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Weighted energy decay for magnetic Klein—-Gordon equation
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We obtain a dispersion long-time decay in weighted energy norms for solutions
of 3D Klein—Gordon equation with magnetic and scalar potentials. The decay
extends the results obtained by Jensen and Kato for the Schrodinger equation
with scalar potential. For the proof we develop the spectral theory of Agmon,
Jensen and Kato, and minimal escape velocities estimates of Hunziker, Sigal and
Soffer.
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1. Introduction

We establish a dispersion long-time decay for solutions to 3D magnetic Klein—-Gordon
equation

U, 1) = (V=i A@) W (x, 1) —m>* Y (x, 1) — VP (x, 1), m>0. (1.1)

For 5,0 € R, denote by HS = H:(R?) the weighted Sobolev spaces introduced by
Agmon [1], with the finite norms

Il = 1) (V) Wil 2gsy < 00, (x) = (1+ [x[H)/2 (1.2)
We assume that V (x) € C1(R?), A j € C*(R?) are real functions, and for some B > 3 the
bounds hold
3
V@I+IVVI+ Y D IDAjx) < Cx) ™, x e R (1.3)
o] <4 j=1

We restrict ourselves to the ‘regular case’ in the terminology of [2] where the truncated
resolvent of the corresponding magnetic Schrodinger operator

H=(GV+A) +V=-A+2A-V+iV-A+A>4+V
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is bounded at the edge point O of the continuous spectrum. In other words, the point O is
neither an eigenvalue nor a resonance for the operator H; this holds for generic potentials.
In vector form, Equation (1.1) reads

V() = KW(r), (1.4)

where

_ (V@ _ 0 i
‘I’(”_<{p(t))’ K_<i((V—iA(x))2—m2—V(x)) 0)'

Denote F, = H! @ HY, and let U(r) : Fy — Fo be the dynamical group of Equation
(1.4).
Our main result is the following long-time decay: in the regular case for any o > 5/2

IUOEO) £, =00 2|90 £, - +o0 (1.5)

for solutions to (1.4) with initial data W (0) from the space of continuous spectrum of K.

Let us comment on previous results in this direction. The decay of type (1.5) in weighted
norms has been established first by Jensen and Kato [2] for 3D Schrodinger equation with
scalar potential. The result has been extended to more general PDEs of the Schrodinger
type by Murata [3]. The survey of the results can be found in [4]. For the Klein—Gordon and
wave equations with scalar potential, the weighed energy decay has been established in [5],
and [6] and for the Dirac equation in [7]. The Strichartz estimates for magnetic Schrédinger,
wave, Klein—Gordon and Dirac equations with smallness conditions on the potentials were
obtained in [8—10] and for magnetic Schrodinger equations with large potentials in [11].

The decay in weighted norms for magnetic Schrodinger equation has been established
in [12]. For the Klein-Gordon equations with magnetic potential, the decay ~ r~3/% was
obtained by Vainberg [13,14] in local energy norms for initial data with a compact support.
However, the decay in weighed energy norms for magnetic Klein—-Gordon equation was not
obtained up till now.

Let us comment on our approach. We extend the method of Jensen and Kato [2] to the
Klein—Gordon equation with magnetic potential. The main problem consists in the presence
of the first-order derivatives in the perturbation. These derivatives cannot be handled with
the perturbation theory like [5] since the corresponding terms do not decay in suitable norms.

Our main novelties are Propositions 3.2 and 3.3 on decay of propagators far from
thresholds. First, we prove the decay for magnetic Klein-Gordon equation with V = 0. The
proof rely on the Mourre estimates for the operator B4 = ((iV + A)2 + m?)1/? and the
minimal escape velocity estimates of Hunziker, Sigal and Soffer [15] and their development
by Boussaid [7]. Finally, we obtain the decay for the Klein—-Gordon equation with V' # 0
using the Born perturbation series and our recent results on the decay of the magnetic
Schrodinger resolvent.[12]

2. Spectral properties

Denote L2 = L?(R3). Similarly to [2,p.589], [3, formula (3.1)] and [12, Section 3.2], let
us introduce a generalized eigenspace M for the Schrodinger operator H:

M={yer g (1+ AWy =0},
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where Ay is the operator with the integral kernel 1/4m|x — y|and W = 2iA -V +iV -
A + A% + V. Functions ¥ € M N L? are the zero eigenfunctions of H and functions
Y € M\ L? are the zero resonances of H.

Our key assumption is the following spectral condition (cf. Condition (i) in [3, Theorem
7.2]):

M=0 2.1

In other words, the point zero is neither an eigenvalue nor a resonance for the operator H.
Condition (2.1) holds for a generic W. Denote by L(Bj, B;) the Banach space of bounded
linear operators from a Banach space B to a Banach space B;. Denote by R(w) = (H —w)~!
the resolvent of the operator H. Let us collect the properties of R(w) obtained in [5] under
conditions (1.3) and (2.1):

Lemma 2.1 Let condition (1.3) holds. Then

(i) For w > 0, the limiting absorption principle holds
R(w=xie) > R(w=xi0), &— 0+ 2.2)

in L(HY, H2 ) witho > 1/2.
(i) Fork=0,1,2,0 > 1/2+k, ands = 0, 1, the asymptotics hold

1—l+k

RO @) 235 31ty = Ol 2 ) ol = 00, @€ C\[0,00). (2.3)

wherel =0, 1 fors =0, andl =0, —1 fors = 1.

Note that asymptotics (2.3) have been proved in [12] for s = 0 only. In the case s = 1
the proof is given in Appendix.

LEmMmA 2.2 Let conditions (1.3) and (2.1) hold. Then

(i) Foro > 1 the asymptotics hold
IR (w) — R(O)HE(HQ,HZ,J) -0, w—>0, weC\]|[0,o00) 24

where R(0) : Hg — ’HZ_U is a continuous operator.
(i) Fork=1,2ando > 1/2 + k the asymptotics hold

IRO @Iy a2,y = Ol P70, 0> 0. 0eC\[0.00).  25)

Denote I' := (—o0, —m) U (m, 00) and let R(w) = (K — )~! be the resolvent of the
operator /C. The resolvent R can be expressed in terms of the resolvent R:

oR(w? — m?) iR(@* —m?) )

—i(1 4+ 0*R(@* —m?) wR(@* —m?) (2.6)

R(w) = <
Hence, the properties of R imply the corresponding properties of R:

LEmMma 2.3 Let conditions (1.3) and (2.1) hold. Then
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(1) The limiting absorption principle holds:
R(w+tie) > Rw=*i0), wel &— 0+ 2.7

in L(Fy, f_g_) witho > 1/2.
(i) For w € C\ T the asymptotics hold

||R(a))||£(]:m]:70) = O(l), wxtm— 0, o>1 (2.8)
IRDzr, 7.9 = Olo£m|?75), wtm—0,
o>1/24+k, k=1, 2,.. 2.9)

(iii)) Fork=0,1,2,...and o > 1/2 + k the asymptotics hold
IR® @) eF.7p =01), ©—>o00, weC\T (2.10)

Under conditions (1.3) and (2.1) the representation holds
1 )
U)P.(O)¥(0) = E/ e " R(w+i0) — R(w —i0)]¥(0)dow, teR (2.11)
tJr

for initial state W(0) € F, with o > 1. Here
Pe(K) = Ix(K)

is the projector associated with the continuous spectrum of /. The representation (2.11)
follows from the Cauchy residue theorem and Lemma 2.3 (cf. [5, Section 2.2]).

3. Time decay

We are now able to state our main result

TueoreEM 3.1 (Weighed energy decay) Let assumptions (1.3) and (2.1) hold. Then for
o > 5/2 the time decay holds

WU P | om0y < Clt) "3, 1 €R. 3.1)

We prove the decay separately for the components of the solution near thresholds and
far from thresholds. More precisely, we choose a function x,, € C;°(R) supported in a
sufficiently small neighbourhood of [—m, m]. Then

U@ PR 27y, 70y < NU@) xim () Pe (Kl 27, , 7o) HIU @O A= xm) B 27, 70 ) -

(3.2)
The decay of the first low energy component can be treated by the method of Jensen and
Kato [2]. Namely, using the spectral representation (cf. (2.11))

U(t) xm (K) P (K)W(0) = 21; /I: e Y (@) [R(0+i0) —R(0—i0)|W(0) dw, teR

3.3)
and asymptotics (2.8)—(2.9), we obtain for o > 5/2

1U @) xm (K Pe (K (7 7o) = Cit) 3, teR. 34
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by [2, Lemma 10.2]. To treat the decay of the second high energy component we cannot
use the spectral representation since the resolvent R (w) does not decay in L(F,, F—_) as
o — 00 (see (2.10)). We obtain the required decay in the following way. First, we consider
the Klein—Gordon equation without a scalar potential, i.e with V = 0:

l\I—’(l‘) ZKOW(l‘), ’C(): (i((V—iA?x))z—nﬂ) 6) 3.5)

Denote Uy(t) : Fo — Fo the dynamical group of Equation (3.5). Applying the minimal
escape velocity estimates of Hunziker, Sigal and Soffer [15, Theorem 1.1.] and their
modification [7, Proposition 2.2] we will prove

ProrosiTioN 3.2 (The case V = 0) Let assumption (1.3) hold. Then for any bounded
x € C*(R) supported in T, any o > 2 and any ¢ > 0 the decay holds

1Uo@)x Kol 7, . 7.y < CEO)T, 1R, (3.6)

Finally, we will prove the decay for the Klein—Gordon equation with V # 0 using the
Born perturbation series (5.3).

ProrosiTioNn 3.3 (The case V # 0) Let assumption (1.3) hold. Then for any bounded
x € C*°(R) supported in T, any o > 5/2 and any ¢ > 0 the decay holds

U@ x ) eF, 7o) < Clo,e)(t) 21, teR. (3.7)

Theorem 3.1 follows from (3.2) and (3.4), and Propositions 3.2 and 3.3. We prove
Propositions 3.2 and 3.3 in the remaining part of the paper.

4. Thecase V =0
First, we prove Proposition 3.2. Denote

B= [(iV —AW) + mz]l/z

which is positive and self-adjoint in L. Then

cos tB (sintB)/B
Up(t) = . 4.1
—Bsin tB cos tB

Hence, for the proof of (3.6) it suffices to check that
le P x Bl gmo oy < C@NN T, 1 eR 42)

foro > 2, & > 0, and any bounded x € C°°(R) with support in (m, 0co). We will deduce
(4.2) from the minimal escape velocity estimates [15] which rely on the Mourre estimates
for the operator B.
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4.1. Mourre estimates
Denote

P:%(X~V+V-x), Py =PB' +B'P, (4.3)
and let Ij; be the characteristic function of a set M.
Lemma 4.1  Suppose that assumption (1.3) holds. Then

(i) Forany6 € (0, 1) there exists v > 0 such that
Lig=m+v i[B, PplLiBi>m+v = O L|B|>m+v- 4.4)

(i) Forany A € I" and any § > 0, there exists u > 0 such that

22— m?

Lp_n<uilB, Ppllip_yj<u = ( 2 3) Lip_i<u- 4.5)

Proof
Step (i) Let us obtain a suitable formula for commutator [B, Pp]. First,

[B, Pgl =B, PIB~' + B™![B, P].

Further, we express [B, P] via [B2, P] following [16]. Namely, using the Kato square root
formula [17,p.317] we obtain for any ¢ € L>

1 o
By = —/ o™ PB* (B + o)y do. (4.6)
T Jo
Hence, one has
1 oo
[B, P] = — / o V2[B*(B* + w)~!, Pldw. 4.7
T Jo

Further,
(B®> 4+ w)[B*(B* + w)~!, P1(B® + ) = B>P(B*> + w) — (B> + w)PB*> = w[B>, P].
Then (4.6) becomes
1 o0
[B, P] = —/ o'*(B* + w)"[B?, PI(B* + w) ' dw. 4.8)
T Jo
It is easy to calculate
i[B>, P1= B> —m® + 0Q, (4.9)

where

Q=—A2+2i(V-A) —x - (VA?) +2ix - (V(V-A) +i Y x;(V;A) VL.
j.k
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Substituting into (4.8), we get
1

o0
i[B, PIB~! = —/ o'*(B> —=m>)B (B> + w) 2 dw
T Jo

l o0
+—/ 0 ?B*+0) 'OB (B> +w) 'do=Ji + ]
T Jo

(4.10)
R 1001/22 2\ p—1,p2 -2
iB7'[B,P]=— w/'“(B*—m“)B" (B 4+ w) “dw
T Jo
1 o0
+—/ 0B+ w0) 'BT'OB*>+w) M do =1 + 13
T Jo
Applying the integration by parts, we rewrite J; as
L[ ypd —1,p2 2 p—1
J=—— w/'"—(B "+ w)”  (B°—m")B™ dw
T Jo dw
4.11)
1 * —1/2,/p2 —1,/p2 2\ p—1 1 2 2\p—2
=§ w (B+w)” (B-—m*)B da):E(B —m°)B™~,
0
which follows from (4.6) and the bound
I(B* + @) 'llp2 < m* + @) M2 (4.12)
Finally,
2_ 2
i[B,PB]=T+J, J=Dh+ . (4.13)

Step (i) Letus prove that J = J» + J3 : L? > [?isa compact operator. First, bounds
(1.3) and (4.12) imply forany0 <o < fand 0 <« < 1

I(B* + @) QB (B> + ) 'Wllyo < CA+ @) > [1¥ll2,

I(B* + @) "B~ QB> + @) '¥llp0 < C+ ) >l 2

by the technique of [18] and the standard technique of PDOs [19-21]. Second, for any
0 <a < land¢ € HY the bound holds

1(B? + &)l < Clidllzo. (4.14)
Indeed, using the technique [18] we get
1(B* + @)@ llp2 < ClIB*(B* + ) “¢ll30 < Cillgpllzg0
since B is a positive elliptic first-order PDO. Finally, choosing 0 < o < 1/2, we obtain

12 e + 1539 220 < ClW I 2. (4.15)
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Therefore, Jo, J3 : L? — L? are compact operators since the embedding H(z,“ c L%is
compact by Sobolev’s Embedding Theorem.

Step (iii) In the case A = 0 (and then J = 0) bounds (4.4) and (4.5) follow from (4.13).
For A # 0 and any 3¢ > 0 we split the compact operator J as

N
T =T+ 1fi)el.
1

where ||/, |l;2 < 2, and fj, g; € L?. Then

1L B—nj<ul Fi)(8; MiB=nj<plliz— 2 < W LB=aj<ufillz2 - 1 LiB=pj<u&jll;2 = 0, w—0

due to absolute continuity of spectral representatives fj, gj € L%([0, 0), X) of f 7, &jin
the spectral resolution of B, where X is an appropriate Hilbert space. Hence, for sufficiently
small 2z and u bound (4.5) follows. Similarly, bound (4.4) follows for sufficiently small s«
and sufficiently large v. O

4.2. Minimal escape velocity
Here we adapt the methods of [15, Theorem 1.1] to our case (see also [7, Theorem 2.1])

Lemma 4.2 Let assumption (1.3) hold. Then for any bounded x € C* with support in
I, there exists 0 > 0 such that for any v € (0,0), any a € R, and any ¢ > 0 the bound
holds

Tpy<atoir] € Px (B py=all 2.2 < C, &) (1) 2T, teR, (4.16)

where C does not depend on a and t.
Proof According to [15, Theorem 1.1] and [7, Theorem 2.1] bound (4.16) follows from

the Mourre estimates (4.4)—(4.5) and the boundedness of commutators adf,B (B): L? — L?
for 1 < k < 3, where

adp,(B) =[B, Pgl, and adp,(B) = [ad} ' (B), Pgl.

The boundedness of ad},B (B) = [B, Pg] follows from (4.13) and (4.15).
For k = 2, 3 we have

adb, (B) = —i[ad}y' 2J1) + adyy ' (1) + ady ' (J3)]

by (4.13). The boundedness of adf,;l(Jz) and ad’};l(]g) is obvious due to (1.3) and
definition (4.10) of J> and J3. Hence, it remains to prove that [ Pg, 2J1] and [ Pg, [ Pg, 2J1]]
are bounded in L2. The boundedness of [B, Pp] imply the boundedness of

[Ps. B~'1=B""[B, Pg1B~".
Then by (4.11) the operator

[Pg,2Ji] = [Py, (B> —m?*)B™*] = —m*[Pp, B]
= —m*([Pp, B~"1B~' + B~'[Pp, B7")
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is also bounded in L?. Further, (4.3) and (4.9) imply
[Pg.2J1] = m*B~> [PB, Bz] B2 =m*B3 [P, 32] B2+ m2B2 [P, B2] B3
- mzi(2 (B2 - mz) B+ B30B2+ B_ZQB_3).

Hence, the boundedness of [ Pg, [Pg, 2J;]] in L? follows from (1.3) and the boundedness
of [Pg, B™!]forany [ € N. O

Proof of Proposition 3.2 For any ¢ > 0 and any o > 0 one has
(Pg)™" = (Pg) "Lipy<c + O (I1I77), |t] > 1.
in £(L?, L?). Hence,

(Pp)~7e "B x(B)(Pp)~°
= (Pg) "Ipy<@o—pyiti2¢ B X (B)py>—pp12{Pp) " +O(ItI™%), y <86.
Choosing a = —% andv =60 — % in Lemma 4.2, we obtain foroc =2 and ¢ > 0
1(PB) ™ (x)% (x) "7 e "B x (B)(x) "7 (x) (Pp) " | 2.2y < C(e)(t)2FF, 1 eR.
Now (4.2) follows since (Pg)~? (x)? and (x)° (Pg)~° are bounded in £(L?, L?). This

follows by the arguments from the proof of Proposition 2.2 in [7] (page 770), relying on
the multicommutator expansion [22] (Identity (B.24)) and the identity (1.2) from [23].

5. Thecase V # 0
Here we prove Proposition 3.3. Denote

X (1) := U@®)x (k)W (0) = #fﬂ(w)e*iw’[mmrm) — R(w — iO)]% dw. (5.1)
r

Our final goal is the bound
IXOlF, < Clo,o)Wllx, ), 1eR, o>5/2. (5.2)
We apply the Born perturbation series
R(w) = Ro(w) — Ro(@)VRo(w) + Ro(@) VRo(w) VR(w), (5.3)
which follows by iteration of R(w) = Ro(w) — Ro(w)VR(w). Here Ro(w) = (Ko — w)~!

is the resolvent of the operator K¢ and

V= . 54)
—ivV 0
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Substituting (5.3) into (5.1) we obtain
! —iot . .
X(t) = — [ x(@e [Ro(a) +i0) — Ro(w — 10)]% dew
2mi
r
1 .
+ — / x (@w)e " [Ro(w +i0)VRo(w + i0)
2mi
r

— Ro(w — i0)VRo(w — iO)]\IJO do
1 .
+ i f x ()e " [RoVRoVR(a) +i0) — RoVRoVR(w — iO)]\I'o dw
l
r
=X1(t)+Xo(t) + X3(1), telR (5.5)

We analyse each term Xy separately.

Step (i) Proposition 3.2 implies that for any ¢ > 2 and any ¢ > 0
IX1OllF_, = U x (Ko)Woll 7, < C@)Wollz, () >, teR (5.6)

Step (i) Denote

1 .
1o =5 [ 1@ [Ro(+i0) - Ro(w - i0) [0 do. () = Vx@
r

It is obvious that for Y (¢) inequality (5.6) also holds. Namely,
IiOlF, < C@EIYlz ) >, teR o0>2, &>0. (5.7)
Now the second term X»(¢) in the right-hand side of (5.5) can be rewritten as a convolution.

LemMa 5.1  The convolution representation holds

t
X5 (1) :i/Uo(t—t)(lCo)VYl(r) dr, teR (5.8)
0

where the integral converges in F_, with o > 2.

Proof We have

1 .
Xo(t) = s / e_'“")(lz(a))’Ro(w +i0)VRo(w + i0)¥y dw (5.9
R
1 .
— 5= [ € @Ro(@ = i0VRo(@ - i0) [ Wo doo = X5 (1) + X3 (1)

R
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Denote Y;" (1) := 0(t)Y1(1). Then x, (@) Ro(w +i0) Wy = i ¥;" (w) and we obtain that

+ _ 1 —iwt : v+
X5 = E/e X (@) Ro(w +i0)VY|"(w) dw
R

1 . .
= —/ef““’xl(a))Ro(a)—}—iO)V[/ e’wTYﬁ'(r)dr]da)
2 R
R

Lo +i)2/ e X (w)Ro(w+i0)V[/ eiwa(r)dT]dw
27 (w+1)2" - 1
R

The last double integral converges in F_, with 0 > 2 by (5.7) with 0 < ¢ < 1, Lemma
2.3 (i), and (2.10) with k = 0. Hence, we can change the order of integration by the Fubini
theorem and we obtain that

t
X3 = 1/0 Uo(t — D)x,(Ko)VY1(¥)dt, 150 5.10)
0, t <0

since
—za)(t T) 1 )
—(zat +1i) / T b @Ro@+i0) do = 5 / e U x1(@)Ro(w + i0) do

R
=0(t —1)Uo(t — 1) %, (Ko)

Similarly, we obtain

0, t>0
X5 (1) = ! 11
20 =1, / Uo(t — 1)x, (Ko)VY1(0)de, 1 <0 .10
0
Now (5.8) follows since X»(#) is the sum of two expressions (5.10) and (5.11). O

Now we choose arbitrary 0 > 2,0 < ¢ < | and o7 € [2, min{o, 8/2}). Applying
Proposition 3.2 to the integrand in (5.8), we obtain that

1Uo(r — )X, (Ko) VY1 (D 7,

CIVYi(mlz,
< 0ot — )%, (Ko)VY <— —a
100 = O KOV D5y = e
_ CMOIr, Clwoll7,,
Sl — D2 = (I — e+ T2

3 Cll%ollz,
BECRATEED SN B

Integrating, we obtain by (5.8) that

X207, < C@IWollx (1), 1eR, o=2. (5.12)
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Step (ii1)  Finally, we rewrite the last term in the right-hand side of (5.5) as

1 .
X3(t) = oy / e "y (w)N (w)Vy dw, (5.13)
r

where N(w) := M (w +i0) — M(w — i0) and
M (w) := Ro(@)VRo(w)VR(w) = RoL(w)R(w).

First, we obtain the asymptotics of L(w) := VRo(w)V for large w.

LemMma 5.2 Leto >0,k =0,1,2, and V satisfy 1.3)with 8 > 1/2 + k + o. Then the
asymptotics hold

ILY @) er, 7y =O0(ol™), || — oco,weC\T. (5.14)

Proof Denote Ry(w) = (Hy — w)~ !, where Hy corresponds to H with V. = 0, i.e.
Ho = (iV + A)%. Bounds (5.14) follow from the algebraic structure of the matrix

0 0
L® (@) = VR (w)V = (5.15)
—iVR (@ —mHV 0

For o > 1/2 + k asymptotics (2.3) with s = 1 and [ = —1 implies that
IR (@ = mD)l p g1 390, = Ol ™), || > 00,0 € C\T, k=0,1,2.
Therefore, for 1/2 + k < B — o we have
IV R @ = m*)V fllpg < CIRY @ =m)V o
= 0l NV Sl = OGN et -

Further, we obtain the asymptotics of M (w) and its derivatives for large w.

Lemma 5.3  Let V satisfy (1.3) with 8 > 3. Then for k = 0, 1, 2, the asymptotics hold
||M(k)(w)||ll(.7:a,f—o) = O(lw|™?), |w| — co,weC \I[Lo >1/2+k. (5.16)
Proof Asymptotics (5.16) follow from asymptotics (2.10) for Rék) and R®, and asymp-
totics (5.14) for L® . For example, consider the case k = 2. We have
M" =R{LR + RoL"R + RoLR" + 2R,L'R + 2R{(LR' + 2RoL'R’. (5.17)

For a fixed o > 5/2, let us choose o’ € (5/2, min{o, 8 — 1/2}). Then for the first term in
the right-hand side of (5.17) we obtain by (2.10) and (5.14)

IRG (@) L@)R@) fll7, < IR{@L@R@flr , <|L@R@Fflz,
C C C
—IR@) flF ., < ﬁnfnfc,, < ﬁnfnfo, ®— 00, we C\T. (5.18)

=
|l
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Other terms can be estimated similarly choosing appropriate values of o”’. [l

Now we prove the decay of X3(¢). By Lemma 5.3
(XN)" € LN L(Fo, F-o))
with o > 5/2. Hence, two times partial integration in (5.13) implies that
IX3()ll 7., < C@I%ollz, ()2 teR.

Together with (5.6) and (5.12) this completes the proof of Proposition 3.3.
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Appendix 1. Decay of magnetic Schrodinger resolvent

Here we prove Lemma 2.1(ii) for s = 1. First, we consider the case V = 0. Recall that
Ho=(iV+A)? and Ry = (Hy—w) .

Lemma Al LetA(x) e C 2(R3) be a real function, and for some B > 2 the bound holds
[A(x)] + |[VAx)|+ |[VVA(X)| < C(x)_ﬂ. (A.1)

Then forl = —1,0, 1 and o > 1/2, the asymptotics hold

1-1
IRY@) £ 341 0141, = Ol ™ 7). [0l = 0, @ € C\[0, 00), (A2)

Proof
Step (i) Consider I = 0. Applying the technique of PDO [20,21] we obtain for large @ € C \ [0, c0)

IRy @)W llyg1 < IVRo @)V llgp0 + IRo@)Vllyg0 = ClIVHo + TRo@) g0
= CillRo(@)VHo + 1y < Colol ™2 1V/Ho + 19 llyg0
< Cslol ™ 21 llgg
by 2.3)withk =s =[=0and V =0.
Step (i) Similarly, (2.3) with k = s = 0 and [ = 1, implies for large w € C \ [0, c0)
IRo @)V lly2 = ll(Ho+ DRo@)¥lly0 < CIV=A+1VHy +1Ro@)¥llyg0
= CIV=A+TRo@)yHo + 19l = CillRo@)y/Ho + 19l
< CllVHo + 19l < Clllgg
Then (A.2) with [ = 1 follows.

Step (iii) It remains to consider the case / = —1. We have by (A.2) with/ = 1

IRo@V Iy, = o™ (=1 + HoRo@)¥llyo = Clol ™ [IWll30 +IRo@Vllpez, |

< Crlol ™ Wl
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Now we consider V # 0.

LEmMA A.2  Let for some B > 3
V@) + [A@)| + [VA@)| + [VVA@)| < C(x)~F.
Then fork =0,1,2, 0 > 1/2+k, andl = —1, 0 the asymptotics hold

I1R® ()] =0 |_l_é+k) || — oo e C\ [0, o0) (A.3)
O a1 3141y = Ol 0] . , 00). .

Proof For k = 0 asymptotics (2.3) follow from (A.2) with / = 0 and the Born splitting
R(@) = Ro(@)[1 + VRo(@)]™",

since the norm of the operator [1 + VR()(a))]_1 : H}, — H}, is bounded for large w € C \ [0, c0)
ando € (1/2, B/2].

For k = 1 and k = 2 we use the identities
R'=(1-RW)R,(1-WR)=R), —RWR), — R\,WR+ RWR \WR. (A4)
R" = (1 —RW)R (1 - WR)—2R'"WR/\(1 — WR) (A.5)
= R{ — RWR — R\WR+ RWR{WR —2R'"WR/\ + 2R'WR, WR.
and well-known asymptotics for Ra (w) = (—A — a))_l (see [2,5]):
(k) _1-i+k
1R A (w)llc(Hg,Hﬁz) =0(w|” 72 ), w—o00, weC\[0,00) (A.6)

fors e R,/ =—-1,0,1,k =0,1,2,... and 0 > k + 1/2. Identities (A.4)—(A.5) and asymptotics
(A.6) imply (A.3) (cf. [12, Theorem 3.8]). O
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