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Abstract. We prove a version of the Titchmarsh convolution theorem for distributions on the
circle. We show that a certain “näıve” form of the Titchmarsh theorem can be violated, but only
for the convolution of distributions with certain symmetry properties.
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1. Introduction. The Titchmarsh convolution theorem [6] states that, for any two compactly
supported distributions f, g ∈ E ′(R),

inf supp f ∗ g = inf supp f + inf supp g and sup supp f ∗ g = sup supp f + sup supp g. (1)

Its higher-dimensional analogue due to Lions [4] states that, for f, g ∈ E ′(Rn), the convex hull of
the support of f ∗ g is equal to the sum of the convex hulls of the supports of f and g. Different
proofs of the Titchmarsh convolution theorem are contained in [7, Chap. VI] (real-analytic), [1,
Theorem 4.3.3] (harmonic-analytic), and [3, Lect. 16, Theorem 5] (complex-analytic).

In this note we generalize the Titchmarsh theorem to periodic distributions, which we consider
as distributions on the circle (to be more precise, on the torus) T := R/2πZ.

First, we note that there are zero divisors in the algebra of distributions on the circle under
convolution. Indeed, for any two distributions f, g ∈ E ′(T), one has

(f + Sπf) ∗ (g − Sπg) = f ∗ g + Sπ(f ∗ g)− Sπ(f ∗ g) − f ∗ g = 0. (2)

Here Sy , y ∈ T, is the shift operator defined on E ′(T) by the relation

(Syf)(ω) = f(ω − y), (3)

which is understood in the sense of distributions. Yet, the cases when the Titchmarsh convolution
theorem “does not hold” (in some näıve form) can be explicitly described. This leads to a version
of the Titchmarsh convolution theorem for distributions on the circle (Theorem 1 below).

Our interest in properties of a convolution on the circle is due to applications to the theory of
attractors for finite difference approximations of nonlinear dispersive equations. In [2] we considered
the weak attractor of finite energy solutions to the U(1)-invariant Klein–Gordon equation in 1D
coupled to a nonlinear oscillator. We proved that the global attractor of all finite energy solutions is
formed by the set of all solitary waves φω(x)e

−iωt with ω ∈ R and φω ∈ H1(R). The general strategy
of the proof was to consider the omega-limit trajectories of a finite energy solution ψ(x, t) ∈ C,

which are defined as solutions with Cauchy data at the omega-limit points of the set {(ψ(t), ψ̇(t)) :
t � 0} in the local energy seminorms. To prove the convergence to the set of soliton solutions, we
showed that the time spectrum of each omega-limit trajectory is inside the spectral gap. Applying
the Titchmarsh convolution theorem to the equation satisfied by an omega-limit trajectory, we
conclude that its time spectrum consists of at most one frequency, and hence any omega-limit
trajectory is a solitary wave (or zero). We expect that this approach can be generalized to the Klein–
Gordon equation in discrete space-time [5]. The main difference is that, in this case, the frequency
domain is the circle (rather than the real line) and there are two (rather than one) spectral gaps
in the continuous spectrum. Thus, the convolution theorem is to be applied to distributions with
frequency support in the two spectral gaps, and analyzing the time spectrum of an omega-limit
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trajectory requires a version of the Titchmarsh convolution theorem for distributions supported on
two intervals of the circle.
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2. Main results. For I ⊂ T and n ∈ N, we set

Rn(I) =
⋃

k∈Zn

S2πk/nI, where Zn = Z modn.

Let f, g ∈ E ′(T), and let I, J ⊂ T be two closed intervals such that supp f ⊂ Rn(I) and supp g ⊂
Rn(J); suppose also that there is no closed interval I ′ � I for which supp f ⊂ Rn(I

′) and there is
no closed interval J ′

� J for which supp g ⊂ Rn(J
′).

Remark 1. For f, g ∈ E ′(T), the intervals I and J are analogues of the convex hulls of
supports.

Theorem 1 (Titchmarsh theorem for distributions on the circle). Let n ∈ N, n � 2. Assume
that

|I|+ |J | < 2π/n. (4)

Let K ⊂ I+J ⊂ T be a closed interval such that supp f∗g ⊂ Rn(K). If λ := infK−inf I−inf J > 0,
then there are α, β ∈ C such that αn = βn = 1, α �= β ,

( ∑

k∈Zn

αkS2πk/nf

)∣∣∣∣
(sup I−2π/n,inf I+λ)

= 0,

inf supp

( ∑

k∈Zn

αkS2πk/ng

)∣∣∣∣
(sup J−2π/n,inf J+λ)

= inf J

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

and

inf supp

( ∑

k∈Zn

βkS2πk/nf

)∣∣∣∣
(sup I−2π/n,inf I+λ)

= inf I,

( ∑

k∈Zn

βkS2πk/ng

)∣∣∣∣
(sup J−2π/n,inf J+λ)

= 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

Remark 2. Relations (6) follow from (5) due to the symmetric role of f and g. The conclusion
α �= β follows by comparing (5) and (6). Indeed, the first relation in (5) implies that

inf supp

( ∑

k∈Zn

αkS2πk/nf

)∣∣∣∣
I

� inf I + λ > inf I,

which would contradict the first relation in (6) if we had α = β .

Applying the reflection to T, we also obtain the following result.

Corollary 1. If ρ := sup I+supJ−supK > 0, then there are α, β ∈ C such that αn = βn = 1,
α �= β ,

( ∑

k∈Zn

αkS2πk/nf

)∣∣∣∣
(sup I−ρ,inf I+2π/n)

= 0,

sup supp

( ∑

k∈Zn

αkS2πk/ng

)∣∣∣∣
(sup J−ρ,inf J+2π/n)

= supJ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)
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and

sup supp

( ∑

k∈Zn

βkS2πk/nf

)∣∣∣∣
(sup I−ρ,inf I+2π/n)

= sup I,

( ∑

k∈Zn

βkS2πk/ng

)∣∣∣∣
(sup J−ρ,inf J+2π/n)

= 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8)

That is, if K � I + J (informally, we could say that a certain näıve form of the Titchmarsh
convolution theorem is not satisfied), then both f and g have certain symmetry properties on
Rn(U) and Rn(V ), where U and V are disjoint closed intervals, which can be chosen so that
U ∪K = V ⊃ I + J .

In the case n = 2, we obtain the following result.

Corollary 2. Suppose that n = 2, f, g ∈ E ′(T), and I , J , and K are the same as in Theorem 1.
Then λ := infK − inf I − inf J > 0 if and only if there is an α = ±1 such that

(f + αSπf)|(sup I−π,inf I+λ) = 0 and (g − αSπg)|(sup J−π,inf J+λ) = 0.

Proof. The “only if” part follows from Theorem 1. We check the “if” part by direct compu-
tation. Let f ∈ E ′(I ∪ SπI), where I ⊂ T, |I| < π/2, and let g ∈ E ′(J ∪ SπJ), where J ⊂ T,
|J | < π/2; assume that f = ±Sπf on (sup I−π, inf I+λ) and g = ∓Sπg on (supJ −π, inf J +λ).
Then, as in (2),

(f ∗ g)|(sup I+supJ−2π,inf I+inf J+λ) = f |(sup I−π,inf I+λ) ∗ g|(sup J−π,inf J+λ)

+ (Sπf)|(sup I−π,inf I+λ) ∗ (Sπg)|(sup J−π,inf J+λ)

= f |(sup I−π,inf I+λ) ∗ g|(sup J−π,inf J+λ)

− f |(sup I−π,inf I+λ) ∗ g|(sup J−π,inf J+λ) = 0. �

We set f �(ω) = f(−ω). Let f ∈ E ′(T), and let I ⊂ T be a closed interval such that supp f ⊂
R2(I). Assume that there is no closed interval I ′ � I for which supp f ⊂ R2(I

′).
Theorem 2. If I ⊂ (−π/2, π/2) and |I| < π/2, then the inclusion supp f ∗f � ⊂ {0;π} implies

that supp f ⊂ {inf I; sup I;π+inf I;π+sup I}. Moreover, there are distributions μ, ν ∈ E ′(T), each
supported at a point, such that

f = μ+ Sπμ+ ν − Sπν. (9)

Remark 3. Theorem 2 remains valid if we define f �(ω) = f(−ω). The proof does not change.
Finally, let us formulate the convolution theorem for powers of a distribution. Let f ∈ E ′(T).

Take a closed interval I ⊂ T such that supp f ⊂ Rn(I) and there is no I ′ � I for which supp f ⊂
Rn(I

′).
Theorem 3 (Titchmarsh theorem for powers of a distribution on the circle). Assume that

|I| < 2π/pn for some p ∈ N. Then the smallest closed interval K ⊂ pI such that supp f∗p ⊂ Rn(K)
is K = pI .

Above, we used the notations pI = I + · · · + I︸ ︷︷ ︸
p

and f∗p = f ∗ · · · ∗ f︸ ︷︷ ︸
p

.

3. Proofs. First, we prove the following lemma.

Lemma 1. Let fj ∈ E ′(I), j ∈ Zn . Then there is an α ∈ C such that αn = 1 and

inf supp
∑

j∈Zn

αjfj = min
j∈Zn

inf supp fj . (10)

Proof. We set a := minj∈Zn inf supp fj . Let us assume that, contrary to the statement of
the lemma, there is an ε > 0 such that inf supp

∑
j∈Zn

αjfj � a + ε for any α = γm , where
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γ = exp(2πi/n) and m ∈ N, 1 � m � n. Then, for any test function ϕ ∈ D(R) with suppϕ ⊂
(a− ε, a+ ε), we have

0 =

〈
ϕ,

∑

j∈Zn

γjmfj

〉
=

∑

j∈Zn

γjm〈ϕ, fj〉, 1 � m � n. (11)

Using the formula for the Vandermonde determinant, we obtain

det

⎡

⎢⎢⎢⎢⎢⎣

1 γ γ2 · · · γn−1

1 γ2 γ4 · · · γ2(n−1)

1 γ3 γ6 · · · γ3(n−1)

...
...

...
. . .

...

1 γn γ2n · · · γn(n−1)

⎤

⎥⎥⎥⎥⎥⎦
=

∏

1�j<k�n

(γk − γj) �= 0. (12)

Hence (11) implies that 〈ϕ, fj〉 = 0 for all j ∈ Zn. Due to the arbitrariness of ϕ, this leads to
fj|(a−ε,a+ε) = 0 for all j ∈ Zn, which contradicts the definition of a.

Proof of Theorem 1. One has supp f ⊂ Rn(I), supp g ⊂ Rn(J), and supp f ∗ g ⊂ Rn(K) ⊂
Rn(I + J). Due to constraint (4), each of the sets Rn(I), Rn(J), and Rn(I + J) consists of n
disjoint intervals. For j ∈ Zn , we set fj = (S2πj/nf)|I ∈ E ′(I), gj = (S2πj/ng)|J ∈ E ′(J), and
hj = (S2πj/n(f ∗ g))|K ∈ E ′(I + J); then

hj = (S2πj/n(f ∗g))
∣∣
I+J

=
∑

k+l≡jmodn
k,l∈Zn

(S2πk/nf)|I ∗(S2πl/ng)|J =
∑

k+l≡jmodn
k,l∈Zn

fk∗gl, j ∈ Zn. (13)

Using relation (13), we obtain
( ∑

k∈Zn

αkfk

)
∗
( ∑

l∈Zn

αlgl

)
=

∑

j∈Zn

αj

[ ∑

k+l≡jmodn
k,l∈Zn

fk ∗ gl
]
=

∑

j∈Zn

αjhj (14)

for any α ∈ C such that αn = 1. The application of the Titchmarsh convolution theorem (1) to
this relation yields

inf supp
∑

j∈Zn

αjfj + inf supp
∑

j∈Zn

αjgj = inf supp
∑

j∈Zn

αjhj � infK; (15)

we took into account the inequality minj∈Zn inf supphj � infK . By Lemma 1, there is an α ∈ C

with αn = 1 for which inf supp
∑

j∈Zn
αjgj = minj∈Zn inf supp gj = inf J ; this is equivalent to the

second relation in (5). For the same value of α, (15) yields

inf supp
∑

j∈Zn

αjfj � infK − inf J = inf I + λ.

This is equivalent to the first relation in (5). According to Remark 2, this proves the required
assertion.

Proof of Theorem 2. If I consists of one point, i.e., I = {p} ⊂ (−π/2, π/2), then supp f =
R2(p) = {p;π + p}, and (9) holds with

μ =
f + Sπf

2

∣∣∣∣
I

and ν =
f − Sπf

2

∣∣∣∣
I

.

Now, we assume that |I| > 0. We set J = −I and K = {0} ⊂ I + J . Then supp f � ⊂ R2(J),
and there is no J ′

� J for which supp f � ⊂ R2(J
′). According to the conditions of the theorem,

supp f ∗ f � ⊂ R2(K); hence one has

λ := infK − inf I − inf J = sup I − inf I = |I| > 0. (16)
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Applying Theorem 1 to (16), we conclude that there is an α ∈ {±1} such that

(f + αSπf)|(sup I−π,sup I) = 0 (17)

and also inf supp(f � + αSπf
�)|(−π/2,π/2) = − sup I ; this last relation implies that

sup supp(f + αSπf)|(−π/2,π/2) = sup I. (18)

Similarly, by Theorem 1, there is a β ∈ {±1} such that

(f � + βSπf
�)|(− inf I−π,− inf I) = 0;

hence
(f + βSπf)|(inf I,inf I+π) = 0. (19)

Comparing (18) with (19), we conclude that α �= β ; therefore, α = −β ; thus, (17) and (19) lead us
to conclude that both f and Sπf vanish on (inf I, sup I), whence

supp f ⊂ {inf I; sup I;π + inf I;π + sup I}.
By (17) and (19), if α = 1, then relation (9) holds with μ = f |(inf I,π/2) and ν = f |(−π/2,sup I) , and
if α = −1, then relation (9) holds with μ = f |(−π/2,sup I) and ν = f |(inf I,π/2).

Notice that the proof of Theorem 3 for the case p = 2 immediately follows from Theorem 1.
(For example, relations (5) with f = g are mutually contradictory unless λ = 0.) By induction, we
obtain a proof for p = 2N with any N ∈ N. This implies the assertion of Theorem 3 for any p � 2N ,
but only under the condition |I| < 2π/(2Nn), which is stronger than |I| < 2π/(pn). Instead of
trying to use Theorem 1, we give an independent proof.

Proof of Theorem 3. One has supp f∗p ⊂ Rn(pI). Due to the smallness of I , each of Rn(I)
and Rn(pI) is a collection of n disjoint intervals. We set fj := (S2πj/nf)|I ∈ E ′(I) and hj :=

(S2πj/n(f
∗p))|I ∈ E ′(I). Then

hj = (S2πj/n(f
∗p))|pI =

∑

j1+···+jp≡jmodn
j1,...,jp∈Zn

(S2πj1/nf)|I ∗ · · · ∗ (S2πjp/nf)|I

=
∑

j1+···+jp≡jmodn
j1,...,jp∈Zn

fj1 ∗ · · · ∗ fjp , j ∈ Zn. (20)

Taking into account (20), we obtain
( ∑

j∈Zn

αjfj

)∗p
=

∑

j∈Zn

αj

[ ∑

j1+···+jp=jmodn

fj1 ∗ · · · ∗ fjn
]
=

∑

j∈Zn

αjhj (21)

for any α ∈ C such that αn = 1. The application of the Titchmarsh convolution theorem to (21)
yields

p inf supp
∑

j∈Zn

αjfj = inf supp
∑

j∈Zn

αjhj .

By Lemma 1, there is an α ∈ C such that αn = 1 and

inf supp
∑

j∈Zn

αjfj = min
j∈Zn

inf supp fj ;

hence, for this value of α,

pmin
j∈Zn

inf supp fj = inf supp
∑

j∈Zn

αjhj � min
j∈Zn

inf supphj .

On the other hand, (20) immediately yields the inequalities inf supphj � pmink∈Zn inf supp fk for
any j ∈ Zn . It follows that

min
j∈Zn

inf supphj = p min
j∈Zn

inf supp fj



26

and, similarly,
max
j∈Zn

sup supphj = pmax
j∈Zn

sup supp fj. �
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