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1 Introduction and statement of results

1.1 Introduction

In this article we continue the study of large time asymptotics for a model U(1)-invariant
nonlinear Schrödinger equation

iψ̇(x, t) = −ψ′′(x, t) − δ(x)F (ψ(0, t)), x ∈ R, (1.1)

which was initiated in [1]. Here ψ(x, t) is a continuous complex-valued wave function and
F is a continuous function, the dots stand for the derivatives in t and the primes in x; all
derivatives and the equation are understood in the distribution sense. Our main focus is on the
role that certain solitary waves (also referred to as nonlinear bound states, or solitons) play in
the description of the solution for large times. These solitary waves are solutions of the form
eiωtψω(x), where ψω solves a nonlinear eigenvalue problem (1.10). In [1] the asymptotic stability
of these solitary waves was proved under a condition on the nonlinearity which ensures that the
linearization about the solitary wave consists entirely of continuous spectrum, except for the
two dimensional generalized null space which is always present due to the U(1) symmetry of the
equation. In this article this result is extended to the case that the spectrum of the linearization
includes an additional discrete component, which satisfies a non-degeneracy condition related to
the Fermi Golden Rule. In order to explain these results fully we will introduce our conditions
on the nonlinearity F , in the remainder of this section. In the following section we will discuss
the basic properties of the solitary waves. We will then be able to state our main theorem
precisely as theorem 1.3. For a more lengthy discussion of our motivation, and of previous
results in the literature ([2, 6, 7, 8, 10, 11]) we refer the reader to the introduction of [1].

It will be convenient to rewrite (1.1) in real form: we identify a complex number ψ = ψ1+iψ2

with the real two-dimensional vector (ψ1, ψ2) ∈ R2 and rewrite (1.1) in the vectorial form

jψ̇(x, t) = −ψ′′(x, t) − δ(x)F(ψ(0, t)), (1.2)

where

j =

(
0 −1
1 0

)
, (1.3)

and F(ψ) ∈ R2 is the real vector version of F (ψ) ∈ C. We assume that the oscillator force F

admits a real-valued potential

F(ψ) = −∇U(ψ), ψ ∈ R
2, U ∈ C2(R2). (1.4)

Then (1.2) is formally a Hamiltonian system with Hamiltonian

H(ψ) =
1

2

∫
|ψ′|2dx+ U(ψ(0)) (1.5)

which is conserved for sufficiently regular finite energy solutions. We assume that the potential
U(ψ) satisfies the inequality

U(z) ≥ A− B|z|2 with some A ∈ R, B > 0. (1.6)

We also assume that U(ψ) = u(|ψ|2) with u ∈ C2(R). Therefore, by (1.4),

F (ψ) = a(|ψ|2)ψ, ψ ∈ C , a ∈ C1(R), (1.7)
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where a(|ψ|2) is real.Then F (eiθψ) = eiθF (ψ), θ ∈ [0, 2π], and eiθψ(x, t) is a solution to (1.1)
if ψ(x, t) is. Therefore, equation (1.1) is U(1)-invariant and the Nöther theorem implies the
conservation of the following charge:

Q(ψ) =

∫
|ψ|2dx = const . (1.8)

Under these conditions the existence of global solutions to the Cauchy problem for (1.1)
was proved in [4]. We work in the space H1(R) = H1, the Sobolev space of complex valued

measurable functions with

∫
(|ψ′|2 + |ψ|2

)
dx < ∞, and Cb(R, X) is the space of bounded

continuous functions R → X into a Banach space X.

Theorem 1.1 ([4]). Under conditions (1.4), (1.6) and (1.7), the following statements hold.
i) For any ψ0(x) ∈ H1 there exists a unique solution ψ(t) = ψ( · , t) ∈ Cb(R, H

1) to the
equation (1.1) with initial condition ψ(x, 0) = ψ0(x).
ii) The charge Q(ψ(t)) and Hamiltonian H(ψ(t)) are constant along the solution.
iii) There exists Λ(ψ0) > 0 such that the following a priori bound holds:

sup
t∈R

‖ψ(t)‖H1 ≤ Λ(ψ0) <∞. (1.9)

Next, in §1.2 we describe all nonzero solitary waves, and then formulate the main theorem
in §1.3.

1.2 Solitary waves

Equation (1.1) admits finite energy solutions of type ψω(x)eiωt, called solitary waves or non-
linear eigenfunctions. The frequency ω and the amplitude ψω(x) solve the following nonlinear
eigenvalue problem:

− ωψω(x) = −ψ′′
ω(x) − δ(x)F (ψω(0)), x ∈ R. (1.10)

It is straightforward to check (see [1]) that the set of all nonzero solitary waves consists of
functions ψω(x)eiθ, ψω(x) = C(ω)e−

√
ω|x|, C > 0, ω > 0, where

√
ω = a(C2)/2 > 0,

and where θ ∈ [0, 2π] is arbitrary. This condition means that C is restricted to lie in a set
which, in the case of polynomial F , is a finite union of one-dimensional intervals. Notice that
C = 0 corresponds to the zero function ψ(x) = 0 which is always a solitary wave as F (0) = 0,
and for ω ≤ 0 only the zero solitary wave exists. The real form of the solitary wave is ejθΨω

where Ψω = (ψω(x), 0). We will also need the following lemma from [1]:

Lemma 1.2. For C > 0, a > 0 we have

∂ω

∫
|ψω(x)|2dx > 0 if 0 < a′ < a/C2.
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Linearization at the solitary wave ejθΨω leads to the operator

B = − d2

dx2
+ ω − δ(x)[a(C2) + 2a′(C2)C2P1] =

(
D1 0
0 D2

)
, (1.11)

where P1 is the projector in R2 acting as

(
χ1

χ2

)
7→
(
χ1

0

)
,

D1 = − d2

dx2
+ ω − δ(x)[a + 2a′C2], D2 = − d2

dx2
+ ω − δ(x)a.

(see [1]). Let C = j−1B. The continuous spectrum of C coincides with C+ ∪ C− where C+ =
[iω, i∞), and C− = (−i∞,−iω]. The discrete spectrum depend is described in [1]. Zero is
always present in the discrete spectrum on account of the circular symmetry of the problem,
and there is a corresponding generalized eigenspace of dimension at least two. If a′ > a/C2

there is a positive eigenvalue corresponding to linear instability of the solitary wave, while for
a′ < a/C2 the discrete spectrum consists either only of zero, or contains in addition two pure
imaginary eigenvalues. The presence of such imaginary discrete spectrum corresponds to the
possibility of a periodic pulsation of the solitary wave at the linearized level, a possibility which
has to be taken care of in the proof of asymptotic stability.

1.3 Statement of the main theorem

Previously, in [1], we considered the case when

a′ ∈ (−∞, 0) ∪ (0,
a√
2C2

), (1.12)

in which case the operator C has no discrete spectrum except zero. Under this condition we
proved asymptotic stability for initial data close to a solitary wave both in the energy norm
and in the weighted Banach norm, Lp

β, defined by,

‖f‖Lp
β

= ‖(1 + |x|)βf(x)‖Lp. (1.13)

In the present paper we extend this understanding to allow for the presence of additional
discrete spectrum in the linearization: to be precise we will consider the case when

a′ ∈ (
a√
2C2

,
a
√

2(1 +
√

3)

4C2
). (1.14)

In this case, there are, in addition to zero, 2 simple pure imaginary eigenvalues ±iµ, which
satisfy the property 2µ > ω. If assumption (1.14) is true for a fixed value ω0, it also true for

values of ω in a small interval centered at ω0. Let u(x, ω) =

(
u1

u2

)
be the eigenvector of

C associated to iµ. We choose the function u1(x) to be real, in which case u2(x) is purely

imaginary. Then u∗ :=

(
u1

−u2

)
, is the eigenvector associated to −iµ (see appendix A). We

consider the initial value ψ(x, 0) = ψ0(x) to be of the form

ψ0(x) = ejθ0Ψω0
(x) + z0u(x, ω0) + z0u

∗(x, ω0) + f0(x), (1.15)
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where f0 belongs to the eigenspace associated to the continuous spectrum of C(ω0). We assume
that z0 and f0 are sufficiently small, and also assume a non-degeneracy condition which we
now explain. Let 〈·, ·〉 denote the Hermitian scalar product in L2 of C2-valued functions, and
(u, v) = u1v1 + u2v2 for u, v ∈ C2. Let E2[f, f ] be the quadratic terms coming from the Taylor
expansion of the nonlinearity:

E2[f, f ] = δ(x)[a′(C2)(f, f)Ψω + 2a′′(C2)(Ψω, f)2Ψω + 2a′(C2)(Ψω, f)f ], f ∈ C
2. (1.16)

The non-degeneracy condition has the form

〈E2[u(ω0), u(ω0)], τ+(2iµ0)〉 6= 0, (1.17)

where τ+(2iµ0) is the eigenfunction associated to 2iµ0 = 2iµ(ω0). This condition should be
thought of as a nonlinear version of the Fermi Golden Rule of quantum mechanics ([9, Section
XII.6] or [5]), and will be referred to simply as the Fermi Golden Rule; see [10, 11] for the
its introduction into nonlinear evolution equations. In appendix E we express (1.17) in terms
of C and a(C2), and hence show that the Fermi Golden Rule holds generically for polynomial
nonlinearity.

Our main theorem is following:

Theorem 1.3. Let conditions (1.4), (1.6) and (1.7) hold, β > 2 and ψ(x, t) ∈ C(R, H1) be the
solution to the equation (1.2) with initial value ψ0(x) = ψ(x, 0) ∈ H1 ∩ L1

β of the form (1.15)

which is close to a solitary wave ejθ0Ψω0
:

|z(0)| ≤ ε1/2, ‖f0‖L1
β
≤ cε3/2. (1.18)

Assume further that the spectral condition (1.14) and the non-degeneracy condition (1.17) hold
for the solitary wave with C = C(ω0) = C0. Then for ε sufficiently small the solution admits
the following scattering asymptotics in Cb(R) ∩ L2(R):

ψ(x, t) = ejϕ±(t)Ψω±(x) + ej−1LtΦ± +O(t−ν), t→ ±∞, (1.19)

with some ν > 0, where L = − ∂2

∂x2 , Φ± ∈ Cb(R) ∩ L2(R) are the corresponding asymptotic
scattering states and ϕ±(t) = ω±t+ p± log(1 + k±t) + κ±, for some constants ω±, p±, k±, κ±.

The asymptotics (1.19) can be rewritten in terms of the original complex notation as:

ψ(x, t) = eiϕ±(t)ψω±(x) +W (t)φ± +O(t−ν), t→ ±∞, (1.20)

where W (t) is the dynamical group of the free Schrödinger equation, and φ± = Φ1
± + iΦ2

± (Φk
±,

k = 1, 2, being the components of the vector-function Φ±). Thus the main conclusion is that
asymptotically the dynamics decomposes into a nonlinear bound state eiϕ±(t)ψω± (undergoing
uniform phase rotation, modulo the logarithmic phase shift in ϕ±(t)) and a solution of the free
Schrödiniger equation W (t)φ±.

The proof is divided into the following three main steps which are carried out, respectively,
in §3, §4 and §5.

Step 1 To decompose the solution ψ(t) according to the spectral decomposition of the operator
C given in §2.1, and obtain a system of equations in §3.1 equivalent to (1.1). This system
is then put into a canonical form, in which certain non-resonant terms are excluded. This
is carried out in §3.4, the final form of the equations being given in §3.4.5.
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Step 2 To use the time decay for the linearized evolution on the continuous spectral subspace
established in §2.2 to prove asymptotic stability of the solitary waves in §4.6.

Step 3 Finally, to construct the wave operator and obtain the scattering asymptotics (1.19), in
§5.2.

2 Linearization

In this section we summarize the spectral properties of the operator C which appears in the
linearization of (1.2) about a soliton, and then give some estimates for the linearized evolution.
The proof of these properties can be found in [1], with the exception of proposition 2.3 which
is proved in appendix C.

2.1 Spectral properties of the linearization

The linearized equation reads

χ̇(x, t) = Cχ(x, t), C := j−1B =

(
0 D2

−D1 0

)
. (2.1)

Theorem 1.1 generalizes to the equation (2.1): the equation admits unique solution χ(x, t) ∈
Cb(R, H

1) for every initial function χ(x, 0) = χ0 ∈ H1. Denote by eCt the dynamical group of
equation (2.1) acting in the space H1; for T > 0 there exists cT > 0 such that

‖eCtχ0‖H1 ≤ cT‖χ0‖H1, |t| ≤ T. (2.2)

The resolvent R(λ) := (C − λ)−1 is an integral operator with matrix valued integral kernel

R(λ, x, y) = Γ(λ, x, y) + P (λ, x, y), (2.3)

where

Γ(λ, x, y) =





1

4k+
− 1

4k−
i

4k+

i

4k−








eik+|x−y| − eik+(|x|+|y|) −i(eik+|x−y| − eik+(|x|+|y|))

eik−|x−y| − eik−(|x|+|y|) i(eik−|x−y| − eik−(|x|+|y|))



 , (2.4)

P (λ, x, y) =
1

2D

(
eik+|x| eik−|x|

ieik+|x| −ieik−|x|

)(
iα− 2k− iβ

−iβ −iα + 2k+

)(
eik+|y| −ieik+|y|

eik−|y| ieik−|y|

)
.

(2.5)
As explained already in §1.2, the continuous spectrum consists of C+ ∪C−, and correspondingly
k±(λ) =

√
−ω ∓ iλ is (respectively) the square root defined with a cut in the complex λ plane

so that k±(λ) is analytic on C \ C± and Imk±(λ) > 0 for λ ∈ C \ C±. The constants α, β and
D = D(λ) are given by the formulas

α = a+ a′C2, β = a′C2, D = 2iα(k+ + k−) − 4k+k− + α2 − β2.

In addition to this continuous spectrum, there is discrete spectrum, which appears in this
formalism as the set of poles of R(λ); these poles in turn correspond to the roots of the
determinant D(λ). From the analysis in [1] we know that if a′ ∈ (a/

√
2C2, a/C2), then the
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determinant has the following roots: λ = 0 with the multiplicity 2 and two pure imaginary
roots

λ = ±iµ = ±iβ
2

√
a2 − β2, µ < ω. (2.6)

Note that spectral condition (1.14) is more restrictive. It implies in addition that 2µ > ω, as
can be verified by a simple computation.

The generalised null space X0 of the non-self-adjoint operator C is two dimensional, is
spanned by jΨω, ∂ωΨω, and

CjΨω = 0 C∂ωΨω = jΨω.

The symplectic form Ω for the vectors ψ and η is defined by

Ω(ψ, η) = 〈ψ, jη〉 (2.7)

By Lemma 1.2

Ω(jΨω, ∂ωΨω) = −1

2
∂ω

∫
|ψω|2dx 6= 0. (2.8)

Hence, the symplectic form Ω is nondegenerate on X0, i.e. X0 is a symplectic subspace. There
exists a symplectic projection operator P0 from L2(R) onto X0 represented by the formula

P0ψ =
1

〈Ψω, ∂ωΨω〉
[〈ψ, j∂ωΨω〉jΨω + 〈ψ,Ψω〉∂ωΨω]. (2.9)

Remark 2.1. Since jΨω, ∂ωΨω lie in H1(R) the operator P0 extends uniquely to define a
continuous linear map H−1(R) → X0. In particular this operator can be applied to the Dirac
measure δ(x).

Denote by X1 the eigensubspace corresponding to eigenvectors u and u∗, and by P1 a
symplectic projection operator from L2(R) onto X1. It may be represented by the formula

P1ψ =
〈ψ, ju〉
〈u, ju〉u+

〈ψ, ju∗〉
〈u∗, ju∗〉u

∗ (2.10)

since 〈u, ju∗〉 = 0, and 〈u, ju〉 = 〈u∗, ju∗〉 6= 0 by (3.66). Finally, Pc = 1 − P0 − P1 is the
symplectic projector onto the continuous spectral subspace.

2.2 Estimates for the linearized evolution

We now recall from [1] some estimates on the group eCt which will be needed in §4. First we
recall a bound for the action of eCt on the Dirac distribution δ = δ(x) for small t. Lemma 8.1
from [1] gives the following small t behaviour:

‖eCtδ‖L∞ = O(t−1/2), t→ 0. (2.11)

Second we list the large time dispersive estimates. To do this let us introduce, for β ≥ 2, a
Banach space Mβ, which is the subset of distributions which are linear combinations of L1

β

functions and multiples of the Dirac distribution at the origin with the norm:

‖ψ + Cδ(x)‖Mβ
:= ‖ψ‖L1

β
+ |C|, (2.12)

and a Banach space Bβ = B(Mβ, L
∞
−β) as the space of continuous linear maps Mβ → L∞

−β for
any β ≥ 2.
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Proposition 2.2. (see [1]) Assume that the spectral condition (1.14) holds. Then for h ∈ Mβ

with β ≥ 2 the following bounds hold:

‖eCtPch‖L∞
−β

≤ c(1 + t)−3/2‖h‖Mβ
, (2.13)

‖eCtΠ±h‖L∞
−β

≤ c(1 + t)−3/2‖h‖Mβ
, (2.14)

‖eCtC−1Π±h‖L∞
−β

≤ c(1 + t)−3/2‖h‖Mβ
, (2.15)

where Π+ (resp. Π−) is the spectral projection operator onto the spectral subspace associated
to C+ (resp. C−), the positive (resp. negative) part of the continuous spectrum.

We shall also need the following bound, which is new.

Proposition 2.3. Assume that the spectral condition (1.14) holds. Then for h ∈ Mβ with
β > 2 and t > 1 the following bounds hold:

‖eCt(C ∓ 2iµ− 0)−1Pch‖L∞
−β

≤ c(1 + t)−3/2‖h‖Mβ
, (2.16)

‖eCt(C ∓ 2iµ− 0)−1Π±h‖L∞
−β

≤ c(1 + t)−3/2‖h‖Mβ
. (2.17)

We prove this proposition in appendix C.

3 Spectral decomposition and canonical forms

In this section we will use the spectral resolution associated to the operator C to decompose the
solution ψ, obtaining evolution equations for the different spectral components. Then, following
[2], we introduce normal coordinate transformations to transform the evolution equations into
simpler canonical forms in which certain non-resonant terms are absent. The final form of these
equations is given in §3.4.5.

3.1 Modulation equations

In this section we present the modulation equations which allow a construction of solutions
ψ(x, t) of the equation (1.1) close at each time t to a soliton i.e. to one of the functions

Ceiθ−√
ω|x|, C = C(ω) > 0

in the set S described in §1.2 with time varying (“modulating”) parameters (ω, θ) = (ω(t), θ(t)).
We look for a solution to (1.2) in the form

ψ(x, t) = ejθ(t)Φ(x, t), Φ(x, t) = Ψω(t)(x) + χ(x, t). (3.1)

Since this is a solution of (1.2) as long as χ ≡ 0 with θ̇ = ω and ω̇ = 0 it is natural to look for
solutions in which χ is small and

θ(t) =

∫ t

0

ω(s)ds+ γ(t)

with γ treated perturbatively. We look for χ = w(x, t) + f(x, t) where w = zu+ zu∗ ∈ X1 and
f ∈ Xc. Now we give a system of coupled equations for ω(t), γ(t), z(t) and f(x, t).
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Lemma 3.1. Given a solution of (1.2) in the form (3.1) with f ∈ Xc as just described, the
functions ω(t), γ(t), z(t) and f(x, t) satisfy the system

ω̇ =
〈P0Q[χ],Φ〉

〈∂ωΨω − ∂ωP0χ,Φ〉 , (3.2)

γ̇ =
〈Q[χ], j(∂ωΨω − ∂ωP

0χ)〉
〈∂ωΨω − ∂ωP0χ,Φ〉 , (3.3)

〈u, ju〉(ż − iµz) = 〈Q[χ], ju〉 − 〈∂ωw − ∂ωP
1f, ju〉ω̇ − 〈χ, u〉γ̇ (3.4)

ḟ = Cf + ω̇∂ωP
cχ− γ̇Pc(jχ) + PcQ[χ], (3.5)

where Q[χ] = −δ(x)j−1
(
F(Ψω + χ) − F(Ψω) − F′(Ψω)χ

)
represents the nonlinear part of the

interaction.

Proof. This can be proved as Proposition 2.2 in [2].

3.2 Frozen spectral decomposition

The linear part of the evolution equation (3.5) for f is non-autonomous, due to the dependence
of the operator C on ω(t). In order to make use of the dispersive properties obtained in §2.2,
it is convenient (following [2]) to introduce a small modification of (3.5), which leads to an
autonomous linearized equation. Let us fix an interval [0, T ] and decompose f(t) ∈ Xc

t into the
sum

f = g + h, g ∈ X1
T , h ∈ Xc

T . (3.6)

Here Xd
T = Pd

TX is the spectral space associated to the discrete spectrum at time T and Xc
T =

Pc
TX is the spectral space associated to the continuous spectrum at time T , Pc

T = Pc(ω(T ))
and Pd

T = I − Pc
T . In the following, we denote ωT = ω(T ) and CT = C(ωT ). We will obtain

estimates uniform in T , and later consider the limit T → +∞.
We now introduce a shorthand for the bounds we are about to prove: R(A,B, . . . ) (resp.

R(ω,A, . . . )) is a general notation for a positive function which remain bounded as A,B, . . .
approach zero (resp. if ω is close to ω0 and A, . . . approach zero); it could be unbounded and
even infinite if ω is outside some vicinity of ω0. The formula f = Rg implies that |f | ≤ Rg.
Introducing also the notation R1(ω) = R(‖ω − ω0‖C[0,T ]), we get

Lemma 3.2. The function g is estimated in terms of h as follows:

‖g‖L∞
−β

= R1(ω)|ω − ωT |‖h‖L∞
−β

(3.7)

Proof. Let us use the identities

Pd(g + h) = 0, Pd
Tg = g, Pd

Th = 0.

Then we get
g + (Pd − Pd

T )g + (Pd −Pd
T )h = 0,

and Pd −Pd
T is a“small” finite dimensional operator:

|Pd − Pd
T | = |Pd(ωt) − Pd(ωT )| ≤ maxω∗∈(ω,ωT )|∂ωP

d(ω∗)||ω − ωT |.

Applying the projection Pc
T to (3.5), we get

ḣ = CTh + Pc
T [(C − CT )f + PcQ[χ] + ω̇∂ωP

cχ− γ̇Pc(jχ)]. (3.8)
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3.3 Asymptotic expansion of dynamics

The preceding sections have provided a change of variables ψ 7→ (ω, γ, z, h) under which (1.2)
is mapped into the system comprising (3.2),(3.3), (3.4) and (3.8). Since we are interested in
proving that for large times z, h are small it is necessary to expand the inhomogeneous terms in
these equations in terms of z, h. This is carried out in this section, leading to the conclusion that
the system (3.2),(3.3), (3.4) and (3.8) can be written in more detail as the system comprising
(3.22),(3.29), (3.33) and (3.41).

3.3.1 Preliminaries

This section is devoted to some useful preliminary estimates. We start with a bound for the
denominator 〈∂ωΨ − ∂ωP

0χ,Φ〉, where Ψ = Ψω, that appears in the equation of motion (3.2)-
(3.3). We have, with ∆ = 〈∂ωΨ,Ψ〉,

〈∂ωΨ − ∂ωP
0χ,Φ〉 = 〈∂ωΨ,Ψ〉

(
1 +

〈∂ωΨ, χ〉 − 〈∂ωP
0χ,Φ〉

〈∂ωΨ,Ψ〉
)

= ∆
(
1 +

〈∂ωΨ, χ〉 − 〈∂ωP
0χ,Φ〉

∆

)

(3.9)
with

〈∂ωΨ, χ〉 − 〈∂ωP
0χ,Φ〉

∆
= R(ω)

(
|z| + ‖f‖L∞

−β
+ ‖f‖2

L∞
−β

)
. (3.10)

We also need to expand the nonlinear term F(ψ) = a(|ψ|2)ψ near the solitary wave since the
inhomogeneous terms all involve E[χ], the nonlinear part of δ(x)F , defined using the Taylor
expansion of δ(x)Fψ near Ψ:

δ(x)F(ψ) = δ(x)
(
a(C2)Ψ + a(C2)χ+ 2a′(C2)(χ,Ψ)Ψ

)
+ E[χ]. (3.11)

Thus E[χ] contains all the higher order terms which are at least quadratic in χ, as χ→ 0, and
Q[χ] = jE[χ]. We expand E[χ] in the form

E[χ] = E2 + E3 + ER, (3.12)

where Ej is of order j in χ and ER the remainder. It is easy to check that

E2[χ, χ] = δ(x)
[
a′(C2)|χ|2Ψ + 2a′′(C2)(Ψ, χ)2Ψ + 2a′(C2)(Ψ, χ)χ

]
, (3.13)

E3[χ, χ, χ]=δ(x)
[
a′(C2)|χ|2χ + 2a′′(C2)(Ψ, χ)2χ + 2a′′(C2)(Ψ, χ)|χ|2Ψ +

4

3
a′′′(C2)(Ψ, χ)3Ψ

]

(3.14)
For ER we have

ER = R(ω, |z|, |f(0)|)(|z|4 + |f(0)|4), (3.15)

It also useful to define E2[χ1, χ2], (resp. E3[χ1, χ2, χ3]) as a symmetric bilinear (resp. trilinear)
form

E2[χ1, χ2] = δ(x)
[
a′(C2)(χ1, χ2)Ψ + 2a′′(C2)(Ψ, χ1)(Ψ, χ2)Ψ + a′(C2)

(
(Ψ, χ2)χ1 + (Ψ, χ1)χ2

)]

(3.16)

E3[χ1, χ2, χ3] = δ(x)
[1
6
a′(|Ψ|2)

∑
(χi, χj)χk +

1

3
a′′(|Ψ|2)

∑
(Ψ, χi)(Ψ, χj)χk (3.17)

+
1

3
a′′(|Ψ|2)

∑
(Ψ, χi)(χj, χk)Ψ +

4

3
a′′′(|Ψ|2)(Ψ, χ1)(Ψ, χ2)(Ψ, χ3)Ψ

]
.
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Here summation is taken over all transposition of integers 1, 2, 3. Notice also that

〈E2[X, Y ], Z〉 = 〈X,E2[Y
∗, Z]〉 (3.18)

where X, Y , Z, are complex valued vector functions and Y ∗ = (Y 1, Y 2).
In the remaining part of the paper we shall prove the following asymptotics:

‖f(t)‖L∞
−β

∼ t−1, z(t) ∼ t−1/2, ‖w(t)‖H1 ∼ t−1/2, t→ ∞. (3.19)

Remark 3.3. To justufy these asymptotics, we will separate leading terms and remainders in
right hand side of equations (3.2)-(3.4), (3.8). Namely, we shall expand the expressions for ω̇,
γ̇ and ż up to and including terms of the order O(t−3/2), and for ḣ up to O(t−1) keeping in mind
the asymptotics (3.19). This choice is necessary for applicaton of the method of majorants.

3.3.2 The equation for ω

Using the equality Q[χ] = jE[χ], and the fact that j(P0)∗ = P0j (where ∗ means adjoint with
respect to the Hermitian inner product 〈 · , · 〉), we rewrite

〈P0Q[χ],Φ〉 = 〈P0jE[χ],Φ〉 = −〈E[χ], j(P0)∗Φ〉 = −〈E[χ],P0jΦ〉

with χ = w + f and Φ = Ψ + χ = Ψ + w + f . Then equation (3.2) for ω̇ can be expanded up
to O(t−3/2), assuming (3.19), as follows:

ω̇ = − 1

∆

[
〈E2[w,w] + 2E2[w, f ] + E3[w,w,w], jΨ〉 + 〈E2[w,w],P0jw〉

]
(3.20)

+
1

∆2
〈E2[w,w], jΨ〉

(
〈∂ωΨ,w〉 − 〈∂ωP

0w,Ψ〉
)

+ ΩR

where
ΩR = R(ω, |z| + ‖f‖L∞

−β
)(|z|2 + ‖f‖L∞

−β
)2 (3.21)

Substituting w = zu + zu∗, we can write (3.20) in the form

ω̇=Ω20z
2+ Ω11zz + Ω02z

2+ Ω30z
3+ Ω21z

2z + Ω12zz
2+ Ω03z

3+z〈f,Ω′
10〉+z〈f,Ω′

01〉+ΩR (3.22)

Let us now display explicitly some important terms of this expansion. First we compute the
quadratic terms in (3.20) which are of order t−1 according to (3.19). They are obtained from
the term

〈E2[w,w], jΨ〉 = z2〈E2[u, u], jΨ〉+ z2〈E2[u
∗, u∗], jΨ〉 + 2zz〈E2[u

∗, u], jΨ〉. (3.23)

in expression (3.2). Let us take into account definition of E2, the identity (Ψ, jΨ) = 0 and that
Φ = (φ, 0), w = zu + zu∗ with u = (u1, u2) where u1 real and u2 pure imaginary. Then we
obtain

〈E2[w,w], jΨ〉 = 〈δ(x)2a′(C2)(Ψ,w)w, jΨ〉 = 2a′(C2)(z + z)(u(0),Ψ(0))(z − z)(u(0), jΨ(0))

= 2(z2 − z2)a′(C2)(u(0),Ψ(0))(u(0), jΨ(0)).

Therefore

Ω20 = Ω02 = −〈E2[u, u], jΨ〉
∆

= − 2

∆
a′(C2)(u(0),Ψ(0))(u(0), jΨ(0)) (3.24)
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is purely imaginary and

Ω11 = −2
〈E2[u, u

∗], jΨ〉
∆

= 0. (3.25)

Using the property (3.18), we find that

Ω′
10 = Ω

′
01 = −2

E2[u
∗, jΨ]

∆
. (3.26)

Remark 3.4. Since f ∈ Xc
t then

〈f,Ω′
10〉 = 〈Pcf,Ω′

10〉 = 〈f, jPcj−1Ω′
10〉.

Therefore we can substitute Ω′
10 in (3.22) by their projection jPcj−1Ω′

10.

3.3.3 The equation for γ

Using again the equality Q = jE we get

〈Q[χ], j(∂ωΨ − ∂ωP
0χ)〉 = 〈E[χ], ∂ωΨ − ∂ωP

0χ〉

Therefore (3.3), (3.9), (3.10), (3.12), (3.15) imply

γ̇ = ∆−1

[

〈E2[w,w] + 2E2[w, f ] + E3[w,w,w], ∂ωΨ〉 − 〈E2[w,w], ∂ωP
0w〉
]

(3.27)

− ∆−2〈E2[w,w], ∂ωΨ〉
(
〈∂ωΨ,w〉 − 〈∂ωP

0w,Ψ〉
)

+ ΓR,

where

ΓR = R(ω, |z| + |f(0)|)(|z|2 + |f(0)|)2 = R(ω, |z| + ‖f‖L∞
−β

)(|z|2 + ‖f‖L∞
−β

)2 (3.28)

since |f(0)| ≤ ‖f‖L∞
−β

. Equation (3.27) can thus be represented in the form

γ̇ = Γ20z
2 +Γ11zz+Γ02z

2 +Γ30z
3 +Γ21z

2z+Γ12zz
2 +Γ03z

3 + z〈f,Γ′
10〉+ z〈f,Γ′

01〉+ΓR, (3.29)

where

Γ20 =
〈E2[u, u], ∂ωΨ〉

∆
, Γ11 = 2

〈E2[u, u
∗], ∂ωΨ〉

∆
, Γ02 =

〈E2[u
∗, u∗], ∂ωΨ〉

∆
, (3.30)

Γ′
10 = 2

E2[u
∗, ∂ωΨ]

∆
, Γ′

01 = 2
E2[u, ∂ωΨ]

∆
.

3.3.4 The equation for z

Denote κ = 〈u, ju〉 and rewrite (3.4) in the form:

ż − iµz =
〈E2[w,w] + 2E2[w, f ] + E3[w,w,w], u〉

κ
(3.31)

+
〈∂ωw, ju〉〈E2[w,w], jΨ〉 − 〈w, u〉〈E2[w,w], ∂ωΨ〉

κ∆
+ ZR,
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where
ZR = R(ω, |z| + ‖f‖L∞

−β
)(|z|2 + ‖f‖L∞

−β
)2. (3.32)

Equation (3.31) can be represented in the form

ż = iµz + Z20z
2 + Z11zz + Z02z

2 + Z30z
3 + Z21z

2z + Z12zz
2 + Z03z

3 (3.33)

+ z〈f, Z ′
10〉 + z〈f, Z ′

01〉 + ZR,

where, using the calculations in the previous two sections, we have in particular,

Z20 =
〈E2[u, u], u〉

κ
, Z11 = 2

〈E2[u, u
∗], u〉

κ
, Z02 =

〈E2[u
∗, u∗], u〉
κ

,

Z21 =
〈3E3[u

∗, u, u], u〉
κ

,

+
〈∂ωu

∗, ju〉〈E2[u, u], jΨ〉 − 〈u∗, u〉〈E2[u, u], ∂ωΨ〉 − 〈u, u〉〈2E2[u
∗, u], ∂ωΨ〉

κ∆
,

Z ′
10 = 2

E2[u
∗, u]

κ
, Z ′

01 = 2
E2[u, u]

κ
. (3.34)

3.3.5 The equation for h

We now turn to equation (3.8) for ḣ that we rewrite in the form

ḣ = CTh+ Pc
T

[
(C −CT )f + PcjE2[w,w] + γ̇Pcj−1f +HR

]
, (3.35)

where remainder HR is

HR = Pcj(E[χ] − E2[w,w]) + ω̇∂ωP
cχ+ γ̇Pcj−1w (3.36)

= Pcj(E[χ] − E2[w,w]) − ω̇∂ωP
dχ + γ̇j−1w − γ̇Pdj−1w

For the HR we have, recalling (2.12), the following estimate

‖HR‖Mβ
= R(ω, |z| + ‖f‖L∞

−β
)(|z|3 + |z|‖f‖L∞

−β
+ ‖f‖2

L∞
−β

) + R(ω)|ω̇|(|z| + ‖f‖L∞
−β

)

+ R(ω)|γ̇||z| = R(ω, |z| + ‖f‖L∞
−β

)(|z|3 + |z|‖f‖L∞
−β

+ ‖f‖2
L∞
−β

) (3.37)

Now we continue the isolation the leading terms in the right hand site of (3.35). Note that,
from the formulae in the discussion surrounding (1.11),

C −CT = j−1(ω − ωT ) + j−1(V − VT ), where V = −δ(x)[a + bP1].

Also
Pc

TPc = Pc
T [Pc

T + Pd
T − Pd] = Pc

T + Pc
T [Pd

T −Pd]

Therefore (3.35) becomes

ḣ = CTh+ σ(t)Pc
T j

−1h+ Pc
T jE2[w,w] +H ′

R (3.38)

with σ(t) = ω − ωT + γ̇, and

H ′
R = Pc

T [HR + σ(t)j−1g + j−1(V − VT )f + (Pd
T − Pd)j(E2[w,w] + γ̇f)].
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Using the identity Pc
T = 1 − Pd

T , we obtain

‖H ′
R‖Mβ

≤ R1(ω, |z|+ ‖f‖L∞
−β

)(|z|3 + |z|‖f‖L∞
−β

+ ‖f‖2
L∞
−β

+ |ω− ωT |(|z|2 + |γ̇|‖f‖L∞
−β

). (3.39)

Next we need an additional construction to combine first two terms in RHS of (3.38). Namely,
lemma 3.5 below shows that the “main part” of the second term is iσ(t)(Π+

T −Π−
T )h, where Π+

and Π− are the spectral projection operators on the spectral space associated to the positive and
negative part of the continuous spectrum respectively at time T ; see the discussion preceding
(2.14). Hence, we denote

CM(t) = CT + iσ(t)(Π+
T − Π−

T ) (3.40)

and rewrite (3.38) as
ḣ = CM(t)h + Pc

T jE2[w,w] + H̃R (3.41)

where
H̃R = H ′

R + σ(t)[Pc
T j

−1 − i(Π+
T −Π−

T )]h (3.42)

Lemma 3.5. For h ∈ Xc
T we have

‖[Pc
T j

−1 − i(Π+
T − Π−

T )]h‖L1
β
≤ ‖h‖L∞

−β
. (3.43)

This lemma is proved in appendix D. Lemma 3.5 and the bound (3.39) imply

Proposition 3.6. The remainder H̃R admits the bound

‖H̃R‖Mβ
≤ R1(ω, |z| + ‖f‖L∞

−β
)(|z|3 + |z|‖f‖L∞

−β
+ ‖f‖2

L∞
−β

+ |ω − ωT |(|z|2 + ‖f‖L∞
−β

)). (3.44)

3.4 Canonical form of the equations

Our goal is to transform the evolution equations for (ω, γ, z, h) to a more simple, canonical form.
We will use the idea of normal coordinates, trying to keep unchanged the estimates for the
remainders as much as is possible. This means we observe that for our purposes the unknowns
(ω, γ, z, h) lie in a neighbourhood of the point (ω0, 0, 0, 0) in the space ∈ R×R×C×L∞

−β. We
seek a change of variables

Θ : (ω, γ, z, h) 7→ (ω1, γ1, z1, h1)

such that Θ is a diffeomorphism between neighbourhoods of (ω0, 0, 0, 0) in the space ∈ R ×
R × C × L∞

−β , and DΘ(ω0, 0, 0, 0) is the identity. This map Θ is obtained, as usual in the
normal form method, by looking for (ω1, γ1, z1, h1) as a power series in (ω, γ, z, h), starting with
the identity map at highest order - see (3.47)-(3.49),(3.57),(3.73) and (3.82) for the detailed
expressions. The coefficients in these expressions are then chosen so as to put the equations
for (ω1, γ1, z1, h1) in a simpler canonical form which is suitable for our subsequent work. This
final canonical form for the system is summarised in section 3.4.5.

3.4.1 Canonical form of the equation for h

As a starting point we expand out the middle term on the right hand side of (3.41), obtaining

ḣ = CM(t)h +H20z
2 +H11zz +H02z

2 + H̃R. (3.45)
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Here, the coefficients Hij are defined by

H20 = Pc
T jE2[u, u], H11 = 2Pc

T jE2[u, u
∗], H12 = Pc

T jE2[u
∗, u∗]. (3.46)

We want to extract from h the term of order z2 ∼ t−1. For this purpose we expand h as

h = h1 + k + k1, (3.47)

where
k = a20z

2 + a11zz + a02z
2, (3.48)

with some aij ≡ aij(ω, x) satisfying aij = aij, and

k1 = − exp

( t∫

0

CM(τ)dτ

)

k(0). (3.49)

Note that k1 is just the solution of the corresponding homogeneous equation k̇1 = CMk1, since
the operators CM(t) all commute for different values of t. It follows from k1(0) = −k(0) that
h1(0) = h(0).

Lemma 3.7. There exist aij ∈ L∞
−β in (3.48) such that the equation for h1 has the form

ḣ1 = CM(t)h1 + ĤR (3.50)

where ĤR = H̃R +H ′, with estimates as in (3.44), and also

‖k‖L∞
−β

= R1(ω)|z|2. (3.51)

Proof. (cf. Section 4.2.2 in [2]) We substitute (3.48) into (3.41) and equate the coefficients of
the quadratic powers of z. In addition we replace the discrete eigenvalue µ(t) by its value at
time T , i.e. µT = µ(ω(T )), and include the correction in the remainder. Then we get

H20 − 2iµTa20 = −CTa20

H11 = −CTa11

H02 + 2iµTa02 = −CTa02

and
ĤR = H̃R +H ′

where H ′ is defined as

H ′ =
∑

∂ωaijR(ω, |z| + ‖f‖L∞
−β

)|z|2(|z| + ‖f‖L∞
−β

)2 (3.52)

+
∑

aijR(ω, |z| + ‖f‖L∞
−β

)|z|(|z| + ‖f‖L∞
−β

)2 +
∑

aijR(ω)|z|2|µT − µ| − iσ(Π+
T −Π−

T )k.

The dependency in x appears here through the coefficients aij = aij(ω, x). Notice, from (1.16)
and the formuae for the projection operators in §2.1, that each Hij ∈ Xc

T is the sum of a multiple
of δ(x) and a function exponentially decreasing at infinity. Hence, there exists a solution a11 in
the form

a11 = −C−1
T H11, (3.53)
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where C−1
T stands for regular part of the resolvent R(λ) at λ = 0 since the singular part of

R(λ)H11 vanishes for H11 ∈ Xc
T . The function a11 is exponentially decreasing at infinity.

For a20 and a02 we choose the following inverse operators:

a20 = −(CT − 2iµT − 0)−1H20, a02 = a20 = −(CT + 2iµT − 0)−1H02, (3.54)

This choice is motivated by proposition 2.3, and putting t = 0 in that proposition we have the
bound (3.51). The remainder H ′ can be written as

H ′ =
∑

m

(CT − 2iµTm− 0)−1Am, m ∈ {−1, 0, 1} (3.55)

with Am ∈ Xc
T , satisfying the estimate

‖Am‖L1
β

= R(ω, |z| + ‖f‖L∞
−β

)|z|
(
|z||ωT − ω| + (|z| + ‖f‖L∞

−β
)2
)
. (3.56)

3.4.2 Canonical form of the equation for ω

We want to remove all terms in the right hand side of (3.22) except the remainder ΩR. This is
possible by methods of Buslaev and Sulem [2, Proposition 4.1] since Ω11 = 0 by (3.25).

Lemma 3.8. There exist coefficients bij(ω), 0 ≤ i, j ≤ 3, and vector function b′ij(x, ω), 0 ≤
i, j ≤ 1, such that real-valued function ω1 defined as

ω1 = ω + b20z
2 + b02z

2 + b30z
3 + b21z

2z + b12zz
2 + b03z

3 + z〈f, b′10〉 + z〈f, b′01〉 (3.57)

obeys a differential equation of the form

ω̇1 = Ω̂R, (3.58)

where Ω̂R satisfies the same estimate (3.21) as ΩR:

Ω̂R = R(ω, |z| + ‖f‖L∞
−β

)(|z|2 + ‖f‖L∞
−β

)2 (3.59)

Proof. The calculation follows the classical method of normal coordinates. Substituting ω̇, ż,
and ḟ from (3.22), (3.33), (3.5) into the equation for ω̇1 and comparing the coefficients of z2,
zf , etc. leads to a system of equations for the coefficients b20, b

′
10, ets. (cf. [2, Proposition 4.1])

Ω20 + 2iµb20 = 0, (3.60)

Ω′
10 + iµb′10 + C∗b′10 = 0,

Ω21 + 2Z11b20 + iµb21 + 2Z20b02 + 〈F11, b
′
10〉 + 〈F20, b

′
01〉 = 0,

Ω30 + 2Z20b20 + 3iµb30 + 〈F20, b
′
10〉 = 0.

It should be noted that the resonant term zz in the equation for ω̇1 is absent. From the first
equation of (3.60) we obtain

b20 = b02 =
i

2µ
Ω20, (3.61)
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Multiply the second equation of (3.60) by j we get

jΩ′
10 + iµjb′10 − Cjb′10 = 0

since jC∗ = −Cj. Without loss of generality we can assume that jΩ′
10 ∈ Xc

t by Remark 3.4.
Therefore, there exists the solution b′10 in the form

b′10 = b′01 = −j(C − iµ)−1jΩ′
10, (3.62)

where (C− iµ)−1 stands for regular part of the resolvent R(λ) at λ = iµ since the singular part
of R(λ)jΩ′

10 vanishes for jΩ′
10 ∈ Xc

T . The functions b′10, b
′
01 decrease exponentially at infinity,

and the equations for b21 = b12, b30 = b03 can be easily solved.

3.4.3 Canonical form of the equation for z

In this section we obtain a canonical form of the equation (3.33) for z, and carry out a com-
putation of the coefficient of the resonant “z2z ” term, which gives the Fermi Golden Rule.
Substituting (3.6) and (3.47) into (3.33) and putting the contribution of g + h1 + k1 in the
remainder Z̃R, we obtain

ż = iµz + Z20z
2 + Z11zz + Z02z

2 + Z30z
3 + Z21z

2z + Z12zz
2 + Z03z

3 (3.63)

+ Z ′
30z

3 + Z ′
21z

2z + Z ′
12zz

2 + Z ′
03z

3 + Z̃R.

We have by (3.47)-(3.48)

Z ′
30 = 〈a20, Z

′
10〉, Z ′

21 = 〈a11, Z
′
10〉 + 〈a20, Z

′
01〉, (3.64)

Z ′
03 = 〈a02, Z

′
01〉, Z ′

12 = 〈a02, Z
′
10〉 + 〈a11, Z

′
01〉.

We are particularly interested in the resonant term Z ′
21z

2z. Formulas (3.34), (3.46), (3.53),
(3.54) imply

Z ′
21 = −〈C−1

T 2Pc
T jE2[u, u

∗], 2
E2[u, u

∗]

κ
〉 − 〈(CT − 2iµT − 0)−1Pc

T jE2[u, u], 2
E2[u, u]

κ
〉 (3.65)

For the coefficient κ = κ(ω) we get (see [2, Proposition 3.1])

κ = 〈u, ju〉 = iδ, with δ > 0. (3.66)

Now we can prove

Lemma 3.9. Suppose that the non-degeneracy condition (1.17) is satisfied, then

ReZ ′
21 < 0 (3.67)

for ω in some vicinity of ω0.

Proof. We first notice that the coefficient 〈C−1
T 2Pc

T jE2[u, u
∗], E2[u, u

∗]〉 appearing in the ex-
pression (3.65) for Z ′

21 is real, since the operator C−1
T 2Pc

T j is selfadjoint. Hence by (3.66)
ReZ ′

21 reduces to

ReZ ′
21 = −Re2

〈(CT − 2iµT − 0)−1Pc
T jE2[u, u], E2[u, u]〉

κ

= −2

δ
Im 〈R(2iµ+ 0)Pc

T jE2[u, u], E2[u, u]〉,
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where we denote

R(λ) = RT (λ) = (CT − λ)−1, Reλ > 0, and µ = µT .

Using that Pc
T commutes with R(2iµ+0), we have R(2iµ+0)Pc

T = Pc
TR(2iµ+0)Pc

T . We have
also that (Pc

T )∗ = −jPc
T j, hence

ReZ ′
21 =

2

δ
Im 〈R(2iµ+ 0)α, jα〉

with α = Pc
T jE2[u, u]. The function λ 7→ 〈R(λ)α, jα〉 is analytic in the region C \ (C+ ∪ C−)

since α ∈ Xc
T . Hence by the Cauchy residue theorem we have

〈R(2iµ+ 0)α, jα〉 = − 1

2πi

∫

C+∪C−

dλ
〈(R(λ+ 0) − R(λ− 0))α, jα〉

λ− 2iµ− 0
(3.68)

Now we use the representation

R(λ+ 0) − R(λ− 0) = −τ±(λ) ⊗ τ±(λ)

8ik±DD
j − s±(λ) ⊗ s±(λ)

2ik±
j, λ ∈ C±, (3.69)

where D = D(λ+ 0) and k+ = k+(λ+ 0) < 0 for λ ∈ C+, k− = k−(λ+ 0) > 0 for λ ∈ C−
τ±(λ) = (Deik±|x| −De−ik±|x|)v± + 4βik±e

ik∓|x|v∓, s±(λ) = sin(k±x)v± (3.70)

are the even and the odd eigenfunctions of the operator CT corresponding to the point λ ∈ C±
of the continuous spectrum (see appendix B). The representation (3.69) can be checked by
direct calculation using formulas (D. 2)-(D. 4) for the resolvent. Then equation (3.68) becomes
(with λ = iν)

〈R(2iµ+ 0)α, jα〉 = − 1

16π

−ω∫

−∞

dν

k−|D|2
〈τ−, jα〉〈τ−, jα〉

ν − 2µ
− 1

16π

∞∫

ω

dν

k+|D|2
〈τ+, jα〉〈τ+, jα〉
ν − 2µ+ i0

since the function α is even. Using that

1

ν + i0
= p.v.

1

ν
− iπδ(ν)

where p.v. is the Cauchy principal value, we have

〈R(2iµ+ 0)α, jα〉 = − 1

16π

−ω∫

−∞

dν

k−|D|2
〈τ−, jα〉〈τ−, jα〉

ν − 2µ
− 1

16π
p.v.

∞∫

ω

dν

k+|D|2
〈τ+, jα〉〈τ+, jα〉

ν − 2µ

+
i

16

〈τ+(2iµ), jα〉〈τ+(2iµ), jα〉
k+(2iµ+ 0)|D(2iµ+ 0)|2 (3.71)

The integral terms in (3.71) is real. Thus,

Im 〈RT (2iµT + 0)α, jα〉 =
|〈τ+(2iµT ), E2[u, u]〉|2

16k+(2iµT + 0)|D(2iµT + 0)|2

The non-degeneracy condition (1.17) implies that 〈τ+(2iµT ), E2[u, u]〉 6= 0 in some vicinity of
ω0. Using also the inequality k+(2iµT + 0) < 0, we deduce ReZ ′

21 < 0.
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We now need an estimate on the remainder Z̃R.

Lemma 3.10. The remainder Z̃R has the form

Z̃R = R1(ω, |z|+‖f‖L∞
−β

)
[
(|z|2+‖f‖L∞

−β
)2+|z||ωT−ω|‖h‖L∞

−β
+|z|‖k1‖L∞

−β
+|z|‖h1‖L∞

−β

]
. (3.72)

Proof. The remainder Z̃R is given by

Z̃R = ZR + z〈f − k, Z ′
10〉 + z〈f − k, Z ′

01〉

where ZR satisfies estimate (3.32). Since f − k = g + k1 + h1, we have by (3.7)

|〈f − k, Z ′
10〉| ≤ R(ω)(‖g‖L∞

−β
+ ‖k1‖L∞

−β
+ ‖h1‖L∞

−β
)

≤ R1(ω)(|ωT − ω|‖h‖L∞
−β

+ ‖k1‖L∞
−β

+ ‖h1‖L∞
−β

)

which implies (3.72.

We can apply now the method of normal coordinates to equation (3.63).

Lemma 3.11. (cf. [2, Proposition 4.9])
There exist coefficients cij such that the new function z1 defined by

z1 = z + c20z
2 + c11zz + c02z

2 + c30z
3 + c12zz

2 + c03z
3, (3.73)

satisfies an equation of the form

ż1 = iµ(ω)z1 + iK(ω)|z1|2z1 + ẐR (3.74)

where ẐR satisfies estimates of the same type as Z̃R, and

Re iK = ReZ ′
21 < 0. (3.75)

Proof. Substituting z1 in equation (3.63) for z and equating the coefficients, we get, in partic-
ular,

c20 =
i

µ
Z20, c11 = − i

µ
Z11, c02 = − i

3µ
Z02 (3.76)

and
iK = Z21 + Z ′

21 + c11Z20 + 2c20Z11 + c11Z11 + 2c02Z02 (3.77)

It is easy to check that all of the coefficients Z11, Z20, Z02, and Z21 defined in (3.34) are pure
imaginary, and hence (3.75) follows immediately.

Denoting KT = K(ωT ), the equation for z1 is rewritten as

ż1 = iµz1 + iKT |z1|2z1 +
̂̂
ZR (3.78)

where

̂̂
ZR = ẐR + R1(ω, |z| + ‖f‖L∞

−β
)|z|3|ωT − ω| = R1(ω, |z| + ‖f‖L∞

−β
)
[
(|z|2 + ‖f‖L∞

−β
)2 (3.79)

+ |z||ωT − ω|(‖h‖L∞
−β

+ |z|2) + |z|‖k1‖L∞
−β

+ |z|‖h1‖L∞
−β

]
.
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It is easier to deal with y = |z1|2, rather than z1, because y decreases at infinity while z1
is oscillating The equation satisfied by y is simply obtained by multiplying (3.74) by z1 and
taking the real part:

ẏ = 2Re(iKT )y2 + YR, (3.80)

where

YR = R1(ω, |z|+‖f‖L∞
−β

)|z|
[
(|z|2+‖f‖L∞

−β
)2+|z||ωT−ω|(‖h‖L∞

−β
+|z|2)+|z|‖k1‖L∞

−β
+|z|‖h1‖L∞

−β

]
.

(3.81)

3.4.4 Canonical form of the equation for γ

The only difference between equations (3.22) and (3.29) for ω and γ is that, in general the co-
efficient Γ11 6= 0. We can nevertheless perform the same change of variables as for ω, obtaining:

Lemma 3.12. There exist coefficients dij(ω), 0 ≤ i, j ≤ 3, and vector functions d′ij(x, ω) such
that the new function γ1 defined as

γ1 = γ + d20z
2 + d02z

2 + d30z
3 + d12z

2z + d12zz
2 + d023z

3 + z〈f, d′10〉 + z〈f, d′01〉, (3.82)

with dij = dji, is a solution of the differential equation

γ̇1 = Γ11(ω)zz + Γ̂R. (3.83)

Furthermore Γ̂R satisfies the same estimate (3.28) as ΓR.

3.4.5 Summary of the equations in canonical form

We summarize the main formulas of §3.4.1-§3.4.3. First we recall that

f = g + h, g = Pd
Tf, h = Pc

Tf, h = k + k1 + h1

where k and h1 are defined in (3.48)-(3.49). The equations satisfied by h and h1 are, respectively,
(see (3.38) and (3.50))

ḣ = CMh− Pc
T jE2[w,w] + H̃R, (3.84)

and
ḣ1 = CMh1 + ĤR. (3.85)

The remainder H̃R is estimated in (3.44) and ĤR = H̃R +H ′, where H ′ is estimated in (3.55)
and (3.56).
The second equation, given in Lemma 3.8, determines the evolution of ω1:

ω̇1 = Ω̂R, (3.86)

where Ω̂R is estimated in 3.59, and ω1 and ω are related by (see (3.57))

ω1 − ω = R(ω)|z|(|z| + ‖f‖L∞
−β

). (3.87)

The third equation describes the evolution of z1 (see (3.74)):

ż1 = iµz1 + iKT |z1|2z1 +
̂̂
ZR, (3.88)
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with the estimate (3.79) for
̂̂
ZR. ¿From (3.63), z and z1 are related by that

z1 − z = R(ω)|z|2. (3.89)

The fourth equation is for the evolution of y = |z1|2:

ẏ = 2Re(iKT )y2 + YR, (3.90)

where

|YR| ≤ |z1|| ̂̂ZR|. (3.91)

The negativity of Re iKT is a key point in the analysis and was proved in Lemma 3.9. It is clear
from the last equation that this condition gives a nonlinear damping effect in the evolution of
the amplitude of the discrete mode - this is the crucial dynamical consequence of the Fermi
Golden Rule, with obvious relevance to the large time behaviour of the solutions.

3.5 A bound for |ωT − ω| and the initial conditions

We will need a uniform bound for |ωT − ω(t)| on the interval [0, T ]. This can be obtained by
comparison with the function ω1(t) as follows:

|ωT − ω(t)| ≤ |ω1T − ω1(t)| + |ω1T − ωT | + |ω1(t) − ω(t)| (3.92)

≤
T∫

t

|ω̇1(τ)|dτ + R(ωT , |zT | + ‖fT‖L∞
−β

)(|zT | + ‖fT‖L∞
−β

)2 + R(ω, |z| + ‖f‖L∞
−β

)(|z| + ‖f‖L∞
−β

)2

≤ max
0≤t≤T

R(ω, |z| + ‖f‖L∞
−β

)
[ T∫

t

(|z|2 + ‖f‖L∞
−β

)2dτ + (|zT | + ‖fT‖L∞
−β

)2 + (|z| + ‖f‖L∞
−β

)2
]
,

where zT = z(T ), fT = f(T ). Using |ω| ≤ |ω0| + |ω0 − ωT | + |ω − ωT |, we have

max
0≤t≤T

R(ω, |z| + ‖f‖L∞
−β

) = R( max
0≤t≤T

|ω − ωT |, max
0≤t≤T

(|z| + ‖f‖L∞
−β

)).

We denote such quantities by the symbol R2(ω, |z| + ‖f‖L∞
−β

). Then (3.92) becomes

|ωT−ω| ≤ R2(ω, |z|+‖f‖L∞
−β

)
[ T∫

t

(|z|2+‖f‖L∞
−β

)2dτ+(|zT |+‖fT‖L∞
−β

)2+(|z|+‖f‖L∞
−β

)2
]
. (3.93)

As in (1.18), we suppose the smallness condition:

|z(0)| ≤ ε1/2, ‖f(0)‖L1
β
≤ cε3/2, (3.94)

where ε > 0 is sufficiently small. Equation (3.89) implies |z1|2 ≤ |z|2 + R(ω, z)|z|3. Therefore

y(0) = |z1(0)|2 ≤ ε+ R(ω, |z0|)ε3/2. (3.95)

¿From the formula h = Pc
Tf = f + (Pd −Pd

T )f , we see that

‖h(0)‖L1
β
≤ cε3/2 + R1(ω)|ωT − ω|‖f(0)‖L∞

−β
. (3.96)
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3.6 A bound for k1

Lemma 3.13. The function k1 defined in (3.49) satisfies the following bound:

‖k1‖L∞
−β

≤ c|z(0)|2 1

(1 + t)3/2
≤ c

ε

(1 + t)3/2
. (3.97)

Proof. Equalities (3.40) and (3.49) imply

k1 = −e
t

R

0

CM (τ)dτ
k(0) = −e

CT t+i
t

R

0

β(τ)dτ(Π+

T −Π
−
T )
k(0) (3.98)

Denoting ν =
t∫

0

β(τ)dτ , we obtain by expanding the exponential and using the idempotency of

projections (the Euler trick):

eiνΠ±
T = Π±

T e
iν + Π∓

T + Pd
T .

Therefore

eiν(Π+

T −Π
−
T ) = (Π+

T e
iν + Π−

T + Pd
T )(Π−

T e
−iν + Π+

T + Pd
T ) = Π+

T e
iν + Π−

T e
−iν + Pd

T .

Note that CT commutes with P±
T , hence

e

t
R

0

CM (τ)dτ
= eCT t(eiνΠ+

T + e−iνΠ−
T + Pd

T ). (3.99)

Since β is a real function, both exponentials are bounded. Further, by (3.48) we have k(0) =
a20z

2(0)+a11z(0)z(0)+a02z
2(0) with aij defined in (3.53), (3.54). Therefore, the bounds (2.15),

(2.16), (2.17) and assumption (3.94) imply (3.97).

4 Large time asymptotics

In this section we will make use of the dispersive estimates given in §2.2 to prove the asymptotic
representation for the solution of (1.2) with initial data as in theorem 1.3. The idea is to fix
an interval [0, T ] and carry out the frozen spectral decomposition relative to the operator
CT = C(ωT ) at time T , as described in §3.2. We then obtain bounds for certain majorants on
this interval which are uniform in T , and thus make it possible to obtain the asymptotics for
the solution in the limit T → +∞. We will use the R notation explained prior to (3.7) and
(3.93) to express estimates and bounds concisely.

4.1 Definition of majorants

We define the quantities

M0(T ) = max
0≤t≤T

|ωT − ω|
(

ε

1 + εt

)−1

(4.1)

M1(T ) = max
0≤t≤T

|z(t)|
(

ε

1 + εt

)−1/2

(4.2)

M2(T ) = max
0≤t≤T

‖h1‖L∞
−β

(
ε

1 + εt

)−3/2

(4.3)
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which will be refered to in the following as “majorants”, and denote M the 3-dimensional vector
(M0,M1,M2). Observe that (3.7), (3.51) and (3.97) imply that f can be bounded in terms of
these: (

ε

1 + εt

)−1

‖f‖L∞
−β

= R1(ω)(M2
1 +

√
ǫM2), (4.4)

so that control of M will allow complete control of the asymptotic behaviour of the solution.
The goal of this section is to prove that if ε is sufficiently small, M is bounded uniformly in T .
This is done by first bounding the initial data, and inhomogeneous terms, in the equations in
section 3.4.5 in terms of the Mj , and then using the estimates for the homogeneous evolutions
to self-consistently bound the Mj in terms of themselves, uniformly in T > 0 and ǫ≪ 1.

4.2 Estimate of the remainders and initial data

Lemma 4.1. The remainder YR defined in (3.81) satisfies the estimate

|YR| = R(ε1/2
M)

ε5/2

(1 + εt)2
√
εt

(1 + |M|)5. (4.5)

Proof. Using again the equality f = g+ h = g+ k+ k1 + h1, lemma 3.97 and the definitions of
the Mj , the remainder YR is bounded as follows:

YR = R2(ω, |z|+ ‖f‖L∞
−β

)|z|
[
(|z|2 + ‖k1‖L∞

−β
+ ‖h1‖L∞

−β
)2 + |z||ωT −ω|(|z|2 + ‖k1‖L∞

−β
+ ‖h1‖L∞

−β
)

+|z|(‖k1‖L∞
−β

+‖h1‖L∞
−β

)
]
= R(ε1/2

M)
( ε

1 + εt

)1/2

M1

[( ε

1 + εt
M

2
1+

ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M3

)2

+
( ε

1 + εt

)3/2

M0M1

( ε

1 + εt
M

2
1 +

ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M3

)

+(
ε

1 + εt

)1/2

M1

( ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M3

)]
= R(ε1/2

M)
ε5/2

(1 + εt)2
√
ε+ εt

(1 + |M|)5,

establishing (4.1).

Let us turn now to the remainder ĤR = H̃R +H ′ in equation (3.85) for h1.

Lemma 4.2. The first summand H̃R satisfies

‖H̃R‖Mβ
= R(ε1/2

M)
( ε

1 + εt

)3/2(
(1 + M1)

3 + ε1/2(1 + |M|)4
)
. (4.6)

Proof. It follows from (3.44)

‖H̃R‖Mβ
= R2(ω, |z| + ‖f‖L∞

−β
)
[
|z|3 + (|z| + |ωT − ω|)(|z|2 + ‖k1‖L∞

−β
+ ‖h1‖L∞

−β
)

+(|z|2 + ‖k1‖L∞
−β

+ ‖h1‖L∞
−β

)2 = R(ε1/2
M)

(( ε

1 + εt

)3/2

M
3
1 +

(( ε

1 + εt

)1/2

M1 +
ε

1 + εt
M0

)

( ε

1 + εt
M

2
1 +

ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M2

)
+
( ε

1 + εt
M

2
1 +

ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M2

)2

which implies (4.6).
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The second summand H ′ is represented as in (3.55) where the Am are estimated in (3.56).
For the Am we now obtain:

Lemma 4.3.

‖Am‖Mβ
= R(ε1/2

M)
( ε

1 + εt

)3/2(
M

3
1 + ε1/2(1 + |M|)3

)
. (4.7)

Proof. Estimate (3.56) implies

‖Am‖Mβ
= R2(ω, |z| + ‖f‖L∞

−β
)|z|
(
|z||ωT − ω| + (|z| + ‖k1‖L∞

−β
+ ‖h1‖L∞

−β
)2
)

= R(ε1/2
M)
( ε

1 + εt

)1/2

M1

[( ε

1 + εt

)3/2

M0M1+
(( ε

1 + εt

)1/2

M1+
ε

(1 + t)3/2
+
( ε

1 + εt

)3/2

M2

)2
]

which implies (4.7).

Now we estimate the initial data. Referring to the formulas at the end of §3.5, we have

y(0) ≤ ε+ R(ε1/2
M)ε3/2 = ε(1 + R(ε1/2

M)ε1/2) (4.8)

‖h(0)‖Mβ
≤ cε3/2 +R1(ω)|ωT −ω|‖f(0)‖L∞

−β
≤ cε3/2 +R(ε1/2

M)ε2
M0(1+M

2
1 + ε1/2

M2). (4.9)

4.3 Integral inequalities and decay in time

This section is devoted to a study of the system:

ẏ = 2Re(iKT )y2 + Y (t), (4.10)

ḣ1 = CMh1 +H(x, t), (4.11)

under some assumptions on the initial data, and on the inhomogeneous (or source) terms Y
and H . Equation (4.10) for y is of Ricatti type, and is similar to (3.90), while (4.11) is similar
to (3.85). First, for the initial data, we assume

y(0) ≤ εy0, ‖h1(0)‖Mβ
≤ ε3/2h0 (4.12)

with some constant y0 and h0 > 0. As for the source terms, we assume that

|Y (t)| ≤ Y
ε5/2

(1 + εt)2
√
εt

(4.13)

and that H(x, t) = H1(x, t) +H2(x, t), where H2 =
∑
m

(CT − 2iµTm− 0)−1Am, Am ∈ Xc
T with

the following bounds:

‖H1‖Mβ
≤ H1

( ε

1 + εt

)3/2

, (4.14)

‖Am‖Mβ
≤ Am

( ε

1 + εt

)3/2

, (4.15)

where the quantities Y , H1, Am are supposed to be given positive constants. All these assump-
tions are motivated by the estimates of the remainders in §4.2, and by the final estimates we
intend to prove on ω, z, h and h1. Equation (4.10) corresponds to equation (3.90) and the
assumption (4.13) on the source term has the form of estimate (4.5) for the remainder YR. Sim-
ilarly, equation (4.11) corresponds to equation (3.85) and assumptions (4.14)-(4.15) correspond
to the inequalities (4.6)- (4.7). Finally, corresponding to (3.75), we work under the assumption

Re iKT = −ImKT < 0.
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Lemma 4.4. ([2, Proposition 5.6]) The solution of (4.10), with initial condition and source
term satisfying (4.12) and (4.13) respectively, is bounded as follows for t > 0:

|y(t) − y(0)

1 + 2ImKTy(0)t
| ≤ cY

( ε

1 + εt

)3/2

, c = c(y0, ImKT ). (4.16)

Let us consider equation (4.11) for h1.

Lemma 4.5. The solution of (4.11), with initial condition and source term satisfying (4.12),
(4.14) and (4.15), is bounded as follows:

‖h1‖L∞
−β

≤ c(ωT )
( ε

1 + εt

)3/2(
h0 +H1 +

∑

m

Am

)
. (4.17)

Proof. The function h1(x, t) can be expressed as:

h1 = e

t
R

0

CM (τ)dτ
h1(0) +

t∫

0

e

t
R

s
CM (τ)dτ

H(s)ds,

To establish (4.17) we use the representation (3.99) and the bounds (2.14), (2.15) and (2.17)
to deduce that

‖h1‖L∞
−β

≤ c(ωT )

(1 + t)3/2
‖h1(0)‖Mβ

+

t∫

0

c(ωT )

(1 + (t− s))3/2
(‖H1(s)‖Mβ

+ ‖Am(s)‖Mβ
)ds

≤ c(ωT )

[

h0

( ε

1 + t

)3/2

+

t∫

0

ds

(1 + (t− s))3/2

(
H1

( ε

1 + εs

)3/2

+
∑

m

Am

( ε

1 + εs

)3/2
)]

≤ c(ωT )
( ε

1 + εt

)3/2(
h0 +H1 +

∑

m

Am

)
,

since
∫ t

0
(1 + t− s)−3/2(1 + ǫs)−3/2ds ≤ c(1 + ǫt)−3/2 by [2, lemma 5.3].

4.4 Inequalities for the majorants

In this section we estimate in turn the three majorants M0,M1,M2.

Lemma 4.6. The majorants M0(T ), M1(T ), and M2(T ) satisfy

M0(T ) = R(ε1/2
M)
[
(1 + M1)

4 + ε(1 + |M|)2
]
, (4.18)

M
2
1 = R(ε1/2

M)
(
1 + ε1/2(1 + |M|)5

)
(4.19)

M2 = R(ε1/2
M)

[
(1 + M1)

3 + ε1/2(1 + |M|)4
]
. (4.20)
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Proof. Step i) Using the equality f = g+ h = g+ k+ k1 + h1 and bound (3.97) for k1 we have,
using the notation defined prior to (3.93)

|z|2 + ‖f‖L∞
−β

= R2(ω, |z| + ‖f‖L∞
−β

)(‖k1‖L∞
−β

+ |z|2 + ‖h1‖L∞
−β

)

= R(ε1/2
M)

(
ε

(1 + t)3/2
+

(
ε

1 + εt

)
M

2
1 +

(
ε

1 + εt

)3/2

M2

)

= R(ε1/2
M)

(
ε

1 + εt

)(
1 + M

2
1 + ε1/2

M2

)
,

so that
|z|2 + ‖f‖L∞

−β
= R(ε1/2

M)
ε

1 + εt

(
1 + M

2
1 + ε1/2

M2

)
. (4.21)

Then (3.93) and (4.1) imply (4.18).
Step ii) Recall y = |z1|2 satisfies (4.10) with Y = YR, and YR satisfies the inequality (4.5) which
is exactly the condition (4.13) with Y = R(ε1/2M)(1 + |M|)5. Using (4.16) as well as (4.8) to
bound the initial condition y(0), it follows that

y ≤ R(ε1/2
M)

[
ε

1 + εt
+
( ε

1 + εt

)3/2

(1 + |M|)5

]

.

Therefore

|z|2 ≤ y + R(ω)|z|3 ≤ R(ε1/2
M)

[
ε

1 + εt
+
( ε

1 + εt

)3/2

(1 + |M|)5 +
( ε

1 + εt

)3/2

M
3
1

]

,

from which (4.19) follows.
Step iii) Let us now consider h1, the solution of (3.85). It has the form (4.11) with H = ĤR =
H̃R +H ′, where H̃R and H ′ identify respectively to H1 and H2. More precisely, using (4.6) and
(4.7), we have

H1 = R(ε1/2
M)
(
(1 + M1)

3 + ε1/2(1 + |M|)4)
)

Am = R(ε1/2
M)
(
M

3
1 + ε1/2(1 + |M|)3

)
.

Concerning the initial conditions, we know that h1(0) = h(0). Thus by (4.9)

h0 = c+ R(ε1/2
M)ε1/2

M0(1 + M
2
1 + ε1/2

M2)

Applying Lemma 4.5, we deduce that

‖h1‖L∞
−β

= R(ε1/2
M)
( ε

1 + εt

)3/2
[

(1 + M1)
3 + ε1/2(1 + |M|)4

]

,

which implies (4.20).
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4.5 Uniform bounds for majorants

The aim of this section is to prove that if ε is sufficiently small, all the Mi are bounded uniformly
in T and ε.

Lemma 4.7. For ε sufficiently small, there exists a constant M independent of T and ε, such
that,

|M(T )| ≤M. (4.22)

Proof. Combining the inequalities (4.18)-(4.20) for the Mi, one get a estimate of the form

M
2 ≤ R(ε1/2

M)
[
(1 + M1)

8 + ε1/2(1 + |M|)8
]

Replacing M
2
1 in the right-hand by its bound (4.19), we get an inequality in the form

M
2 ≤ R(ε1/2

M)(1 + ε1/2F (M))

where F (M) is an appropriate function . From this inequality it follows that M is bounded
independent of ε≪ 1, since M(0) is small, and M(t) is a continuous function of t.

Corollary 4.8. The function ω(t) has a limit ω+ as t → ∞. Furthermore, the following
estimates hold for all t > 0:

|ω+ − ω(t)| ≤ M
ε

1 + εt
, (4.23)

|z(t)| ≤ M
( ε

1 + εt

)1/2

, (4.24)

‖h1‖L∞
−β

≤ M
( ε

1 + εt

)3/2

, (4.25)

‖f‖L∞
−β

≤ c(M)
ε

1 + εt
. (4.26)

Proof. Since |ωT − ω(t)| ≤ M0
ε

1 + εt
, then applying this result to |ω(t1) − ω(t2)|, we see that

ω(t) is a Cauchy sequence. It thus has a limit, denoted ω+ and (4.23) holds. The next two
results follow immediately, while the final one is a consequence of (4.4).

4.6 Large time behaviour of the solution

In this section we deduce from corollary 4.8 a theorem which describe a large time behaviour
of the solution. Notice that in the decomposition f = g + h = g + h1 + k + k1, a fixed time
T has been chosen, and all the components depend on ω(T ). From the above proposition, we
know that ω(t) has a limit ω+ as t→ ∞. So we can reformulate the decomposition by choosing
T = ∞ and ωT = ω+. Namely, let us denote Pc

∞ = Pc(ω+) and Pd
∞ = 1 − Pc

∞. We define
f = g + h where g = Pd

∞f and h = Pc
∞f . We also decompose h = h1 + k + k1 where

k = a20z
2 + a11zz + a02z

2,

k1 = − exp
( t∫

0

C+(τ)dτ
)
k(0)

where aij = aij(ω+, x) and C+ = C(ω+) + i
(
ω(t)− ω+ + γ̇(t)

)(
Π+

∞ −Π−
∞

)
. All the estimates

previously obtained in §3.4.2-§4 for finite T can be extended to T = ∞ and ωT = ω+ without
modification. Thus we have proved the following result:
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Theorem 4.9. Let the conditions of theorem 1.3 hold. Then, for ε sufficiently small, there
exist C1 functions ω(t), γ(t), z(t) as in lemma 3.1, and constants ω+ ∈ R and M > 0, such that
for all t ≥ 0:

ψ(x, t) = e
j(

t
R

0

ω(s)ds+γ(t))(
Ψω(x) + z(t)u(x, ω) + z(t)u∗(x, ω) + f(x, t)

)
, (4.27)

and

|ω(t) − ω+| ≤M
ε

1 + εt
, |z(t)| ≤M

( ε

1 + εt

)1/2

, ‖f(t)‖L∞
−β

≤M
ε

1 + εt
, (4.28)

so that ω+ = lim
t→∞

ω(t) ∈ R. A corresponding statement also holds for t→ −∞.

5 Scattering asymptotics

We have now obtained the representation (4.27) of the solution ψ(x, t). In order to prove
statement of theorem 1.3 it remains to:

• construct asymptotic expressions for ω(t), z(t), γ(t), which is done in section 5.1 following
[2], and then

• to prove the existence of Ψ±, and hence obtain the scattering asymptotics (1.19); this
second stage amounts to the construction of the wave operator, and is carried out in §5.2
by the study of some oscillatory integrals.

5.1 Large time behavior of z(t), ω(t) and γ(t)

We start with equation (3.74) for z1, rewritten as

ż1 = iµz1 + iK+|z1|2z1 +
̂̂
ZR

with K+ = K(ω+); by (3.79) the inhomogeneous term
̂̂
ZR satisfies the estimate

̂̂
ZR = R(ε1/2M)

ε2

(1 + εt)3/2
√
εt

(1 +M4) = O(t−2), t→ ∞.

On the other hand, we have, from (4.8) and (4.16),

y =
y(0)

1 + 2ImK+y(0)t
+O(t−3/2), t→ ∞.

Given the estimate (4.24) for |z|, and obviously the same one for |z1|, we have

ż1 = iµz1 + iK+
y(0)

1 + 2ImK+y(0)t
z1 + Z1, Z1 = O(t−2), t→ ∞. (5.1)

Since by assumption in theorem 1.3 y(0) = O(ǫ) we can write y(0) = ǫy0 with y0 = O(1). Let
us denote 2ImK+y0 = ǫk+, δ = Re K+

Im K+
so that ǫK+y0 = i

2
ǫk+(1 − iδ). The solution z1 of (5.1)

is written in the form

z1 =
e

i
t

R

0

µ(t1)dt1

(1 + ǫk+t)
1

2
(1−iδ)

[
z1(0)+

t∫

0

e
−i

s
R

0

µ(t1)dt1
(1+ ǫk+s)

1

2
(1−iδ)Z1(s)ds

]
= z∞

e
i

t
R

0

µ(t1)dt1

(1 + ǫk+t)
1

2
(1−iδ)

+ zR
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where

z∞(ω) = z1(0) +

∞∫

0

e
−i

s
R

0

µ(t1)dt1
(1 + ǫk+s)

1

2
(1−iδ)Z1(s)ds

and

zR = −
∞∫

t

e
i

t
R

s
µ(t1)dt1

(1 + ǫk+s

1 + ǫk+t

) 1

2
(1−iδ)

Z1(s)ds.

Here µ(t1) = µ(ω(t1)). From the bound (5.1) on Z1 it follows that zR = O(t−1). Therefore
z(t) = z1(t) +O(t−1) satisfies

z(t) = z+
e

i
t

R

0

µ(t1)dt1

(1 + ǫk+t)
1

2
(1−iδ)

+O(t−1), t→ ∞, z+ = z∞(ω+). (5.2)

¿From these formulas for z(t), the asymptotic behavior of ω(t) and γ(t) can be deduced as in
[2, Sections 6.1 and 6.2], leading to the following:

Lemma 5.1. In the situation of theorem 4.9, the functions ω(t) and γ(t) have the following
asymptotic behavior as t→ +∞:

ω(t) = ω+ +
q+

1 + ǫk+t
+

b+
1 + ǫk+t

cos(2µ+t+ b1 log(1 + ǫk+t) + b2) +O(t−3/2), (5.3)

γ(t) = γ+ + c+ log(1 + ǫk+t) +O(t−1), (5.4)

where ω+, k+ are as defined above, µ+ = µ(ω+), and q+, b+, b1,b2,c+ are constants.

5.2 Soliton asymptotics

Here we prove the statement (1.19) in our main theorem 1.3. To achieve this we look for the
solution ψ(x, t) to (1.1), in the corresponding complex form

ψ = s+ v + f, (5.5)

where
s(x, t) = ψω(t)(x)e

iθ(t), θ̇(t) = ω(t) + γ̇(t)

is the accompanying soliton, and

v(x, t) = v(x, t)eiθ(t), v(x, t) =
(
z(t) + z(t)

)
u1(x, ω(t)) + i

(
z(t) − z(t)

)
u2(x, ω(t)). (5.6)

We aim now to prove the complex form (1.20) of the scattering asymptotics, by analysing f.

Lemma 5.2. If ψ(x, t) is a solution of (1.1), and f is as in (5.5) - (5.6), then

iḟ = −f ′′ +R

where

R = γ̇(s+ v) − iω̇∂ω(s+ v) − i[(ż − iµz)(ui + iu2) + (ż + iµz)(u1 − iu2)]e
iθ

−δ(x)[af + beiθRe(e−iθf) + O(|f + v|2)]. (5.7)
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Proof. Multiply (1.10) by eiθ, we obtain −ωs = −s′′ − δ(x)F (s) that implies

iṡ = −ωs− γ̇s+ iω̇∂ωs = −s′′ − γ̇s+ iω̇∂ωs− δ(x)F (s), (5.8)

By the equation Cu = iµu, we obtain for the components u1 and u2 of vector u,
{

−u′′2 + ωu2 − δ(x)au2 = iµu1

−u′′1 + ωu1 − δ(x)[a + b]u1 = −iµu2.

Therefore −v′′ + ωv − δ(x)[av + bRev] = −µ(z − z)u1 − iµ(z + z)u2 and then

iv̇ = −(ω + γ̇)veiθ(t) + iω̇∂ωve
iθ(t) +

(
i(ż + ż)u1 − (ż − ż)u2

)
eiθ (5.9)

= −v′′ − γ̇v + iω̇∂ωv − δ(x)[av + bRev]eiθ + i[(ż − iµz)(u1 + iu2) + (ż + iµz)(u1 − iu2)]e
iθ.

¿From (1.1), (5.8), (5.9) we obtain for the remainder f(x, t) = ψ(x, t) − s(x, t) − v(x, t)

iḟ = −f ′′(x, t) + γ̇(s+ v) − iω̇∂ω(s+ v) − i[(ż − iµz)(ui + iu2) + (ż + iµz)(u1 − iu2)]e
iθ

− δ(x)[af + beiθRe(e−iθf) + O(|f + v|2)] = −f ′′ +R, (5.10)

with R as in (5.7).

The function f(x, t) which is a solution of 5.10 can be expressed formally as

f(t) = W (t)f(0) +

t∫

0

W (t− τ)R(τ)dτ

= W (t)
(
f(0) +

∞∫

0

W (−τ)R(τ)dτ
)
−

∞∫

t

W (t− τ)R(τ)dτ (5.11)

= W (t)φ+ + r+(t), (5.12)

where W (t) is the dynamical group of the free Schrödinger equation. To establish the asymp-
totic behavior (1.20), it suffices to prove that

φ+ ∈ Cb(R) ∩ L2(R), and ‖r+(t)‖Cb(R)∩L2(R) = O(t−ν), t→ ∞. (5.13)

These assertions follow from the definition (5.7) of the function R, and the following two
lemmas. The first lemma studies the contribution to φ+(x) and r+(x, t) from the terms in (5.7)
involving δ(x) which is O(t−1) as t→ ∞ by (4.26).

Lemma 5.3. Let Π(t) be a continuous bounded function of t ≥ 0, with |Π(t)| ≤ L0 and
|tΠ(t)| ≤ L1. Then

φ(x) :=

∞∫

0

W (−τ)[δ(·)Π(τ)]dτ =

∞∫

0

e−ix2/(4τ)

√
−4πiτ

Π(τ)dτ ∈ Cb(R) ∩ L2(R) (5.14)

and for ν ∈ (0, 1
4
) there exists C = C(ν, L0, L1) > 0 such that the function

r(x, t) :=

∞∫

t

W (t− τ)[δ(·)Π(τ)]dτ =

∞∫

t

eix2/4(t−τ)

√
4πi(t− τ)

Π(τ)dτ (5.15)

satisfies ‖r(·, t)‖Cb(R)∩L2(R) ≤ C(1 + t)−ν.
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Proof. The Cb-properties follow from formulas (5.14) and (5.15) (in fact with ν = 1/2). To
prove the L2-properties, let us change the variable to τ = 1/u to get:

φ(x) =
1√
−4πi

∫ ∞

0

e−iux2/4 η(u) du =
1√
−2i

Fu→x2/4(η(u)), η(u) = Π(1/u)/u3/2, (5.16)

where Fu→ξ(f(u)) = f̂(ξ) indicates the Fourier transform with argument ξ. By the assumptions
on Π we have |η(u)| ≤ L0u

−3/2 as u → ∞, and |η(u)| ≤ L1u
−1/2 as u → 0. Therefore

η(u) ∈ Lp(R) for 1 ≤ p < 2. It follows from the Hausdorff-Young inequality for the Fourier
transform that φ ∈ Lq(R) for q > 2 as a function of y = x2, i.e.

∞∫

0

|φ(x)|qx dx <∞, ∀q > 2,

and hence φ ∈ L2(R), since it is already known to be bounded and continuous. It remains
to prove the decay rate of r(x, t) in the norm L2(R). Let us represent the function r as
r(x, t) = W (t)ρ(x, t), where

ρ(x, t) =

∞∫

t

W (−τ)[δ(·)Π(τ)]dτ =
1√
−4πi

1/t∫

0

e−iux2/4 η(u) du =
1√
−2i

Fu→x2/4(ζt(u)η(u)).

Here ζt(u) is the characteristic function of the interval (0, 1/t). As above ρ is bounded, but also
since

‖ζt(u)η(u)‖Lp =
( 1/t∫

0

|η(u)|pdu
)1/p

≤ L1

( 1/t∫

0

u−p/2du
)1/p

≤ Ct−
1−p/2

p , 1 ≤ p < 2, t > 1.

the Hausdorff-Young inequality implies that for any q > 2, and in fact as t→ ∞:

‖ρ(x, t)(1 + |x|)1/q‖Lq ≤ C(t−
1−p/2

p ),

for some constant C = C(L1, p), for q−1 + p−1 = 1. The Young inequality then implies that

‖ρ(x, t)‖L2 ≤ ‖ρ(x, t)(1 + |x|)1/q‖Lq‖(1 + |x|)−1/q‖Lr = O(t−
1−p/2

p ),
1

2
=

1

q
+

1

r
,

if r > q. To have r > q, we must take q < 4, or equivalently p > 4/3. Hence, we have

ν =
1 − p/2

p
< 1/4.

The second lemma studies the contribution to φ+(x) and r+(x, t) from terms without δ(x)
in (5.7). Consider the expansions (3.22), (3.29), (3.33), for ω̇(t), γ̇(t), and ż(t) − iµz(t): the
main (quadratic) parts of these contain the terms z2

+(t), z2
+(t), z+(t)z+(t), which are O(t−1) as

t → ∞. The remainders are O(t−3/2), and it is straightforward (from the unitarity of W ) to
bound the contribution of these to φ+ in Cb ∩ L2, and to check that these contribute O(t−1/2)
to r+ in Cb ∩ L2. Thus, without loss of generality, we may replace ω̇(t), γ̇(t), and ż(t)− iµz(t)
by the main quadratic parts. We first show how to treat these terms with the phase θ(t) in
(5.7) replaced by ϕ+(t) ≡ ω+t, and then consider the general case in lemma 5.5.
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Lemma 5.4. Let Π(t) be one of the functions z2
+(t)eiϕ+(t), |z+(t)|2eiϕ+(t) or z2

+(t)eiϕ+(t), where

z+(t) =
eiµ+t

(1 + ǫk+t)1/2
, with ǫk+ > 0, ϕ+(t) = ω+t, and let ψ(x) be a bounded continuous

function of x ∈ R, such that x2ψ(x) ∈ L2(R). Then

∞∫

0

Π(τ)W (−τ)ψdτ ∈ Cb(R) ∩ L2(R) (5.17)

and for each ν ∈ (0, 3−
√

5
4

) there exists Cν > 0 such that

∥∥
∞∫

t

Π(τ)W (t− τ)ψdτ
∥∥

Cb(R)∩L2(R)
≤ Cνt

−ν . (5.18)

Proof. Since ‖W (t)ψ‖Cb
= O(t−1/2) then Cb- properties are evident, in fact with ν = 1/2. It

remains to prove the L2-properties. Since ψ ∈ L1(R) ∩ L2(R), we have

W (t)ψ =
1√
4πit

∫
ei|x−y|2/4tψ(y)dy

=
eix2/4t

√
4πit

∫
e−ixy/2tψ(y)dy +

eix2/4t

√
4πit

∫
e−ixy/2t(eiy2/4t − 1)ψ(y)dy

=
eix2/4t

√
2it

ψ̂(x/2t) +
eix2/4t

√
2it

ψ̂t(x/2t), (5.19)

where ψt(y) = (eiy2/4t − 1)ψ(y). For t > 1 we have, using |eiθ − 1| ≤ θ,

1√
2t
‖ψ̂t(·/2t)‖L2 = ‖ψ̂t(·)‖L2 = ‖ψt(·)‖L2 =

(∫
|(eiy2/4t −1)ψ(y)|2dy

)1/2

≤ 1

4t
‖y2ψ(y)‖L2 ≤ c

t
.

Therefore, using the fact that |Π(τ)| ≤ (1 + ǫk+τ)
−1, we deduce that

∞∫

0

Π(τ)
e−ix2/4τ

√
−2iτ

ψ̂τ (−x/2τ)dτ ∈ L2(R), and

∞∫

t

Π(τ)
e−ix2/4τ

√
−2iτ

ψ̂τ (−x/2τ)dτ = O(t−1)

in the norm of L2(R). Hence, to prove (5.17) it suffices to check that

φ(x) :=

∞∫

0

Π(τ)
e−ix2/4τ

√
−2iτ

ψ̂(−x/2τ)dτ ∈ L2(R), (5.20)

and to prove (5.18) it suffices to check that

ρ(x, t) :=

∞∫

t

Π(τ)
e−ix2/4τ

√
−2iτ

ψ̂(−x/2τ)dτ = O(t−ν), (5.21)

for appropriate ν > 0, in the norm of L2(R).
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First, let us prove (5.20) and (5.21) for Π(t) = z2
+(t)eiϕ+(t). Note that |∂τ ψ̂(x/2τ)| ≤ c|x|

τ 2
,

because xψ(x) ∈ L1(R), and then ψ̂′ is bounded function. Therefore we obtain (5.20) with help
of integration by parts:

|φ(x)| =
∣∣
∫ ∞

0

ψ̂(−x/2t) 4τ 2

√
2τ(1 + ǫk+τ)(x2 + 4τ 2(ω+ + 2µ+))

∂τ

(
e−ix2/4τ+i(ω++2µ+)τ

)
dτ
∣∣ (5.22)

≤ c

∫ ∞

0

∣∣∂τ

( ψ̂(−x/2t)τ 3/2

(1 + ǫk+τ)(x2 + 4τ 2(ω+ + 2µ+))

)∣∣ dτ ≤ c

1 + |x| ∈ L2(R).

Similarly, (5.21) follows with ν = 1/2. For the function Π(t) = |z+(t)|2eiϕ+(t) the proof of (5.20)
and (5.21) is similar.

Second, we consider the case Π(t) = z2
+(t)eiϕ+(t) which is more difficult, because the factor

x2 + 4τ 2(ω+ − 2µ+) vanishes for τ = t∗ := |x|/2√2µ+ − ω+. We consider only positive values
of x since the negative values can be considered similarly. Let us choose 1/2 < p < 1 and
1 < q < 4p− 1. Then for large x we have

0 < t∗ − xp < t∗ < t∗ + xp < xq.

Let us represent (0,∞) = J1 ∪ J2 ∪ J3, where J1 = (xq,∞), J2 = [t∗ − xp, t∗ + xp], and
J3 = (0,∞) \ J1 ∪J2. Then φ = φ1 +φ2 +φ3, where φi is obtained by integrating the integrand
in (5.20) over τ ∈ Ji, i = 1, 2, 3. For φ1 and φ2, it is immediate, without the need to integrate
by parts, that

|φ1(x)| ≤ c

∞∫

xq

dτ

τ 3/2
= cx−q/2, |φ2(x)| ≤

c

x3/2

t∗+xp∫

t∗−xp

dτ ≤ cx−(3/2−p).

Therefore φ1, φ2 ∈ L2(1,∞) since 3/2 − p > 1/2. Next observe that

|x− 2τ
√

2µ+ − ω+| > cxp and τ < xq for all τ ∈ J3. (5.23)

Therefore for large x we use integration by parts to obtain

|φ3(x)| ≤ cx−p +

∫

J3

|∂τ

( cτ 3/2

(1 + ǫk+τ)(x+ 2τ
√

2µ+ − ω+)(x− 2τ
√

2µ+ − ω+)
ψ̂(−x/2τ)

)
| dτ

≤ cx−p + c

∫

J3

dτ

(1 + τ 3/2)xp
+ c

∫

J3

dτ

(1 + τ 1/2)x2p
≤ cx−p + cxq/2−2p. (5.24)

(The boundary terms arising in this integration by parts can be estimated to be ≤ c τ 1/2x−p/(x+
τ) ≤ c t−1/2x−p.) Since 2p− q/2 > 1/2 it follows that φ3 ∈ L2(1,∞).

Similarly, we can estimate ρ. Again we assume, without loss of generality, x to be positive.
For bounded x, say 0 ≤ x ≤ l, l > 0 we can just estimate the integral (5.21) directly as

|ρ(x, t)| ≤ |
∫ ∞

t

c dτ√
τ (1 + ǫk+τ)

| ≤ ct−
1

2 , x ≤ l.

The decay of ‖ρ(·, t)‖L2 follows from this together with a bound of the form |ρ(x, t)| ≤ ct−ν |x|−α,
with α > 1

2
, which is valid for large t and |x| > l ≫ 1. To obtain such a bound we decompose
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the integral (5.21) as ρ =
∑3

i=1 ρi, where ρi(x, t) is obtained by restricting the integral in (5.21)
to τ ∈ Jit = Ji ∩ [t,∞).

To bound ρ1 there are two cases. Firstly, if xq > t then |ρ1| ≤ c
∫∞

xq τ
−3/2dτ ≤ cx−q/2.

Secondly, if xq ≤ t then |ρ1| ≤ c
∫∞

t
τ−3/2dτ ≤ ct−1/2. In both cases |ρ1| ≤ ct−ν |x|−( 1

2
−ν)q.

To bound ρ2, we notice that τ ≥ cx on J2t, and also τ ≥ t, and then just estimate

|ρ2(x, t)| ≤ c

∫

J2t

dτ

(1 + ǫk+τ)
√
τ
≤ cmin τ−3/2|x|p ≤ ct−ν |x|−3/2+p+ν .

To bound ρ3, notice that for τ ∈ J3t the inequalities (5.23) hold so that it is possible to
integrate by parts (as in (5.22) above) since the denominator which appears is bounded below.
As with φ3, the boundary terms arising in this integration by parts are ≤ c τ 1/2x−p/(x+ τ) ≤
c t−1/2x−p. Also, as in (5.24), the integral which remains after this integration by parts can be
bounded as ≤ ct−1/2x−p + cxq/2−2p ≤ ct−1/2x−p + ct−νxq/2−2p+νq, since t ≤ τ ≤ xq in J3t, so that
we may assume t ≤ xq in the estimation of ρ3. Therefore, in conclusion we have the following
estimate for x > l ≫ 1 and t large:

|ρ(x, t)| ≤ ct−ν(x−p + x−3/2+p+ν + x−2p+(1/2+ν)q + x−(1/2−ν)q), (5.25)

This shows that ρ(x, t) is square integrable and (5.21) holds if

p > 1/2, 3/2 − p− ν > 1/2, 2p− (1/2 + ν)q > 1/2, (1/2 − ν)q > 1/2

The conditions on the exponents can be written equivalently as

1

1 − 2ν
< q <

4p− 1

1 + 2ν
, 1/2 < p < 1 − ν. (5.26)

Such q and p exist if 0 < ν < (3−
√

5)/4, since then 3−4ν
1+2ν

> 1
1−2ν

, so choosing p = 1− ν− ǫ > 1
2

for ǫ small and positive, and q in the interval (5.26) will work.

Lemma 5.5. The conclusions of lemma 5.4 are valid if ϕ+ is replaced by θ satisfying θ̇(τ) −
ϕ̇+(τ) = O(τ−1) for large τ .

Proof. The estimates in the proof of lemma 5.4 which involve estimating the integral of the
absolute value are completely unaffected by change of phase, so it is only necessary to re-assess
the argument involving integration by parts, i.e. the treatment of φ3 and ρ3. For example, in
the more difficult case when Π(t) = z2

+(t)eiθ(t), we proceed as follows in the estimation of ρ3.

Write φ̃ = θ − φ+, and integrate by parts exactly as before, leaving along the eiφ̃ factor: this
factor then carries throught to the integrand after the integration by parts, and we need to
bound:

∫

J3t

|∂τ

( cτ 3/2eiφ̃(τ)

(1 + ǫk+τ)(x+ 2τ
√

2µ+ − ω+)(x− 2τ
√

2µ+ − ω+)
ψ̂(−x/2τ)

)
| dτ

(The treatment of the boundary terms is unaffected since |eiφ̃| = 1.) But since by assumption
˙̃φ(τ) = O(τ−1) the extra contribution to the integrand can clearly be estimated for large x, τ
in the same way as the term arising from differentiation of τ 3/2, and so (5.25) still holds, as
required to complete the proof.

Remark 5.6. The t→ −∞ case is handled in an identical way.
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A The eigenfunctions of the discrete spectrum

Here we find the function u = u(ω) satisfying Cu = λu, where λ = iµ. Using the definition of
the operator C, we obtain




−λ − d2

dx2
+ ω

d2

dx2
− ω −λ



u = δ(x)

(
0 a

−a− b 0

)
u (A. 1)

If x 6= 0, the equation (A. 1) takes the form



−λ − d2

dx2
+ ω

d2

dx2
− ω −λ



u = 0, x 6= 0. (A. 2)

General solution is a linear combination of exponential solutions of type eikxv. Substituting to
(A. 2), we get (

−λ k2 + ω
−k2 − ω −λ

)
v = 0. (A. 3)

For nonzero vectors v, the determinant of the matrix vanishes: λ2 + (k2 + ω)2 = 0. Then
k2
± + ω = ∓iλ. Finally, we obtain four roots ±k±(λ) with

k±(λ) =
√
−ω ∓ iλ, (A. 4)

where the square root is defined as an analytic continuation from a neighborhood of the zero
point λ = 0 taking the positive value of Im

√
−ω at λ = 0. We choose the cuts C+ in the

complex plane λ from the branching points to infinity. Then Imk±(λ) > 0 for λ ∈ C \ C±.
It remains to derive the vector v = (v1, v2) which is solution to (A. 3):

v2 = −k
2
± + ω

λ
v1 =

±iλ
λ
v1 = ±iv1.

Therefore, we have two corresponding vectors v± =

(
1

±i

)
and we get four linearly indepen-

dent exponential solutions.

v+e
±ik+x =

(
1
i

)
e±ik+x, v−e

±ik−x =

(
1

−i

)
e±ik−x.

Now we find the solution of (A. 1) in the form

u = Aeik+|x|v+ +Beik−|x|v−. (A. 5)

At the point x = 0 we have a jump:

u′(+0) − u′(−0) = −
(
a+ b 0

0 a

)
u(−0) (A. 6)

Substituting (A. 5), we get

2ik+Av+ + 2ik−Bv− = −M(Av+ +Bv−), M =

(
a + b 0

0 a

)
. (A. 7)
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Note that 




Mv+ = αv+ + βv−

Mv− = αv− + βv+

, where α = a +
b

2
, β =

b

2
.

Then (A. 7) becomes 




(2ik+ + α)A+ βB = 0

βA+ (2ik− + α)B = 0

The determinant D = (2ik+ + α)(2ik− + α)− β2 vanishes for λ = iµ since iµ is spectral point.
Therefore, set A = 1, and obtain

u = eik+|x|v+ − β

2ik− + α
eik−|x|v− (A. 8)

Note, that 2ik− + α 6= 0. Indeed, if 2ik− + α = 0, then β = 0, α = a. and 2ik− + α =
−2

√
ω + µ+ a = −

√
a2 + 4µ+ a < 0.

Since both k+ =
√−ω + µ and k− =

√−ω − µ are purely imaginary, the first component u1

is real, while the second one u2 is imaginary. It is easy to prove that u∗ = (u1,−u2) is the
eigenfunction associated to λ = −iµ.

B The eigenfunctions of the continuous spectrum

Consider λ = iν with some ν > ω.
I. First we find an even solution u = τ+ of equation (A. 1) in the form

τ+ = (Aeik+|x| +Be−ik+|x|)v+ + Ceik−|x|v−. (B. 1)

At the point x = 0 we have, similarly (A. 6) and (A. 7),

2ik+(A−B)v+ + 2ik−Cv− = −M(A +B)v+ + Cv−

which equivalent to the system





2ik+(A− B) = −α(A+B) − βC

2ik−C = −β(A+B) − αC
(B. 2)

If 2ik− + α = 0, then D = −β2, β 6= 0, A + B = 0, and C = −2ik+

β
(A − B). Put A = D we

obtain B = −D, C = 4βik+.
If 2ik− + α 6= 0, then from the second equation of (B. 2) we get

C = − β

α + 2ik−
(A+B). (B. 3)

Then, set A = D, we obtain from the first equation of (B. 2).

2ik+(D − B) =
−α(α + 2ik−) + β2

α + 2ik−
(D +B).
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Solving this equation, we get B = −D and then C = 4βik+. Finally, we obtain

τ+ = (Deik+|x| −De−ik+|x|)v+ + 4βik+e
ik−|x|v−. (B. 4)

II. It is easily to check that an odd solution u = s of equation (A. 1) is

s =
1

2i
(eik+x − e−ik+x)v+ = sin(k+x)v+. (B. 5)

For λ = iν with ν < −ω we have similarly

τ− = (Deik−|x| −De−ik−|x|)v− + 4βik−e
ik+|x|v+, s = sin(k−x)v−.

C Proof of Proposition 2.3

First we prove the following lemma

Lemma C.1. Let K(t) be the integral operator with the kernel

K(t, x, y) =

∫

|ν−ν0|<δ

f(ν, x, y) − f(ν0, x, y)

ν − ν0
dν, (C. 1)

where f is a smooth function, f(ν, x, y) = 0 for |ν − ν0| ≥ δ, and

|∂N
ν f(ν, x, y)| ≤ c(N)(|x| + |y|)N , N = 0, 1, 2, ... (C. 2)

Then for any σ > N

‖K(t)‖Bσ = O(t−N), t→ ∞, with σ > N. (C. 3)

Proof. For z = |x| + |y| > δ we split the integral in the right hand site of (C. 1) into two part
and obtain

|K(t, x, y)| ≤
∫

|ν−ν0|< 1

z

|f(ν, x, y)− f(ν0, x, y)

ν − ν0
| dν +

∫

1

z
<|ν−ν0|<δ

|f(ν, x, y) − f(ν0, x, y)

ν − ν0
| dν

≤ 1

z
c(1)z + 2c(0)

δ∫

1/z

dν

ν
= c(1) + 2c(0)[log z + c].

Hence, (C. 3) follows with N = 0. Equality (C. 3) for arbitrary N ≥ 1 can be obtained by
similar way, using the integration by parts and inequalities (C. 2).

Proof of Proposition 2.3 The operator eCt(C − 2iµ− 0)−1 admits the Laplace representation

eCt(C − 2iµ− 0)−1 = − 1

2πi

i∞∫

−i∞

eλtR(λ+ 0) dλ R(2iµ+ 0).
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Let us apply the Hilbert identity for the resolvent:

R(λ1)R(λ2) =
1

λ1 − λ2
[R(λ1) − R(λ2)], Reλk > 0, k = 1, 2

to λ1 = λ+ 0 and λ2 = 2iµ+ 0. We obtain

eCt(C − 2iµ− 0)−1 = − 1

2πi

i∞∫

−i∞

eλtR(λ+ 0) − R(2iµ+ 0)

λ− 2iµ
dλ

= − 1

2πi

i∞∫

−i∞

eλtζ(λ)
R(λ+ 0) − R(2iµ+ 0)

λ− 2iµ
dλ− 1

2πi

∫

C+∪C−

eλt(1− ζ(λ))
R(λ+ 0) −R(2iµ+ 0)

λ− 2iµ
dλ

− 1

2πi

∫

(−i∞,i∞)\(C+∪C−)

eλt(1 − ζ(λ))
R(λ+ 0) − R(2iµ+ 0)

λ− 2iµ
dλ = K1(t) + K2(t) + K3(t),

where ζ(λ) ∈ C∞
0 (iR), ζ(λ) = 1 for |λ − 2iµ| < δ/2 and ζ(λ) = 0 for |λ − 2iµ| > δ, with

0 < δ < 2µ− ω. By Lemma C.1 with N = 2, we obtain that

‖K1(t)‖Bβ
= O(t−2), t→ ∞,

since β > 2. The bounds (C. 2) for f(ν) = R(λ+ 0) follow from formulas (2.3)- (2.5).
For the operator K2(t) we can apply the arguments from the proof of proposition 2.2 and obtain

‖K2(t)‖Bβ
= O(t−3/2), t→ ∞.

Further, the integrand in K3(t) is an analytic function of λ 6= 0,±iµ with the values in Bβ for
β ≥ 0. At the points λ = 0 and λ = ±iµ the integrand has the poles of finite order. Hoverever,
all the Laurent coefficients vanish when applied to Pch ∈ Xc. Hence for K3(t) we obtain, twice
integrating by parts,

‖K3(t)P
ch‖L∞

−β
≤ c(1 + t)−3/2‖h‖Mβ

,

completing the proof.

D Proof of Lemma 3.5

We use the following representation (see [1]):

Pc
T =

1

2πi

∫

C+∪C−

(R(λ+ 0) − R(λ− 0)) dλ

=
1

2πi

∫

C+

(R(λ+ 0) −R(λ− 0))dλ+
1

2πi

∫

C−

(R(λ+ 0) − R(λ− 0))dλ = Π+
T + Π−

T .(D. 1)

Let us decompose the resolvent given by (2.4), and (2.5)) as

R(λ, x, y) = Γ(λ, x, y) + P (λ, x, y) =

6∑

k=1

Ak(λ, x, y)τk, (D. 2)
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where

A1 =
eik+|x−y| − eik+(|x|+|y|)

4k+
, A2 =

iα− 2k−
2D

eik+(|x|+|y|), A3 =
iβ

2D
eik+|x|eik−|y|,

A4 = − iβ

2D
eik−|x|eik+|y|, A5 =

−iα + 2k+

2D
eik−(|x|+|y|), A6 = −e

ik−|x−y| − eik−(|x|+|y|)

4k−
, (D. 3)

and

τ1 = τ2 =

(
1 −i
i 1

)
, τ3 =

(
1 i
i −1

)
, τ4 =

(
1 −i
−i −1

)
, τ5 = τ6 =

(
1 i
−i 1

)
(D. 4)

For the matrices τk we obtain

τkj
−1 = iτk, k = 1, 2, 4, τkj

−1 = −iτk, k = 3, 5, 6.

The terms A1 and A6 disappear when substituting (D. 2)-(D. 4) into (D. 1) since

A1(λ+ 0) −A1(λ− 0) = 0, λ ∈ C−; A6(λ+ 0) − A6(λ− 0) = 0, λ ∈ C+,

and we get

P c
T j

−1 − i(Π+
T − Π−

T ) =
1

2πi

∫

C+

[2(A3(λ+ 0) − A3(λ− 0))τ3 + 2(A5(λ+ 0) −A5(λ− 0))τ5] dλ

+
1

2πi

∫

C−

[2(A2(λ+ 0) − A2(λ− 0))τ2 + 2(A4(λ+ 0) −A4(λ− 0))τ4] dλ.

Let us consider only the integral over C+; the integral over C− can be dealt with by an identical
argument. For λ ∈ C+ we have: k+ =

√
−ω − iλ is real, and k+(λ + 0) = −k+(λ − 0) while

k− =
√
−ω + iλ is pure imaginary with Imk− > 0 and k−(λ+ 0) = k−(λ− 0).

Note that A5(λ, x, y) for λ ∈ C+ exponentially decay if |x|, |y| → ∞ and smallest exponential
rate of the decaying is equal to (2ω)1/2.

It remains to consider the integral over C+ with integrand A3(λ+0)−A3(λ−0). We change
variable: ζ =

√
−ω − iλ for the first summand and ζ = −

√
−ω − iλ for the second. Then we

get

I(x, y) =

∫

C+

(A3(λ+ 0) −A3(λ− 0)) dλ =
iβ

2

∞∫

iω

e−
√

ω−iλ|y|(
ei

√
−ω−iλ|x|

D+
− e−i

√
−ω−iλ|x|

D−
) dλ

= −β
+∞∫

−∞

e−
√

2ω+ζ2|y|eiζ|x|

D(ζ)
ζdζ,

where
D± = α2 − β2 ± 2iα

√
−ω − iλ− 2α

√
ω − iλ∓ 4i

√
−ω − iλ

√
ω − iλ

and
D(ζ) = α2 − β2 + 2iαζ − 2α

√
2ω + ζ2 − 4iζ

√
2ω + ζ2.

Writing eiζ|x| dζ = 1
i|x|de

iζ|x|, and integrating by parts, we get that

|I(x, y)| ≤ Ce−
√

2ω|y|(1 + |x|)−m, ∀m ∈ N,

completing the proof of lemma 3.5.
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E The Fermi Golden Rule

In this section we study further the condition embodied in the Fermi Golden Rule (1.17) ,
showing that it holds generically in a certain sense: in particular, if a(·) is a polynomial function
then, generically, the set of values of C for which (1.17) fails is isolated. To start with let us
use the formulae in Appendices A and B to express the Fermi Golden Rule in terms of C and
a(C2) and its derivatives. By (B. 4)

τ+(2iµ) |x=0= (D −D)v+ + 4βik+v− = −4ik+(α+ 2ik−)v+ + 4βik+v− (E. 1)

= σ(κv+ + v−) = σ

(
κ+ 1
i(κ− 1)

)
, σ = 4βik+, κ = −α + 2ik−

β
, k± =

√
−ω ± 2µ.

Represent E2[u, u] = δ(x)Ẽ2[u(0), u(0)], where

Ẽ2[u(0), u(0)] = a′(C2)(u(0), u(0))Ψ(0) + 2a′′(C2)(Ψ(0), u(0))2Ψ(0) + 2a′(C2)(Ψ(0), u(0))u(0)

By (A. 8)

u(0) = ρv+ + v− =

(
ρ+ 1
i(ρ− 1)

)
, ρ = −2ik− + α

β
, k− =

√−ω − µ.

Therefore (u(0), u(0)) = (ρ+ 1)2 − (ρ− 1)2 = 4ρ and

Ẽ2[u(0), u(0)] = a′(C2)4ρ

(
C
0

)
+ 2a′′(C2)C2(ρ+ 1)2

(
C
0

)
+ 2a′(C2)C(ρ+ 1)

(
ρ+ 1
i(ρ− 1)

)

(E. 2)
Using (E. 1) and (E. 2), we obtain

〈τ+(2iµ), E2[u, u]〉 = σ(κ+ 1)
[
a′4ρC + 2a′′C3(ρ+ 1)2 + 2a′C(ρ+ 1)2

]
+ σ(κ− 1)2a′C(ρ2 − 1)

Therefore, the Fermi Golden Rule (1.17) is equivalent to the condition

a′
[
(κ+ 1)2ρ+ (κ+ 1)(ρ+ 1)2 + (κ− 1)(ρ2 − 1)

]
+ a′′(κ + 1)C2(ρ+ 1)2 6= 0

or

a′′ 6= −2a′(2κρ+ 2ρ+ κρ2 + 1)

C2(κ + 1)(1 + ρ)2
(E. 3)

with

κ = −a + b
2
− 2

√
ω + 2µ

b/2
, ρ = −a + b

2
− 2

√
ω + µ

b/2
, ω =

a2

4
, µ =

b

4

√
a2 − b2

4

Let ν =
b

2a
. Then µ =

νa

2

√
a2 − ν2a2 =

νa2

2

√
1 − ν2 and

κ = −
a+ νa− 2

√
a2

4
+ νa2

√
1 − ν2

νa
= −1 + ν −

√
1 + 4ν

√
1 − ν2

ν
,

ρ = −
a + νa− 2

√
a2

4
+ νa2

2

√
1 − ν2

νa
= −1 + ν −

√
1 + 2ν

√
1 − ν2

ν
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are also functions of ν only. Thus we conclude that there is a function c = c(ν) such that the
Fermi Golden Rule holds if and only if

a′′(C2) 6= c(ν)a′(C2)

C2
, ν =

a′(C2)C2

a(C2)
.

Notice that the function c(ν) is algebraic. It follows from this that if the function a(·) is
polynomial, or even real analytic, then generically the Fermi Golden Rule holds except possibly
at a discrete set of values of C. To see this observe that if the set of points where F (C2) ≡
a′′(C2) − c(ν)a′(C2)

C2
vanishes has an accumulation point, then F must be identically zero

since it is real analytic. But the condition a′′(C2) =
c(ν)a′(C2)

C2
is a second order ordinary

differential equation which determines the function a(C2) given its value a(C2
0 ) and that of its

first derivative a′(C2
0 ) at any point C = C0. Clearly a generic polynomial function a(C2) will not

satisfy this equation, and so the set of points where the Fermi Golden Rule fails cannot have any
accumulation points generically. This is also true for real analytic a in the following sense. Fix

any C0, then there is a two parameter family of functions a(C2) for which a′′(C2) =
c(ν)a′(C2)

C2
;

(this family of exceptional functions is parameterized by a(C0), a
′(C0)). If a(C2) is not one of

these functions then the set of values for which the Fermi Golden Rule fails is at most a discrete
set.
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