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On nonlinear wave equations with parabolic potentials
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Abstract. We introduce a new class of piece-wise quadratic potentials for nonlinear wave

equations with a kink solutions. The potentials allow an exact description of the spectral

properties for the linearized equation at the kink. This description is necessary for the study

of the stability properties of the kinks.

In particular, we construct examples of the potentials of Ginzburg–Landau type providing

the asymptotic stability of the kinks [6] and [7].
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1. Introduction

Last two decades there was an outstanding activity in the field of asymptotic sta-

bility of solitary waves for nonlinear Schrödinger equations [1], [2], [3], [11], [12],

[13], [15], [16], [17], and [18], nonlinear Klein-Gordon equations [5] and [14], rel-

ativistic Ginzburg–Landau equations [6] and [7], and other Hamiltonian PDEs [8]

and [10]. All these results rely on different assumptions on the spectral properties of

the corresponding linearized dynamics. On the other hand, the examples were mostly

unknown. Here we construct a model nonlinear wave equations, providing various

spectral properties: different number of the eigenvalues, absence of the resonances,

and Fermi golden rule.

In particular, we construct the examples of relativistic Ginzburg–Landau equations

providing all properties assumed in [6] and [7]. The properties imply the asymptotic

stability of kinks for real solutions to 1D nonlinear Ginzburg–Landau equations

R .x; t/ D  00.x; t /C F. .x; t//; x 2 R; (1.1)

where F. / D �U 0. /.
We assume the following conditions.
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Condition U1. For some K > 3 and m > 0 the potential U. / is smooth even

function satisfying

. / > 0;  ¤ a;

U. / D m2

2
. � a/2 C O.j � ajK/;  ! ˙a:

(see. Figure 1).

U. /

0 Ca�a  

Figure 1. Potential of Ginzburg–Landau type.

The corresponding stationary equation reads

s00.x/ � U 0.s.x// D 0; x 2 R: (1.2)

Constant stationary solutions are:  .x/ � 0 and  .x/ � ˙a. There are also the

“kinks”, i.e. nonconstant finite energy solutions s.x/ to (1.2) such that

s.x/ ! ˙a; x ! ˙1:

Condition U1 implies that .s.x/� a/00 � m2.s.x/� a/ for x ! ˙1, hence

js.x/� aj � Ce�mjxj; x ! ˙1: (1.3)

(see. Figure 2).

Due to relativistic invariance of equation (1.1) the moving kinks

sq;v.x; t / D s.�.x � vt � q//; q; v 2 R; jvj < 1; � D 1=
p
1 � v2

also are the solutions to (1.1). Let us linearize equation (1.1) at the kink s.x/.

Substituting  .x; t/ D s.x/C '.x; t/, we obtain formally

R'.x; t/ D �H'.x; t/C O.j'.x; t/j2/;
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S.x/

x

Figure 2. Kink.

where H is the Schrödinger operator

H
defD � d2

dx2
Cm2 CW.x/

with the potential

W.x/ D �F 0.s.x// �m2 D U 00.s.x// �m2:

Condition U1 and the asymptotics (1.3) imply that

jW.x/j D O.js.x/� ajK�1/ � Ce�.K�1/mjxj; x ! ˙1:

The next properties of H hold true.

H1. The continuous spectrum of H is �c D Œm2;1/.

H2. The point �0 D 0 belongs to the discrete spectrum, and corresponding eigen-

function is s0.x/.

H3. Since s0.x/ > 0, the point �0 D 0 is the groundstate, and all remaining discrete

spectrum is contained in .0; m2�.

To establish an asymptotic stability of the kinks sq;v .x; t / one need certain spectral

properties of H (cf. [6] and [7]).

Condition U2. The edge point � D m2 of the continuous spectrum is neither

eigenvalue nor resonance.
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Condition U3. The discrete spectrum of H consists of two points: �0 D 0 and

�1 2 .0; m2/ satisfying

4�1 > m
2: (1.4)

We assume also a non-degeneracy condition known as “Fermi golden rule” mean-

ing the strong coupling of the nonlinear term to the continuous spectrum. This

coupling provides the energy radiation to infinity (cf. condition (10.0.11) in [2] and

condition (1.11) in [7]).

Condition U4. The following inequality holds:
Z

'4�1
.x/F 00.s.x//'2�1

.x/dx ¤ 0:

where '4�1
is the nonzero odd solution to H'4�1

D 4�1'4�1
.

Note that the known quartic double well Ginzburg–Landau potential UGL. / D
. 2 � a2/2=.4a2/ satisfies condition U1 with m2 D 2 and K D 3 as well as

conditions U3 and U4. However, there exist the resonance for the corresponding

operator H at the edge point � D m2. Hence, the asymptotic stability of the kinks

for UGL is the open problem.

Let us note that the result [4] concerns the wave front solution  .x1 � vt/ to 3D

wave with the potential UGL. The solution has an infinite energy, so it is not a soliton,

and its asymptotic stability is provided by the strong dispersion properties of the 3D

case. The 1D case requires different arguments [6] and [7].

Our main result is the following theorem.

Theorem 1.1. There exist potentials U. / satisfying conditions U1–U4.

2. Piece wise parabolic potentials

As a first step, we will consider the class of the potentials which are piece-wise second

order polynomials.

U0. / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1

2
� b

2
 2; j j � ;

d

2
. � 1/2; ˙ � ;

(2.1)

with some constants b; d > 0 and 0 <  < 1. Let us find the parameters b D b./

and d D d./ providing U0. / 2 C 1.R/. We have

U0./ D 1

2
� b

2
2 D d

2
. � 1/2 and U 0

0./ D �b D d. � 1/:
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Solving the equations, we obtain

b D 1


and d D 1

1 �  ; 0 <  < 1: (2.2)

Then the functions U 00
0 . / are piece-wise constant with the jumps at the points  D

˙ . Thus, the potentials U0 2 C 1.R/ form one-dimensional manifold parametrized

by  2 .0; 1/.

2.1. Kink. Let us solve the equation of type (1.2) for the kink in the case of poten-

tial (2.1):

s00
0.x/ � U 0

0.s0.x// D 0; x 2 R: (2.3)

We search an odd solution to

s00
0.x/ D

8

<

:

�bs0.x/; 0 < s0.x/ � ;

d.s0.x/ � 1/; s0.x/ > :

We have

s0.x/ D

8

<

:

C sin
p
bx; 0 < x � q;

Ae�
p
dx C 1; x > q;

where C >  , A < 0, q D 1p
b

arcsin


C
. Equating the values of s0.x/ and its left

and right derivatives at x D q we obtain

8

<

:

Ae�
p
dq C 1 D C sin

p
bq D ;

�
p
dAe�

p
dq D

p
bC cos

p
bq:

(2.4)

The first line of (2.4) implies Ae�
p
dq D  � 1. Hence the second line of (2.4)

becomes p
d.1 � / D

p
bC cos

p
bq:

The both side of the last equality is positive. Hence it is equivalent to

d.1 � /2 D b.C 2 � 2/:

Substituting (2.2) we obtain 1�  D C 2= �  . Then

C D p
; A D . � 1/e

p
=.1�/ arcsin

p


and

q D p
 arcsin

p
: (2.5)
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2.2. Linearized equation. Let us linearize equation (1.1) with F. / D F0. / D
�U0. / at the kink s0.x/ splitting the solution as the sum

 .t/ D s0 C '.t/: (2.6)

Substituting (2.6) to (1.1), we obtain

R'.x; t/ D '00.x; t /� U 0
0.s0.x/C '.x; t//C U 0

0.s0.x//: (2.7)

By (2.1) we can write equations (2.7) as

R'.t/ D �H0'.t/C N .'.t//; t 2 R;

where

H0 D � d2

dx2
CW0.x/; W0.x/ D U 00

0 .s0.x// D

8

<

:

�b; jxj � q;

d; jxj > q;
(2.8)

(see Figure 3) and

N .'.t// D �U 0
0.s0 C '.t//C U 0

0.s0/C U 00
0 .s0/:

W0.x/

d

0

�b

�q q x

Figure 3. Potential W0.

The continuous spectrum of H0 coincides with Œd;1/. The point �0 D 0 is the

groundstate since it corresponds to the even positive eigenfunction '0.x/ D s0
0.x/:

H0'0 D �s000
0 .x/C U 00

0 .s0.x//s
0
0.x/ D 0;

which follows by differentiation of (2.3). Therefore, the discrete spectrum of H0
belongs to Œ0; d �, and the next eigenfunction '1.x/ should be odd.
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2.3. Odd eigenfunctions. Given an eigenvalue �, the corresponding eigenfunction

'.x/ should satisfy the equation
8

<

:

�'00.x/ � b'.x/ D �'.x/; jxj � q;

�'00.x/C d'.x/ D �'.x/; jxj > q:
(2.9)

Equations (2.9) imply that the odd eigenfunctions have the form

'.x/ D

8

<

:

B sin ˇx; jxj � q;

A sgn x e�˛jxj; jxj > q:
(2.10)

where ˛ D
p
d � � > 0 and ˇ D

p
b C � > 0. Equating the values of the

eigenfunction and its left and right derivatives at x D q, we obtain
8

<

:

Ae�˛q D B sin ˇq;

�A˛e�˛q D Bˇ cosˇq;
(2.11)

where a and b are related as follows

˛2 C ˇ2 D b C d:

System (2.11) admits nonzero solutions only if its determinant vanishes, that is

� ˛ D ˇ cot ˇq:

At last, multiplying by q, and denoting � D ˇq and � D ˛q, we obtain the system of

equations

� � D � cot �; �2 C �2 D R2; (2.12)

where R D q
p
b C d is the radius of the circle. Substituting b; d and q from (2.2)

and (2.5) respectively, we obtain

R D q

s

1


C 1

1 �  D q
p

.1� /
D

arcsin
p


p
1 � 

:

Finally, the solutions to (2.12) can be found graphically (see Figure 4). Taking into

account that � > 0, we obtain that

R 2
�

0;
�

2

i

W system (2.12) has no solution;

R 2
��

2
;
3�

2

i

W system (2.12) has one solution;

R 2
�3�

2
;
5�

2

i

W system (2.12) has two solutions;

:::::::::::::::::::::::::::::::::::::::::::::::

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.13)
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0

�=2 � 3�=2 2�

�

� D �� cot �

Figure 4. Graphical solution of system (2.12).

Let us note that R.0/ D 0 and R.1/ D 1, and the radius R./ is monotone

increasing on Œ0; 1�. Denote by k , k 2 N the solution to the equation

arcsin
p
kp

1 � k
D k�

2
; k 2 N: (2.14)

Numerical calculations give

1 � 0:64643; 2 � 0:8579; 3 � 0:92472; 4 � 0:95359 : : : : (2.15)

Further, (2.13) implies that

 2 .0; 1� W no nonzero odd eigenfunctions,

 2 .1; 3� W one linearly independent odd eigenfunction,

 2 .3; 5� W two linearly independent odd eigenfunctions,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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In particular, for  2 .1; 3� we have one odd eigenfunction and the correspond-

ing eigenvalue �1 2 .0; d/ reads

�1 D �1./ D ˇ2 � b D �2

q2
� b

D 1



� �2

arcsin2
p


� 1
�

D 1



�sin2 �

1� 
� 1

�

;

(2.16)

where � is the solution to

�2

sin2 �
D

arcsin2
p


1 �  : (2.17)

2.4. Even eigenfunctions. Equations (2.9) imply that the even eigenfunctions have

the form

'.x/ D

8

<

:

B cosˇx; jxj � q;

A e�˛jxj; jxj > q;
(2.18)

where˛ D
p
d � � > 0,ˇ D

p
b C � > 0. Equating the values of the eigenfunction

and its left and right derivatives at x D q, we obtain

8

<

:

Ae�˛q D B cosˇq;

A˛e�˛q D Bˇ sin ˇq:

The system admits nonzero solutions if and only if its determinant vanishes:

˛ D ˇ tan ˇq:

Similarly (2.12), we obtain the following equations for � D ˇq and � D ˛q:

� D � tan �; �2 C �2 D R2; (2.19)

where R D
arcsin

p


p
1 � 

. The solutions can also be found graphically (see Figure 5).
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�0

��=2 3�=2

� D � tan �

Figure 5. Graphical solution of system (2.19).

We have

R 2 .0; �� W system (2.19) has one solution;

R 2 .�; 2�� W system (2.19) has two solutions;

:::::::::::::::::::::::::::::::::::::::::::::::

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.20)

Note that for any  2 .0; 1/ equation (2.19) has the solution � D arcsin
p
 2

.0; �=2/. The solution corresponds to eigenvalue � D 0 and the first even eigenfunc-

tion. Moreover, (2.20) implies that

 2 .0; 2� W one linearly independent even eigenfunction,

 2 .2; 4� W two linearly independent even eigenfunctions,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

where i are defined in (2.14).

Conclusion. 1) There is one eigenvalue �0 D 0 for  2 .0; 1�. 2) There are two

eigenvalues �0 D 0 and 0 < �1 < d for  2 .1; 2�. Etc. (See Figure 6.)
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0 11 2 3

�0 �0; �1 �0; �1; �2

Figure 6. Spectrum.

3. Spectral conditions

We deduce Theorem 1.1 in Section 4 below from the following proposition.

Proposition 3.1. For any  2 .1; 2/ the piece wise parabolic potentialsU0, defined

in (2.1), satisfy conditions U1–U3 except for the smoothness condition at the points

 D ˙ . Condition U4 holds for any  2 .1; 2/ except for one point �.

Proof. Step i) Obviously, for U0. / condition U1 with a D 1, m2 D d , and any

integer K � 3 holds except the smoothness at the points  D ˙ .

Consider condition U2. Note that the solutions to (2.12) or (2.19) with � D 0

and R D k�=2, k 2 N correspond to ˛ D 0 i.e. � D d . Then the functions (2.10)

or (2.18) with A ¤ 0 are a nonzero constant for jxj �  . Hence, the functions are

the resonances corresponding to the edge point � D d of the continuous spectrum.

Thus, the resonances exist only for the discrete set of parameters k , k 2 N, defined

in (2.14). Evidently, the set has just one limit point 1. Hence, condition U2 holds for

 2 .0; 1/ n f[k2Nkg.

Step ii) For any  2 .1; 2/ the operator H0 defined in (2.8) has exactly two

eigenvalues �0 D 0 and �1 2 .0; d/. For condition U3 it remains to verify (1.4) with

m2 D d . Namely, due to (2.16) and (2.17) we must prove that for any  2 .1; 2/
the following inequality holds:

4



�sin2 �./

1� 
� 1

�

>
1

1�  ;

where �./ 2 .�=2; �/ is the solution to (2.17). After the simple transformations we

obtain

4 cos2 �./ < 3;

and
�

2
< �./ < � � arccos

p
3

2
:

Since
�

sin �
is monotonically increasing function for � 2 .�=2; �/, then

�

2
<

arcsin
p


p
1 � 

<
2.� � arccos

p
3

2
/

p
4 � 3

:
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Finally, we obtain

1 <  < ˛;

where ˛ is the solution to

arcsin
p
˛p

1� ˛
D
2.� � arccos

p
3˛
2
/

p
4 � 3˛

:

Numerical calculation gives

˛ D 0:921485 > 2:

Therefore, condition U3 holds for any  2 .1; 2/.
Step iii) Finally, consider condition U4 (Fermi golden rule). The condition can

be rewritten as
Z

U 000
0 .s0.x//'4�1

.x/'2�1
.x/dx D

Z

d

dx
U 00
0 .s0.x//

'4�1
.x/'2

�1
.x/

s0
0.x/

dx ¤ 0:

(3.1)

By (2.8) we have thatU 00
0 .s0.x// D W0.x/ is the piece wise constant function. Hence,

d

dx
U 00
0 .s0.x// D .b C d/ı.x � q/ � .b C d/ı.x C q/;

and (3.1) becomes

'4�1
.q/'2�1

.q/ ¤ 0:

Formula (2.10) yields that '�1
.q/ D Ae�˛q ¤ 0. Hence it is sufficient to verify that

'4�1
.q/ ¤ 0:

The eigenfunction '4�1
satisfies the equations

8

<

:

�'00
4�1
.x/ � b'4�1

.x/ D 4�1'4�1
.x/; jxj � q;

�'00
4�1
.x/C d'4�1

.x/ D 4�1'4�1
.x/; jxj > q:

(3.2)

For the odd solution to (3.2) we have

'4�1
.q/ D sin ˇq; ˇ D

p

b C 4�1 > 0:

Therefore, '4�1
.q/ D 0 only if ˇq D k� , k 2 N, or

p

1C 4�1./ arcsin
p
 D k�; k 2 N; (3.3)

where �1./ is defined in (2.16) and (2.17). Substituting �1./ into (3.3) we obtain

from (2.16) and (2.17)
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

arcsin
p


p
1� 

q

4 sin2 � � 3.1 � / D k�;

�2

sin2 �
D

arcsin2
p


1 �  :

(3.4)
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For  2 .1; 2/ the system has a solution only for k D 1 since

0 <
arcsin

p


p
1� 

q

4 sin2 � � 3.1 � / < 2�; 1 <  < 2:

Denote

� D arcsin
p
 2 .�

p

1� 1=2; �
p

1 � 2/: (3.5)

Then (3.4) with k D 1 is equivalent to

8

ˆ

<

ˆ

:

4�2 � 3�2 D �2;

sin �

�
D cos �

�
:

(3.6)

Let us prove that (3.6) has a unique solution. Consider two functions �1.�/ and

�2.�/, where �1.�/
defD 1p

3

p

4�2 � �2 and �2.�/ is the solution of
sin �

�
D cos �

�
.

The function �1.�/ increases for �.1/ < � < �.2/, and

� 0
1.�/ D 1p

3

4�
p

4�2 � �2
>

1p
3

4.�=2/
p

4.3�=4/2 � �2
D 4p

15
> 1 (3.7)

for �.2/ < � < �.2/, since �.1/ D �=2 and �.2/ � 2:3137 < 3�=4. On the

other hand,

� 0
2.�/ D sin � � � cos �

�2
�2

cos � C � sin �
> 0; �=2 < � < �.2/:

Moreover, by (3.5) and (3.6) we obtain

� 0
2.�/ D �

�

sin �
�

� cos �

cos �
�

C sin �
<

sin �
�

� cos �

sin �
�

C sin �
< 1; �=2 < � < �.2/

since j cos �j < j cos �.2/j <
p
2=2, and sin � D p

 >
p

1
>

p
2=2 by (2.15).

Finally,

�2.�=2/ > �1.�=2/ D 0; �2.�.2// � 1:1843 < �1.�.2// � 1:9616: (3.8)

Therefore, (3.7) and (3.8) imply that �1.�/ D �2.�/ for a single value �.�/ 2
.�=2; �.2// (see Figure 7).
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�.�/ �.2/0 ��=2

�

�1.�/

�2.�/

Figure 7. Functions �1 and �2.

Numerical calculation gives � � 0:7925. Hence, system (3.6) on the interval

.1; 2/ has the only solution  D �. Thus, the Fermi golden rule holds for any

 2 .1; 2/ except for the one point �.

Conclusion. The potentialU0. / satisfies conditions U1–U4 except for the smooth-

ness at the points  D ˙ for any  2 .1; �/ [ .�; 2/.

4. Smooth potentials

We deduce Theorem 1.1 from Proposition 3.1 by an approximation of the potentialU0
with a smooth functions satisfying conditions U1–U4. Namely, let h. / 2 C1

0 .R/

be an even mollifying function with the following properties:

h. / � 0; supp h � Œ�1; 1�;
Z

h. /d D 1:

For " 2 .0; 1� we set

zU". /
defD 1

"

Z

h
� �  0

"

�

U0. 
0/d 0: (4.1)

Evidently, zU". / � 0 is a smooth, even function, symmetric with respect to the

points  D ˙1 in some neighborhoods of these points. In addition we have

zU". / � U0. / D

8

<

:

�" > 0; j j �  C ";

��" < 0; j j �  � ";
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where �"; �" D O."2/. Let us set

U". / D zU". / � �": (4.2)

Then

U". / D

8

<

:

U0. /; j j �  C ";

U0. / � �" � �"; j j �  � ":
(4.3)

Obviously,

sup
 2R

jU". / � U0. /j � C" (4.4)

with some constant C . Moreover,

U 000
" . / � 0 for  � 0 and U 000

" . / � 0 for  � 0: (4.5)

The corresponding kink is an odd solution to the equation

s00
" .x/ � U 0

".s".x// D 0; x 2 R:

The equation can be integrated using the “energy conservation”

js0
".x/j2
2

� U".s".x// D const; x 2 R

with const D 0:
Z s".x/

0

ds
p

2U".s/
D x; x 2 R: (4.6)

Hence, s".x/ is a monotone increasing function, and

s".x/ ! ˙1; x ! ˙1:

Moreover, (4.3), (4.4), and (4.6) imply that

sup
x2R

js".x/ � s0.x/j � C1":

Therefore,

jjs".x/j �  j � "; jjxj � qj � ı;

where

ı �! 0 as " ! 0: (4.7)

Hence, for the linear potential W".x/
defD U 00

" .s".x// we obtain

W".x/ D W0.x/; jjxj � qj � ı: (4.8)

Further, (4.5) implies that

W 0
" .x/ � 0 for x � 0 and W 0

" .x/ � 0 for x � 0:
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Therefore,

jW".x/ �W0.x/j � b C d; x 2 R: (4.9)

(see Figure 8).

�q C ı q � ı q C ı�q � ı
0 x

d

�b

W".x/

Figure 8. Potential W".

As a result, denoting w".x/ D W".x/ �W0.x/, we obtain

kw"kL2.R/ �! 0; " ! 0 (4.10)

by (4.7), (4.8), and (4.9).

Lemma 4.1. The eigenvalues of the Schrödinger operator

H" D � d2

dx2
CW".x/

converge to the ones of H0 as " ! 0.

Proof. The eigenvalues of H0 and H" are the poles of the resolvents R0.!/ D
.H0 � !/�1 and R".!/ D .H" � !/�1 respectively. Hence, the lemma follows

from (4.10) due to the relation

R".!/ D .H0 � ! C w"/
�1 D R0.!/.1C w"R0.!//

�1: (4.11)

Proof of Theorem 1.1. Consider the potential U. / D U". / defined in eq. (4.1)

and eq. (4.2). Let us prove that there exist "0 > 0 such that for any  2 .1; 2/ n �,

and 0 < " < "0 the potential U" satisfies conditions U1–U4.
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Step i) Condition U1 with a D 1, m2 D d , and any integer K � 3 obviously

holds.

Step ii) For any � 2 R, and s D 0; 1; 2; : : : denote by H
s
� D H

s
�.R/ the weighted

Sobolev spaces with the finite norms

k kH
s
�

D
s

X

kD0
k.1C jxj/� .k/kL2.R/ < 1:

By [9], Theorem 7.2, the absence of the resonance at the point ! D d for the

Schrödinger operator H is equivalent to the boundedness of the corresponding re-

solvent R.!/ W H
0
� ! H

2
�� at ! D d for any � > 1=2. Hence, the resolvent

R0.d/ W H
0
� ! H

2
�� is bounded by Proposition 3.1. Further, (4.8) and (4.9) imply

kw"kH
0
�� !H

0
�

�! 0; " ! 0

Hence, for sufficiently small " the operatorR".d/ W H
0
� ! H

2
�� is bounded by (4.11).

Then condition U2 holds for U".

Step iii) Lemma 4.1 implies that for  2 .1; 2/ and sufficiently small " the

operator H" has exactly two eigenvalues �0 D 0 and 0 < �1."/ < d . Moreover,

�1."/ ! �1.0/ D �1 as " ! 0 and then 4�1."/ > d for sufficiently small ". Hence,

condition U3 holds.

Step iv) It remains to check condition U4. Consider arbitrary  2 .1; 2/ n �.

Denote '"
�1."/

and '"
4�1."/

the corresponding odd eigenfunctions of H". Then we

have
Z

U 000
" .s".x//'

"
4�1."/

.x/.'"�1."/
.x//2dx

D
Z

jx�qj�ı

d

dx
W".x/

'"
4�1."/

.x/.'"
�1."/

.x//2

s0
".x/

dx

D
X

˙
d
'"
4�1."/

.˙q C ı/.'"
�1."/

.˙q C ı//2

s0
".˙q C ı/

C
X

˙
b
'"
4�1."/

.˙q � ı/.'"
�1."/

.˙q � ı//2

s0
".˙q � ı/

�
Z

jx�qj�ı

W".x/
d

dx

'4�"

1
."/.x/.'

"
�1."/

.x//2

s0
".x/

dx

����!
"!0

2.d C b/
'4�1

.q/'2
�1
.q/

s0
0.q/

D
Z

U 000
0 .s0.x//'4�1

.x/'2�1
.x/dx 6D 0

since ı ! 0 as " ! 0. Hence, U4 holds for sufficiently small ".
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