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We suggest a dynamical justification of quantum differential cross section in the 
context of long-time transition to stationary regime for the Schrödinger equation. 
The problem has been stated by Reed and Simon. Our approach is based on spherical 
incident waves produced by a harmonic source and the long-range asymptotics for 
the corresponding spherical limiting amplitudes. The main results are as follows: 
i) the convergence of spherical limiting amplitudes to the limit as the source 
goes away to infinity, and ii) the proof of the coincidence of the corresponding 
limit scattering cross section with the universally recognized formula. The main 
technical ingredients are the Agmon–Jensen–Kato’s analytical theory of the Green 
function, Ikebe’s uniqueness theorem for the Lippmann–Schwinger equation, and 
some refinement of classical long-range asymptotics for the Coulomb potentials.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The differential cross section is the main observable in quantum scattering experiments. This concept was 
first introduced to describe the Rayleigh scattering of sunlight and the Rutherford alpha-particle scattering 
as the quotient

σ(θ) = jsc
a (θ)/|jin|. (1.1)

Here, jin is the incident stationary flux, and jsc
a (θ) is the angular density of the scattered stationary flux 

jsc(x) in the direction θ ∈ R
3, |θ| = 1 (see Fig. 1):

jsc
a (θ) = lim

R→∞
R2jsc(Rθ)θ. (1.2)
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Fig. 1. Incident flux and scatterer.

In both scattering processes studied by Rayleigh and Rutherford the concept of differential cross section is 
well-established in the framework of the corresponding dynamical equations: the Maxwell equations in the 
case of Rayleigh scattering and the Newton equations in the case of Rutherford scattering.

On the other hand, a satisfactory dynamical justification of quantum scattering cross section is still 
missing in the framework of the Schrödinger equation

iψ̇(x, t) = Hψ(x, t) := −1
2Δψ(x, t) + V (x)ψ(x, t), x ∈ R

3. (1.3)

The problem has been stated and discussed by Reed and Simon in [19, pp. 355–357]. We suggest the solution 
for the first time, as far as we are aware. The corresponding charge and flux densities are defined as

ρ(x, t) = |ψ(x, t)|2, j(x, t) = Im[ψ(x, t)∇ψ(x, t)]. (1.4)

These densities satisfy the charge continuity equation

ρ̇(x, t) + div j(x, t) = 0, (x, t) ∈ R
4. (1.5)

Let us denote by k ∈ R
3 \ 0 the ‘wave vector’ of the incident plane wave

ψin(x, t) = ei(kx−Ekt), Ek := 1
2k

2. (1.6)

Our main goal is a dynamical justification of the formula for the differential cross section

σ(k, θ) = 16π4|T (|k|θ, k)|2, θ �= ±n := ±k/|k|, (1.7)

which is universally recognized in physical and mathematical literature (see, for example, [11,17,19,22,25]).
Let the brackets (·, ·) denote the Hermitian scalar product in the complex Hilbert space L2 := L2(R3), 

as well as its extension to the duality between the weighted Agmon–Sobolev spaces, see (2.2) and (7.11). 
The T -matrix is given by

T (k′, k) := 1
(2π)3 (T (Ek + i0)eikx, eik

′x), k′, k ∈ R
3, (1.8)

which is the integral kernel of the operator T (Ek + i0) := V − V R(Ek + i0)V (see Section 25 of [15]) in the 
Fourier transform

ψ̂(k) =
∫

e−ikxψ(x)dx, ψ ∈ C∞
0 (R3). (1.9)

Here, R(E) := (H − E)−1 is the resolvent of the Schrödinger operator H.
It is well known that the integral kernel S(k′, k) of the scattering operator S in the Fourier transform 

reads as

S(k′, k) = δ(k′ − k) − iπδ(Ek′ − Ek)T (k′, k), k′, k ∈ R
3 (1.10)
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Fig. 2. Incident plane wave and outgoing spherical wave.

(see [3,17,19,22]). The commonly used ‘naive scattering theory’ consists of the following statements 
[19,21,22].

I. The incident wave is identified with the plane wave (1.6), which propagates in the direction of the wave 
vector k and is a solution to the free Schrödinger equation (1.3) with V (x) = 0.

II. The corresponding ‘scattered’ solution to (1.3) is identified by its long-time asymptotics on any bounded 
region |x| < R (see Lemma 6.1),

ψ(x, t) ∼ A(x)e−iEkt, t → ∞. (1.11)

The amplitude A(x) is expressed by

A(x) = eikx −R(Ek + i0)[V (x)eikx], (1.12)

and admits the following long-range asymptotics of type [3, (3.58) of Ch. 4]:

A(x) ∼ eikx + a(k, θ)e
i|k||x|

|x| , |x| → ∞, θ := x/|x|; (1.13)

see Fig. 2.

III. By (1.4), asymptotics (1.13) give

jin = k, jsc
a (θ) = |a(k, θ)|2|k|. (1.14)

Hence, the differential cross section reads

σ(k, θ) = |a(k, θ)|2 (1.15)

since k �= 0. It is well known that a(k, θ) is proportional to the T -matrix (formula (97a) of [19]):

a(k, θ) = −4π2T (|k|θ, k). (1.16)

Hence, (1.15) reads as (1.7).

A heuristic derivation of relations (1.11), (1.12) can be found in [19, pp. 355–357]. However, a mathe-
matically consistent justification of the relations in a time dependent picture was not suggested until now. 
Moreover, relation (1.7) was considered up to now as the definition of the differential cross section: see 
formulas (1.2) and (A.1.6) of [11], formula (96) of [19], and Definition 7.9 on p. 254 of [26].

The main problem in mathematical justification of (1.11) and (1.12) is related to the lack of a consistent 
model for the incident wave ψin(x, t), securing convergence (1.11) to a stationary regime, and at the same 
time satisfies the ‘adiabatic condition’
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ψin(x, t) → 0, t → −∞, x ∈ R
3, (1.17)

which is in the spirit of the scattering theory. The plane incident wave (1.6) in the ‘naive scattering theory’ 
does not satisfy (1.17), since the wave occupies the entire space. The plane wave is a solution to the free 
Schrödinger equation

iψ̇(x, t) = −1
2Δψ(x, t), x ∈ R

3. (1.18)

The adiabatic condition (1.17) in acoustic scattering is provided by the ‘semi-infinite’ incident plane wave

ψin(x, t) = Θ(|k|t− kx)ei(kx−|k|t)

for t < 0, where Θ is the Heaviside function. This incident wave is a solution to the acoustic equation

ψ̈(x, t) = Δψ(x, t), |x| > R (1.19)

for t < −R if the scatterer is located in the region |x| ≤ R. The similar incident plane wave can be 
constructed for the Maxwell equations, which makes apparent the meaning of the differential cross section 
in the Rayleigh scattering.

On the other hand, a similar semi-infinite incident plane wave does not exist in the case of the Schrödinger 
equation. Indeed, we may fix R 	 |k|B if the scatterer is contained in a ball |x| ≤ B and take the semi-infinite 
plane wave

ψin(x) = Θ(−R− kx)eikx

as the initial condition at t = 0. However, the corresponding solution does not satisfy the adiabatic condition 
for t → −∞. The problem is of great importance also in the context of the quantum field theory, where the 
incident and outgoing plane waves play the fundamental role [17,20,21,25].

In the traditional approach, the incident wave is a specific initial field, which is a solution to the corre-
sponding free wave equation in the entire space. On the other hand, in practice, the incident wave is a beam 
of particles or light produced by a macroscopic source and satisfies the free wave equation only outside the 
source. One could expect that, for a large time, the incident wave near the scatterer will asymptotically be 
a free plane wave if the source is ‘monochromatic’ and its distance from the scatterer, D, tends to infinity. 
This model obviously corresponds to spherical incident waves, which are standard devices in optical and 
acoustic scattering [4].

We justify formula (1.7) in the following steps:

A. First, we prove the limiting amplitude principle for the Schrödinger equation (1.3) with harmonic source; 
i.e., the long-time convergence to a stationary harmonic regime with a ‘spherical limiting amplitude’, which 
does not depend on initial state.

B. Second, we prove the convergence of the spherical limiting amplitudes to the plane limiting amplitude 
when the source goes off to infinity: D → ∞.

C. We deduce from A and B that relations (1.11)–(1.13) hold true up to a factor in this double limit: first, 
as t → ∞, and then, as D → ∞.

D. Finally, we establish (1.14) up to a factor for θ �= ±n. The incident and scattered fluxes are defined by

jin := lim j∞(x, t), jsc(x, t) := j∞(x, t) − jin, (1.20)

|x|→∞
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where j∞(x, t) is the double limit of the flux (1.4). The definitions of jin and jsc
a will be adjusted in Section 8. 

Now formula (1.7) follows from (1.15) and (1.16).

Our strategy is as follows. We prove the limiting amplitude principle A, relying on our development 
[15] of the Agmon–Jensen–Kato’s theory of the resolvent of the Schrödinger operator [1,14]. The proof of 
the convergence B relies on a novel application of Ikebe’s uniqueness theorem for the Lippmann–Schwinger 
equation [3,12] and on uniform bounds for the Coulomb potentials (4.6), (4.14), (4.26). These bounds are 
due to novel asymptotics for the Coulomb potentials (4.4), which are regularized at the zero point (the 
corresponding bound (3.51) of [3, Ch. 4], is correct only for |x| ≥ δ > 0 due to the singularity of the main 
term).

We have developed similar approach in [15, Chapter 9] for the case of empty discrete spectrum of the 
Schrödinger operator (1.3). In present paper we get rid of this restriction and adjust our basic assumptions 
and references.

Moreover, we have improved significantly our arguments in derivation of (1.14) from (1.13). Our main 
novelties here are as follows.

I. Traditionally, the scattered flux (1.14) is defined by the second term on the right-hand side of (1.13). 
The separation of these terms is possible experimentally by suitable screens due to different directions of 
propagation.

In present paper we get rid of this separation problem defining the scattered flux by (1.20) where the flux 
j∞(x) corresponds to the total sum (1.13). Surprisingly, we obtain the same result (1.14). This coincidence 
is not obvious a priori since the magnitude of the corresponding “cross terms” at the points x = Rθ with 
|θ| = 1 are of order ∼ 1/R and ∼ 1/R2 which are not negligible in the limit (1.2) (see (8.7), (8.9)).

Namely, we prove that, the cross terms cancel on the sphere |θ| = 1 as R → ∞ in the sense of distributions 
of θ �= ±n since the terms contain the oscillatory factors eiRkθ. It is instructive to note that the stationary 
points of the phase kθ on the sphere are exactly θ = ±n. Respectively, the limit (1.2) converges in the sense
of the distributions (see Definition 8.1) that we prove in our novel Theorem 8.2.

II. The proof of Theorem 8.2 relies on oscillatory integral representation (8.6) for the limiting flux j∞(x)
and on the long-range asymptotics of j∞(x). This asymptotic analysis required novel estimates (7.4) and 
(7.9) for the remainders in classical long-range asymptotics of the Coulomb potentials. These estimates 
refine the corresponding estimates from Lemma 3.2 and Theorem 3.2 of [3, Ch. 4], which dates back to the 
results of Povzner and Ikebe [12,18].

Let us comment on previously known arguments for formula (1.7). The traditional physical approach 
[22] is based on random incident wave packets ψin(x, 0), which are asymptotically proportional to the plane 
waves eikx:

|ψ̂in(k′, 0)|2 → δ(k′ − k). (1.21)

The known mathematical justifications reside in Dollard’s fundamental result [6] on scattering into cones. 
This result is used in [23] for a clarifying treatment of formula (1.7). Namely, the normalized angular 
distribution of a finite charge, scattered for infinite time, converges to the normalized function (1.7) in the 
limit (1.21).

Dollard’s result was refined in [5,13] and in Section 3-3 of [2], where the flux across the surface theorem is 
proved. This result was later developed in [7–9,24] and applied for justification of formula (1.7) in the context 
of the Bohmian particle mechanics and incident stationary random processes constructed of normalized wave 
packets (1.7) in the limit (1.21). For a survey, see [10]. It is worth noting that we do not exclude the discrete 
spectrum of the Schrödinger operator H, in contrast to [7].

We point out that all the previous results give the same expression (1.7) for the differential cross section, 
though these results were not concerned with the long-time transition to a stationary regime.
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Our paper is organized as follows. The main results are stated in Section 2. The limiting amplitude 
principle is established in Section 3. In Section 4 we obtain long-range asymptotics and uniform bounds for 
the spherical limiting amplitudes. Next, in Sections 5 and 6 we prove convergence B and the corresponding 
convergence for the flux. Finally, in Sections 7 and 8 we verify formulas (1.16) and (1.14), which justify 
(1.15) and (1.7).

2. Main results

We consider the Schrödinger equation with harmonic source:{
iψ̇(x, t) = Hψ(x, t) + ρq(x) e−iEkt, t > 0
ψ(x, 0) = ψ0(x)

∣∣∣∣∣ x ∈ R
3. (2.1)

Here, H = −1
2Δ + V (x), k ∈ R

3 \ 0, and ρq(x) := |q|ρ(x − q) is the form factor of the source.
We mean that our model suits the physics of quantum scattering. Namely, the incident wave is produced 

by time periodic source, like a heated cathode in an electron gun. The source is not at infinity, though its 
distance from the scatterer is sufficiently large.

The solution ψ(x, t) describes the spherical waves produced by the source with the density |q|ρ(x − q)
which is located asymptotically near q (for large |q|). The factor |q| is introduced for a suitable normalization. 
Namely, this factor provides that the spherical waves look like plane waves (for bounded x) in the limit 
|q| → ∞, see (2.13) below.

The weighted Agmon–Sobolev spaces Hs
σ = Hs

σ(R3), s, σ ∈ R, are defined as follows. Let L2
σ = L2

σ(R3)
be the Hilbert space of measurable functions in R

3 with norm

‖ψ‖2
L2

σ
=

∫
〈x〉2σ|ψ(x)|2dx, 〈x〉 :=

√
x2 + 1. (2.2)

Definition 2.1. Hs
σ = Hs

σ(R3) denotes the Hilbert space of tempered distributions ψ(x) with finite norm

‖ψ‖Hs
σ

:= ‖〈∇〉sψ‖L2
σ
< ∞. (2.3)

We will assume the following conditions.

H0. The initial state ψ0 is a function from the space H2
σ0

with some σ0 > 5/2.
H1. For some ε1 > 0,

sup
x∈R3

〈x〉4+ε1 |∂αρ(x)| < ∞, |α| ≤ 2. (2.4)

H2. The following Wiener condition holds:

ρ̂(|k|θ) :=
∫

ei|k|θxρ(x)dx �= 0, θ ∈ R
3, |θ| = 1. (2.5)

H3. The potential V (x) is a real C2-function satisfying the condition

sup
x∈R3

〈x〉5+ε2 |∂αV (x)| < ∞, |α| ≤ 2, (2.6)

with some ε2 > 0.
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Finally, we introduce our key spectral assumption. Denote

Mσ := {ψ ∈ L2
−σ : ψ + R0(0)V ψ = 0},

where R0(E) := (−1
2Δ −E)−1 is the free resolvent. The space Mσ = M does not depend on σ ∈ (1/2, (5 +

ε2)/2) by the arguments preceding Lemma 3.1 of [14].

H4. We assume:

The Spectral Condition: M = 0. (2.7)

This condition holds for generic potentials, see the discussion preceding Lemma 3.1 in [14].
Let us outline our plan.

I. First, we will prove the limiting amplitude principle:

ψ(x, t) ∼ ϕq(x, t) = Bq(x)e−iEkt +
N∑
1

Cl
qψl(x)e−iElt, t → ∞, (2.8)

where ψl(x) are the eigenfunctions of H corresponding to the eigenvalues El < 0. The asymptotics hold in 
H2

−σ with any σ > 5/2, and the limiting amplitude Bq(x) is given by

Bq(x) = R(Ek + i0)ρq. (2.9)

The coefficients Cl
q depend on the initial state ψ(x, 0). On the other hand, it is crucially important that the 

coefficients Cl
q converge as |q| → ∞, while the eigenfunctions ψl(x) decay rapidly at infinity by Agmon’s 

theorem [1, Theorem 3.3] (see also Theorem 20.7 of [15]). Respectively, the sum over the discrete spectrum 
on the right-hand side of (2.8) does not contribute to the scattering cross section.

II. Second, let us denote n := k/|k|, BD(x) := BqD(x) where qD := −nD and D > 0. We will establish the 
following ‘spherical version’ of long-range asymptotics (1.13):

BD(x) ∼ bD(n)
[ |qD|
|x− qD|e

i|k|(|x−qD|−|qD|) + aD(k, θ)e
i|k||x|

|x|
]

as |x− qD| → ∞, |x| → ∞, (2.10)

where θ := x/|x| and bD(n) := b(n)ei|k|D with b(n) �= 0; see Fig. 3. The asymptotics (2.10) mean that the 
difference between the left-hand side and the right-hand side converges to zero.

III. Further, we prove the convergence of the spherical limiting amplitudes, which is our central result: for 
k �= 0

AD(x) := BD(x)/bD(n) → A(x), D → ∞, (2.11)

where A(x) is expressed by (1.12).

IV. At last, (2.11) implies the convergence of the flux (1.4) corresponding to the limiting amplitudes BD(x):

JD(x) := |b(n)|2 Im[AD(x)∇AD(x)] −→ J∞(x) := |b(n)|2 Im[A(x)∇A(x)], D → ∞. (2.12)

V. Finally, we calculate the long-range asymptotics of A(x) as |x| → ∞ and show that the convergence 
(2.12) and formula (1.12) justify (1.7).
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Fig. 3. Incident and outgoing spherical waves.

Let us comment on our methods. We derive the limiting amplitude principle (2.8) from the dispersion 
decay in weighted energy norms by a suitable development of Agmon–Jensen–Kato’s methods [1,14,15]. 
The long-range asymptotics (2.10) is deduced from the ‘spherical version’ (4.1) of the Lippmann–Schwinger 
equation and a refinement of Lemma 3.2 from [3, Ch. 4]. One of our key observations is that the spherical 
incident wave from (2.10) becomes asymptotically the plane incident wave from (1.13) as the source goes 
off to infinity:

|qD|
|x− qD|e

i|k|(|x−qD|−|qD|) → eikx, D → ∞. (2.13)

In this limit, the picture of Fig. 3 becomes the one of Fig. 2. We derive convergence (2.11) from asymptotics 
(2.10) by the Sobolev embedding theorem and the Ikebe uniqueness theorem for the Lippmann–Schwinger 
equation [12] (Theorem 3.1 of [3, Ch. 4]). Finally, we prove the second formula of (1.14) for the flux (1.20) in 
Theorem 8.2. We deduce it from the decay of the oscillatory integrals (8.9), which is due to the interference 
of the incident and scattered waves.

3. Limiting amplitude principle

We deduce the limiting amplitude principle (2.8) from the dispersion decay in weighted energy norms 
[14,15].

Lemma 3.1. Assume that conditions H0–H4 hold and k ∈ R
3. Then:

i) The limiting amplitude principle (2.8) holds in the norm of H2
−σ with any σ > 5/2.

ii) Cl
q converge to some limits Cl as |q| → ∞, and the limiting amplitude is given by (2.9).

Proof. We should prove that

ψ(x, t) = Bq(x)e−iEkt +
N∑
1

Cl
qψl(x)e−iElt + r(x, t), (3.1)

where

Cl
q → Cl, |q| → ∞; ‖r(·, t)‖H2 → 0, t → ∞. (3.2)
−σ
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The solution to the Cauchy problem (2.1) is unique and is given by the Duhamel representation

ψ(t) = U(t)ψ0 − i

t∫
0

e−iEksU(t− s)ρq ds. (3.3)

Here, U(t) is the dynamical group of equation (2.1) with ρq = 0, and the first term in the right-hand side 
admits the expansion

U(t)ψ0 =
N∑
1

Clψle
−iElt + r0(t), (3.4)

where Cl are independent of q, and

‖r0(t)‖H2
−σ

≤ C〈t〉−3/2. (3.5)

This decay follows similarly to the dispersion decay in the norm H0
−σ, as established in (10.9) of [14], with 

suitable refinement of the resolvent high energy decay (see Theorem 17.1 of [15]). Here, the assumptions H0 
and H3–H4 are essential.

On the other hand, the second term on the right-hand side of (3.3) can be written as

I(t) = −i

t∫
0

e−iEksU(t− s)ρq ds = −ie−iEkt

t∫
0

eiEkτU(τ)ρq dτ. (3.6)

Here, ρq ∈ H2
σ1

with some σ1 > 5/2 by H1. Hence, similarly to (3.4) and (3.5),

U(τ)ρq =
N∑
1

Dl
qψle

−iElτ + rq(τ), (3.7)

where

‖rq(τ)‖H2
−σ

≤ Cq〈τ〉−3/2. (3.8)

Finally, the eigenfunctions ψl(x) ∈ H2
s with any s ∈ R by Agmon’s theorem [1, Theorem 3.3] (see also 

Theorem 20.7 of [15]). Hence, (2.4) implies that

Dl
q = 〈ρq, ψl〉 = |q|

∫
ρ(x− q)ψl(x)dx = O(|q|−3−ε1), |q| → ∞. (3.9)

Therefore, Cl
q = Cl + Dl

q → Cl as |q| → ∞, and

I(t) ∼ Bq(x)e−iEkt + O(|q|−3−ε1), t → ∞. (3.10)

Here, the asymptotics hold in H2
−σ, and the limiting amplitude is given by

Bq = −i

∞∫
0

eiEkτU(τ)ρq dτ = −i

∞∫
0

ei(Ek+i0)τU(τ)ρq dτ, (3.11)

which can be written as (2.9). This proves (3.1). �
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4. Spherical waves

In this section we obtain long-range asymptotics (2.10). Denote R = R(Ek + i0) and R0 = R0(Ek + i0), 
where R0(E) = (H0 −E)−1 is the resolvent of the free Schrödinger operator H0 = −1

2Δ. Rewriting formula 

(2.9) for the limiting amplitude as the following ‘spherical version’ of the Lippmann–Schwinger equation, 
this gives

Bq(x) = R0ρq(x) −R0V Bq(x), (4.1)

since R = R0 −R0V R. The free Schrödinger resolvent R0(E) is the integral operator with kernel

R0(E, x, y) = ei
√

2E|x−y|

2π|x− y| , E ∈ C \ (0,∞).

Therefore, R0 is the integral operator with kernel

R0(Ek + i0, x, y) = ei|k||x−y|

2π|x− y| , (4.2)

because 
√

2(Ek + i0) = |k|.
For the first term on the right-hand side of (4.1), asymptotics (2.10) follow by a suitable modification of 

Lemma 3.2 from [3, Ch. 4]. Let

S = {θ ∈ R
3 : |θ| = 1} (4.3)

be the unit sphere.

Lemma 4.1. Under condition H1 with α = 0,

R0ρq(x) = b
( x− q

|x− q|
) |q|

1 + |x− q|e
i|k||x−q| + K(x− q), x ∈ R

3. (4.4)

Here, the amplitude b ∈ C1(S), and

b(θ) = 1
2π ρ̂(|k|θ), |θ| = 1, (4.5)

where ρ̂(k) denotes the Fourier transform (1.9). The remainder admits the bound

|K(x− q)| ≤ C|q|(1 + |x− q|)−1−ε1 , x ∈ R
3. (4.6)

Proof. This lemma follows by the arguments from the proof of Lemma 3.2 from [3, Ch. 4], with |x| substi-
tuted almost everywhere by |x| + 1. Moreover, H1 with α = 0 implies that ρ̂ ∈ C1

b (R3). Hence, b ∈ C1(S)
by (4.5). �

As a corollary, we obtain the bound

|R0ρq(x)| ≤ C|q|
1 + |x− q| , x ∈ R

3. (4.7)
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Remark 4.2. Our asymptotics (4.4) and the estimate (4.6) differ from similar ones (3.50) and (3.51) of 
[3, Ch. 4], which hold only for |x| ≥ δ > 0.

For the second term on the right-hand side of (4.1) we need two additional technical lemmas.

Lemma 4.3. Under conditions H1 and H3 the following bound holds for k �= 0:

sup
q∈R3

‖V Bq‖L2
σ
< ∞ for any σ < 5/2 + ε2. (4.8)

Proof. The Lippmann–Schwinger equation (4.1) implies

(1 + V R0)V Bq = V R0ρq. (4.9)

On the other hand, (1 + V R0)−1 = 1 − V R. Hence,

V Bq = (1 − V R)V R0ρq = V R0ρq − V RV R0ρq. (4.10)

Let us estimate each term on the right-hand side separately.

i) Condition (2.6) with α = 0 and bound (4.7) imply

|V R0ρq(x)| ≤ C|q|
(1 + |x− q|)(1 + |x|)5+ε2

, x ∈ R
3. (4.11)

Therefore,

|V R0ρq(x)| ≤ C

(1 + |x|)4+ε2
, x ∈ R

3. (4.12)

Hence,

V R0ρq ∈ L2
σ, σ < 5/2 + ε2. (4.13)

Thus, the bound (4.8) holds for the first term on the right-hand side of (4.10).
ii) It remains to estimate the last term of (4.10). By (4.13) we have RV R0ρq ∈ L2

−s for any s > 1/2, since 
the resolvent R = R(Ek + i0) : L2

s → L2
−s is continuous by [14, Theorem 9.2] because Ek > 0 for k �= 0. 

Therefore, V RV R0ρq ∈ L2
σ for σ < 4.5 + ε2 by (2.6) with α = 0. �

Lemma 4.4. Under conditions H1 and H3 the following uniform decay holds:

sup
q∈R3

|R0V Bq(x)| ≤ C(1 + |x|)−2, x ∈ R
3. (4.14)

Proof. By (4.2),

|R0V Bq(x)| ≤ C

∫ |V Bq(y)|
|x− y| dy = C

∞∫ [ ∫ |V Bq(r, ϕ, θ)|dϕ sin θdθ√
|x|2 + r2 − 2|x|r cos θ

]
r2dr. (4.15)
0
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Applying the Cauchy–Schwarz inequality to the inner integral,

|R0V Bq(x)| ≤ C

∞∫
0

[ ∫
|V Bq(r, ϕ, θ)|2dϕ sin θdθ

] 1
2
[ ∫ dϕ sin θdθ

|x|2 + r2 − 2|x|r cos θ

] 1
2
r2dr

= C

∞∫
0

[ ∫
|V Bq(r, ϕ, θ)|2dϕ sin θdθ

] 1
2
[ 1
|x|r log |x| + r

||x| − r|
] 1

2
r2dr. (4.16)

Applying the same inequality to the last integral, this gives

|R0V Bq(x)| ≤ C
[ ∫

(1 + r)2σ|V Bq(r, ϕ, θ)|2dϕ sin θdθr2dr
] 1

2 ×
[ ∞∫

0

log |x| + r

||x| − r|
r2dr

|x|r(1 + r)2σ
] 1

2

≤ C(σ)
[ ∞∫

0

log |x| + r

||x| − r|
rdr

|x|(1 + r)2σ
] 1

2 = C(σ)
[ ∞∫

0

log 1 + s

|1 − s|
|x|sds

(1 + s|x|)2σ
] 1

2 (4.17)

for σ < 5/2 + ε2 by the uniform bound (4.8). Let us split the region of integration (0, ∞) = (0, 1/2) ∪
(1/2, 3/2) ∪ (3/2, ∞) and observe that

log 1+s
|1−s| = O(s), s ∈ (0, 1/2)

log 1+s
|1−s| ∈ L1(1/2, 3/2)

log 1+s
|1−s| = O(s−1), s ∈ (3/2,∞)

∣∣∣∣∣∣∣∣ (4.18)

Then the integral (4.17) can be estimated as

C1(σ)
[ 1/2∫

0

|x|s2ds

(1 + s|x|)2σ + (1 + |x|)1−2σ +
∞∫

3/2

|x|ds
(1 + s|x|)2σ

]

= C1(σ)
[
|x|−2

|x|/2∫
0

r2dr

(1 + r)2σ + (1 + |x|)1−2σ +
∞∫

3|x|/2

dr

(1 + r)2σ
]

≤ C2(σ)(1 + |x|)1−2σ (4.19)

for 2σ > 1. This gives (4.14), since we can take any σ < 5/2 + ε2 by (4.8). �
Now we are ready to prove (2.10).

Proposition 4.5. Asymptotics (2.10) hold under conditions H1–H3.

Proof. The Lippmann–Schwinger equation (4.1) yields

V Bq(x) = V R0ρq(x) − V R0V Bq(x).

Hence, (2.6) with α = 0 and (4.12), (4.14) imply that

|V Bq(x)| ≤ C
4+ε2

. (4.20)
(1 + |x|)
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Therefore, similarly to (4.4), we obtain the asymptotics

R0V Bq(x) = cq

( x

|x|
) ei|k||x|

1 + |x| + Lq(x), (4.21)

where

|Lq(x)| ≤ C(1 + |x|)−1−ε2 . (4.22)

Now (4.1) and (4.4), (4.21) imply

Bq(x) ∼ b
( x− q

|x− q|
) |q|
|x− q|e

i|k||x−q| + cq

( x

|x|
)ei|k||x|

|x| (4.23)

as |x − q| → ∞ and |x| → ∞. Denote BD(x) := BqD (x), where qD = −nD with n = k/|k| and D > 0. Then

BD(x) ∼ b(n)
[ |qD|
|x− qD|e

i|k||x−qD| + dD(k, θ)e
i|k||x|

|x|
]

(4.24)

as |x − qD| → ∞ and |x| → ∞, where θ := x/|x|, because

b(n) = ρ̂(|k|n) �= 0 (4.25)

by (4.5) and the Wiener condition H2. This is the only point in our analysis, where the Wiener con-
dition is called for. Finally, (4.24) can be written as (2.10) with bD(n) := b(n)ei|k|D and aD(k, θ) =
dD(k, θ)e−i|k|D. �

The following corollary is of crucial importance in the next section.

Corollary 4.6. Bound (4.7), asymptotics (4.21)–(4.22), and formula (4.1) imply

|Bq(x)| ≤ C|q|
1 + |x− q| + C

(1 + |x|) , x, q ∈ R
3. (4.26)

5. Plane wave limit

In this section we prove convergence (2.11) from the uniqueness of solution to the Lippmann–Schwinger 
equation

A(x) = eikx −R0V A(x), (5.1)

which is equivalent to (1.12) (see Lemma 7.1 below). First, we rewrite (4.1) with q = qD as

AD(x) = R0ρqD(x)/bD(n) −R0V AD(x), (5.2)

where AD(x) := BD(x)/bD(n). By (4.4) and (2.13) the first term on the right-hand side of (5.2) converges 
to the first term on the right-hand side of (5.1),

R0ρqD(x)/bD(n) → eikx, D → ∞, (5.3)

in C(R3). Now (2.11) means the convergence of the corresponding solutions:
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Proposition 5.1. Let conditions H1–H3 hold and let k �= 0. Then the convergence

AD → A, D → ∞ (5.4)

holds in Hs
−σ with any s < 2 and σ > 5/2, where the function A(x) is defined by (1.12).

Proof. We deduce the convergence from the compactness of the family {AD(x) : D > 0} and Ikebe’s 
uniqueness theorem [12] (Theorem 3.1 of [3, Ch. 4]).

Step i). By (5.2),

‖AD‖H2
−σ

≤ C‖R0ρqD‖H2
−σ

+ ‖R0V BD‖H2
−σ

.

The first term on the right-hand side is uniformly bounded for D > 0, since estimate of type (4.12) holds 
with 〈x〉−σ and σ instead of V (x) and 5 +ε2, respectively. The second term is uniformly bounded, since V Bq

is uniformly bounded in L2
σ with σ < 5/2 + ε2 by (4.8), while the operator R0 : L2

s → H2
−s is continuous 

for any s > 1/2 by Theorem 18.3 i) of [15], because k �= 0. Hence,

sup
D>0

‖AD‖H2
−σ

< ∞, σ > 5/2. (5.5)

Step ii). Now the Sobolev embedding theorem [16] implies that the family {AD(x) : D > 0} is a precompact 
set in the Hilbert space Hs

−σ with any s < 2 and σ > 5/2. Hence, for any sequence Dj → ∞, there is 
a subsequence Dj′ → ∞ such that

ADj′ (x) → A∗(x), j′ → ∞, (5.6)

where the convergence holds in Hs
−σ with any s < 2 and σ > 5/2. Therefore,

V ADj′ (x) → V A∗(x), j′ → ∞, (5.7)

where the convergence holds in Hs
σ with s < 2 and some σ > 5/2 by H3.

Step iii). At last, equation (5.2) and convergences (5.6), (5.7), and (5.3) imply equation (5.1) for A∗(x):

A∗(x) = eikx −R0V A∗(x), (5.8)

since the operator R0 := R0(Ek + i0) : L2
σ → L2

−σ is continuous for σ > 1/2 by Lemma 2.1 of [14].
The function A∗(x) is bounded by (4.26) and is continuous by the Sobolev embedding theorem, since 

A∗(x) ∈ Hs
−σ with any s < 2 and σ > 5/2 by (5.6).

Finally, A(x) = A∗(x) by Ikebe’s uniqueness theorem [3,12], which holds for k �= 0 under the condition 
(2.4) for bounded continuous solutions to the Lippmann–Schwinger equation (5.1). Hence, convergence (5.6)
implies (5.4), since the limit function A∗(x) does not depend on the subsequence j′. �
Remark 5.2. Let us emphasize that the right-hand side of (4.26) with q = −nD is not uniformly bounded 
for D > 0: its value at x = q tends to infinity as D → ∞. Nevertheless, (4.26) implies that every limit 
function A∗(x) is bounded.

6. Convergence of flux

We check the convergence (2.12) using (5.4).
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Lemma 6.1. Under conditions H1–H3,

i) the convergence (2.12) holds in L2
loc(R3).

ii) Moreover, the convergence holds ‘in the sense of flux’; i.e.,

∫
S

JD(x)ν(x)dS(x) →
∫
S

J∞(x)ν(x)dS(x), D → ∞, t ∈ R, (6.1)

for any compact smooth two-dimensional submanifold S ⊂ R
3 with boundary, where ν(x) is the unit 

normal field to S and dS(x) stands for the corresponding Lebesgue measure on S.

Proof. Proposition 5.1 implies the convergence (5.4) in C(R3), since Hs
−σ ⊂ C(R3) for s > 3/2 by the 

Sobolev embedding theorem [16]. Further, the convergence of the derivatives

∇AD(x) → ∇A(x), D → ∞, t ∈ R, (6.2)

holds in Hs−1
σ with any s < 2. Hence, the convergence (2.12) holds in L1

loc(R3), and moreover,

∇AD(x)
∣∣∣
S
→ ∇A(x)

∣∣∣
S
, D → ∞, t ∈ R, (6.3)

in L2(S) by the Sobolev trace theorem [16], for we can take s > 3/2.
Similarly, (5.4) also implies the convergence in L2(S)

AD(x)
∣∣∣
S
→ A(x)

∣∣∣
S
, D → ∞, t ∈ R. (6.4)

Therefore, the integrands in (6.1) converge in L1(S). �
7. Long range asymptotics

We obtain asymptotics (1.13). The first lemma is well known [22].

Lemma 7.1. Equation (5.1) admits a unique bounded continuous solution, which is given by (1.12):

A(x) = eikx −RV eikx. (7.1)

Proof. We should prove (7.1) assuming (5.1). First, we apply the general operator identity

P−1 = Q−1 + Q−1(Q− P )P−1

to P = H0 −Ek − i0 and Q = H −Ek − i0. Then we obtain R0 = R + RV R0, and hence

R0V A = RV A + RV R0V A = RV (A + R0V A) = RV eikx

by (5.1). Substituting into (5.1), we obtain (7.1). �
Next, we need an extension of Lemma 4.1 to functions from weighted Agmon–Sobolev spaces.
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Lemma 7.2. Let r(x) ∈ H2
σ for some σ > 7/2. Then

R0r(x) = φ(θ)e
i|k||x|

|x| + K(x), θ := x

|x| , |x| > 1. (7.2)

Here, the amplitude φ ∈ C2(S), and

φ(θ) = 1
2π r̂(|k|θ), |θ| = 1. (7.3)

The remainder admits the bounds

|K(x)| ≤ C|x|−2, |∇K(x)| ≤ C|x|−2, |∇∇K(x)| ≤ C|x|−2, |x| > 1. (7.4)

Proof. First,

R0r(x) = ei|k||x|

2π|x|

∫
e−i|k| x

|x|yr(y)dy + 1
|x|

∫ 〈y〉2
|x− y|R(x, y)r(y)dy,

where the function R(x, y) is bounded as in the proof of Lemma 3.2 from [3, Ch. 4]. Hence, formula (7.3)
follows with φ ∈ C2(S), since r̂ ∈ Hσ

2 ⊂ C2
b (R3) for σ > 7/2 by the Sobolev embedding theorem.

To prove the first estimate of (7.4), it suffices to check that

J(x) :=
∫ 〈y〉2

|x− y| |r(y)|dy ≤ C|x|−1, |x| > 1.

Using the Cauchy–Schwarz inequality, we obtain

|J(x)| ≤
(∫ 1

|x− y|2〈y〉2σ−4 dy
)1/2

‖r‖L2
σ
.

Now it suffices to prove the bound

I(x) :=
∫ 1

|x− y|2〈y〉2σ−4 dy ≤ C|x|−2, |x| > 1. (7.5)

In the spherical coordinates, we obtain similarly to (4.17)–(4.19),

I(x) = 2π
∞∫
0

r2dr

(1 + r)2σ−4

π∫
0

sin θdθ

|x|2 + r2 − 2|x|r cos θ

= 2π|x|
∞∫
0

sds

(1 + s|x|)2σ−4 log |1 + s|
|1 − s|

≤ C

1/2∫
0

|x|s2ds

(1 + s|x|)2σ−4 + C|x|5−2σ + C

∞∫
3/2

|x|ds
(1 + s|x|)2σ−4

= C|x|−2

|x|/2∫
0

r2dr

(1 + r)2σ−4 + C|x|5−2σ + C

∞∫
3|x|/2

dr

(1 + r)2σ−4

≤ C1(σ)|x|−2 + C2|x|5−2σ ≤ C|x|−2, |x| > 1,

since 2σ > 7. This proves the first bound in (7.4).
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To prove the second bound in (7.4), we differentiate (7.2):

∇R0r(x) = φ(θ)i|k|θ e
i|k||x|

|x| + O(|x|−2) + ∇K(x), |x| → ∞. (7.6)

On the other hand, ∇R0r(x) = R0∇r(x), where ∇r ∈ H1
σ. Hence, by the above arguments,

∇R0r(x) = φ1(θ)
ei|k||x|

|x| + O(|x|−2), |x| → ∞, (7.7)

where

φ1(θ) = 1
2π ∇̂r(|k|θ) = 1

2π i|k|θr̂(|k|θ) = i|k|θφ(θ).

So, the second bound in (7.4) follows by comparing (7.6) and (7.7).
The last bound of (7.4) follows similarly. �
Now asymptotics of type (1.13) follow from (7.1) and the next lemma, which is a refinement of Theorem 3.2 

from [3, Ch. 4]. Let us denote ek(x) = eikx.

Lemma 7.3. Let condition H3 hold and let k �= 0. Then

−[RV ek](x) = a(k, θ)e
i|k||x|

|x| + K1(x), θ := x

|x| , |x| > 1. (7.8)

The amplitude a(k, ·) ∈ C2(S) is given by (1.16), and the remainder admits the bound

|K1(x)| + |∇K1(x)| + |∇∇K1(x)| ≤ C|x|−2, |x| > 1. (7.9)

Proof. First, RV = R0T , where T := T (Ek + i0) (see (3.31) of [3, Ch. 4], and [22]). Hence,

−[RV ek](x) = −[R0Tek](x). (7.10)

Therefore, (7.8)–(7.9) will follow from Lemma 7.2 if we verify that

Tek ∈ H2
σ, ∀σ < 7/2 + ε2/2. (7.11)

Indeed,

Tek = V ek − V RV ek,

where V ek ∈ H2
σ with any σ < 7/2 + ε2/2 by H3. Hence, RV ek ∈ H2

s with any s < −1/2 by Corollary 19.3 
of [15], since k �= 0. Therefore, V RV ek ∈ H2

σ with any σ < 9/2 + ε2 by H3.
Finally, applying Lemma 7.2 to the function r(x) = Teikx and using (7.10), we obtain asymptotics 

(7.8)–(7.9) with the amplitude given by (1.16):

a(k, θ) = − 1
2π r̂(|k|θ) = − 1

2π (Tek, e|k|θ) = −4π2T (|k|θ, k) (7.12)

according to (1.8). �
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Remark 7.4. Formula (1.16) for the amplitude in (7.8) is well known, see formula (97a) of [19]. On the other 
hand, the asymptotics (7.9) and the fact that a(k, ·) ∈ C2(S) are new, to our knowledge, and play the key 
role in the next section.

8. Differential cross section

Now we can justify formula (1.15). Lemma 3.1, Proposition 5.1, and the formula (7.1) imply the asymp-
totics of the limiting amplitudes,

ϕD(x, t)/bD(n) ∼ A(x, t) = A(x)e−iEkt + Σ(x, t)

= [eikx + asc(x)]e−iEkt + Σ(x, t), D → ∞. (8.1)

Here, the amplitude asc(x) = −[RV ek](x) decays at infinity together with its derivatives according to 
(7.8)–(7.9). Further, Σ(x, t) =

∑
Clψl(x)e−iElt/bD(n), and the asymptotics holds in Hs

−σ with any s < 2
and σ > 5/2. We will neglect the term Σ(x, t) below since it does not contribute to the cross section, because∫

|x|=R

[|Σ(x, t)|2 + |∇Σ(x, t)|2]dx ≤ CNR−N , ∀N > 0. (8.2)

This follows by the Sobolev theorem on traces from the fact that ψl(x) ∈ H2
s with any s ∈ R by Agmon’s 

theorem [1, Theorem 3.3].
Let us denote by j∞(x, t) the asymptotics of fluxes (1.4) corresponding to ϕD(x, t) as D → ∞. It can be 

“measured” in the double limit: first, t → ∞, and then D → ∞. The asymptotics (8.1) implies that j∞(x, t)
coincides with the flux corresponding to the wave field ψ(x, t) := |b(n)|A(x, t). Further, let us denote by 
jin(x), jsc(x) the incident and scattered fluxes defined by (1.20).

Finally, we should adjust the definition of jin and jsc
a . First, the incident flux is defined in the following 

integral sense: ∫
|y−x|<1

|j∞(y, t) − jin|dy → 0, |x| → ∞, t ∈ R. (8.3)

Second, the angular density of the scattered flux is defined in the sense of distributions.

Definition 8.1. The limit (1.2) means that

R2
∫
S

φ(θ)jsc(Rθ, t)θ dθ →
∫
S

φ(θ)jsc
a (θ)dθ, R → ∞ (8.4)

for any test function φ ∈ C∞(S) with φ(θ) = 0 in a neighborhood of θ = ±n.

In other words, the limit (1.2) is understood in the sense of distributions on S\{n, −n}. The test function 
φ physically corresponds to the “shape” (characteristic function) of a detector.

The main result of our paper is the following theorem.

Theorem 8.2. Let all assumptions H0–H4 hold. Then for θ �= ±n

jin = |b(n)|2k, jsc
a (θ) = |b(n)|2|a(k, θ)|2|k|. (8.5)
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Proof. Using (8.1) and the definition (1.4), we obtain

j∞(x, t) = |b(n)|2 Im[A(x, t)∇A(x, t)]

= |b(n)|2 Im[(eikx + asc(x))∇(eikx + asc(x))] + jΣ(x, t), (8.6)

where jΣ(x, t) denotes the terms containing Σ(x, t) and its first derivatives in x. Here, the amplitude asc(x) =
−RV ek decays at infinity together with its derivatives according to (7.8)–(7.9). Hence, (8.2) implies that 
the flux (8.6) converges to |b(n)|2k for large |x| in the sense (8.3), which proves the first formula of (8.5).

It remains to prove the second formula of (8.5) neglecting jΣ(x, t). According to definition (8.4), we 
should check that for any test function φ ∈ C∞(S) with φ(θ) = 0 in a neighborhood of θ = ±n,

R2
∫
S

φ(θ) Im[e−ikRθ∇asc(Rθ) + asc(Rθ)ikeikRθ + asc(Rθ)∇asc(Rθ)]θ dθ

→
∫
S

φ(θ)|a(k, θ)|2|k|dθ, R → ∞. (8.7)

Here,

asc(Rθ)∇asc(Rθ)θ = |a(k, θ)|2|k|R−2 + O(R−3) (8.8)

by Lemma 7.3. Hence, it remains to prove that the oscillatory integrals in (8.7) vanish in the limit R → ∞. 
This follows by the partial integration in view of Lemma 7.3, since the phase functions do not have stationary 
points outside θ = ±n. Indeed, let us consider, for example, the oscillatory integral

R2
∫
S

φ(θ)e−ikRθ∇asc(Rθ)θ dθ = R2
∫
S

φ(θ)e−ikRθ∇[a(k, θ)e
i|k|R

R
+ K1(Rθ)]θ dθ

= R2
∫
S

φ(θ)e−ikRθ[a(k, θ) i|k|θe
i|k|R

R
− a(k, θ)e

i|k|R

R2 θ

+ ∇a(k, θ)e
i|k|R

R
+ ∇K1(Rθ)]θ dθ. (8.9)

Here, the phase functions kRθ and kRθ−|k|R admit exactly two stationary points θ = ±n on the sphere S. 
Hence, the decay for each integral in the last line of (8.9) follows by the partial integration. The integrals 
with a(k, θ) vanish in the limit R → ∞, since a(k, ·) ∈ C2(R3): the first integral vanishes by twofold partial 
integration, while the second and the third ones, by the single partial integration. The integral with ∇K1
vanishes in the limit R → ∞ by the single partial integration due to (7.9). �
Corollary 8.3. According to (8.5), the differential cross section in the limit D → ∞ is given by

σ(θ) := jsc
a (θ)/|jin| = |a(k, θ)|2, θ �= ±n

which justifies (1.15). Then (1.7) also holds by the known formula (1.16).
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