
− 2

M+|v|k1
,

f2 :=
1

M−|v|k1−ω
− 1

M+|v|k1+ω
+

1

M−|v|k1+ω
− 1

M+|v|k1−ω
− 2

M−|v|k1
+

2

M+|v|k1
.

(15.4)

Then, by (15.1),

detM(iω) = det













iω 0 0 −1 0 0
0 iω 0 0 −1 0
0 0 iω 0 0 −1

−F11 −F12 −F13 iω 0 0
−F12 −F22 −F23 0 iω 0
−F13 −F23 −F33 0 0 iω













= −ω6 − ω4
3
∑

j=1

Fjj − ω2
∑

i<j

(FiiFjj − F 2
ij) − det

(

F11 F12 F13
F12 F22 F23
F13 F23 F33

)

(15.5)

since Fij = Fji.

I. First, let us consider the case 0 < |ω| < µ. Then the invertibility of M(iω) results from the
following assertion.

Lemma 15.1. For 0 < |ω| < µ, the matrix F is positive definite.

Proof. First, let us note that all denominators in (15.4) are positive for |ω| < µ = m2 − v2/4
and |v| < 2m. Indeed,

(m2 + k2)2 − (ω + |v|k1)
2 = ((k − v/2)2 +m2 − v2

4
− ω)

(

(k + v/2)2 +m2 − v2

4
+ ω

)

> 0.

Second, f1 > f2 > 0 if |v| < 2m and 0 < |ω| 6 µ. This is proved in Appendix C.
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Finally, the Wiener condition implies

a± b = |ρ̂1(k) ∓ iρ̂2(k)|2 > 0, ∀k ∈ R3. (15.6)

Therefore, af1 + bf2 > 0 and (15.3) is the integral of the symmetric nonnegative definite matrix
k ⊗ k = (kikj) with positive weight. Hence, the matrix F is positive definite.

II. ω = ±µ. For example, consider the case ω = µ = m2 − |v|2/4. Then formula (13.10) reads

Hij(iµ) =

∫

kikj(Ma− (kv + µ)b)dk
(

(k1 − |v|
2

)2 + k2
2 + k2

3

)(

(k1 + |v|
2

)2 + k2
2 + k2

3 + 2µ
) .

Now the integrand has a unique singular point. The singularity is integrable, and hence detM(iω)
is also negative by the representations (15.5). Hence, the matrix M(iµ) is also invertible.

III. |ω| > µ. Here we apply other arguments. The invertibility of M(iω) now follows from (15.5)
by virtue of the following lemma (cf. [10]).

Lemma 15.2. If (1.10) holds and if ω > µ (ω < −µ), then the matrix ImF (ω) is negative
(positive) definite.

Proof. Consider the case ω > µ (the case ω < −µ can be treated similarly). Let us calculate
the imaginary part of Fij . Since Fij = Hij(iω+0)−Lij and Lij is real, we shall consider the value
Hij(iω + 0) only. For ε > 0, we have

Hij(iω + ε) =

∫

kikj(Ma+ (kv + ω − iε)b)dk

M2 − (kv + ω − iε)2
=

1

2

∫

kikj(a+ b)dk

M − kv − ω + iε
+

1

2

∫

kikj(a− b)dk

M + kv + ω − iε

= H1
ij(iω + ε) +H2

ij(iω + ε). (15.7)

It suffices to study the first summand in (15.7) only, since the second summand is real for ε = 0.
Consider the denominator

D̂ε(k) = k2 +m2 − kv − ω + iε.

Note that D̂0(k) = 0 on the ellipsoid Tω given by

Tω =
{

k :
∣

∣

∣k − v

2

∣

∣

∣ = R :=
√
ω − µ

}

.

Then the Plemelj formula for C1 functions implies that

ImH1
ij(iω + 0) = −π

2

∫

Tω

kikj(a+ b)

|∇D̂0(k)|
dS, (15.8)

where dS is the surface area element. Hence, the matrix ImH 1(iω+0) is negative definite by (15.6).

Now let us prove that the limit matrix M(iω + 0) is invertible. Recall that

M(iω + 0) =

(

iωE −E
−F (iω + 0) iωE

)

Then the equation

M(iω + 0)

(

Q
P

)

= 0.

becomes
iωQ− P = 0, −FQ+ iωP = 0. (15.9)

Then (F + ω2)Q = 0, which implies that Q = 0 and then P = 0, since the matrix ImF is negative
definite for ω > µ. This completes the proof of Proposition 15.1.

Corollary 15.1. Proposition 15.1 implies that the matrix M−1(iω) is smooth with respect to
ω ∈ R outside the three points ω = 0,±µ.
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16. SINGULAR SPECTRAL POINTS

Recall that formula (13.12) expresses the Fourier–Laplace transforms Q̃(λ), P̃ (λ). Hence, the
components are given by the Fourier integral

(

Q(t)
P (t)

)

=
1

2π

∫

eiωtM−1(iω + 0)

(

Q0

P ′
0

)

dω (16.1)

if it converges in the sense of distributions. Corollary 15.1 by itself is insufficient to prove the
convergence and decay of the integral. Namely, we need additional information about the regularity
of the matrix M−1(iω) at the singular points ω = 0,±µ and about some bounds at |ω| → ∞.
We shall study these points separately.

I. First consider the points ±µ.

Lemma 16.1. The matrix M−1(iω) admits the following Puiseux expansion in a neighborhood
of ±µ: there exists an ε± > 0 such that

M−1(iω) =
∞
∑

k=0

R±
k (ω ∓ µ)k/2, |ω ∓ µ| < ε±, ω ∈ R. (16.2)

Proof. It suffices to prove a similar expansion for M(iω). Then (16.2) holds for M−1(iω) as
well, since the matrices M(±iµ) are invertible. The asymptotics for M(iω) holds by the convolution
representation (13.10),

Hij(λ) = −
〈

G12
λ ∗ ∂lρ1 +G11

λ ∗ ∂lρ2, ∂iρ1

〉

−
〈

G11
λ ∗ ∂lρ1 +G12

λ ∗ ∂lρ2, ∂iρ2

〉

, (16.3)

since the entries Gij
λ admit the corresponding Puiseux expansions by formula (13.5).

II. Second, we study the asymptotic behavior of M−1(λ) at infinity. Let us recall that M−1(λ)
was originally defined for Reλ > 0, and it admits a meromorphic continuation to the Riemann
surface of the function

√

m2 − v2/4 + iλ (see Lemma 13.2).

Lemma 16.2. One can find a matrix R0 and a matrix function R1(ω) such that

M−1(iω) =
R0

ω
+R1(ω), |ω| > µ+ 1, ω ∈ R,

where

|∂k
ωR1(ω)| 6

Ck

|ω|2 , |ω| > µ+ 1, ω ∈ R, (16.4)

for every k = 0, 1, 2, ..

Proof. By the structure (15.1) of the matrix M(iω), it suffices to prove the following estimate
for the elements of the matrix H(iω) := H(iω + 0):

|∂k
ωHjj(iω)| 6

Ck

|ω| , ω ∈ R, |ω| > µ+ 1, j = 1, 2, 3. (16.5)

Note that

G11
λ ∗ f =

1

2i
(D−1

1 (λ)f −D−1
2 (λ)f), G12

λ ∗ f =
1

2
(D−1

1 (λ)f +D−1
2 (λ)f),

where

D1(λ) = −∆ +m2 − iv · ∇ + iλ, D2(λ) = −∆ +m2 + iv · ∇ − iλ, Re λ > 0,
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and D−1
j (λ), j = 1, 2, are bounded operators on L2(R3). Estimate (16.5) immediately follows from

a more general bound

‖∂k
ωD

−1
j (iω + 0)f‖L2

−σ
6
Ck(R)

|ω| ‖f‖L2
σ
, ω ∈ R, |ω| > µ+ 1, (16.6)

which holds for σ > 3/2. Namely, by (1.9), formula (16.5) follows from formula (16.6) applied to
the functions f(y) = ∂lρj(y) ∈ L2

σ.

The bound (16.6) was proved in [1, bound (A.2′)] (see also [15, Th. 8.1]).

III. Finally, consider the point ω = 0, which is the most singular. This is an isolated pole of
finite degree by Lemma 13.2, and hence the Laurent expansion holds,

M−1(iω) =
n
∑

k=0

Mkω
−k−1 + H(ω), |ω| < ε0, (16.7)

where Mk are 6 × 6 complex matrices, ε0 > 0, and H(ω) is an analytic matrix valued function for
complex ω with |ω| < ε0.

17. TIME DECAY OF THE VECTOR COMPONENTS

Here we prove the decay (6.12) for the components Q(t) and P (t).

Lemma 17.1 (cf. [10]). Let X0 ∈ Zv,β. Then Q(t) and P (t) are continuous and

|Q(t)| + |P (t)| 6
C(ρ, v, d0)

(1 + |t|)3/2
, t > 0. (17.1)

Proof. Expansions (16.2), (16.4), and (16.7) imply the convergence of the Fourier integral (16.1)
in the sense of distributions to a continuous function of t > 0. Let us prove inequality (17.1). Note
first that the condition X0 ∈ Zv,β implies that the entire trajectory X(t) lies in Zv,β . This follows
from the invariance of the space Zv,β under the generator Av,v (cf. Remark 6.2). Note that, for
X0 not belonging to Zv,β , the components Q(t) and P (t) can contain nondecaying terms that
correspond to the singular point ω = 0. Indeed, we know that the linearized dynamics admits the
secular solutions without decay, see (6.17). The formulas (3.2) give the corresponding components
QS(t) and PS(t) of the secular solutions,

(

QS(t)
PS(t)

)

=
3
∑

1

Cj

(

ej

0

)

+
3
∑

1

Dj

[

(

ej

0

)

t+

(

0
ej

)

]

. (17.2)

We claim that the symplectic orthogonality condition leads to (17.1). Let us split the Fourier
integral (16.1) into three terms by using the partition of unity ζ1(ω) + ζ2(ω) + ζ3(ω) = 1, ω ∈ R,

(

Q(t)
P (t)

)

=
1

2π

∫

eiωt(ζ1(ω)+ ζ2(ω)+ ζ3(ω))M−1(iω+0)

(

Q0

P ′
0

)

dω = I1(t)+ I2(t)+ I3(t), (17.3)

where the functions ζk(ω) ∈ C∞(R) are supported by

supp ζ1 ⊂ {ω ∈ R : ε0/2 < |ω| < µ+ 2},
supp ζ2 ⊂ {ω ∈ R : |ω| > µ+ 1}, supp ζ3 ⊂ {ω ∈ R : |ω| < ε0}.

(17.4)

Then
i) The function I1(t) decays like (1 + |t|)−3/2 by the Puiseux expansion (16.2).
ii) The function I2(t) decays faster than any power of t due to Proposition 16.2.
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iii) Finally, the function I3(t) generally does not decay if n > 0 in the Laurent expansion (16.7).
Namely, the contribution of the analytic function H(ω) decays faster than any power of t. On the
other hand, the contribution of the Laurent series,

(

QL(t)
PL(t)

)

:=
1

2π

∫

eiωtζ3(ω)

n
∑

k=0

Mk(ω − i0)−k−1

(

Q0

P ′
0

)

dω, t ∈ R, (17.5)

is a polynomial function of t ∈ R of a degree 6 n, modulo functions decaying faster than any power
of t. Let us note that formula (17.2) gives an example of polynomial function arising from (17.5).

We must show that the symplectic orthogonality condition eliminates the polynomial functions.
Our main difficulty is that we know nothing about the order n of the pole and about the Laurent
coefficients Mk of the matrix M−1(iω) at ω = 0.

Our crucial observation has the following form.
a) The components (17.2) of the secular solutions form a linear space LS of dimension dimLS = 6.

b) The polynomial functions in (17.5) belong to a linear space LL of dimension dimLL 6 6 since
(Q0, P

′
0) ∈ R6.

c) LS ⊂ LL since any function (17.2) admit a representation of the form (17.5). The validity of
this representation follows from the fact that the secular solutions (6.17) can be reproduced by our
calculations with the Laplace transform.

Therefore, we can conclude that

LL = LS. (17.6)

It remains to note that the secular solutions are forbidden since X0 ∈ Zv,β . Hence, the polynomial
terms in (17.5) vanish, which implies the decay (17.1).

More precisely, we know that X(t) = PvX(t) for any t ∈ R. On the other hand, identity
(17.6) implies that X(t) can be corrected by a secular solution XS(t) such that the corresponding
components Q∆(t) and P∆(t) (of the difference ∆(t) := X(t)−XS(t)) decay. Hence, the components
Q(t) and P (t) of X(t) = PvX(t) = Pv [X(t) −XS(t)] also decay.

18. TIME DECAY OF FIELDS

Here we prove the decay of the field components Ψ1(x, t),Ψ2(x, t) corresponding to (6.12). The
first two equations of (6.16) can be represented as a single equation,

iΨ̇(t) = (−∆ +m2 + iv · ∇)Ψ −Q(t) · ∇ρ, (18.1)

where Ψ(t) = Ψ1(·, t) + iΨ2(·, t). By Lemma 17.1, we know that Q is continuous function of t > 0
and

|Q(t)| 6
C(ρ, v, d0)

(1 + |t|)3/2
, t > 0. (18.2)

Hence, Proposition 6.2 is reduced now to the following assertion.

Proposition 18.1. i) Let Q(t) ∈ C([0,∞); R3) and Ψ0 ∈ H1
β. Then equation (18.1) admits a

unique solution Ψ(t) ∈ C([0,∞);H1
β) with the initial condition Ψ(0) = Ψ0.

ii) If Ψ0 ∈ H1
β and if the decay (18.2) holds, then the corresponding fields also decay uniformly with

respect to v,

‖Ψ(t)‖1,−β 6
C(ρ, v, d0, ‖Ψ0‖1,β)

(1 + |t|)3/2
, t > 0, (18.3)

for |v| 6 v with any v ∈ (0, 2m).
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Proof. The statements follow from the Duhamel representation

Ψ(t) = W (t)Ψ0 −
∫ t

0

W (t− s)Q(s) · ∇ρ ds, t > 0, (18.4)

where W (t) is the dynamical group (propagator) of the free equation

iΨ̇(t) = (−∆ +m2 + iv · ∇)Ψ(t).

Lemma 18.1. Let |v| 6 v with any v ∈ (0, 2m). Then

‖W (t)Ψ0‖1,−β 6 C(v)(1 + |t|)−3/2‖Ψ0‖1,β , t > 0, (18.5)

for any Ψ0 ∈ H1
β.

Proof. Note that W (t)Ψ0 = e−i(m2−|v|2/4)teivx/2Φ(t), where Φ(t) is a solution to the free Schrö-
dinger equation

iΦ̇(t) = −∆Φ(t), Φ(0) = eivx/2Ψ0.

It is well known that Φ(t) satisfies the estimate ‖Φ(t)‖1,−β 6 C(1 + |t|)−3/2‖Φ(0)‖1,β , t > 0 (see,
for example, [15]).

Now (18.3) follows from condition (18.2) and from the Duhamel representation (18.4).

19. APPENDIX

A. Solitary waves

Let us verify the last equation in (2.7),

0 =

∫

(

∇ψv1(y)ρ1(y) + ∇ψv2(y)ρ2(y)
)

dy. (19.1)

After passing to the Fourier representation, we set

ψ̂(k) := (2π)−3/2

∫

eikxψ(x)dx.

We readily see that

−ikvψ̂v1 + (k2 +m2)ψ̂v2 = −ρ̂2, (k2 +m2)ψ̂v1 + ikvψ̂v2 = −ρ̂1. (19.2)

Therefore,

ψ̂v1(k) =
−(k2 +m2)ρ̂1(k) + ikvρ̂2(k)

(k2 +m2)2 − (kv)2
, ψ̂v2(k) =

−ikvρ̂1(k) − (k2 +m2)ρ̂2(k)

(k2 +m2)2 − (kv)2
. (19.3)

By the Parseval identity, formula (19.1) becomes

0 =

∫

kj

(

ψ̂v1ρ̂1 + ψ̂v2ρ̂2

)

dk =

∫

kj

[

−(k2 +m2)(|ρ̂1|2 + |ρ̂2|2) + ikv(ρ̂2ρ̂1 − ρ̂1ρ̂2)
]

dk

(k2 +m2)2 − (kv)2
,

which is true since the integrand is odd.
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B. Computing Ω(τi, τj)

Let us justify formulas (3.4)–(3.6) for the matrix Ω. For j, l = 1, 2, 3, it follows from (3.2)
and (3.1) that

Ω(τj , τl) = 〈∂jψv1, ∂lψv2〉 − 〈∂jψv2, ∂lψv1〉, (19.4)

Ω(τj+3, τl+3) = 〈∂vj
ψv1, ∂vl

ψv2〉 − 〈∂vj
ψv2, ∂vl

ψv1〉, (19.5)

Ω(τj , τl+3) = −〈∂jψv1, ∂vl
ψv2〉 + 〈∂jψv2, ∂vl

ψv1〉 + ej · el. (19.6)

Differentiating (19.2), we obtain

∂vj
ψ̂v1 =

kjkvψ̂v1 − ikj(k
2 +m2)ψ̂v2

(k2 +m2)2 − (kv)2
, ∂vj

ψ̂v2 =
ikj(k

2 +m2)ψ̂v1 + kjkvψ̂v2

(k2 +m2)2 − (kv)2
, j = 1, 2, 3.

(19.7)
Then, for j, l = 1, 2, 3, we see from (19.4) by the Parseval identity that

Ω(τj , τl) =

∫

kjkl dk(ψ̂v1ψ̂v2 − ψ̂v2ψ̂v1) = 0, (19.8)

since the function ψ̂vc = ψ̂v1ψ̂v2 − ψ̂v2ψ̂v1 is odd. Similarly, by (19.5) and (19.7),

Ω(τj+3, τl+3) = −
∫

kjkl

(

2i(k2 +m2)kv(|ψ̂v1|2+|ψ̂v2|2)−((k2 +m2)2+(kv)2)ψ̂vc

)

dk

((k2 +m2)2 − (kv)2)2
= 0. (19.9)

Finally, by (19.6),

Ω(τj , τl+3) =

∫

kjkl

(

(k2 +m2)(|ψ̂v1|2 + |ψ̂v2|2) + ikvψ̂vc

)

dk

(k2 +m2)2 − (kv)2
+ ej · el. (19.10)

This completes the proof of (3.4)–(3.6).

C. Positivity of f1 and f2

Here we prove the inequalities used above in the proof of Lemma 15.1,

1) f1 =
( 1

M − |v|k1 − ω
+

1

M − |v|k1 + ω
− 2

M − |v|k1

)

+
( 1

M + |v|k1 − ω
+

1

M + |v|k1 + ω
− 2

M + |v|k1

)

> 0,

2) f2 =
( 1

M − |v|k1 − ω
+

1

M − |v|k1 + ω
− 2

M − |v|k1

)

−
( 1

M + |v|k1 − ω
+

1

M + |v|k1 + ω
− 2

M + |v|k1

)

> 0 (19.11)

under the conditions |v| < 2m, 0 < |ω| 6 µ = m2 − v2/4. First, let us note that every bracketed
expression is positive, since

1

b− a
+

1

b+ a
− 2

b
=

2a2

(b+ a)(b− a)b
> 0

if b − a, b + a > 0 and b > 0, and this immediately implies that f1 > 0. Next, the first summand
on the left-hand side of (19.11) is obviously not less than the second summand since |v|k1 > 0.
Therefore, f2 > 0 and f2 < f1.
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