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1 Introduction

In this paper we establish the long-time behavior of solutions to the discrete two dimen-
sional Schrödinger and Klein-Gordon equations. We extend a general strategy introduced
by Vainberg [19], Jensen-Kato [10] and Murata [13] concerning the wave, Klein-Gordon
and Schrödinger equations, to the discrete case. Namely, we establish the smoothness of
the resolvent of a stationary problem at the nonsingular points of continuous spectrum,
and a generalised ‘Puiseux expansion’ at the singular points which are critical values of
the symbol. Then, the long-time asymptotics can be obtained by means of the (inverse)
Fourier-Laplace transform.

We restrict ourselves to the “nonsingular case”, in the sense of [13], where the truncated
resolvent is bounded at the singular points of the continuous spectrum, i.e. there are no
resonances or eigenvalues. This holds generically and allows us to get decay of order
∼ t−1(log t)−2 which is desirable for applications to scattering problems.

First, we consider discrete version of the 2D Schrödinger equation

{
iψ̇(x, t) = Hψ(x, t) := (−∆ + V (x))ψ(x, t)
ψ

∣∣
t=0

= ψ0

∣∣∣∣ x ∈ Z
2, t ∈ R. (1.1)
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Here ∆ stands for the difference Laplacian in Z
2 defined by

∆ψ(x) =
∑

|x−y|=1

ψ(y) − 4ψ(x), x ∈ Z
2, (1.2)

for functions: ψ : Z2 → C.

Definition 1.1. Denote by V the set of real valued functions f on the lattice Z2 with
finite support.

Assume that V ∈ V. If we apply the Fourier-Laplace transform

ψ̃(x, ω) =

∞∫

0

eiωtψ(x, t) dt, Imω > 0, (1.3)

to (1.1), then we obtain the stationary equation

(H − ω)ψ̃(ω) = −iψ0, Imω > 0. (1.4)

Note that the integral (1.3) converges, since ‖ψ(·, t)‖l2 = const by charge conservation.
Hence

ψ̃(·, ω) = −iR(ω)ψ0, Imω > 0, (1.5)

where R(ω) = (H − ω)−1 is the resolvent of the Schrödinger operator H .
We are going to use functional spaces which are discrete versions of the Agmon spaces

[1]. These spaces are the weighted Hilbert spaces l2σ = l2σ(Z2) with the norm

‖u‖l2σ
=

∥∥(1 + x2)σ/2u
∥∥

l2
, σ ∈ R.

Let us denote by

B(σ, σ′) = L(l2σ, l
2
σ′), B(σ, σ′) = L(l2σ ⊕ l2σ, l

2
σ′ ⊕ l2σ′)

the spaces of bounded linear operators from l2σ to l2σ′ and from l2σ⊕l2σ to l2σ′⊕l2σ′ , respectively.
Note that the continuous spectrum of the operator H coincides with the interval [0, 8],

and the kernel of the resolvent has singularities of the logarithmic type at points ω1 = 0,
ω2 = 4, and ω3 = 8. The points are critical values of the symbol 4(sin2 θ1

2
+ sin2 θ2

2
),

(θ1θ2) ∈ T 2 of the difference Laplace operator (1.2), where T 2 is the torus R2/2πZ2. The
values ω1 = 0 and ω3 = 8 correspond to elliptic critical points of the symbol, and ω2 = 4
corresponds to hyperbolic points on the torus (see [7]).

Our main results are as follows. First, we prove the limiting absorption principle

R(ω ± iε)
B(σ,−σ)

−−→ R(ω ± i0) as ε→ 0 + for ω ∈ (0, 4) ∪ (4, 8) (1.6)

for V ∈ V and σ > 1/2. Further, we establish asymptotic expansions of the resolvent
near the critical points ωk for potentials V (x) from a generic set W in the space of all
compactly supported potentials (see Definition 3.4). For example, in the elliptic case,
k = 1 and k = 3, the expansion reads

R(ωk + ω) = R0
k +

R1
k

a + logω
+ O(ω log2 ω), |ω| → 0. (1.7)
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in the norm of B(σ, −σ) with σ > 3. Similar expansion is valid in neighborhoods of
hyperbolic points. These expansions immediately imply

R(ωk + ω) = R0
k +R1

k log−1 ω + O(log−2 ω), |ω| → 0. (1.8)

Finally, we take the inverse Fourier-Laplace transform of (1.5), applying the asymptotics
(1.6) and (1.8). Then we obtain long time asymptotics

∥∥∥∥∥e
−itH −

n∑

j=1

e−itλjPj

∥∥∥∥∥
B(σ,−σ)

= O(t−1 log−2 t), t→ ∞. (1.9)

which is our main result. Here Pj are the orthogonal projections in l2 onto the eigenspaces
of H , corresponding to the discrete eigenvalues λj ∈ R.

For the proof, we first construct the asymptotic expansion near the critical points for
the free resolvent. Then we prove (1.7) for V ∈ W , by arguments similar to [10], [13],
[19]. The proof of the decay (1.9) follows by arguments similar to Lemmas 9,10 of [19]
and Lemma 10.2 of [10].

Remark 1.2. i) In Appendix C, we give an alternative approach to derivation of expan-
sion (1.8) in the case when the truncated resolvent is bounded near the critical points.
The derivation relies on our results for the free resolvent and methods [7].
ii) The obtained asymptotics (1.8) imply the boundedness of the truncated resolvent
(which is equivalent to the absence of the eigenvalues and resonances, see [20, 13]). Hence
the boundedness holds for generic potentials.
iii) Although the expansion (1.8) implies (1.9), a more accurate expansion (1.7) can be
useful in other application.

We also obtain similar results for the discrete Klein-Gordon equation:

{
ψ̈(x, t) = (∆ −m2 − V (x))ψ(x, t)

ψ
∣∣
t=0

= ψ0, ψ̇
∣∣
t=0

= π0

∣∣∣∣ x ∈ Z
2, t ∈ R. (1.10)

Set Ψ(t) ≡
(
ψ(·, t), ψ̇(·, t)

)
, Ψ0 ≡

(
ψ0, π0

)
. Then (1.10) takes the form

iΨ̇(t) = HΨ(t), t ∈ R; Ψ(0) = Ψ0, (1.11)

where

H =

(
0 i

i(∆ −m2 − V ) 0

)

The resolvent R(ω) = (H−ω)−1 of the operator H can be expressed in terms of the resol-
vent R(ω), and this expression yields the corresponding properties of R(ω). In particular,
we derive an asymptotic expansion of type (1.7) for R(ω), and also long-time asymptotics
of type (1.9) for the solution of (1.11).

Let us comment on previous results in this direction. Eskina [4], and Shaban and
Vainberg [17] considered the difference Schrödinger equation in dimension n ≥ 1. They
proved the limiting absorption principle for matrix elements of the resolvent and applied
it to the Sommerfeld radiation condition. However, [4, 17] do not concern the asymptotic
expansion of R(ω) and the long-time asymptotics of type (1.9) in the operator norms.
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The asymptotic expansion of the matrix element of the resolvent R(ω) at the singular
points ωk was obtained by Islami, Vainberg [7]. They used this expansion for obtaining
the long time asymptotics for the solutions of the Cauchy problem for the difference
wave equation. The main feature of this paper which differs from [7] in that here, all
asymptotic expansions hold in the weighted functional spaces, and not on compacts as in
[7]. In fact, the asymptotic expansion of the resolvent (1.7) in the space B(σ,−σ) was the
main technical challenge in this paper. An additional difference is that here we obtain
the long time asymptotics for the Schrödinger and Klein-Gordon equations, as opposed
to the wave equation in [7].

For hyperbolic PDEs in Rn (continuous case), the asymptotic expansion of the re-
solvent and the long time asymptotics (1.9) were obtained earlier in [15], [18], [19], [20],
and for the Schrödinger equation in [8], [9], [10], [11], [13]; see also [14] for an up-to-date
review and many references concerning dispersive properties of solutions to the contin-
uous Schrödinger equation in various norms. For the discrete equations, the symptotic
expansion of the resolvent and the long time asymptotics in the weighted spaces l2σ, are
obtained for the first time at present paper.

The results of this paper extend the results of [12] from 1D difference equations to 2D
difference equations. An exact formula for the resolvent of the stationary equation is used
in [12]. An exact formula is missing for 2D problems, and this provides the main difficulty
of investigation. Our approach is based on calculation of the asymptotics of oscillatory
integrals representing the resolvent.

The paper is organized as follows. In Section 2 we derive the asymptotic expansion of
the free resolvent. The limiting absorption principle and the expansion of the perturbed
resolvent is proved in Section 3. In Section 4 we prove the long-time asymptotics (1.9).
In Section 5 we extend the results to the discrete Klein-Gordon equation.

2 The free resolvent

We start with an investigation of the unperturbed problem for equation (1.1) with V (x) =
0. The discrete Fourier transform of u : Z2 → C is defined by the formula

û(θ) =
∑

x∈Z2

u(x)eiθx, θ ∈ T 2 := R
2/2πZ

2.

After taking the Fourier transform, the operator H0 = −∆ becomes the operator of
multiplication by φ(θ) := 4 − 2 cos θ1 − 2 cos θ2 = 4 sin2 θ1

2
+ 4 sin2 θ2

2
:

−∆̂u(θ) = φ(θ)û(θ). (2.1)

Thus, the operator H0 is selfadjoint and its spectrum coincides with the range of the
function φ, that is SpecH0 = Σ := [0, 8]. Denote by R0(ω) = (H0 − ω)−1 the resolvent of
the difference Laplacian. Then the kernel of the resolvent R0(ω) reads as

R0(ω, x− y) =
1

4π2

∫

T 2

e−iθ(x−y)

φ(θ) − ω
dθ, ω ∈ C \ Σ. (2.2)

Lemma 2.1. The free resolvent R0(ω) is an analytic function of ω ∈ C \ Σ with values
in B(σ, σ′) for any σ, σ′ ∈ R.
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Proof. For a fixed ω ∈ C \ Σ, we have φ(θ) − ω 6= 0 for θ ∈ T 2. Therefore, also φ(θ +
iξ) − ω 6= 0 for θ ∈ T 2, ξ ∈ R2 if ξ 6= 0 is sufficiently small. Hence, the function
1/(φ(θ)−ω) admits an analytic continuation into a complex neighborhood of the torus of
type {θ+ iξ : θ ∈ T 2, ξ ∈ R2 : |ξ| < δ(ω)} with an δ(ω) > 0. Therefore, the Paley-Wiener
arguments imply that

R0(ω, x− y) ≤ C(δ)e−δ|x−y|

for any δ < δ(ω). Hence, R0(ω) is a Hilbert-Schmidt operator in the space B(σ, σ′).

2.1 Limiting absorption principle

We are going the traces of the resolvent R0(ω) on the continuous spectrum, R0(ω ± i0)
with ω ∈ Σ. We can write

R0(ω ± iε, x− y) = F−1
θ→x−y

1

φ(θ) − ω ∓ iε
, ε > 0. (2.3)

Note that the limiting distribution
1

φ(θ) − ω ∓ i0
is well defined if ω is not a critical value

of the function φ(θ), i.e. the level line φ(θ) = ω does not contain the critical points
with ∇φ(θ) = 0. The critical points θ = (θ1, θ2) can be easily calculated: θi = 0,±π, ...
Therefore, the critical values are 0, 4 and 8. Hence, the limits R0(ω ± i0, x− y) exist, as
the distributions of x− y, if ω 6= 0, 4, 8. More precisely, the following limiting absorption
principle holds in the noncritical part Σ \ {0, 4, 8} of the continuous spectrum.

Proposition 2.2. For σ > 1/2 the following limits exist as ε→ 0+:

R0(ω ± iε)
B(σ,−σ)

−−→ R0(ω ± i0), ω ∈ Σ \ {0, 4, 8}. (2.4)

Proof. We shall consider the case ω ∈ (0, 4) and identify the torus T 2 in (2.2) with the
square [−π, π]2 . For ω ∈ (4, 8), the proof follows similarly if T 2 is identified with the
square [0, 2π]2.
Let Γ(ν) be the curve {θ ∈ T 2 : φ(θ) = ν} for ν ∈ R. Denote

d = d(ν) = min{dist(Γ(ν), 0), dist(Γ(ω),Γ(4))},

and represent R0(ω + iε, z) as the sum

R0(ω + iε, z) =
1

4π2

∫

T 2

(1 − χ(θ))e−iθz

φ(θ) − ω − iε
dθ +

1

4π2

∫

T 2

χ(θ)e−iθz

φ(θ) − ω − iε
dθ

= P1(ω + iε, z) + P2(ω + iε, z),

where χ is a smooth function on T 2 such that

χ(θ) =

{
0, |φ(θ) − ω| > d/2
1, |φ(θ) − ω| ≤ d/4

Obviously,

P2(ω + iε, z) → P2(ω + i0, z), ε→ 0; |P2(ω + iε, z)| ≤ C(ω,N)

(|z|N + 1)
, 0 < ε ≤ 1. (2.5)
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Let us prove that

P1(ω + iε, z) → P1(ω + i0, z), ε→ 0; |P1(ω + iε, z)| ≤ C(ω)

1 +
√
|z|
, 0 < ε ≤ δ (2.6)

for sufficiently small δ > 0. We represent P1 in the form

P1(ω ± iε, z) =
1

4π2

∫

|ν−ω|<d/2

f(ν, z)dν

ν − ω + iε
, f(ν, z) =

∫

Γ(ν)

χ(θ)e−iθzds

|∇φ| (2.7)

where ds is the length on Γ(ν). The critical points of the phase function Φ(θ) = θz on
Γ(ν) are the points where ∇φ(θ) is proportional to α = z/|z| if z 6= 0. Denote the critical
points by θj = θj(ν, α), j = 1, 2. Hence, the stationary phase method applied to the
integral over Γ(ν) leads to the following result (see [20], chapter 1, Theorem 9):

f(ν, z) =
2∑

j=1

|z|−1/2aj(ν, α)eiµj(ν,α)|z| + r(ν, z). (2.8)

Here aj , µj are smooth functions which are analytic in ν in a neighborhood of the point
ν = ω, µj = 〈θj , α〉, and

|r(ν, z)| ≤ C/|z|3/2, |∂νr(ν, z)| ≤ C/|z|1/2, |z| ≥ 1.

Let us note that

∂νµj(ν, α) = 〈∂νθj , α〉 6= 0 (2.9)

(one can also find this relation in [20], Chapter VII). In fact, φ(θj) = ν. After differentia-
tion in ν we get 〈∇φ(θj), ∂νθj〉 = 1 which implies (2.9), since the vector ∇φ(θj) is parallel
to α.

Now we split P1 in three terms P1 = P11 + P12 + P13 which appear after the function
f in (2.7) is replaced by the main terms and the remainder in (2.8). Obviously, (2.6)
holds for P13. Let us show that it also holds for P11 and P12. The proofs in both cases
are similar. So we shall consider the estimates of P11. Assume that ∂νµ1 > 0. Consider
a small δ > 0 and denote by γ2δ contour in the complex ν-plane which consists of two
segments 2δ ≤ |ν − ω| ≤ d/2, ν ∈ R, and the half circle |ν| = 2δ, Im ν > 0. Then by the
Cauchy theorem

∣∣∣
∫

|ν−ω|<d/2

a1e
iµ1|z|dν

ν − ω + iε

∣∣∣ =
∣∣∣
∫

γ2δ

a1e
iµ1|z|dν

ν − ω + iε

∣∣∣ ≤ C, 0 < ε < δ (2.10)

since Re iµ1(ν, α) ≤ 0 for ν ∈ γ2δ if δ > 0 is small enough. The latter follows from the
Lagrange formula applied to Re iµj .

The estimate (2.10) implies (2.6) for P11 when ∂νµ1 > 0. For ∂νµ1 < 0, we apply
the same arguments with γ2δ replaced by the complex conjugate contour and with an
extra term in the middle part of the relations (2.10). This term is the residue at point
ν = ω − iε. Hence, (2.6) is proved for P11, and therefore it holds for P1.
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The limits and uniform bounds (2.5) and (2.6) imply similar features for the matrix
elements R0(ω, z) of the resolvent:

R0(ω ± iε, z) → R0(ω ± i0, z), ε→ +0; |R0(ω ± iε, z)| ≤ C(ω)

1 +
√
|z|
, 0 < ε ≤ ε(ω).

(2.11)
Finally, (2.11) implies that

∑

x,y∈Z2

(1 + |x|2)−σ|R0(ω ± iε, x− y) −R0(ω ± i0, x− y)|2(1 + |y|2)−σ → 0, ε→ 0+

by the Lebesgue dominated convergence theorem. Hence, the Hilbert-Schmidt norm of
the difference R0(ω±iε)−R0(ω±i0) converges to zero that implies (2.4) for ω ∈ (0, 4).

Remark 2.3. Differentiating (2.2) in ω, we obtain similarly that ∂k
ωR0(ω±i0) ∈ B(σ,−σ)

with σ > 1/2 + k for k ∈ N and ω ∈ (0, 4) ∪ (4, 8).

Further, we need more information on the behavior of R0(µ) near the points ωk. We
consider separately the “elliptic” singular points ω1 = 0, ω3 = 8 and the “hyperbolic”
singular points ω2 = 4.

2.2 Asymptotic expansion near elliptic points

Here we construct the expansion of the free resolvent R0(ω) near the elliptic singular
points ω1 = 0 and ω3 = 8. First we consider ω1 = 0 and expand R0(ω) for small complex
ω for which 0 < argω < 2π.

Proposition 2.4. For any N ≥ 0 the following expansion holds

R0(ω) =

N∑

k=0

Akω
k logω +

N∑

k=0

Bkω
k + O(ωN+1 logω), |ω| → 0, argω ∈ (0, 2π) (2.12)

in the norm of B(σ,−σ) with σ > 2N + 3. Here Ak, Bk ∈ B(σ,−σ) with σ > 2k + 1 are
the operators with kernels Ak(x− y), Bk(x− y) respectively, and

A0(x− y) = − 1

4π
, x, y ∈ Z

2. (2.13)

Proof. The resolvent R0(ω) is represented by the integral (2.2). Let us fix 0 < δ < 1
and consider 0 < |ω| < δ/2. We identify T 2 with the square [−π, π]2, and split R0(ω, z),
z = x− y, into the sum

R0(ω, z) =
1

4π2

∫

|φ(θ)|<δ

e−iθz

φ(θ) − ω
dθ + r(ω, z), (2.14)

where r(ω, z) is the integral over {|φ(θ)| > δ}. The remainder r(ω, z) is analytic in ω for
|ω| ≤ δ/2, and

|∂j
ωr(ω, z)| ≤ Cj, |ω| ≤ δ/2, z ∈ Z

2. (2.15)
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Now we change the variables:

αi = 2 sin
θi

2
, dαi = cos

θi

2
dθi, i = 1, 2.

Let us note that the transform (θ1, θ2) 7→ (α1, α2) is a diffeomorphism of D = {|φ(θ)| < δ}
since cos θi

2
6= 0 for (θ1, θ2) ∈ D. Using the symmetry of the domain D in θi, i = 1, 2, we

obtain from (2.14

R0(ω, z) =
1

4π2

∫

|α2
1
+α2

2
−ω|<δ/2

cos(z1g(α1)) cos(z2g(α2))

α2
1 + α2

2 − ω ∓ iε
J(α2

1)J(α2
2) dα1 dα2 + r(ω, z). (2.16)

Here g(α) = 2 arcsinα/2 is a smooth, odd function, and J(α2) =
1√

1 − α2/4
is a smooth

even function.
Now we change variables further: α1 =

√
ρ cosψ, α2 =

√
ρ sinψ, where ρ = α2

1 +α2
2 =

φ(θ), and denote the integral with respect to ψ byf :

f(ρ, z) =
1

8π2

2π∫

0

cos(z1g(
√
ρ cosψ) cos(z2g(

√
ρ sinψ))J(ρ cos2 ψ)J(ρ sin2 ψ)dψ. (2.17)

Then (2.16) becomes

R0(ω, z) =

δ∫

0

f(ρ, z) dρ

ρ− ω
+ r(ω, z) (2.18)

It remains to prove asymptotics of type (2.12) for the integral in (2.18). It is easy to
show that

|∂k
ρf(ρ, z)| ≤ Ck(1 + |z|2k), k = 0, 1, 2..., 0 ≤ ρ ≤ δ. (2.19)

For any N ≥ 0 let us expand f(ρ, z) in finite Taylor series in ρ:

f(ρ, z) = f0(z) + f1(z)ρ+ ... + fN(z)ρN + FN (ρ, z)ρN , f0(z) =
1

4π
, (2.20)

where fk(z) are polynomial in z of order 2k, and

|FN(ρ, z)| ≤ C|z|2N , |∂ρFN (ρ, z)| ≤ C|z|2N+2, for 0 ≤ ρ ≤ δ. (2.21)

Substituting (2.20) into (2.18), we obtain for the terms containing fk(z), k = 0, 1, ..., N

δ∫

0

fk(z)ρ
k dρ

ρ− ω
= fk(z)

δ∫

0

(ρk−1 + ωρk−2 + ...+ ωk−1 +
ωk

ρ− ω
)dρ (2.22)

= fk(z)
( k−1∑

j=0

ajω
j + ωk(log(δ − ω) − log(−ω)

)

= fk(z)
( N∑

j=0

ajω
j − ωk log(−ω) + âN(ω)ωN

)
, 0 < |ω| < δ/2,
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where |âN(ω)| ≤ C. Further, similar to (2.22) we have

δ∫

0

FN(ρ, z)ρN dρ

ρ− ω
=

δ∫

0

FN(ρ, z)
(
ρN−1 + ωρN−2 + ...+ ωN−1 +

ωN

ρ− ω

)
dρ

=
N−1∑

j=0

bN,j(z)ω
j + ωN

δ∫

0

FN(ρ, z) dρ

ρ− ω
, (2.23)

where bN,j(z) ≤ C|z|2N . We estimate the last integral using the following lemma:

Lemma 2.5. For 0 < |ω| < δ/2, argω ∈ (0, 2π) the following bound holds:

|
δ∫

0

FN (ρ, z) dρ

ρ− ω
| ≤ C|z|2N(ln |z| + | ln |ω||), |z| > 1. (2.24)

We prove this lemma in Appendix A. Therefore (2.15)-(2.5) imply

R0(ω, z) =

N∑

k=0

Ak(z)ω
k log(−ω) +

N∑

k=0

Bk(z)ω
k + ωNÂN (ω, z), |ω| → 0,

where |ÂN (ω, z)| ≤ C|z|2N(ln |z|+ | ln |ω||), and Ak(z) = O(|z|2k), while Bk(z) = O(|z|2N)
for 0 ≤ k ≤ N . Hence, Bk(z) = O(|z|2k) since Bk(z) does not depend on N .

Finally, in the case of ω3 = 8 we obtain similarly, the expansion of R0(8−ω) for small

|ω| > 0, argω ∈ (−π, π), with A0(z) =
(−1)z1+z2

4π
.

2.3 Asymptotic expansion near hyperbolic points

Here we study the asymptotics at the hyperbolic singular point ω2 = 4. The main
contribution to the integral (2.2) is given by the corresponding critical points (0, π) and
(π, 0) of hyperbolic type.

Proposition 2.6. For any N ≥ 0 the following expansion holds

R0(4 + ω) =
N∑

k=0

Dkω
k logω +

N∑

k=0

Ekω
k + O(ωN+1 logω), |ω| → 0, Imω > 0, (2.25)

in the norm of B(σ,−σ) with σ > 2N + 3. Here Dk, Ek ∈ B(σ,−σ), with σ > 2k + 1, are

operators with kernels Dk(x−y), Ek(x−y) respectively, and D0(z) =
−i
4π

((−1)z1 +(−1)z2).

For Imω < 0 a similar expansion holds.

Proof. For ω = ω2 = 4 the denominator of the integral (2.2) vanishes along the curve
φ(θ) = 4. We will study the main contribution of points (0, π) and (π, 0) of the curve
which are critical points of φ(θ). The contribution of other points on the curve is contained
in second sum in the RHS of (2.25) and can be proved by methods of Section 2.1. For
example, consider the integral over a neighborhood of the point (π, 0). Let us introduce
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a smooth cutoff function ζ(θ), which will be specified below, such that ζ(θ) = 1 in a
neighborhood of the point (π, 0), and define

Q(ω, z) =
1

4π2

∫
e−i(z1θ1+z2θ2) ζ(θ) dθ1 dθ2

φ(θ) − 4 − ω

=
1

4π2

∫
e−i(z1θ1+z2θ2) ζ(θ) dθ1 dθ2

4 sin2 θ2

2
− 4 cos2 θ1

2
− ω

=
e−iz1π

4π2

∫
e−i(z1θ′

1
+z2θ2) ζ1(θ

′) dθ′1 dθ2

4 sin2 θ2

2
− 4 sin2 θ′

1

2
− ω

, Imω > 0,

where θ′1 = θ1−π, θ′ = (θ′1, θ2), and ζ1(θ
′) = ζ(θ). We can assume that ζ1(θ

′) is symmetric
in θ′1 and θ2. Then, the exponent e−i(z1θ′

1
+z2θ2) can be substituted by its even part as above,

so that

Q(ω, z) =
e−iz1π

π2

∞∫

0

∞∫

0

cos(z1θ
′
1) cos(z2θ2) ζ1(θ

′) dθ′1 dθ2

4 sin2 θ2

2
− 4 sin2 θ′

1

2
− ω

=
e−iz1π

π2
Q1(ω, z). (2.26)

It remains to prove the expansion of type (2.25) for Q1. First we change the variables

s1 = 2 sin θ2

2
and s2 = 2 sin

θ′
1

2
. Now we specified the cutoff function such that ζ1(θ

′) =
ζ2(|s|2), where ζ2 is a smooth function. Then

Q1(ω, z) =

∞∫

0

∞∫

0

F (z, s2
1, s

2
2)ζ2(|s|2) ds1 ds2

s2
1 − s2

2 − ω
, (2.27)

where
F (z, s2

1, s
2
2) = cos(z1g(s1)) cos(z2g(s2))J(s2

1)J(s2
2).

Further, we introduce hyperbolic coordinates by

ρ1 = s2
1 − s2

2 = R2 cos 2ψ, ρ2 = 2s1s2 = R2 sin 2ψ, (2.28)

where R and ψ are polar coordinates of (s1, s2). Then |ρ|2 = ρ2
1 + ρ2

2 = R4, so |ρ| = R2,
and

s2
1 =

|ρ| + ρ1

2
, s2

2 =
|ρ| − ρ1

2
. (2.29)

Further, dρ1dρ2 = 4|ρ|ds1ds2, hence (2.27) becomes

Q1(ω, z) =

∞∫

0

(∫

R

h(|ρ|, ρ1, z)

(ρ1 − ω)|ρ|dρ1

)
dρ2, (2.30)

where h(|ρ|, ρ1, z) = F (z2, |ρ|+ρ1

2
, |ρ|−ρ1

2
)ζ2(|ρ|)/4. Now, we can further select the cutoff

function in such a way that we can choose it so that

supp ζ2(|ρ|) ∩ {ρ ∈ R
2 : ρ2 ≥ 0} ⊂ Π = {(ρ1, ρ2) : −δ ≤ ρ1 ≤ δ, 0 ≤ ρ2 ≤ δ}

with some fixed 0 < δ < 1. We will consider |ω| ≤ δ/2. Denote r = r(ρ) := |ρ|.
Expanding the function h(r, ρ1, z) in a finite Taylor series in ρ1 we obtain

h(r, ρ1, z) = h0(r, z) + h1(r, z)ρ1 + ...+ hN (r, z)ρN
1 (2.31)

+ HN(r, ρ1, z)ρ
N
1 , (ρ1, ρ2) ∈ [−δ, δ] × [0, δ], r = |ρ|,
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where hk(r, z) are polynomials in z of order 2k, and

|HN(r, ρ1, z)| ≤ C|z|2N , |∂ρ1
HN(r, ρ1, z)| ≤ C|z|2N+2, (ρ1, ρ2) ∈ [−δ, δ] × [0, δ], r = |ρ|.

(2.32)
Step i) Let us consider the contribution to integral (2.30) from the terms containing
hk(r, z), k = 0, 1, ..., N :

∫

Π

hk(r, z)ρ
k
1dρ1dρ2

(ρ1 − ω)r
=

∫

Π

hk(r, z)

r

(
ρk−1

1 + ωρk−2
1 + ...+ ωk−1 +

ωk

ρ1 − ω

)
dρ1dρ2

=
k−1∑

j=0

ak,j(z)ω
j + ωk

∫

Π

hk(r, z)

(ρ1 − ω)r
dρ1dρ2 (2.33)

=

k−1∑

j=0

ak,j(z)ω
j + ωk

δ∫

0

hk(r, z)dr

π∫

0

dψ

r cosψ − ω
,

where ak,j(z) are polynomial in z of order 2k. We change the variable τ = tan(ψ/2) to
obtain

π∫

0

dψ

r cosψ − ω
=

∞∫

0

dτ

−(r + ω)τ 2 + (r − ω)
=

πi√
r2 − ω2

, Imω > 0. (2.34)

Therefore, (2.33) implies

∫

Π

hk(r, z)ρ
k
1dρ1dρ2

(ρ1 − ω)r
=

k−1∑

j=0

aj(z)ω
j + πi ωk

δ∫

0

hk(r, z)dr√
r2 − ω2

. (2.35)

Further, let us expand hk(r, z) in finite Taylor series in r:

hk(r, z) = hk,0(z) + hk,1(z)r + ... + hk,N−k(z)r
N−k +Hk,N−k(r, z)r

N−k, (2.36)

where h0,0(z) = 1, hk,j(z) are polynomial in z of order 2(k + j), and |Hk,N−k(r, z)| ≤
C|z|2N , 0 ≤ r ≤ δ. Substituting (2.36) into (2.35), we obtain for the terms containing
hk,j(z), with j = 0, 1, ..., N − k

δ∫

0

hk,j(z)r
jdr√

r2 − ω2
= hk,j(z)

(
sjω

j logω +

N−k∑

l=0

βlω
l + β̂N−k(ω)ωN−k

)
, (2.37)

where |β̂N−k(ω)| ≤ BN−k, 0 < |ω| < δ/2.
It remains to estimate the contribution to the integral in (2.35) from the remainders

Hk,N−k(r, z)r
N−k for 0 < |ω| < δ/2:

δ∫

0

Hk,N−k(r, z)r
N−kdr√

r2 − ω2
=

2|ω|∫

0

+

δ∫

2|ω|

= I1 + I2. (2.38)
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In the first summand in (2.38) we change the variable r = |ω|τ to obtain

|I1| = |
2∫

0

Hk,N−k(|ω|τ, z)|ω|N−kτN−kdτ√
τ 2 − ω2/|ω|2

| ≤ C|z|2N |ω|N−k. (2.39)

It remains to consider the second summand in (2.38). For odd values of N − k we obtain:

I2 =

δ∫

2|ω|

Hk,N−k(r, z)r
N−k−1

(
1 + d2

ω2

r2
+ ... + dN−k−1

ωN−k−1

rN−k−1
+ d̂N−k+1(ω/r)

ωN−k+1

rN−k+1

)
dr

=

δ∫

2|ω|

Hk,N−k(r, z)
(
rN−k−1 + d2ω

2rN−k−3 + ..+ dN−k−1ω
N−k−1

)
dr + ũN−k(ω, z)

=

δ∫

0

Hk,N−k(r, z)
(
rN−k−1 + d2ω

2rN−k−3 + ..+ dN−k−1ω
N−k−1

)
dr + ûN−k(ω, z)

=

N−k−1∑

j=0

uj(z)ω
j + ûN−k(ω, z), (2.40)

where |uj(z)| ≤ C|z|2N |; |ũN−k(ω, z)|, |ûN−k(ω, z)| ≤ C|z|2N |ω|N−k. Similarly, for even
values of N − k we obtain

I2 =
N−k−2∑

j=0

vj(z)ω
j + v̂N−k(ω, z), |vj(z) ≤ C|z|2N , |v̂N−k(ω, z)| ≤ C|z|2N |ω|N−k| logω|.

Step ii) Let us consider the contribution to integral (2.30) from the remainder
HN(r, ρ1, z)ρ

N
1 :

∫

Π

HN(r, ρ1, z)ρ
N
1 dρ1dρ2

(ρ1 − ω)r
=

∫

Π

HN (r, ρ1, z)

r

(
ρN−1

1 + ωρN−2
1 + ... + ωN−1 +

ωN

ρ1 − ω

)
dρ1dρ2

=

N−1∑

j=0

wj(z)ω
j + ωN

∫

Π

HN(r, ρ1, z)dρ1dρ2

(ρ1 − ω)r
, (2.41)

where |wj(z)| ≤ C|z|2N . The integral in the right hand side of (2.41) is estimated by the
following lemma.

Lemma 2.7. For 0 < |ω| < δ/2, Imω > 0 the following bound holds:

|
∫

Π

HN(r, ρ1, z)dρ1dρ2

(ρ1 − ω)r
| ≤ C|z|2N(ln2 |z| + | ln |ω||), |z| > 1. (2.42)

We prove this lemma in Appendix B.
Step iii) Finally, we have proved the expansion

Q1(ω, z) =

N∑

k=0

Dk(z)ω
k logω +

N∑

k=0

Ek(z)ω
k + ÊN (ω, z), |ω| → 0,
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where |ÊN(ω, z)| ≤ C|z|2N(ln2 |z| + | ln |ω||)|ω|N, and Dk(z) = O(|z|2k), while Ek(z) =
O(|z|2N ) for 0 ≤ k ≤ N . Hence, Ek(z) = O(|z|2k) since Ek(z) does not depend on N .

Remark 2.8. Expansions (2.12) and (2.25) can be differentiated 2N +2 times in ω. For
example,

∂k
ωR0(ω) = ∂k

ω

( N∑

k=0

Akω
k logω +

N∑

k=0

Bkω
k
)

+ O(ωN+1−k logω),

|ω| → 0, argω ∈ (0, 2π), 1 ≤ k ≤ 2N + 2

in the norm of B(σ,−σ) with σ > 2N + 3.

3 Perturbed resolvent

3.1 The limiting absorbtion principle

Let n < ∞ be the number of points in the support of V . Then the rank of the operator
of multiplication by V equals n. Therefore we have the following result.

Lemma 3.1. i) SpecessH = [0, 8].
ii) The spectrum of H, outside the interval [0, 8], contains at most n eigenvalues on
(−∞, 0), and at most n eigenvalues on (8,∞).

In the next lemma we develop the results of [4], [17] for the 2D case and prove the
limiting absorption principle in the sense of operator convergence. It will be needed for
the proof of the long-time asymptotics (1.9).

Lemma 3.2. Let V ∈ V and σ > 1/2. Then the following limits exist as ε→ 0+

R(ω ± iε)
B(σ,−σ)

−−→ R(ω ± i0), ω ∈ (0, 4) ∪ (4, 8). (3.1)

Proof. Fix ω ∈ (0, 4) ∪ (4, 8) and σ > 1/2. Then Lemma 2.2 yields

I + V R0(ω ± iε)
B(σ,σ)

−−→ I + V R0(ω ± i0), ε → 0+ ;

For this, recall that the potential V is assumed to be compactly supported in Z2. Therefore
the convergence R0(ω± iε) → R0(ω± i0) in B(σ,−σ) implies the convergence in B(σ, σ)
after multiplication by V . W.Shaban and B.Vainberg proved in [17] that for ω ∈ (0, 4) ∪
(4, 8), the operator I + V R0(ω ± i0) has only a trivial kernel. Hence, being Fredholm of
index zero, I + V R0(ω ± i0) is invertible, and moreover

(
I + V R0(ω ± iε)

)−1 B(σ,σ)

−−→
(
I + V R0(ω ± i0)

)−1
, ε → 0 + .

Then the representation R = R0(I + V R0)
−1 implies (3.1).

Remark 3.3. For ω ∈ (0, 4)∪ (0, 8) and for any k ∈ N we have ∂k
ωR(ω ± i0) ∈ B(σ,−σ)

with σ > 1/2 + k.
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3.2 Asymptotic expansion near elliptic points

Here we obtain an asymptotic expansion for the perturbed resolvent R(ω) near the elliptic
singular points ω1 = 0 and ω3 = 8. Fix a finite subset M ⊂ Z2 containing |M | points,
and denote by VM the set of all real valued potentials supported by M .

Definition 3.4. 1) A subset W ⊂ VM is called generic if its complement is contained in
an algebraic submanifold in R|M |.

2) We say that a property holds for generic potentials V ∈ VM , if it holds for all V
from a generic subset W ⊂ SM .

Theorem 3.5. Fix a σ > 3 and a finite subset M ⊂ Z2. Then, for generic potentials
V ∈ VM the resolvent R(ω) has the expansion

R(ω) = R0
1 +

R1
1

a+ logω
+ O(ω log2 ω), |ω| → 0, argω ∈ (0, 2π) (3.2)

in the norm of B(σ, −σ). Here R0
1, R

1
1 are operators with kernels R0

1(x, y) and R1
1(x, y)

respectively.

Proof. The resolvent R(ω) can be written in the form

R(ω) = R0(ω)T−1(ω), where T (ω) := I + V R0(ω). (3.3)

Due to (2.12) we have

T (ω) = I + V A0 logω + V B0 +O(ω logω), |ω| → 0, argω ∈ (0, 2π). (3.4)

Lemma 3.6. The operator T0 := I + V B0 : l2σ → l2σ is invertible for generic potentials
V ∈ VM .

Proof. Denote by H(M) the space of functions on Z2 supported by M . The operator
V B0 is compact since its range is finite dimensional. Hence, one needs to check only that
the kernel of T0 is zero. Assume that T0u = 0, i.e. u + V B0u = 0. Then u ∈ H(M),
so we have to study the restriction T0(M) of the operator T0 on H(M). Hence, u = 0
if det T0(M) 6= 0. Obviously, this determinant is a polynomial of the values of V . This
polynomial is not equal to zero identically since it does not vanish at V = 0. This
completes the proof of the lemma.

Denote S0 = A0T
−1
0 ∈ B(σ, −σ). Then (3.3), (3.4) imply, by Lemma 3.6, that

R(ω) = R0(ω)T−1
0 (I + V S0 logω +O(ω logω))−1 (3.5)

= (S0 logω +B0T
−1
0 +O(ω logω))(I + V S0 logω +O(ω logω))−1.

Let us construct the operator (I + V S0 logω +O(ω logω))−1. Denote by KerS0 ⊂ l2σ the
kernel of operator S0. The operator S0 is one dimensional, and S0 6= 0 by (2.13). Hence,
KerS0 is the subspace of l2σ of codimension one.

Lemma 3.7. For generic potentials V ∈ VM , we have V /∈ Ker S0.
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Proof. Inclusion V ∈ KerS0 means that

A0(I + V B0)
−1V = 0. (3.6)

For f = (I + V B0)
−1V we have V = f + V B0f , hence f ∈ H(M). Therefore, (3.6)

becomes ∑

y∈Z2

(
(I + V B0)

−1V
)
(y) =

∑

y∈M

(
(I + V B0)

−1V
)
(y) = 0

by (2.13), and the latter equation is a rational equation for values of V . The rational
function is not equal to zero identically, which follows from an analytic expansion of
(I + V B0)

−1V at V = 0.

Now for generic potentials V we have l2σ = V ⊕ Ker S0, where V is one dimensional
space of functions proportional to V . We represent any function f ∈ l2σ as a vector with
components f1 ∈ V, f2 ∈ KerS0, and write the operator I+V S0 logω in the corresponding
matrix form. We have S0V = α 6= 0, and

I + V S0 logω =

(
1 + α logω 0

0 1

)
. (3.7)

Hence, for small |ω| > 0

(I + V S0 logω +O(ω logω))−1 =

(
1

1+α log ω
0

0 1

)
+O(ω logω).

Therefore, in the matrix form, (3.5) becomes

R(ω) =

[ (
S11 0
S21 0

)
logω+

(
B11 B12

B21 B22

)
+O(ω logω)

][ (
1

1+α log ω
0

0 1

)
+O(ω logω)

]
,

where Sij and Bij are the matrix elements of operators S0 and B0T
−1
0 , respectively. Then

(3.2) follows. This completes the proof of Theorem 3.5.

Remark 3.8. Expansion of type (3.2) also holds for R(8+ω) as |ω| → 0, argω ∈ (−π, π).

3.3 Asymptotic expansion near hyperbolic points

Now we obtain an asymptotic expansion for the perturbed resolvent R(ω) near hyperbolic
singular point ω = 4.

Theorem 3.9. Fix a σ > 3 and a finite subset M ⊂ Z2. Then for generic potentials
V ∈ VM the following expansion holds:

R(4 + ω) = R0
2 +

R1
2 logω +R2

2

log2 ω + b logω + c
+ O(ω log2 ω), |ω| → 0, Imω > 0. (3.8)

in the norm of B(σ, −σ), Rk
2 are some operators with kernels Rk

2(x, y).
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Proof. Similar to (3.3), (3.4), we obtain

R(4 + ω) = R0(4 + ω)T−1(4 + ω), where T (4 + ω) := I + V R0(4 + ω). (3.9)

Due to (2.25) we have

T (4 + ω) = I + V D0 logω + V E0 +O(ω logω), |ω| → 0, Imω > 0. (3.10)

Everywhere below we assume that operator K0 := I + V E0 ∈ B(σ, −σ) is invertible
since this is true for generic potentials V . The proof is similar to Lemma 3.6. Denote
H0 = D0K

−1
0 ∈ B(σ, −σ). Then (3.9), (3.10) imply that

R(4 + ω) = R0(4 + ω)K−1
0 (I + V H0 logω +O(ω logω))−1 (3.11)

= (H0 logω +D0K
−1
0 +O(ω logω))(I + V H0 logω +O(ω logω))−1.

Since D0(x− y) = − i

4π
[(−1)(x1−y1) + (−1)(x2−y2)] (see Proposition 2.6), we have

H0 = D0(1 + V E0)
−1 = (−1)x1H1 + (−1)x2H2, (3.12)

where Hk are operators which map any f to a constant

Hkf = − i

4π

∑

y∈Z2

(−1)yk

(
(I + V E0)

−1f
)
(y).

Denote V1(y) = (−1)y1V (y) and V2(y) = (−1)y2V (y).
Step i) First we consider the case when V1 and V2 are linearly dependent. Denote

Z
2
even = {(y1, y2) ∈ Z

2 : y1 + y2 is even}, Z
2
odd = {(y1, y2) ∈ Z

2 : y1 + y2 is odd}.

Then either supp V ⊂ Z2
even or supp V ⊂ Z2

odd, and V1 = ±V2, respectively.

Note that supp(I + V E0)
−1V1 ∈ M , therefore H2V1 = ±H1V1. Using the same ar-

gument as in Lemma 3.7 one can easily show that V1 /∈ Ker H1 for generic potentials
V ∈ VM , i.e. a1 = H1V1 6= 0. Decomposition (3.12) implies that

V H0 = V1H1 + V2H2 = V1(H1 ±H2),

and then V H0V1 = 2V1a1. Hence, V H0 is a one dimensional operator with range V1 =
span{V1}. Therefore, for generic potentials V we have l2σ = V1 ⊕ Ker (V H0), and in the
same way as in Subsection 3.2, we obtain

R(4+ω)=

[(
H±

11 0
H±

21 0

)
logω+

(
E±

11 E±
12

E±
21 E±

22

)
+O(ω logω)

][(
1

1+2a1 log ω
0

0 1

)
+O(ω logω)

]

where H±
ij and E±

ij are matrix elements of operators H0 and E0K
−1
0 , respectively. This

implies the statement of the theorem in the case of linearly dependent V1, V2.
Step ii) Now we consider the case when when V1 and V2 are not proportional. In this case
the image of V H0 belongs to V12 = span{V1, V2}.
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Lemma 3.10. For generic potentials V ∈ VM , the operator V H0 is two dimensional with
the range V12.

Proof. The operator V H0 : V12 7→ V12 is degenerate if and only if

H1V1 ·H2V2 −H1V2 ·H2V1 = 0

or, in other notation

∑

y∈M

(−1)y1

(
(I + V E0)

−1V1

)
(y)

∑

y∈M

(−1)y2

(
(I + V E0)

−1V2

)
(y)

−
∑

y∈M

(−1)y1

(
(I + V E0)

−1V2

)
(y)

∑

y∈M

(−1)y2

(
(I + V E0)

−1V1

)
(y) = 0,

and the latter equation is a rational equation for values of V . The rational function is
not equal to zero identically. Indeed, let us consider an analytic expansion of the rational
function at V = 0. The expansion begins from the second order term which is

r2(V ) =
( ∑

y∈M

V (y) −
∑

y∈M

(−1)y1+y2V (y)
)( ∑

y∈M

V (y) +
∑

y∈M

(−1)y1+y2V (y)
)
.

Since M does not belong to Z2
even or Z2

odd entirely, then r2(V ) 6≡ 0 on VM . Hence, for
generic potential V ∈ VM the rational function not equal zero.

Now for generic potentials V we have l2σ = V12 ⊕ Ker (V H0). Denote HkVj = akj.
Then, the operator I + V H0 logω = I + V1H1 logω + V2H2 logω in the corresponding
matrix form reads

I + V H0 logω =




1 + a11 logω a12 logω 0
a21 logω 1 + a22 logω 0

0 0 1



 .

Hence, for small |ω| > 0

(I + V H0 logω +O(ω logω))−1 =




1 + a22 logω

∆

−a12 logω

∆
0

−a21 logω

∆

1 + a11 logω

∆
0

0 0 1




+O(ω logω),

where ∆ = 1 + (a11a22 − a12a21) log2 ω + (a11 + a22) logω, and a11a22 − a12a21 6= 0 by
Lemma 3.10. Hence,

R(4 + ω) =

[ 


H11 H12 0
H21 H22 0
H31 H32 0



 logω +




E11 E12 E13

E21 E22 E23

E31 E32 E33



 +O(ω logω)

]
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[




1 + a22 logω

∆

−a12 logω

∆
0

−a21 logω

∆

1 + a11 logω

∆
0

0 0 1




+O(ω logω)

]

where Hij and Eij are matrix elements of operators H0 and E0K
−1
0 , respectively.

This completes the proof of Theorem 3.9.

Remark 3.11. Expansions (3.2), (3.8) imply that the resolvent R(ω) is bounded in a
neighborhood of the points ωk for generic potentials V , though the expansions of unper-
turbed resolvent (2.12), (2.25) contain the terms ∼ logω growing as ω → 0. Moreover,
(3.2), (3.8) imply that

R(ωk + ω) = R0
k +R1

k log−1 ω + O(log−2 ω), |ω| → 0 (3.13)

in the space B(σ,−σ) with σ > 3.

Remark 3.12. The expansions (3.13) in B(σ,−σ) with σ > 3 can be differentiated two
times in ω. More precisely, ∂2

ωR(ωk +ω) is equal to second derivative of the expansion up
to an error O(ω−1 logω).

Proof. The latter is seen from the formula

R(ω) = (I +R0(ω)V )−1R0(ω),

in which R0(ω) admits a differentiable asymptotic expansion by Remark 2.8.

4 Long-time asymptotics

Theorem 4.1. Let σ > 3. Then for generic potentials V ∈ V the asymptotics (1.9) hold,
i.e., ∥∥∥∥∥e

−itH −
n∑

j=1

e−itµjPj

∥∥∥∥∥
B(σ,−σ)

= O(t−1 log−2 t), t→ ∞. (4.1)

Here Pj denote the projections on the eigenspaces corresponding to the eigenvalues µj ∈
R \ [0, 8], j = 1, . . . , n.

Proof. Step i) The estimate (4.1) is based on the formula

e−itH = − 1

2πi

∮

|ω|=C

e−itωR(ω)dω, C > max{8; |µj|, j = 1, ..., n}. (4.2)

The integral above is equal to the sum of residues at poles of R(ω) and the integral over
the contour around the segment [0,8], i.e.

e−itH −
n∑

j=1

e−itµjPj =
1

2πi

∫

[0,8]

e−itω(R(ω + i0) −R(ω − i0)) dω.
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To prove the desired decay for large t, it is convenient to represent the indicator-function
χ of interval [0, 8] as

χ(ω) = ζ1(ω) + ζ2(ω) + ζ3(ω),

where ζi(ω) ∈ C∞([0, 8]), supp ζ1 ⊂ [0, 4−δ], supp ζ2 ⊂ [4−2δ, 4+2δ], supp ζ3 ⊂ [4+δ, 8],
where δ > 0 is sufficiently small. Then

e−itH −
n∑

j=1

e−itωjPj =

∫

[0,4−δ]

e−itωζ1(ω)P (ω)dω (4.3)

+

∫

[4−2δ,4+2δ]

e−itωζ2(ω)P (ω)dω +

∫

[4+δ,8]

e−itωζ3(ω)P (ω)dω = I1 + I2 + I3,

where P (ω) =
1

2πi
(R(ω + i0) − R(ω − i0)).

Step ii) Let us consider the first summand in the RHS of (4.3). The asymptotic expansion
for P (ω) at ω = 0 can be deduced from (3.13):

P (ω) =
2πiR1

1

lnω(lnω + 2πi)
+ O(ln−2 ω) = O(ln−2 ω), ω → 0, ω > 0.

By Lemma 4.2 below we have

∫

[0,4−δ]

e−itωζ1(ω)P (ω)dω = O(t−1 log−2 t), t→ ∞

in the norm B(σ,−σ) with σ > 3, and we obtain the desired decay for the first summand
in the RHS of (4.3). The same arguments can be used for the third summand in the RHS
of (4.3).
Step iii) Let us consider the second summand in the RHS of (4.3):

I2(t) =
e−4it

πi

2δ∫

−2δ

e−itωζ2(4 + ω) ImR(4 + ω + i0) dω, (4.4)

where, by (3.13)

R(4 + ω + i0) = R0
2 +R1

2 log−1(ω + i0) + O(ln−2 ω). (4.5)

The contribution of the first summand in (4.5) to I2(t) is O(t−K), ∀K. It can be proved
with help of integration by parts K times. The contribution of the second term and the
remainder are O(t−1 ln−2 t). For the second term this follows directly from Lemma 4.3
below. To estimate the contribution of the remainder we apply Lemma 4.2 below with
B = B(σ,−σ), σ > 3.

Finally, we prepare two lemmas concerning the Fourier transform. The first lemma
is an extension of [10, Lemma 10.2] (see also [19, Lemma 10]), and the second one is a
corollary of Lemma 9 in [19].
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Lemma 4.2. Assume B be a Banach space, d > 0, and F ∈ C(0, d;B) satisfies F (0) = 0
and F (ω) = 0 for ω > d > 0, F ′′ ∈ L1(δ, d;B) for any δ > 0. Moreover, F ′(ω) =
O(ω−1 ln−3 ω) as well as F ′′(ω) = O(ω−2 log−3 ω) as ω → +0. Then

∞∫

0

e−itωF (ω)dω = O(t−1 ln−2 t), t→ ∞.

Proof. Extending F by F (ω) = 0 for ω < 0, we obtain a function F on (−∞,∞) with
F ′ ∈ L1(−∞,∞;B). For t > 0 we have

∞∫

−∞

F ′(ω)e−itωdω = −1

2

∞∫

−∞

(F ′(ω +
π

t
) − F ′(ω))e−itωdω. (4.6)

Finally,

∞∫

−∞

‖F ′(ω +
π

t
) − F ′(ω)‖dω =

π/t∫

−∞

... +

∞∫

π/t

... ≤ 2

2π/t∫

0

‖F ′(ω)‖dω +

∞∫

π/t

dω

ω+π/t∫

ω

‖F ′′(µ)‖dµ

= O(ln−2 t) +
π

t

∞∫

π/t

‖F ′′(µ)‖dµ = O(ln−2 t). (4.7)

Therefore, (4.6) implies that the Fourier transform of F ′ is O(ln−2 t), and hence the
Fourier transform of F is O(t−1 ln−2 t) as t→ ∞.

Lemma 4.3. (see [18, Lemma 9]) For any ζ(ω) ∈ C∞
0 (R) with support in (−1, 1), the

following bound holds:
∫
e−iωtζ(ω) log−1(ω + i0) dω = O(t−1 ln−2 t), t→ ∞. (4.8)

Remark 4.4. Let us stress that the proofs in this section demonstrate that the expansions
(3.13) with k = 1, 2, 3 provide the long-time asymptotics (4.1).

5 The Klein-Gordon equation

Now we extend the results of Sections 3-4 to the case of the Klein-Gordon equation
(1.10)-(1.11). Applying the Fourier-Laplace transform

Ψ̃(x, ω) =

∞∫

0

eiωtΨ(x, t) dt, Imω > α1 > 0,

we get the stationary equation

(H− ω)Ψ̃(ω) = −iΨ0, Imω > α1.

Let us first consider the resolvent R(ω) = (H− ω)−1 of the operator H.
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Lemma 5.1. If ω2 −m2 ∈ C \ [0, 8], then the resolvent R(ω) can be expressed in terms
of the resolvent R(ω) from (1.5) as

R(ω) =

(
ωR(ω2 −m2) iR(ω2 −m2)

−i(1 + ω2R(ω2 −m2)) ωR(ω2 −m2)

)
. (5.9)

Proof. The expression for the resolvent R0(ω) = (H0 − ω)−1 of the free equation with
V = 0 in the case where ω2 − m2 ∈ C \ [0, 8] can be obtained by the inverse Fourier
transform F−1

θ→x−y of the matrix

1

φ(θ) − (ω2 −m2)

(
ω i

−i(φ(θ) +m2) ω

)
.

Using that by (2.2)

F−1
θ→x−y

(
1

φ(θ) − (ω2 −m2)

)
= R0(ω

2 −m2, x, y),

we get

R0(ω) =

(
ωR0(ω

2 −m2) iR0(ω
2 −m2)

−i(1 + ω2R0(ω
2 −m2)) ωR0(ω

2 −m2)

)
.

Put

V =

(
0 0
V 0

)
.

Then the formula
R(ω) = (I − iR0(ω)V)−1R0(ω)

yields (5.9).

The representation (5.9) implies the following properties of the operator H.

1) By Lemma 3.1 we have that

SpecH = [−
√
m2 + 8,−m] ∪ [m,

√
m2 + 8].

The discrete spectrum of H is ω̃±
j = ±

√
m2 + ωj, where ωj are the eigenvalues of the

operator H . Note that either ω̃±
j ∈ R or ω̃±

j ∈ iR.

2) Let σ > 1/2. By Lemma 3.2, the following limits exist as ε → 0+.

R(ω ± iε)
B(σ,−σ)

−−→ R(ω ± i0),

and moreover
R(ω − i0, x, y) = R(ω + i0, x, y).

Both relations hold for ω ∈ (−
√
m2 + 8,−m) ∪ (m,

√
m2 + 8) \ {±

√
m2 + 4}.

3) Let σ > 3. For generic potentials V the resolvent R has an asymptotic expansion at
the singular points µ = ±m, µ = ±

√
m2 + 4, µ = ±

√
m2 + 8 similar to (3.13):

R(µ+ ω) = R0(µ) + R1(µ) log−1 ω + O(log−2 ω), |ω| → 0

in B(σ, −σ).
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4) Let σ > 3. Similar to Theorem 4.1, for generic potentials V the following asymptotics
hold: ∥∥∥∥∥ e

−itH −
∑

±

n∑

j=1

e−itω̃±

j P±
j

∥∥∥∥∥
B(σ,−σ)

= O(t−1 ln t−2), t→ ∞.

in B(σ, −σ). Here P±
j are the projections onto the eigenspaces corresponding to the

eigenvalues ω̃±
j , j = 1, . . . , n.

6 Appendix A

Here we prove Lemma 2.5. Let us split the integral as

δ∫

0

FN(ρ, z) dρ

ρ− ω
=

δ∫

0

(FN(ρ, z) − FN (|ω|, z)) dρ
ρ− ω

+

δ∫

0

FN(|ω|, z) dρ
ρ− ω

= J1 + J2.

First we estimate J2. By (2.21)

|J2| ≤ |FN(|ω|, z)|
∣∣∣

δ∫

0

dρ

ρ− ω

∣∣∣ ≤ C|z|2N | ln |ω||

Further we split J1 = J11 +J12, where J1 is integral over I1 = (0, δ)∩{|ρ− |ω|| ≤ 1/|z|2},
and J2 is integral over I2 = (0, δ) \ I1. By (2.21)

|J11| ≤ C|z|2N+2

∫

I1

|ρ− |ω||dρ
|ρ− ω| ≤ C|z|2N+2 2

|z|2 ≤ C|z|2N .

since |ρ− ω| ≥ |ρ− |ω||, and |I1| ≤ 2/|z|2. Finally,

|J12| ≤ C|z|2N

∫

I2

dρ

|ρ− |ω|| ≤ C|z|2N ln |z|.

7 Appendix B

Here we prove Lemma 2.7. We estimate the integral only over Π+ = {0 ≤ ρ1, ρ2 ≤ δ}.
The integral over Π \ Π+ can been estimated similarly. Let us split the integral over Π+

as

∫

Π+

HN(r, ρ1, z)dρ1dρ2

(ρ1 − ω)r
=

∫

Π+

(HN(r, ρ1, z) −HN(r, |ω|, z))dρ1dρ2

(ρ1 − ω)r

+

∫

Π+

HN(r, |ω|, z)dρ1dρ2

(ρ1 − ω)r
= J1 + J2.
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Similar to (2.34) we obtain

|J2| =
∣∣∣

δ∫

0

HN(r, |ω|, z)dr
π∫

0

dψ

r cosψ − ω

∣∣∣ = π
∣∣∣

δ∫

0

HN(r, |ω|, z)dr√
r2 − ω2

∣∣∣ ≤ C|z|2N | ln |ω||

Further, we split J1 as
J1 = J11 + J12 + J13,

where J11 is the integral over Π1 = {ρ1, ρ2) ∈ Π+ : |r| < 1/|z|2}, J12 is the integral
over Π2 = {(ρ1, ρ2) ∈ Π+ \ Π1 : |ρ1 − |ω|| < 1/|z|4}, and J13 is the integral over Π3 =
Π+ \ (Π1 ∪ Π2) (see Fig. 1). By (2.32) we obtain

|J11| ≤ C|z|2N+2

∫

Π1

|ρ1 − |ω||dρ1dρ2

|ρ1 − ω|r ≤ C|z|2N+2

π∫

0

dψ

1/|z|2∫

0

dr ≤ C|z|2N ,

since |ρ1 − ω| ≥ |ρ1 − |ω||.

Π 3

ρ
2

δ

δ ρ1|ω| |ω|0

Π 1

Π 2

|z|
1

2

+ 1
|z| 4

1
|z| 2

I

Figure 1: The case |ω| − 1/|z|4 < 0.

Next,

|J12| ≤ C|z|2N+2

∫

Π2

|ρ1 − |ω||dρ1dρ2

|ρ1 − ω|r ≤ C|z|2N+2|z|2 δ

|z|4 ≤ C|z|2N ,
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since r ≥ 1/|z|2, and |Π2| ≤ 2δ/|z|4. Finally, by (2.32) we have

|J13| ≤ C|z|2N

∫

Π3

dρ1dρ2

|ρ1 − |ω||
√
ρ2

1 + ρ2
2

≤ C|z|2N ln2 |z|,

since for any vertical interval I ∈ Π3 (see Fig. 1)

∫

I

dρ2√
ρ2

1 + ρ2
2

= ln(ρ2 +
√
ρ2

1 + ρ2
2) ≤ C ln |z|.

8 Appendix C

Here we derive the asymptotics (3.13) under the condition of boundedness of the matrix
elements of the resolvent R(ω, x, y) near the singular points ω = 0, 4, 8. We shall apply
methods [7] relying on the asymptotic expansions of the free resolvent obtained in section
2. For example, we consider the case ω = 0. Let us recall that V ∈ V.

Theorem 8.1. Let the matrix elements R(ω, x, y) of the rezolvent R(ω) be bounded near
ω = 0, i.e.

|R(ω, x, y)| ≤ C(x, y), |ω| ≤ ε, 0 < argω < 2π. (8.10)

Then the following expansion holds in the space B(σ,−σ) with σ > 3

R(ω) = R0 +R1 log−1 ω + O(log−2 ω), |ω| → 0, 0 < argω < 2π. (8.11)

Proof. The resolvent R(ω) can be written in the form

R(ω) = R0(ω)T−1(ω), where T (ω) := I + V R0(ω). (8.12)

Let M be a finite subset of Z2 with |M | points which contains the support of the potential
V . Denote by l2M the space of elements from l2(Z2) supported onM . Let TM(ω) : l2M → l2M
be the restriction of the operator T (ω) onto l2M . Using the Kramer rule, as in the proof
of [7, Theorem 8], we obtain the asymptotic expansion

T−1
M (ω) = ωα logβ ω[T0 + T1 log−1 ω + T2 log−2 ω +O(log−3 ω)], ω → 0,

with some matrices T0, T1, T2 : l2M → l2M , where T0 6= 0, and integers α and β. Taking into
account (2.12) and

T−1(ω) = I − T−1(ω)V R0(ω) = I − T−1
M (ω)V R0(ω),

we get the following expansion in B(σ, σ)

T−1(ω) = ωα logγ ω[T̂0 + T̂1 log−1 ω + T̂2 log−2 ω +O(log−3 ω)], ω → 0, (8.13)

with some T̂k ∈ B(σ, σ) instead of Tk and T̂0 6= 0. Substituting (2.12) and (8.13) into
(8.12), we obtain the following expansion

R(ω) = ωα logγ+1 ω[A0T̂0 + (A0T̂1 +B0T̂0) log−1 ω +O(log−2 ω)], ω → 0, (8.14)
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in the space B(σ, σ) with σ > 3. Here A0T̂1f is a constant function, and B0T̂0f satisfies
the equation H0B0T̂0f = T̂0f since H0B0 = 1. Hence H0u = T̂0f for u = (A0T̂1 +B0T̂0)f .
Since T̂0 6= 0, there exists f ∈ l2σ for which the second term in the right-hand side of (8.14)
does not vanish. Hence, the expansion (8.14) has the form

R(ω) = ωα logν ω[R0 +R1 log−1 ω + O(log−2 ω)], |ω| → 0 (8.15)

where R0 6= 0 and ν = γ+1 if A0T̂0 6= 0, or ν = γ if A0T̂0 = 0. Now from the boundedness
of the resolvent it follows that |ωα logν ω| ≤ C, ω → 0. On the other hand, ωα logν ω
can not vanish at ω = 0, since HR(0)f = f . Thus, α = ν = 0, and (8.15) coincides with
(8.11).
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