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Abstract. We consider the Hamiltonian system consisting of a scalar wave field and a single
particle coupled in a translation invariant manner. The point particle is subjected to an
external potential. The stationary solutions of the system are a Coulomb type wave field
centered at those particle positions for which the external force vanishes. It is assumed that
the charge density satisfies the Wiener condition, which is a version of the “Fermi Golden
Rule.” We prove that in the large time approximation, any finite energy solution, with the
initial state close to the some stable stationary solution, is a sum of this stationary solution
and a dispersive wave which is a solution of the free wave equation.
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1. INTRODUCTION

Our paper deals with nonlinear field-particle interaction. We consider a scalar real-valued wave
field φ(x) in R

3 coupled to a nonrelativistic particle with position q and momentum p governed by⎧
⎨

⎩

φ̇(x, t) = π(x, t), π̇(x, t) = Δφ(x, t)− ρ(x− q(t)),

q̇(t) = p(t), ṗ(t) = −∇V (q(t)) +

∫

φ(x, t)∇ρ(x − q(t)) dx.
(1.1)

This is a Hamilton system with the Hamilton functional

H(φ, π, q, p) =
1

2

∫ (
|π(x)|2 + |∇φ(x)|2

)
dx+

∫

φ(x)ρ(x− q)dx+
1

2
p2. (1.2)

The first two equations in (1.1) for the fields are equivalent to the wave equation with the source
ρ(x − q). The form of the last two equations is determined by the choice of the nonrelativistic
kinetic energy p2/2 in (1.2).

It is easy to find stationary solutions to the system (1.1). For q ∈ R
3, we set

sq(x) = −
∫

d3y

4π|y − x|ρ(y − q). (1.3)

Let Z = {q ∈ R
3 : ∇V (q) = 0} be the set of critical points for V . Then the set S of stationary

solutions is given by
S = {(φ, π, q, p) = (sq, 0, q, 0) =: Sq| q ∈ Z}. (1.4)

We assume that V ∈ C2(R3) and set
V0 := inf

q∈R3
V (q) > −∞. (1.5)

For the charge distribution ρ, we assume that
ρ ∈ C∞

0 (R3), ρ(x) = 0 for |x| � Rρ, ρ(x) = ρr(|x|). (1.6)

We also assume that the Wiener condition is satisfied:

ρ̂(k) =

∫

d3x eikxρ(x) �= 0, k ∈ R
3. (1.7)

This is an analog of the Fermi Golden Rule: the coupling term ρ(x − q) is not orthogonal to the
eigenfunctions eikx of the continuous spectrum of the linear part of the equation (cf. [10]).

Finally, we assume that some q∗ ∈ Z is a stable critical point of V .
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94 KOPYLOVA AND KOMECH

Definition 1.1. A point q∗ ∈ Z is stable if d2V (q∗) > 0 as a quadratic form.

Our main results are as follows.
For solutions to the system (1.1) with initial data close to Sq∗ = (sq∗ , 0, q

∗, 0), we prove the
asymptotics

‖φ(·, t) − sq∗‖Ḣ1
−σ

+ ‖π(·, t)‖L2
−σ

+ |q(t)− q∗|+ |p(t)| = O(t−σ), t±∞, σ > 1, (1.8)

in weighted Sobolev norms (see (2.1)). Such asymptotics in global energy norm do not hold in
general since the field components may contain a dispersive term, whose energy radiates to infinity
as t → ±∞ but its norm does not converge to zero. Namely, in global energy norms we obtain the
following scattering asymptotics::

(φ(x, t), π(x, t)) ∼ (sq∗ , 0) +W0(t)Φ±, t → ±∞. (1.9)

Here W0(t) is the dynamical group of the free wave equation, and Φ± are the corresponding as-
ymptotic scattering states.

Asymptotics similar to (1.8) in local energy semi-norms was obtained in [7] in the case of com-
pactly supported difference φ(x, 0)− sq∗(x). We get rid of this restriction in the present paper.

For the proof, we establish long-time decay of the linearized dynamics using our results [8] on
the dispersion decay for the wave equation in weighted Sobolev norms. Then we apply the method
of majorants.

Let us comment on previous results in these directions. The asymptotic stability of solitons
was proved in [2] for systems of type (1.1) with the Klein–Gordon equation instead of the wave
equations. This result was extended in [3-6] to similar system with the Schrödinger, Dirac, wave,
and Maxwell equations. A survey of these results can be found in [1].

2. MAIN RESULTS

To formulate our results precisely, we introduce a suitable phase space. Let L2 be the real Hilbert
space L2(R3) with scalar product 〈· , ·〉. Denote by Ḣ1 the completion of real space C∞

0 (R3) with
norm ‖∇φ(x)‖L2 . Equivalently, by Sobolev’s embedding theorem (see [9]),

Ḣ1 = {φ(x) ∈ L6(R3) : |∇φ(x)| ∈ L2}.
Introduce the weighted Sobolev spaces L2

α and Ḣ1
α, α ∈ R, with the norms

‖ψ‖L2
α
:= ‖(1 + |x|)αψ‖L2 , ‖ψ‖Ḣ1

α
:= ‖(1 + |x|)αψ‖Ḣ1 . (2.1)

Definition 2.1. (i) The phase space E is the real Hilbert space Ḣ1 ⊕ L2 ⊕ R
3 ⊕ R

3 of states
Y = (ψ, π, q, p) equipped with the finite norm

‖Y ‖E = ‖∇ψ‖L2 + ‖π‖L2 + |q|+ |p|.

(ii) Eα is the space Ḣ1
α ⊕ L2

α ⊕ R
3 ⊕ R

3 equipped with its norm
‖Y ‖Eα

= ‖ψ‖Ḣ1
α
+ ‖π‖L2

α
+ |q|+ |p|. (2.2)

(iii) Fα is the space Ḣ1
α ⊕ L2

α of fields F = (ψ, π) equipped with the finite its norm

‖F‖Fα
= ‖ψ‖Ḣ1

α
+ ‖π‖L2

α
. (2.3)

We consider the Cauchy problem for the Hamiltonian system (1.1)

Ẏ (t) = F (Y (t)), t ∈ R, Y (0) = Y0. (2.4)

All derivatives are understood in the sense of distributions. Here,

Y (t) = (φ(t), π(t), q(t), p(t)), Y0 = (φ0, π0, q0, p0) ∈ E .
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ASYMPTOTIC STABILITY OF STATIONARY STATES IN THE WAVE EQUATION 95

Lemma 2.2. (cf. [7, Lemma 2.1]) Let (1.5) and (1.6) be satisfied. Then the following assertions
hold.

(i) For every Y0 ∈ E, the Cauchy problem (2.4) has a unique solution Y (t) ∈ C(R, E).
(ii) For every t ∈ R, the map Y0 �→ Y (t) is continuous on E.
(iii) The energy is conserved, i.e.,

H(Y (t)) = H(Y0) for t ∈ R. (2.5)

(iv) The energy is bounded below, and

inf
Y ∈E

H(Y ) = V0 +
1

2
(ρ,Δ−1ρ). (2.6)

Our first result is the following long-time convergence in E−σ to the stationary stable state.

Theorem 2.3. Let conditions (1.5)–(1.7) hold, and let Y (t) be a solution to the Cauchy problem
(2.4) with initial state Y0 ∈ E close to Sq∗ = (sq∗ , 0, q

∗, 0) with stable q∗ ∈ Z :

d0 := ‖∇(φ0 − sq∗)‖L2
σ
+ ‖π0‖L2

σ
+ |q0 − q∗|+ |p0| 
 1, (2.7)

where σ > 1. Then, for sufficiently small d0,
‖Y (t)− Sq∗‖E−σ

� C(d0)(1 + |t|)−σ , t ∈ R. (2.8)

Our second result is the following scattering long-time asymptotics in global energy norms for
the field components of the solution.

Theorem 2.4. Let the assumptions of Theorem 2.3 hold. Then, for sufficiently small d0,

(φ(x, t), π(x, t)) = (sq∗ , 0) +W0(t)Φ± + r±(x, t), t → ±∞, (2.9)

where W0(t) is the dynamical group of the free wave equation, Φ± ∈ Ḣ1 ⊕ L2, and
‖r±(t)‖Ḣ1⊕L2 = O(|t|−σ+1), t → ±∞. (2.10)

It suffices to prove (2.9) for positive t → +∞ since the system (1.1) is time reversible.

3. LINEARIZATION AT A STATIONARY STATE

For notational simplicity, we also assume isotropy, which means that
∂i∂jV (q∗) = ω2

0δij , i, j = 1, 2, 3, ω0 > 0 . (3.1)

Without loss of generality, we take q∗ = 0.
Let Sq = S0 = (s0, 0, 0, 0) be the stationary state of (1.1) corresponding to q∗ = 0, and let

Y0 = (φ0, π0, q0, p0) ∈ E be an arbitrary initial data satisfying (2.7). Let us consider Y (t) =
(φ(x, t), π(x, t), q(t), p(t)) ∈ E , the solution to (1.1) with Y (0) = Y0.

To linearize (1.1) at S0, we set φ(x, t) = ψ(x, t) + s0(x). Then (1.1) becomes⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ̇(x, t) = π(x, t),

π̇(x, t) = Δψ(x, t) + ρ(x)− ρ(x− q(t)),

q̇(t) = p(t),

ṗ(t) = −∇V (q(t)) +

∫

d3xψ(x, t)∇ρ(x− q(t)) +

∫

d3x s0(x)[∇ρ(x− q(t))−∇ρ(x)].

(3.2)
Introducing X(t) = Y (t) − S0 = (ψ(t), π(t), q(t), p(t)) ∈ C(R, E), we rewrite the nonlinear system
(3.2) in the form

Ẋ(t) = AX(t) +B(X(t)). (3.3)

Here A is the linear operator defined by

A

⎛

⎜
⎝

ψ
π
q
p

⎞

⎟
⎠ :=

⎛

⎜
⎝

0 1 0 0
Δ 0 ∇ρ· 0
0 0 0 E

〈·,∇ρ〉 0 −ω2
0 − ω2

1 0

⎞

⎟
⎠

⎛

⎜
⎝

ψ
π
q
p

⎞

⎟
⎠ (3.4)
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with

ω2
1δij =

1

3
‖ρ‖2L2δij = −

∫

d 3x ∂is0(x)∂jρ(x) . (3.5)

Here, the factor 1/3 is due to a spherical symmetry of ρ(x) (cf. (1.6)).
The nonlinear part is given by

B(X) = (0, π1, 0, p1), (3.6)

where
π1 = ρ(x)− ρ(x− q)−∇ρ(x) · q (3.7)

and

p1 = −∇V (q) + ω2
0q +

∫

d 3xψ(x)[∇ρ(x − q)−∇ρ(x)]

+

∫

d 3x∇s0(x)[ρ(x) − ρ(x− q)−∇ρ(x) · q].
(3.8)

Let us consider the Cauchy problem for the linear equation
Ż(t) = AZ(t), Z = (Ψ,Π, Q, P ), t ∈ R, (3.9)

with initial condition
Z|t=0 = Z0. (3.10)

System (3.9) is a formal Hamiltonian system with the quadratic Hamiltonian

H0(Z) =
1

2

(
P 2 + ω2Q2 +

∫

d3x (|Π(x)|2 + |∇Ψ(x)|2 − 2Ψ(x)∇ρ(x) ·Q)
)
,

which is the formal Taylor expansion of H(Y0 + Z) up to second order at Z = 0.

Lemma 3.1. Let condition (1.6) be satisfied. Then the following assertions hold.

(i) For every Z0 ∈ E, the Cauchy problem (3.9), (3.10) has a unique solution Z(·) ∈ C(R, E).
(ii) For every t ∈ R, the map U(t) : Z0 �→ Z(t) is continuous on E.
(iii) For Z0 ∈ E, the energy H0 is finite and is conserved, i.e.,

H0(Z(t)) = H0(Z0) for t ∈ R. (3.11)

(iv) For Z0 ∈ E,
‖Z(t)‖E � C for t ∈ R (3.12)

where C depending only on the norm ‖Z0‖E .

4. DECAY OF LINEARIZED DYNAMICS

We prove the following long-time decay of the solution Z(t) to (3.9).

Proposition 4.1. Let conditions (1.6) and (1.7) hold, and let Z0 ∈ E be such that
‖∇Ψ0‖L2

σ
+ ‖Π0‖L2

σ
< ∞

with some σ > 1. Then for Z(t) = U(t)Z0,

‖Z(t)‖E−σ
� C(ρ, σ)(1 + |t|)−σ+1(‖∇Ψ0‖L2

σ
+ ‖Π0‖L2

σ
). (4.1)

To prove this assertion, we apply the Fourier–Laplace transform

Z̃(λ) = ΛZ(t) =

∫ ∞

0

e−λtZ(t)dt, Reλ > 0 (4.2)

to (3.9). We expect that the solution Z(t) is bounded in the norm ‖ · ‖E . Then the integral (4.2)
converges and is analytic for Reλ > 0, and

‖Z̃(λ)‖E � C

Reλ
, Reλ > 0. (4.3)

Applying the Fourier–Laplace transform to (3.9), we obtain

λZ̃(λ) = AZ̃(λ) + Z0, Reλ > 0. (4.4)
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ASYMPTOTIC STABILITY OF STATIONARY STATES IN THE WAVE EQUATION 97

Hence, the solution Z(t) is given by

Z̃(λ) = −(A− λ)−1Z0, Reλ > 0. (4.5)

By (4.3), the resolvent R(λ) = (A− λ)−1 exists and is analytic in E for Reλ > 0.

Let us construct the resolvent for Reλ > 0. Equation (4.4) becomes

λ

⎛

⎜
⎝

Ψ̃
Π̃
Q̃
P̃

⎞

⎟
⎠ =

⎛

⎜
⎝

Π̃
ΔΨ̃ + Q̃ · ∇ρ

P̃
−〈∇Ψ̃, ρ〉 − ω2Q̃

⎞

⎟
⎠+

⎛

⎜
⎝

Ψ0
Π0
Q0
P0

⎞

⎟
⎠ , (4.6)

where ω2 = ω2
0 + ω2

1 .

Step (i). We consider the first two equations of (4.6):{
−λΨ̃ + Π̃ = −Ψ0,
ΔΨ̃− λΠ̃ = −Π0 − Q̃ · ∇ρ

(4.7)

A solution to system (4.7) admit the convolution representation
{
Ψ̃ = λgλ ∗Ψ0 + gλ ∗ Π0 + (gλ ∗ ∇ρ) · Q̃,

Π̃ = Δgλ ∗Ψ0 + λgλ ∗Π0 + λ(gλ ∗ ∇ρ) · Q̃,
(4.8)

where

gλ(z) = (−Δ+ λ2)−1 =
e−λ|z|

4π|z| . (4.9)

Step (ii). We consider the last two equations of (4.6):
{

−λQ̃+ P̃ = −Q0,
−ω2Q̃− 〈∇Ψ̃, ρ〉 − λP̃ = −P0.

(4.10)

Let us write the first equation of (4.8) in the form Ψ̃(x) = Ψ̃1(Q̃) + Ψ̃2(Ψ0,Π0), where

Ψ̃1(Q̃) = Q̃ · (gλ ∗ ∇ρ), Ψ̃2(Ψ0,Π0) = λgλ ∗Ψ0 + gλ ∗ Π0. (4.11)

Then the second equation in (4.10) becomes

−ω2Q̃− 〈∇Ψ̃1, ρ〉 − λP̃ = −P0 + 〈∇Ψ̃2, ρ〉 =: −P ′
0.

Now we compute the term 〈∇Ψ̃1, ρ〉:
〈∇Ψ̃1, ρ〉 = −〈Ψ̃1, ∂iρ〉 = −

〈∑

j

(gλ ∗ ∂jρ)Q̃j , ∂iρ
〉
= −

∑

j

〈gλ ∗ ∂jρ, ∂iρ〉Q̃j = −
∑

j

Hij(λ)Q̃j ,

where

Hij(λ) := 〈gλ ∗ ∂jρ, ∂iρ〉 = 〈iĝλ(k)kj ρ̂(k), ikiρ̂(k)〉 =
〈 ikj ρ̂(k)

k2 + λ2
, ikiρ̂(k)

〉
=

∫
kikj |ρ̂(k)|2dk

k2 + λ2
.

(4.12)
The matrix H with entries Hjj, 1 � j � 3, is well defined for Reλ > 0 since the denominator does
not vanish. The matrix H is diagonal; moreover,

H11(λ) = H22(λ) = H33(λ) = h(λ). (4.13)

Finally, the system (4.10) takes the form

M(λ)

(
Q̃
P̃

)

=

(
Q0

P ′
0

)

, where M(λ) =

(
λE −E

ω2E −H(λ) λE

)

. (4.14)

Lemma 4.2. The matrix-valued function M(λ) (M−1(λ)) admits an analytic (meromorphic)
continuation to the entire complex plane C.

Proof. The Green function gλ admits an analytic continuation in λ to the entire complex
plane C. Then an analytic continuation of M(λ) exists in view of (4.12) since the function ρ(x) is
compactly supported because of (1.6). Then the inverse matrix is meromorphic, since it exists for
large Reλ. This fact follows from (4.14), since H(λ) → 0, Reλ → ∞ in view of (4.12).

Since the matrix H(λ) is diagonal, the matrix M(λ) is equivalent to three independent 2 × 2-
matrices. Indeed, let us transpose the columns and rows of the matrix M(λ) in the order (142536).
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Then we obtain a matrix with three 2× 2-blocks on the main diagonal. Therefore, the determinant
of M(λ) is the product of determinants of three matrices. Namely,

detM(λ) = (λ2 + ω2 − h(λ))3 = (λ2 + ω2
0 + ω2

1 − h(λ))3, (4.15)

where

ω2
1 =

∫
k21 |ρ̂(k)|2dk

k2
, h(λ) =

∫
k21 |ρ̂(k)|2dk
k2 + λ2

.

Proposition 4.3. The matrix M−1(iν + 0) is analytic in ν ∈ R.

Proof. It suffices to prove that the limit matrix M(iν+0) is invertible for ν ∈ R if ρ satisfies the
Wiener condition (1.7). Formula (4.15) implies detM(0) = ω2

0 > 0. For ν �= 0, ν ∈ R, we consider

h(iν + ε) =

∫
k21 |ρ̂(k)|2dk

k2 − (ν − iε)2
, ε > 0. (4.16)

The denominator D(ν, k) = k2 − ν2 vanishes on Tν = {k : k2 = ν2}. Denote by dS the surface area
element. Then it follows from the Sokhotsky–Plemelj formula for C1-functions that

�h(iν + 0) = − ν

|ν|π
∫

Tν

k21 |ρ̂(k)|2
|∇D(ν, k)|dS �= 0, (4.17)

since the integrand in (4.17) is positive by the Wiener condition (1.7). Now, the invertibility of
M(iν) follows from (4.15).

4.1. Time Decay

Here we prove Proposition 4.1. First, we obtain the decay (4.1) for the vector components Q(t)
and P (t) of Z(t). By (4.15), the components are given by the Fourier integral(

Q(t)
P (t)

)

=
1

2π

∫

eiνtM−1(iν+ 0)

(
Q0

P ′
0

)

dν = L(t)
(
Q0
P0

)

+ L(t) ∗
(

0
f(t)

)

, (4.18)

where

L(t) = 1

2π

∫

eiνtM−1(iν + 0)dν = λ−1M−1(iν + 0),

f(t) = Λ−1[〈Ψ2(Ψ0,Π0),∇ρ〉] = Λ−1[〈iνgiν ∗Ψ0 + giν ∗Π0,∇ρ〉] = 〈W0(t)[(Ψ0,Π0)],∇ρ〉. (4.19)

We write out the nonzero entries of the matrix M(iν + 0),
iν

−ν2 + ω2 − h(iν + 0)
,

1

−ν2 + ω2 − h(iν + 0)
,

−ω2 + h(iν)

−ν2 + ω2 − h(iν + 0)
.

Hence,

|M−1(iν + 0)| � C

|ν| , |∂kM−1(iν + 0)| � Ck

|ν|2 , ν ∈ R, |ν| � 1, k ∈ N.

Therefore, L(t) is continuous in t ∈ R and
L(t) = O(|t|−N ), t → ∞, ∀N > 0. (4.20)

For the solutions of the free wave equation, the following dispersion decay holds.

Lemma 4.4. (cf. [8, Proposition 2.1]) Let (Ψ0,Π0) ∈ F0 be such that ‖(Ψ0,Π0)‖Fσ
< ∞ with

some σ > 1. Then

‖W (t)[(Ψ0,Π0)]‖F−σ
� C(1 + |t|)−σ‖(Ψ0,Π0)‖Fσ

, t ∈ R. (4.21)

Lemma 4.4 and the definition (4.19) imply

|f(t)| � C(σ, ρ)(1 + |t|)−σ‖(Ψ0,Π0)‖Fσ
, t ∈ R. (4.22)

Therefore, (4.18), (4.20), and (4.22) imply

|Q(t)|+ |P (t)| � C(σ, ρ)(1 + |t|)−σ‖(Ψ0,Π0)‖Fσ
. (4.23)
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Then (4.1) holds for the vector components Q(t) and P (t).

Now we prove (4.1) for the field components of Z(t). The first two equations of (3.9) have the
form (

Ψ̇(t)

Π̇(t)

)

=

(
0 1
Δ 0

)(
Ψ(t)
Π(t)

)

+

(
0

Q(t) · ∇ρ

)

. (4.24)

The integrated version of (4.24) reads

(Ψ(t),Π(t)) = W (t)[(Ψ0,Π0)] +

∫ t

0

W (t− s)[0, Q(s) · ∇ρ]ds, t � 0. (4.25)

By (4.21) and (4.23), ‖(Ψ(t),Π(t))‖F−σ
� C(ρ, σ)(1+ |t|)−σ+1(‖∇Ψ0‖L2

σ
+ ‖Π0‖L2

σ
), t ∈ R. Propo-

sition 4.1 is proved.

5. ASYMPTOTIC STABILITY OF STATIONARY STATES

Here we prove Theorem 2.3. First, we obtain bounds for the nonlinear partB(X(t)) = (0, π1, 0, p1)
defined in (3.6)–(3.8). We have

‖π1(t)‖L2
σ

� R(|q|)|q(t)|2, |p1(t)| � R(|q|)[|q(t)|‖ψ(t)‖Ḣ1
−σ

+ |q(t)|2],

where R(A) denotes a positive function that remains bounded for sufficiently small A. Hence,

‖B(t)‖Eσ
� R(|q|)‖X(t)‖2E−σ

. (5.1)

We introduce the majorant
m(t) = sup

0�s�t
(1 + s)−σ‖X(s)‖E−σ

. (5.2)

We fix ε > ‖X(0)‖E−σ
and introduce the exit time

t∗ = sup{t > 0 : m(t) � ε}. (5.3)

The integrated version of (3.3) can be written as

X(t) = eAtX(0) +

∫ t

0

ds eA(t−s)B(X(s)). (5.4)

Proposition 4.1 implies the integral inequality

‖X(t)‖E−σ
� C (1 + |t|)−σ‖(ψ0, π0)‖Fσ

+ C

∫ t

0

ds (1 + |t− s|)−σ‖X(s)‖2E−σ
(5.5)

for t < t∗. We multiply both sides of (5.4) by (1 + t)−σ, and take the supremum over t ∈ [0, t∗].
Then

m(t) � C‖(ψ0, π0)‖Fσ
+ C sup

t∈[0,t∗]

∫ t

0

(1 + t)σ

(1 + |t− s|)σ
m2(s)

(1 + s)2σ
ds

for t < t∗. Since m(t) is a monotone increasing function, we obtain

m(t) � C‖(ψ0, π0)‖Fσ
+ Cm2(t)I(t), t � t∗, (5.6)

where

I(t) =

∫ t

0

(1 + t)σ

(1 + |t− s|)σ
m2(s)

(1 + s)2σ
ds � I < ∞, t � 0, σ > 1.

Therefore, (5.6) takes the form

m(t) � C‖(ψ0, π0)‖Fσ
+ CIm2(t), t � t∗, (5.7)

which implies that m(t) is bounded for t < t∗; moreover,

m(t) � C‖(ψ0, π0)‖Fσ
, t < t∗, (5.8)

since m(0) = ‖(ψ0, π0)‖Fσ
is sufficiently small by (2.7).

The constant C in the estimate (5.8) is independent of t∗. We choose d0 in (2.7) so small that
‖(ψ0, π0)‖Fσ

< ε/(2C), which is possible due to (2.7). Then the estimate (5.8) implies t∗ = ∞, and
(5.8) holds for all t > 0 if d0 is small enough.
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6. SCATTERING ASYMPTOTICS

Here we prove Theorem 2.4. From the first two equations of (1.1), we obtain the inhomogeneous
wave equation for the difference F (x, t) = (ψ(x, t), π(x, t)) = (φ(x, t), π(x, t)) − (sq∗ , 0):

ψ̇(x, t) = π(x, t), π̇(x, t) = Δψ(x, t) + ρ(x− q∗)− ρ(x− q(t)). (6.1)

Then

F (t) = W0(t)F (0) −
∫ t

0

W0(t− s)[(0, ρ(x − q∗)− ρ(x− q(s)))]ds. (6.2)

To obtain the asymptotics (2.9), it suffices to prove that F (t) = W0(t)Φ++ r+(t) for some function

Φ+ ∈ Ḣ1 ⊕ L2 and ‖r+(t)‖Ḣ1⊕L2 = O(t−σ+1). This fact is equivalent to the asymptotics

W0(−t)F (t) = Φ+ + r′+(t), ‖r′+(t)‖ Ḣ1⊕L2 = O(t−σ+1), (6.3)

since W0(t) is a unitary group on Ḣ1⊕L2 by the energy conservation law for the free wave equation.
Finally, the asymptotics (6.3) hold since (6.2) implies

W0(−t)F (t) = F (0) −
∫ t

0

W0(−s)R(s)ds, R(s) = (0, ρ(x − q∗)− ρ(x− q(s)). (6.4)

We set

Φ+ = F (0)−
∫ ∞

0

W0(−s)R(s)ds, r′+(t) =

∫ ∞

t

W0(−s)R(s)ds (6.5)

The integral on the right hand side of the first equation in (6.5) converges in Ḣ1⊕L2 with the rate
O(t−σ+1) because

‖W0(−s)R(s)‖Ḣ1⊕L2 = O(s−σ)

by the unitarity of W0(−s) and the decay rate ‖R(s)‖Ḣ1⊕L2 = O(s−σ) which follows from the

conditions (1.6) on ρ and the asymptotics (2.8). Hence, Φ+ ∈ Ḣ1 ⊕ L2 and (2.10) holds.
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