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1 Introduction

In this paper, we establish an optimal long time decay for the solutions to 2D Klein-Gordon
equation

ψ̈(x, t) = ∆ψ(x, t) −m2ψ(x, t) − V (x)ψ(x, t), x ∈ R
2, t ∈ R, m > 0. (1.1)

in weighted energy norms. In vectorial form, equation (1.1) reads

iΨ̇(t) = HΨ(t), (1.2)

where

Ψ(t) =

(

ψ(t)

ψ̇(t)

)

, H =

(

0 i
i(∆ −m2 − V ) 0

)

(1.3)

For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R
2) the weighted Sobolev spaces introduced by Agmon,

[1], with the finite norms

‖ψ‖Hs
σ

= ‖〈x〉σ〈∇〉sψ‖L2 <∞, 〈x〉 = (1 + |x|2)1/2

We suppose that V (x) ∈ C1(R2) is a real function, and

|V (x)| + |∇V (x)| ≤ C〈x〉−β, x ∈ R
2 (1.4)

with some β > 5. Then the multiplication by V (x) is bounded operator H1
s → H1

s+β for any
s ∈ R.

We restrict ourselves to the “nonsingular case”, in the terminology of [21], where the trun-
cated resolvent of the Schrödinger operator H = −∆ + V (x) is bounded at the end points of
the continuous spectrum. In other words, the point λ = 0 is neither eigenvalue nor resonance
for the operator H .

Definition 1.1. Fσ is the Hilbert space H1
σ ⊕H0

σ of vector-functions Ψ = (ψ, π) with the norm

‖Ψ‖Fσ
= ‖ψ‖H1

σ
+ ‖π‖H0

σ
<∞ (1.5)

Our main result is the following long time decay of the solutions to (1.2): in the “nonsingular
case”, the asymptotics hold

‖PcΨ(t)‖F−σ
= O(|t|−1 log−2 |t|), t→ ±∞ (1.6)

for initial data Ψ0 = Ψ(0) ∈ Fσ with σ > 5/2 where Pc is a Riesz projector onto the continuous
spectrum of the operator H. The decay is desirable for the study of asymptotic stability and
scattering for the solutions to nonlinear hyperbolic equations. The study has been started in
90’ for nonlinear Schrödinger equation, [3, 23, 24, 25], and continued last decade [4, 5, 13].
The study has been extended to the Klein-Gordon equation in [7, 26]. Further extension need
more information on the decay for the corresponding linearized equations that stipulated our
investigation.

Let us comment on previous results in this direction. Local energy decay has been es-
tablished first in the scattering theory for linear Schrödinger equation developed since 50’ by
Birman, Kato, Simon, and others.
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For 3D Klein-Gordon equations with magnetic potential, the decay ∼ t−3/2 has been estab-
lished primarily by Vainberg [29] in local energy norms for initial data with compact support.
The results were extended to general hyperbolic partial differential equations by Vainberg
in [30]. The decay in the Lp norms for wave and Klein-Gordon equations was obtained in
[2, 6, 12, 20, 32, 33].

However, applications to asymptotic stability of solutions to the nonlinear equations also
require an exact characterization of the decay for the corresponding linearized equations in
weighted norms (see e.g. [3, 4, 5, 26]).

The decay of type (1.6) in weighted norms has been established first by Jensen and Kato
[10] for the Schrödinger equation in the dimension n = 3. The result has been extended to all
other dimensions by Jensen and Nenciu [8, 9, 11], and to more general PDEs of the Schrödinger
type by Murata [21]. The survey of the results can be found in [28].

For discrete 1D, 2D and 3D Schrödinger and Klein-Gordon equations the decay of type (1.6)
has been proved in [15, 16] and [17] respectively.

For the continuous free 3D Klein-Gordon equation, the decay (1.6) in the weighted en-
ergy norms has been proved first in [7, Lemma 18.2]. However, for the perturbed relativistic
equations, the decay was an open problem until our result [14]. The problem was that the
Jensen-Kato approach is not applicable directly to the relativistic equations. The difference
reflects distinct character of wave propagation in the relativistic and nonrelativistic equations
(see the discussion in [14, Introduction]).

In [14] the decay of type (1.6) in the weighted energy norms has been proved for the first
time for the Klein-Gordon equation in the dimension n = 3. The approach [14] develops the
Jensen-Kato techniques to make it applicable to the relativistic equations. Namely, the decay of
the low energy component of the solution follows by the Jensen-Kato techniques while the decay
for the high energy component requires novel robust ideas. This problem has been resolved in
[14] with a modified approach based on the Born series and convolution.

Here we extend our approach [14] to the dimension n = 2. The extension is not straight-
forward since the decay (1.6) violates for the free 2D Klein-Gordon equation corresponding to
V (x) = 0 when the solutions decay slow, like ∼ t−1. Hence, the decay (1.6) cannot be deduced
by perturbation arguments from the corresponding estimate for the free equation. The slow
decay is caused by the “zero resonance function” z(x) = const corresponding to the end point
λ = 0 of the continuous spectrum of the 2D Schrödinger operator −∆.

Our approach to n = 2 relies on the following two main issues.
I. First is a spectral analysis of the “bad” term, with the slow decay ∼ t−1. Namely, we

show that the bad term does not contribute to the high energy component. For example, this
is obvious in the particular case of the free Green function

G(t, x, y) =
1

2π
θ(t− |x− y|)cosm

√

t2 − |x− y|2
√

t2 − |x− y|2
∼ G0(t) :=

1

2π
θ(t)

cosmt

t
, t→ ∞ (1.7)

It is instructive to note that the asymptotics is proportional to the degenerate kernel z(x)z(y),
and its time spectrum is mainly concentrated at the frequencies ±m. Hence, the slow decay
∼ t−1 should be entirely caused by the resonance at the end point λ = 0, and the decay ∼ t−3/2

for the high energy component follows by a development of our approach [14].
II. Second, we prove the decay ∼ t−1 log−2 t for low energy component in the nonsingular case

by an appropriate development of the methods [10, 21]. Namely, we establish novel asymptotic
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expansions for the derivatives of the resolvent at the edge points of the continuous spectrum.
The first expansion in (3.2) is proved in [21, (7.21)]. However, the expansions for the derivatives
in (3.2) are new and necessary for the proof of the long time asymptotics.

Our paper is organized as follows. In Section 2 we obtain the time decay for the solution
to the free Klein-Gordon equation and state the spectral properties of the free resolvent which
follow from the corresponding known properties of the free Schrödinger resolvent. In Section 3
we obtain spectral properties of the perturbed resolvent and prove the decay (1.6). In Section
4 we apply the obtained decay to the asymptotic completeness.

2 Free Klein-Gordon equation

First, we consider the free Klein-Gordon equation:

ψ̈(x, t) = ∆ψ(x, t) −m2ψ(x, t), x ∈ R
2, t ∈ R (2.1)

In vectorial form equation (2.1) reads

iΨ̇(t) = H0Ψ(t) (2.2)

where

Ψ(t) =

(

ψ(t)

ψ̇(t)

)

, H0 =

(

0 i
i(∆ −m2) 0

)

(2.3)

2.1 Spectral properties

We state spectral properties of the free Klein-Gordon dynamical group G(t) applying known
results of [1, 10, 21] which concern the corresponding spectral properties of the free Schrödinger
dynamical group. For t > 0 and Ψ0 = Ψ(0) ∈ F0, the solution Ψ(t) to the free Klein-Gordon
equation (2.2) admits the spectral Fourier-Laplace representation

θ(t)Ψ(t) =
1

2πi

∫

R

e−i(ω+iε)tR0(ω + iε)Ψ0 dω, t ∈ R (2.4)

with any ε > 0 where θ(t) is the Heavyside function, R0(ω) = (H0−ω)−1 for ω ∈ C+ := {Imω >
0} is the resolvent of the operator H0. The representation follows from the stationary equation

ωΨ̃+(ω) = H0Ψ̃
+(ω) + iΨ0 for the Fourier-Laplace transform Ψ̃+(ω) :=

∫

R

θ(t)eiωtΨ(t)dt, ω ∈
C+. The solution Ψ(t) is continuous bounded function of t ∈ R with the values in F0 by the
energy conservation for the free Klein-Gordon equation (2.2). Hence, Ψ̃+(ω) = −iR(ω)Ψ0 is
analytic function of ω ∈ C+ with the values in F0, and bounded for ω ∈ R + iε. Therefore, the
integral (2.4) converges in the sense of distributions of t ∈ R with the values in F0. Similarly
to (2.4),

θ(−t)Ψ(t) = − 1

2πi

∫

R

e−i(ω−iε)tR0(ω − iε)Ψ0 dω, t ∈ R (2.5)
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The resolvent R0(ω) can be expressed in terms of the resolvent R0(ζ) = (−∆− ζ)−1 of the free
Schrödinger operator:

R0(ω) =

(

ωR0(ω
2 −m2) iR0(ω

2 −m2)
−i(1 + ω2R0(ω

2 −m2)) ωR0(ω
2 −m2)

)

(2.6)

The free Schrödinger resolvent R0(ζ) is an integral operator with the integral kernel

R0(ζ, x− y) =
i

4
H

(1)
0 (ζ1/2|x− y|) =

1

2π
K0(−iζ1/2|x− y|), ζ ∈ C

+, Imζ1/2 > 0, (2.7)

where H
(1)
0 is the modified Hankel function, and K0 is the Macdonald’s function.

Definition 2.1. Denote by L(B1, B2) the Banach space of bounded linear operators from a
Banach space B1 to a Banach space B2.

Now we collect the properties of R0(ζ) which are obtained in [1] and in [21]:

i) R0(ζ) is strongly analytic function of ζ ∈ C \ [0,∞) with the values in L(H−1
0 , H1

0);
ii) For ζ > 0, the convergence holds R0(ζ ± iε) → R0(ζ ± i0) as ε → 0+ in L(H−1

σ , H1
−σ) for

σ > 1/2, uniformly in ζ ≥ r for any r > 0.

Lemma 2.2. (cf.[21, formula (2.3)] and [11, formula (3.14)]) The asymptotic expansion holds

R0(ζ) = A0 log ζ +B0 + O(ζ3/4), ζ → 0, ζ ∈ C \ [0,∞) (2.8)

in the norm of L(H−1
σ ;H1

−σ) with σ > 5/2. Here A0, B0 ∈ L(H−1
σ ;H1

−σ), with σ > 1, are
operators with the kernels A0(x− y), B0(x− y) respectively, and

A0(x− y) = − 1

4π
, x, y ∈ R

2 (2.9)

Furthermore,

R′
0(ζ) = A0ζ

−1 + O(ζ−1/4), R′′
0(ζ) = −A0ζ

−2 + O(ζ−5/4), ζ → 0, ζ ∈ C \ [0,∞) (2.10)

in the norm of L(H−1
σ ;H1

−σ) with σ > 5/2.

Proof. The well known asymptotics of Macdonald’s functions [22] imply

K0(z) =− log
z

2
−γ+O(z3/2), K1(z) = z−1 +O(z1/2), K2(z) = 2z−2 +O(z−1/2), iz ∈ C

+

(2.11)
where γ is the Euler constant. Hence, (2.7) implies (2.8). Differentiating, we obtain that

R′
0(ζ, x− y) = − i

4π
ζ−1/2|x− y|K ′

0(−iζ1/2|x− y|) =
i

4π
ζ−1/2|x− y|K1(−iζ1/2|x− y|)

R′′
0(ζ, x− y) = −i|x− y|

8π ζ3/2
K1(−iζ1/2|x− y|) − |x− y|2

16π ζ

[

K0(−iζ1/2|x− y|) +K2(−iζ1/2|x− y|)
]

Hence, the asymptotics (2.10) follows.
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Let us denote Γ := (−∞,−m)∪(m,∞), and let A±
0 be the operator with the integral kernel

A±
0 (x− y) = − 1

4π

(

±m i
−im2 ±m

)

(2.12)

Then the properties i)-ii), Lemma 2.2 and formula (2.6) imply the corresponding properties of
R0(ω):

Lemma 2.3. i) The resolvent R0(ω) is strongly analytic function of ω ∈ C \ Γ with the values
in L(F0,F0).
ii) For ω ∈ Γ, the convergence holds R0(ω ± iε) → R0(ω ± i0) as ε → 0+ in L(Fσ,F−σ) with
σ > 1/2, uniformly in |ω| ≥ m+ r for any r > 0.
iii) The asymptotics hold

R0(ω) = A±
0 log(±ω −m) + B±

0 + O((±ω −m)3/4)

R′
0(ω) = A0(±ω −m)−1 + O((±ω −m)−1/4), R′′

0(ω) = −A0(±ω −m)−2 + O((±ω −m)−5/4)

as ω → ±m, ω ∈ C \ Γ in the norm of L(Fσ;F−σ) with σ > 5/2.

Finally, we state the asymptotics of R0(ω) for large ω which follow from the corresponding
asymptotics of R0. In [14] we slightly strengthen known Agmon-Jensen-Kato decay of the resol-
vent [1, (A.2’)], [10, (8.1)] for special case of free Schrödinger equation in arbitrary dimension
n ≥ 1:

Proposition 2.4. The bounds hold for s = 0, 1 and l = −1, 0, 1,

‖R(k)
0 (ζ)‖L(Hs

σ,Hs+l
−σ ) = O(|ζ |− 1−l+k

2 ), |ζ | → ∞, ζ ∈ C \ (0,∞), (2.13)

with σ > 1/2 + k for any k = 0, 1, 2, ....

Then for R0(ω) we obtain

Lemma 2.5. The bounds hold

‖R(k)
0 (ω)‖L(Fσ,F−σ) = O(1), |ω| → ∞, ω ∈ C \ Γ (2.14)

with σ > 1/2 + k for k = 0, 1, 2, ....

Proof. The asymptotics follow from representation (2.6) for R0(ω) and asymptotics (2.13) for
R0(ζ) with ζ = ω2 −m2.

Corollary 2.6. For t ∈ R and Ψ0 ∈ Fσ with σ > 1/2, the group G(t) admits the integral
representation

G(t)Ψ0 =
1

2πi

∫

Γ

e−iωt
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω (2.15)

where the integral converges in the sense of distributions of t ∈ R with the values in F−σ.

Proof. Summing up the representations (2.4) and (2.5), and sending ε→ 0+, we obtain (2.15)
by the Cauchy theorem and Lemmas 2.3 and 2.5.
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2.2 Time decay

The estimates (2.14) do not allow obtain the decay of G(t) by partial integration in (2.15). We
deduce the decay from explicit formulas. The matrix kernel of the dynamical group G(t) can
be written as G(t, x− y), where

G(t, z) =

(

Ġ(t, z) G(t, z)

G̈(t, z) Ġ(t, z)

)

, z ∈ R
2 (2.16)

Here

G(t, z) =
1

2π
θ(t− |z|)cosm

√

t2 − |z|2
√

t2 − |z|2
(2.17)

where θ is the Heavyside function. Therefore, the free Klein-Gordon group G(t) decays like t−1

that does not correspond to (1.6). We split G(t) as

G(t) = G0(t) + Gr(t)

where G0(t) is the operator with the matrix kernel

G0(t, z) :=
θ(t)

2πt





−m sinmt cosmt

−m2 cosmt −m sinmt



 , z ∈ R
2 (2.18)

Below we show that G0(t) is only term responsible for the slow decay. More exactly, in the next
section we will prove the following basic proposition

Proposition 2.7. Let σ > 5/2. Then the asymptotics hold

Gr(t) = O(t−3/2), t→ ∞ (2.19)

in the norm of L(Fσ;F−σ).

The following key observation is that the “bad term” G0(t) does not contribute to the high
energy component of the total group G(t) since (2.18) contains just two frequencies ±m which
are the end points of the continuous spectrum. This suggests that the high energy component
of the group G(t) decays faster then t−1. More precisely, let us introduce the following low
energy and high energy components of G(t):

Gl(t) =
1

2πi

∫

Γ

e−iωtl(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω (2.20)

Gh(t) =
1

2πi

∫

Γ

e−iωth(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω (2.21)

where l(ω) ∈ C∞
0 (R) is an even function, supp l ∈ [−m − 2ε,m+ 2ε], l(ω) = 1 if |ω| ≤ m + ε

with an ε > 0, and h(ω) = 1 − l(ω). In Appendix A we will prove the following lemma
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Lemma 2.8. Let σ > 5/2. Then the asymptotics hold

Gl(t) = G0(t) + O(t−7/4), t→ ∞ (2.22)

in the norm of L(Fσ;F−σ).

Now we obtain the asymptotics of Gh(t).

Theorem 2.9. Let σ > 5/2. Then the asymptotics hold

Gh(t) = O(t−3/2)), t→ ∞ (2.23)

in the norm of L(Fσ;F−σ).

Proof. We deduce asymptotics (2.23) from Proposition 2.7 and Lemma 2.8. Using (2.22) we
obtain

G(t) = Gl(t) + Gh(t) = G0(t) + Gh(t) + O(t−7/4), t→ ∞ (2.24)

in the norm of L(Fσ;F−σ). On the other hand, (2.19) implies that

G(t) = G0(t) + Gr(t) = G0(t) + O(t−3/2), t→ ∞ (2.25)

in the norm of L(Fσ;F−σ). Comparing the asymptotics (2.24) and (2.25) we obtain the asymp-
totics(2.23).

2.3 Proof of Proposition 2.7

We develop the method from the proof of [7, Lemma 18.2]. For a fixed 0 < ε < 1 we split the
initial function Ψ0 ∈ Fσ in two terms, Ψ0 = Ψ′

0,t + Ψ′′
0,t such that

‖Ψ′
0,t‖Fσ

+ ‖Ψ′′
0,t‖Fσ

≤ C‖Ψ0‖Fσ
, t ≥ 1 (2.26)

and

Ψ′
0,t(x) = 0 for |x| > εt

2
, and Ψ′′

0,t(x) = 0 for |x| < εt

4
(2.27)

We estimate Gr(t)Ψ
′
0,t and Gr(t)Ψ

′′
0,t separately.

Step i) Let us consider Gr(t)Ψ
′′
0,t = G(t)Ψ′′

0,t − G0(t)Ψ
′′
0,t. First we estimate G(t)Ψ′′

0,t using
energy conservation for the Klein-Gordon equation, and properties (2.27) and (2.26):

‖G(t)Ψ′′
0,t‖F−σ

≤ ‖G(t)Ψ′′
0,t‖F0

≤ C‖Ψ′′
0,t‖F0

≤ C1(ε)t
−σ‖Ψ′′

0,t‖Fσ
≤ C2(ε)t

−2‖Ψ0‖Fσ
, t ≥ 1

(2.28)
since σ > 2. Second we estimate G0(t)Ψ

′′
0,t. By (2.18) we get |G0(t)| ≤ C/t for t ≥ 1. Hence,

for the second component π′′
0,t of vector-function Ψ′′

0,t, we obtain by Cauchy inequality

|(Gi2
0 (t)π′′

0,t)(y)| =
∣

∣

∣
Gi2

0 (t)

∫

π′′
0,t(x)dx

∣

∣

∣
≤ C

t

(

∫

|π′′
0,t(x)|2(1 + |x|2)σdx

)
1

2
(

∫

|x|>εt/4

dx

(1 + |x|2)σ

)
1

2

≤ C3(ε)

t
t−σ+1‖π′′

0,t(x)‖H0
σ

= C3(ε)t
−2‖π′′

0,t(x)‖H0
σ
, i = 1, 2
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since σ > 2. Hence

‖Gi2
0 (t)π′′

0,t‖H1
−σ

≤ C3(ε)t
−3‖π′′

0,t(x)‖H0
σ
, i = 1, 2

The first component of vector-function Ψ′′
0,t can be estimated similarly. Therefore,

‖G0(t)Ψ
′′
0,t‖F−σ

≤ C4(ε)t
−2‖Ψ0‖Fσ

, t ≥ 1 (2.29)

and (2.28)-(2.29) imply that

‖Gr(t)Ψ
′′
0,t‖F−σ

≤ C5(ε)t
−2‖Ψ0‖Fσ

, t ≥ 1 (2.30)

Step ii) Now we consider Gr(t)Ψ
′
0,t = G(t)Ψ′

0,t − G0(t)Ψ
′
0,t. Let us split the operator Gr(t), for

t ≥ 1, in two terms:
Gr(t) = (1 − ζ)Gr(t) + ζGr(t)

where ζ is the operator of multiplication by the function ζ(|x|/t) such that ζ = ζ(s) ∈ C∞
0 (R),

ζ(s) = 1 for |s| < ε/4, ζ(s) = 0 for |s| > ε/2. Obviously, for any α, we have

|∂α
x ζ(|x|/t)| ≤ C <∞, t ≥ 1

Furthermore, 1 − ζ(|x|/t) = 0 for |x| < εt/4, then

||(1 − ζ)G(t)Ψ′
0,t||F−σ

≤ C6(ε)t
−σ||(1 − ζ)G(t)Ψ′

0,t||F0
≤ C7(ε)t

−σ||G(t)Ψ′
0,t||F0

Hence, by the energy conservation and (2.26), we obtain

||(1 − ζ)G(t)Ψ′
0,t||F−σ

≤ C8(ε)t
−σ||Ψ′

0,t||F0
≤ C9(ε)t

−σ||Ψ′
0,t||Fσ

≤ C10(ε)t
−2||Ψ0||Fσ

, t ≥ 1
(2.31)

since σ > 2.
Further, for the second component π′

0,t of vector-function Ψ′
0,t, we obtain by Cauchy inequality

|(Gi2
0 (t)π′

0,t)(y)| ≤
C

t
‖π′

0,t(x)‖H0
σ
, i = 1, 2

Hence,

‖(1 − ζ)Gi2
0 (t)π′

0,t‖H1
−σ

≤ C

t
‖π′

0,t(x)‖H0
σ

(

∫

|y|>εt/4

dy

(1 + |y|2)σ

)
1

2 ≤ C11(ε)t
−2‖π′

0,t(x)‖H0
σ
, i = 1, 2

The first component of vector-function Ψ′
0,t can be estimate similarly. Therefore,

||(1 − ζ)G0(t)Ψ
′
0,t||F−σ

≤ C12(ε)t
−2||Ψ0||Fσ

, t ≥ 1 (2.32)

and then (2.31)-(2.32) imply

||(1 − ζ)Gr(t)Ψ
′
0,t||F−σ

≤ C13(ε)t
−2||Ψ0||Fσ

, t ≥ 1 (2.33)

Step iii) Finally, let us estimate ζGr(t)Ψ
′
0,t. Let χεt/2 be the characteristic function of the
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ball |x| ≤ εt/2. We will use the same notation for the operator of multiplication by this
characteristic function. By (2.27), we have

ζGr(t)Ψ
′
0,t = ζGr(t)χεt/2Ψ

′
0,t (2.34)

The matrix kernel of the operator ζGr(t)χεt/2 is equal to

G′
r(x− y, t) = ζ(|x|/t)Gr(x− y, t)χεt/2(y)

Lemma 2.10. For any ε ∈ (0, 1) the bounds hold

|∂α
z Gr(t, z)| ≤ C(ε)t−3/2|z|3/2 |z| ≤ εt, t ≥ 1, |α| ≤ 1 (2.35)

We prove the lemma in Appendix B.
Since ζ(|x|/t) = 0 for |x| > εt/2 and χεt/2(y) = 0 for |y| > εt/2, the estimate (2.35) implies
that

|∂α
xG′

r(x− y, t)| ≤ Ct−3/2|z|3/2, |α| ≤ 1, t ≥ 1 (2.36)

The norm of the operator ζGr(t)χεt/2 : Fσ → F−σ is equivalent to the norm of the operator

〈x〉−σζGr(t)χεt/2(y)〈y〉−σ : F0 → F0

The norm of the later operator does not exceed the sum in α, |α| ≤ 1 of the norms of operators

∂α
x [〈x〉−σζGr(t)χεt/2(y)〈y〉−σ] : L2(R2) ⊕ L2(R2) → L2(R2) ⊕ L2(R2) (2.37)

The estimates (2.36) imply that operators (2.37) are Hilbert-Schmidt operators since σ > 5/2,
and their Hilbert-Schmidt norms do not exceed Ct−3/2. Hence, (2.26) and (2.34) imply that

||ζGr(t)Ψ
′
0,t||F−σ

≤ Ct−3/2||Ψ′
0,t||Fσ

≤ Ct−3/2||Ψ0||Fσ
, t ≥ 1 (2.38)

Finally, the estimates (2.38), (2.33) imply

||Gr(t)Ψ
′
0,t||F−σ

≤ Ct−3/2||Ψ0||Fσ
, t ≥ 1 (2.39)

Proposition 2.7 is proved.

3 Perturbed Klein-Gordon equation

To prove the long time decay for the perturbed Klein-Gordon equation, we first establish the
spectral properties of the generator.

3.1 Spectral properties

According [21, formula (3.1)], let us introduce a generalized eigenspace M for the perturbed
Schrödinger operator H = −∆ + V :

M = {ψ ∈ H1
−1/2−0 : (1 +B0V )ψ ∈ ℜ(A0), A0V ψ = 0}

Where A0 and B0 are defined in (2.8), and ℜ(A0) is the range of A0.
Below we assume that

M = 0 (3.1)
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Remark 3.1. N(H) ⊂ M where N(H) is the zero eigenspace of the operator H. This embed-
ding is obtained in [21, Lemma 3.2]. The functions from M \N(H) are called zero resonance
functions. Hence, the condition ( 3.1) means that λ = 0 is neither eigenvalue nor resonance for
the operator H.

The condition (3.1) corresponds to the “nonsingular case” in [21, Section 7].
Denote by R(ζ) = (H − ζ)−1, ζ ∈ C \ [0,∞), the resolvent of the Schrödinger operator H . Let
us collect the properties of R(ζ) which are obtained in [1, 10, 21] under conditions (1.4) and
(3.1). Note, that in [10] is considered 3D case, but corresponding properties can be proved in
2D case similarly.

R1. R(ζ) is strongly meromorphic function of ζ ∈ C \ [0,∞) with the values in L(H−1
0 , H1

0);
the poles of R(ζ) are located at a finite set of eigenvalues ζj < 0, j = 1, ..., N , of the operator

H with the corresponding eigenfunctions ψj(x)
1, ...ψ

kj

j ∈ H2
s with any s ∈ R where kj is the

multiplicity of ζj.
R2. For ζ > 0, the convergence holds R(ζ ± iε) → R(ζ ± i0) as ε → 0+ in L(H−1

σ , H1
−σ)

with σ > 1/2, uniformly in ζ ≥ ρ for any ρ > 0 (cf. [10, Lemma 9.1]). Now we obtain the
asymptotics for R(ζ), R′(ζ) and R′′(ζ) at ζ = 0.

Proposition 3.2. Under the conditions ( 1.4) and ( 3.1) the asymptotics hold

R(ζ) = A1 + A2 log−1 ζ + O(log−2 ζ)
R′(ζ) = −A2ζ

−1 log−2 ζ + O(ζ−1 log−3 ζ)
R′′(ζ) = O(ζ−2 log−2 ζ)

∣

∣

∣

∣

∣

∣

ζ → 0, ζ ∈ C \ [0,∞) (3.2)

in the norms of L(H−1
σ , H1

−σ) with σ > 5/2.

We deduce Proposition 3.2 from the following three lemmas. The first lemma is proved in
[21].

Lemma 3.3. [[21, Theorem 7.2]] The family {R(ζ), |ζ | < ε, ζ ∈ C \ [0,∞)} is bounded in the
operator norm of L(H−1

σ , H1
−σ) for any σ > 1 and sufficiently small ε > 0.

Corollary 3.4. For any 1 < σ < β/2, the operators (1 + R0(ζ)V )−1 = 1 − R(ζ)V and
(1 + V R0(ζ))

−1 = 1− V R(ζ) are bounded respectively in L(H1
−σ, H

1
−σ) and in L(H−1

σ , H−1
σ ) for

|ζ | < ε, ζ ∈ C \ [0,∞) and sufficiently small ε > 0.

Lemma 3.5. i) The bound holds

‖(1 +R0(λ)V )−1[1]‖H1
−σ

= O(log−1 ζ), ζ → 0, ζ ∈ C \ [0,∞), σ > 5/2 (3.3)

where 1 stands for the constant function f(x) ≡ 1.
ii) For any f ∈ H−1

σ with σ > 5/2

∫

[(1 + V R0(ζ))
−1f ](y)dy = O(log−1 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.4)
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Proof. The asymptotics (2.8) implies

R(ζ) = (1 +R0(ζ)V )−1R0(ζ) = (1 +R0(ζ)V )−1[A0 log ζ +B0 + O(ζ3/4]
R(ζ) = R0(ζ)(1 + V R0(ζ))

−1 = [A0 log ζ +B0 + O(ζ3/4)](1 + V R0(ζ))
−1 (3.5)

Hence, the boundedness R(ζ), (1+R0(ζ)V )−1 and (1+V R0(ζ))
−1 at ζ = 0 in the corresponding

norms imply the bounds

(1 +R0(ζ)V )−1A0 = O(log−1 ζ), A0(1 + V R0(ζ))
−1 = O(log−1 ζ), ζ → 0, ζ ∈ C \ [0,∞)

in L(H−1
σ , H1

−σ) with σ > 5/2. Then (3.3) and (3.4) follow by (2.9).

Now we obtain the bounds for the first and second derivatives of R(ζ) at ζ = 0.

Lemma 3.6. The bounds hold

R′(ζ) = O(ζ−1 log−2 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.6)

R′′(ζ) = O(ζ−2 log−2 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.7)

in the norm L(H−1
σ , H1

−σ) with σ > 5/2.

Proof. The statement follow from the bounds (2.10), (3.3)-(3.4) and the identities

R′ = (1 +R0V )−1R′
0(1 + V R0)

−1, R′′ =
[

(1 +R0V )−1R′′
0 − 2R′V R′

0

]

(1 + V R0)
−1 (3.8)

Proof of Proposition 3.2. Integrating (3.6), we obtain

R(ζ) = A1 + O(log−1 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.9)

in the norm L(H−1
σ , H1

−σ) with σ > 5/2. Therefore we can refine the bounds (3.3) and (3.4).
Namely, formulas (3.5) and asymptotics (3.9) imply

(1 +R0(λ)V )−1A0 = D1 log−1 ζ +O(log−2 ζ), A0(1 + V R0(ζ))
−1 = D2 log−1 ζ +O(log−2 ζ),

(3.10)
as ζ → 0, ζ ∈ C \ [0,∞) in the norm L(H−1

σ , H1
−σ) with σ > 5/2. Applying (3.10) to (3.8), we

obtain by (2.8)

R′(ζ) = −A2ζ
−1 log−2 ζ + O(ζ−1 log−3 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.11)

in the norm L(H−1
σ , H1

−σ) with σ > 5/2. Finally, integrating (3.11), we obtain

R(ζ) = A1 + A2 log−1 ζ + O(log−2 ζ), ζ → 0, ζ ∈ C \ [0,∞) (3.12)

in the norm L(H−1
σ , H1

−σ) with σ > 5/2. Proposition 3.2 is proved.

Further, the resolvent R(ω) = (H− ω)−1, can be expressed similarly to (2.6):

R(ω) =

(

ωR(ω2 −m2) iR(ω2 −m2)
−i(1 + ω2R(ω2 −m2)) ωR(ω2 −m2)

)

. (3.13)

Hence, the properties R1-R2 and Proposition 3.2 imply the corresponding properties of R(ω):
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Lemma 3.7. Let the potential V satisfy ( 1.4) and ( 3.1). Then
i) R(ω) is strongly meromorphic function of ω ∈ C \ Γ with the values in L(F0,F0);
ii) The poles of R(ω) are located at a finite set

Σ = {ω±
j = ±

√

m2 + ζj, j = 1, ..., N}

of eigenvalues of the operator H with the corresponding eigenfunctions

(

ψk
j (x)

iω±
j ψ

k
j (x)

)

, k =

1, ...kj;
iii) For ω ∈ Γ, the convergence holds R(ω ± iε) → R(ω ± i0) as ε → 0+ in L(Fσ,F−σ) for
σ > 1/2, uniformly in |ω| ≥ m+ r for any r > 0.
iv) The asymptotics hold in the norm of L(Fσ;F−σ) with σ > 5/2

R(ω) = A±
1 + A±

2 log−1(ω ∓m) + O(log−2(ω ∓m))

R′(ω) = −A±
2 (ω ∓m)−1 log−2(ω ∓m) + O

(

(ω ∓m)−1 log−3(ω ∓m)
)

(3.14)

R′′(ω) = O
(

(ω ∓m)−2 log−2(ω ∓m)
)

as ω → ±m, ω ∈ C \ Γ.

Finally, we obtain the asymptotics of R(ω) for large ω.

Lemma 3.8. Let the potential V satisfy ( 1.4). Then for s = 0, 1 and l = −1, 0, 1 with
s+ l ∈ {0, 1} we have

‖R(k)(ζ)‖L(Hs
σ,Hs+l

−σ ) = O(|ζ |− 1−l+k
2 ), |ζ | → ∞, ζ ∈ C \ [0,∞) (3.15)

with σ > 1/2 + k for k = 0, 1, 2.

Proof. The lemma follows from [14, Proposition A1] by the arguments from the proof of The-
orem 9.2 in [10], where the bounds are proved for s = 0 and l = 0, 1.

Hence (3.13) implies

Corollary 3.9. Let the potential V satisfy ( 1.4). Then the bounds hold

‖R(k)(ω)‖L(Fσ,F−σ) = O(1), |ω| → ∞, ω ∈ C \ Γ (3.16)

with σ > 1/2 + k for k = 0, 1, 2.

Further, let us denote by V the matrix

V =

(

0 0
−iV 0

)

. (3.17)

Then the vectorial equation (1.2) reads

iΨ̇(t) = (H0 + V)Ψ(t) (3.18)

The resolvents R(ω), R0(ω) are related by the Born perturbation series

R(ω) = R0(ω) −R0(ω)VR0(ω) + R0(ω)VR0(ω)VR(ω), ω ∈ C \ [Γ ∪ Σ] (3.19)

which follows by iteration of R(ω) = R0(ω)−R0(ω)VR(ω). An important role in (3.19) plays
the product W(ω) := VR0(ω)V. We obtain the asymptotics of W(ω) for large ω.
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Lemma 3.10. Let k = 0, 1, 2, and the potential V satisfy ( 1.4) with β > 1/2 + k + σ where
σ > 0. Then the asymptotics hold

‖W(k)(ω)‖L(F−σ,Fσ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ Γ (3.20)

Proof. Bounds (3.20) follow from the algebraic structure of the matrix

W(k)(ω) = VR(k)
0 (ω)V =

(

0 0
−iV ∂k

ωR0(ω
2 −m2)V 0

)

(3.21)

since (2.13) with s = 1 and l = −1 implies that

‖V R(k)
0 (ζ)V f‖H0

σ
≤ C‖R(k)

0 (ζ)V f‖H0
σ−β

= O(|ζ |−1− k
2 )‖V f‖H1

β−σ
= O(|ζ |−1− k

2 )‖f‖H1
−σ

for 1/2 + k < β − σ.

3.2 Time decay

In this section we combine the spectral properties of the perturbed resolvent and time decay
for the unperturbed dynamics using the (finite) Born perturbation series. Our main result is
the following.

Theorem 3.11. Let the potential V satisfy ( 1.4) and ( 3.1). Then

‖e−itH −
∑

ωJ∈Σ

e−iωJ tPj‖L(Fσ ,F−σ) = O(|t|−1 log−2 |t|), t→ ±∞ (3.22)

with σ > 5/2, where Pj are the Riesz projectors onto the corresponding eigenspaces.

Proof. Step i) Lemma 3.7 iii) and asymptotics (3.14) and (3.16) with k = 0 imply similarly to
(2.15), that

Ψ(t) −
∑

ωJ∈Σ

e−iωjtPJΨ0 =
1

2πi

∫

Γ

e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω = Ψl(t) + Ψh(t) (3.23)

where PJ stands for the corresponding Riesz projector

PjΨ0 := − 1

2πi

∫

|ω−ωJ |=δ

R(ω)Ψ0dω

with a small δ > 0, and

Ψl(t) =
1

2πi

∫

Γ

l(ω)e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω

Ψh(t) =
1

2πi

∫

Γ

h(ω))e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω

where l(ω) and h(ω) are defined in Section 2.2. Further we analyze Ψl(t) and Ψh(t) separately.



Long time decay for 2D Klein-Gordon equation 14

3.2.1 Time decay of Ψl(t)

We consider only the integral over (m,m+2ε). The integral over (−m−2ε,−m) deal with the
same way. We prove the desired decay of Ψl(t) using a special case of Lemma 10.2 from [10].

Lemma 3.12. Assume B be a Banach space, and F ∈ C(a, b;B) satisfies F (a) = 0 and F (ω) =
0 for ω > b > a, F ′ ∈ L1(a+δ, b;B) for any δ > 0. Moreover, F ′(ω) = O((ω−a)−1 ln−3(ω−a))
as well as F ′′(ω) = O((ω − a)−2 log−2(ω − a)) as ω → +a. Then

∞
∫

a

e−itωF (ω)dω = O(t−1 ln−2 t), t→ ∞

Proof. Extending F by F (ω) = 0 for ω < a, we obtain a function F on (−∞,∞) with F ′ ∈
L1(−∞,∞;B). For t > 0 we have

∞
∫

−∞

F ′(ω)e−itωdω = −1

2

∞
∫

−∞

(F ′(ω +
π

t
) − F ′(ω))e−itωdω (3.24)

Finally,

∞
∫

−∞

‖F ′(ω +
π

t
) − F ′(ω)‖dω =

a+π/t
∫

−∞

...+

∞
∫

a+π/t

... ≤ 2

a+2π/t
∫

a

‖F ′(ω)‖dω +

∞
∫

a+π/t

dω

ω+π/t
∫

ω

‖F ′′(µ)‖dµ

= O(ln−2 t) +
π

t

∞
∫

a+π/t

‖F ′′(µ)‖dµ = O(ln−2 t) (3.25)

Therefore, (3.24) implies that the Fourier transform of F ′ is O(ln−2 t), and hence the Fourier
transform of F is O(t−1 ln−2 t) as t→ ∞.

Due to (3.14), we can apply Lemma 3.12 with F = l(ω)
(

R(ω + i0) − R(ω − i0)
)

, B =
L(Fσ,F−σ), a = m, b = m+ 2ε with a small ε > 0 and σ > 5/2, to get

‖Ψl(t)‖F−σ
≤ C‖Ψ0‖Fσ

(1 + |t|)−1 log−2(1 + |t|), t ∈ R, σ > 5/2 (3.26)

3.2.2 Time decay of Ψh(t)

Let us substitute the series (3.19) into the spectral representation for Ψh(t):

Ψh(t) =
1

2πi

∫

Γ

e−iωth(ω)
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω (3.27)

+
1

2πi

∫

Γ

e−iωth(ω)
[

R0(ω + i0)VR0(ω + i0) −R0(ω − i0)VR0(ω − i0)
]

Ψ0 dω

+
1

2πi

∫

Γ

e−iωth(ω)
[

R0VR0VR(ω + i0) −R0VR0VR(ω − i0)
]

Ψ0 dω

= Ψh1(t) + Ψh2(t) + Ψh3(t), t ∈ R
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Further we analyze each term Ψhk separately.
Step i) The first term Ψh1(t) = Gh(t)Ψ0 by (2.21). Hence, Theorem 2.9 implies that

‖Ψh1(t)‖F−σ
≤ C‖Ψ0‖Fσ

(1 + |t|)3/2
, t ∈ R, σ > 5/2 (3.28)

Step ii) Let us consider the second term Ψh2(t). Denote h1(ω) =
√

h(ω) (we can assume that
h(ω) ≥ 0 and h1 ∈ C

∞
0 (R)). Let us set

Φh1 =
1

2πi

∫

Γ

e−iωth1(ω)
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω

It is obvious that for Φh1 the inequality (3.28) also holds. Namely,

‖Φh1(t)‖F−σ
≤ C‖Ψ0‖Fσ

(1 + |t|)3/2
, t ∈ R, σ > 5/2 (3.29)

Now the second term Ψh2(t) can be rewritten as a convolution.

Lemma 3.13. The convolution representation holds

Ψh2(t) = i

t
∫

0

Gh(t− τ)VΦh1(τ) dτ, t ∈ R (3.30)

where the integral converges in F−σ with σ > 5/2.

Proof. Then the term Ψh2(t) can be rewritten as

Ψh2(t) =
1

2πi

∫

R

e−iωth2
1(ω)

[

R0(ω + i0)VR0(ω + i0) −R0(ω − i0)VR0(ω − i0)
]

Ψ0 dω. (3.31)

Let us integrate the first term in the right hand side of (3.31), denoting

G±
h (t) := θ(±t)Gh(t), Φ±

h1(t) := θ(±t)Φh1(t), t ∈ R.

We know that h1(ω)R0(ω+ i0)Ψ0 = iΦ̃+
h1(ω), hence integrating the first term in the right hand

side of (3.31), we obtain that

Ψ+
h2(t) =

1

2π

∫

R

e−iωth1(ω)R0(ω + i0)VΦ̃+
h1(ω) dω

=
1

2π

∫

R

e−iωth1(ω)R0(ω + i0)V
[

∫

R

eiωτΦ+
h1(τ)dτ

]

dω

=
1

2π
(i∂t + i)2

∫

R

e−iωt

(ω + i)2
h1(ω)R0(ω + i0)V

[

∫

R

eiωτΦ+
h1(τ)dτ

]

dω. (3.32)
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The last double integral converges in F−σ with σ > 5/2 by (3.29), Lemma 2.3 ii), and (2.14)
with k = 0. Hence, we can change the order of integration by the Fubini theorem. Then we
obtain that

Ψ+
h2(t) = i

∫

R

G+
h (t− τ)VΦ+

h1(τ)dτ =







i

∫ t

0

Gh(t− τ)VΦh1(τ)dτ , t > 0

0 , t < 0
(3.33)

since

G+
h (t− τ) =

1

2πi

∫

R

e−iω(t−τ)h1(ω)R0(ω + i0) dω (3.34)

=
1

2πi
(i∂t + i)2

∫

R

e−iω(t−τ)

(ω + i)2
h1(ω)R0(ω + i0) dω

by (2.4). Similarly, integrating the second term in the right hand side of (3.31), we obtain

Ψ−
h2(t) = i

∫

R

G−
h (t− τ)VΦ−

h1(τ)dτ =







0 , t > 0

i

∫ t

0

Gh(t− τ)VΦh1(τ)dτ , t < 0
(3.35)

Now (3.30) follows since Ψh2(t) is the sum of two expressions (3.33) and (3.35).

Further, for sufficiently small δ > 0 let us consider σ ∈ (5/2, β/2]. Applying Theorem 2.9
with h1 instead of h to the integrand in (3.30), we obtain that

‖Gh(t− τ)VΦh1(τ)‖F−σ
≤ C‖VΦh1(τ)‖Fσ

(1 + |t− τ |)3/2
≤ C‖Φh1(τ)‖F−σ

(1 + |t− τ |)3/2
≤ C‖Ψ0‖Fσ

(1 + |t− τ |)3/2(1 + |τ |)3/2

Therefore integrating here in τ , we obtain by (3.30) that

‖Ψh2(t)‖F−σ
≤ C‖Ψ0‖Fσ

(1 + |t|)3/2
, t ∈ R, σ > 5/2. (3.36)

Step iv) Finally, let us rewrite the last term as

Ψh3(t) =
1

2πi

∫

Γ

e−iωth(ω)N (ω)Ψ0 dω,

where N := M(ω + i0) −M(ω − i0) for ω ∈ Γ, and

M(ω) = R0(ω)VR0(ω)VR(ω) = R0(ω)W(ω)R(ω), ω ∈ C \ [Γ ∪ Σ] (3.37)

Now we obtain the asymptotics of M(ω) and its derivatives for large ω.

Lemma 3.14. For k = 0, 1, 2 the asymptotics hold

‖M(k)(ω)‖L(Fσ,F−σ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ Γ, σ > 1/2 + k (3.38)
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Proof. The asymptotics (3.38) follow from the asymptotics (2.14), (3.16) and (3.20) for R(k)
0 (ω),

R(k)(ω) and W(k)(ω). For example, let us consider the case k = 2. Differentiating (3.37), we
obtain

M′′ = R′′
0WR + R0W ′′R + R0WR′′ + 2R′

0W ′R + 2R′
0WR′ + 2R0W ′R′ (3.39)

For a fixed σ > 5/2, let us choose σ′ ∈ (5/2, min{σ, β−1/2}). Then for the first term in (3.39)
we obtain by (3.16) and (3.20)

‖R′′
0(ω)W(ω)R(ω)f‖F−σ

≤ ‖R′′
0(ω)W(ω)R(ω)f‖F

−σ′
≤ C‖W(ω)R(ω)f‖Fσ′

= O(|ω|−2)‖R(ω)f‖F
−σ′

= O(|ω|−2)‖f‖Fσ′
= O(|ω|−2)‖f‖Fσ

, |ω| → ∞, ω ∈ C \ Γ

Other terms can be estimated similarly choosing an appropriate value of σ′. Namely, σ′ ∈
(1/2, min{σ, β − 5/2}) for the second term, σ′ ∈ (5/2, min{σ, β − 1/2}) for the third, σ′ ∈
(3/2, min{σ, β − 3/2}) for the forth and sixth terms, and σ′ ∈ (3/2, min{σ, β − 1/2}) for the
fifth term.

Now we prove the decay of Ψh3(t). By Lemma 3.14

(hN )′′ ∈ L1((−∞,−m− 1) ∪ (m+ 1,∞);L(Fσ,F−σ))

with σ > 5/2. Hence, two times partial integration implies that

‖Ψh3(t)‖F−σ
≤ C‖Ψ0‖Fσ

(1 + |t|)2
, t ∈ R

This completes the proof of Theorem 3.11.

Corollary 3.15. The asymptotics ( 3.22) imply ( 1.6) with the projector

Pc = 1 − Pd, Pd =
∑

ωJ∈Σ

PJ (3.40)

4 Application to the asymptotic completeness

We apply the obtained results to prove the asymptotic completeness which follows by standard
Cook’s argument. Let us note that the asymptotic completeness is proved in [19, 27, 31] by
another methods for more general Klein-Gordon equations with an external Maxwell field. Our
results give some refinement to the estimate of the remainder term.

Theorem 4.1. Let conditions ( 1.4) and ( 3.1) hold. Then
i) For solution to ( 1.2) with any initial function Ψ(0) ∈ F0, the following long time asymptotics
hold,

Ψ(t) =
∑

ωJ∈Σ

e−iωJ tΨJ + U0(t)Φ± + r±(t) (4.1)

where Ψj are the corresponding eigenfunctions, Φ± ∈ F0 are the scattering states, and

‖r±(t)‖F0
→ 0, t→ ±∞ (4.2)

ii) Furthermore,
‖r±(t)‖F0

= O(log−1 |t|) (4.3)

if Ψ(0) ∈ Fσ with σ > 5/2.
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Proof. First let us denote Xd := PdF0 and Xc := PcF0. For Ψ(0) ∈ Xd the asymptotics (4.1)
obviously hold with Φ± = 0 and r±(t) = 0. Hence, it remains to prove for Ψ(0) ∈ Xc the
asymptotics

Ψ(t) = U0(t)Φ± + r±(t) (4.4)

with the remainder satisfying (4.2). Moreover, it suffices to prove the asymptotics (4.4), (4.3)
for Ψ(0) ∈ Xc ∩ Fσ where σ > 5/2 since the space Fσ is dense in Xc, while the group U0(t) is
unitary in F0 after a suitable modification of the norm. In this case Theorem 3.11 implies the
decay

‖Ψ(t)‖F−σ
≤ C(1 + |t|)−1 log−2(1 + |t|)‖Ψ(0)‖Fσ

, t→ ±∞ (4.5)

The function Ψ(t) satisfies the equation (3.18),

iΨ̇(t) = (H0 + V)Ψ(t)

Hence, the corresponding Duhamel equation reads

Ψ(t) = U0(t)Ψ(0) +

t
∫

0

U0(t− τ)VΨ(τ)dτ, t ∈ R (4.6)

Finally, let us rewrite (4.6) as

Ψ(t) = U0(t)
[

Ψ(0) +

±∞
∫

0

U0(−τ)VΨ(τ)dτ
]

−
±∞
∫

t

U0(t− τ)VΨ(τ)dτ = U0(t)Φ± + r±(t) (4.7)

It remains to prove that Φ± ∈ F0 and (4.3) holds. Let us consider the sign ′′+′′ for the
concreteness. The “unitarity” of U0(t) in F0, the condition (1.4) and the decay (3.22) imply
that for σ′ ∈ (5/2,min{σ, β}]

∞
∫

0

‖U0(−τ)VΨ(τ)‖F0
dτ ≤ C

∞
∫

0

‖VΨ(τ)‖F0
dτ ≤ C1

∞
∫

0

‖Ψ(τ)‖F
−σ′
dτ (4.8)

≤ C2

∞
∫

0

(1 + τ)−1 log−2(1 + τ)‖Ψ(0)‖Fσ
dτ <∞

since |V (x)| ≤ C〈x〉−β ≤ C〈x〉−σ′

. Hence, Φ+ ∈ F0. The estimate (4.3) follows similarly.

A Appendix A: Proof of Lemma 2.8

For any operator A ∈ L(H−1
σ ;H1

−σ) we denote ReA := (A + A∗)/2 and ImA := (A − A∗)/2i.
Step i) First, we obtain a representation for the matrix kernel Gl(t, z). Formula (2.20) implies
that

Gl(t) =
1

2πi

∫

Γ

l(ω)

(

ω i
−iω2 ω

)

e−iωt
(

P0(ω + i0) − P0(ω − i0)
)

dω
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where P0(ω) = R0(ω
2 −m2). Using the identity

R0(ζ − i0) = R∗
0(ζ + i0), for ζ ∈ R, (A.1)

we obtain that P0(ω − i0) = P ∗
0 (ω + i0), and then

Gl(t) =
1

π

∫

Γ

l(ω)

(

ω i
−iω2 ω

)

e−iωtImP0(ω + i0)dω

=
1

π

∞
∫

m

l(ω)
[

(

ω i
−iω2 ω

)

e−iωtImP0(ω + i0) +

(

−ω i
−iω2 −ω

)

eiωtImP0(−ω + i0)
]

dω

Applying (A.1) again, we have P0(−ω + i0) = P ∗
0 (ω + i0). Hence,

Gl(t) =
2

π
Re

∞
∫

m

l(ω)

(

ω i
−iω2 ω

)

e−iωtImP0(ω + i0)dω (A.2)

Step ii) Second, we obtain the asymptotics for ImP0(ω+ i0, z). Using (2.8) and (2.10), we have

ImP0(ω + i0) = Op[
1

4
] + r(ω), ω ∈ R (A.3)

r(ω) = O((ω −m)3/4), r′(ω) = O((ω −m)−1/4), r′′(ω) = O((ω −m)−5/4), ω → m+ 0
(A.4)

in the norm of L(Fσ;F−σ) with σ > 5/2.
Step iii) Further, let us consider the contribution of the first term from (A.3) into the RHS of
(A.2). We verify that for any N = 2, 3, ...

1

2π
Re

∞
∫

m

l(ω)

(

ω i
−iω2 ω

)

e−iωtdω = G0(t) + O(t−N ), t→ ∞ (A.5)

Indeed, using N times integration by parts, we obtain that

∞
∫

m

e−iωtl(ω)dω =
e−imt

it
+

1

it

∞
∫

0

e−iωtζ ′1(ω)dω =
e−imt

it
+ O(t−N ), t→ ∞ (A.6)

since l(m) = 1, l(k)(m) = 0, k = 1, 2, .... Hence,

1

2π
Re

∞
∫

m

l(ω)

(

ω i
−iω2 ω

)

e−iωtdω =
1

2π
Re

[

e−imt

(

m i
−im2 m

)

1

it

]

+ O(t−N), t→ ∞,

which implies (A.5).
Step iv) Finally, we prove that contributions of the remainder r(ω) into RHS of (A.2) is O(t−7/4).
It follows from the following lemma similar to Lemma 3.12 (cf. also Lemma 10.2 from [10])
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Lemma A.1. Assume B be a Banach space, and F ∈ C(a, b;B) satisfies F (a) = 0 and F (ω) =
0 for ω ≥ b > a, F ′ ∈ L1(a + δ, b;B) for any δ > 0. Moreover, F ′(ω) = O((ω − a)−1/4 as well
as F ′′(ω) = O((ω − a)−5/4 as ω → +a. Then

∞
∫

a

e−itωF (ω)dω = O(t−7/4), t→ ∞

B Appendix B: Proof of Lemma 2.10

Here we prove Lemma 2.10. Differentiating G(t, z), we obtain for |z| < t

Ġ(t, z) = −mt
2π

sinm
√

t2 − |z|2
t2 − |z|2 − t

2π

cosm
√

t2 − |z|2
√

(t2 − |z|2)3
,

G̈(t, z) = −m

2π

sinm
√

t2 − |z|2
t2 − |z|2 − m2t2

2π

cosm
√

t2 − |z|2
√

(t2 − |z|2)3
+

3mt2

2π

sinm
√

t2 − |z|2
(t2 − |z|2)2

− 1

2π

cosm
√

t2 − |z|2
√

(t2 − |z|2)3
+

3t2

2π

cosm
√

t2 − |z|2
√

(t2 − |z|2)5

Hence, (2.16) imply
G(t, z) = G̃0(t, z) + G̃r(t, z),

where

G̃0(t, z) :=
θ(t− |z|)

2π















−mt sinm
√

t2 − |z|2
t2 − |z|2

cosm
√

t2 − |z|2
√

t2 − |z|2

−m
2t2 cosm

√

t2 − |z|2
√

(t2 − |z|2)3
−mt sinm

√

t2 − |z|2
t2 − |z|2















,

and for ε ∈ (0, 1) we have

|∂α
z G̃r(t, z)| ≤ C(ε)t−2, |z| ≤ εt, |α| ≤ 1

It remains to prove the bounds of type (2.35) for the difference Q(t, z) = G̃0(t, z) − G0(t). Let
us consider the entry Q12(t, z). Applying the Lagrange formula, we obtain

|Q12(t, z)| =
1

2π

∣

∣

∣

cosm
√

t2 − |z|2
√

t2 − |z|2
− cosmt

t

∣

∣

∣
≤ C(ε)|z|2t−2 ≤ C(ε)|z|3/2t−3/2, |z| ≤ εt (B.7)

Differentiating Q12(t, z) we obtain for |z| < t

∂zj
Q12(t, z) =

zj

2π

[ 1

2
√

(t2 − |z|2)3
cosm

√
t2 − z2 +

m

t2 − |z|2 sinm
√

t2 − |z|2
]

, j = 1, 2

Hence,
|∂zj

Q12(t, z)| ≤ C(ε)|z| t−2, |z| ≤ εt, j = 1, 2 (B.8)

Other entries Qij(t, z) also admit the estimates of type (B.7)-(B.8). Hence, the lemma follow
since Gr(t) = G̃r(t) +Q(t, z).
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