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1 Introduction

Our main goal is the clarification of the theory of invariants for the Maxwell–Lorentz equations
(2.3)–(2.6) with an extended rotating charged particle. The conservation laws for this system were
established in [6] by direct differentiation using the dynamical equations. However, the relation
of these invariants to the symmetry properties were not obvious.

Our main result is the derivation of these conservation laws from the symmetry properties of
the Lagrangian functional. This derivation relies on the Poincaré equations, which are equivalent
to the Hamilton variational principle [2, 8].

The crux is that the phase space of the Maxwell–Lorentz equations is not a linear space
but rather the manifold, which is the direct product of the orthogonal group SO(3) by a linear
function space. In [5] we have shown that the Lorentz torque equation (2.6) is equivalent to the
Poincaré equations on the group SO(3) which follow from the Hamilton least action principle for
the Maxwell–Lorentz equations.

A fairly general theory of invariants for variational equations on manifolds was developed in
[3] and [4]. The last chapter of [3] concerns the Maxwell equations with a given current. In [4] a
point particle in a given Maxwell field is considered.

On the other hand, the invariants of the coupled Maxwell–Lorentz equations (2.3)–(2.6) with
an extended rotating particle were not obtained previously from the symmetry properties. This is
why we develop a special much simpler self-contained version of the Noether theory of invariants
for the Poincaré equations which is sufficient for our purposes.

We show that the corresponding ‘Poincaré invariants’ coincide with the classical known expres-
sions obtained in [6]. We consider solutions for which all our formal differentiations and integration
by parts hold true.

2 Maxwell–Lorentz equations

The Maxwell fields E(x, t) and B(x, t) are generated by motion of a rotating charge. External fields
Eext and Bext are generated by the corresponding external charges and currents. For simplicity we
assume that the mass distribution, mρ(x), and the charge distribution, e ρ(x), are proportional
to each other. Here m is the total mass, e is the total charge, and we use a system of units such
that m = 1 and e = 1. The coupling function ρ(x) is a sufficiently smooth radially symmetric
function of fast decay as |x| → ∞,

ρ(x) = ρr(|x|). (C)

2.1 The angular velocity

Let us denote by ω(t) ∈ IR3 the angular velocity ‘in space’ (in the terminology of [2]) of the charge.
Namely, let us fix a ‘center point’ O of the rigid body. Then the trajectory of each fixed point of
the body is described by

x(t) = q(t) +R(t)(x(0)− q(0)),

where q(t) is the position of O at time t, and R(t) ∈ SO(3). Respectively, the velocity reads

ẋ(t) = q̇(t)+ Ṙ(t)(x(0)− q(0)) = q̇(t)+ Ṙ(t)R−1(t)(x(t)− q(t)) = q̇(t)+ω(t)∧ (x(t)− q(t)), (2.1)

where ω(t) ∈ IR3 corresponds to the skew-symmetric matrix Ṙ(t)R−1(t) by the rule

Ṙ(t)R−1(t) = J ω(t) :=

 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

 . (2.2)
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We assume that x and q refer to a certain Euclidean coordinate system in IR3, and the vector prod-
uct ∧ is defined in this system by standard formulas. The identification (2.2) of a skew-symmetric
matrix and the corresponding angular velocity vector is true in any Euclidean coordinate system
of the same orientation as the initial one.

2.2 Dynamical equations

Now the system of Maxwell-Lorentz equations with spin reads as follows, see [6, 9]

Ė = ∇∧B − (q̇ + ω ∧ (x− q))ρ(x− q) (a) , Ḃ = −∇ ∧ E (b) , (2.3)

∇ · E(x, t) = ρ(x− q(t)) (a) , ∇ ·B(x, t) = 0 (b) , (2.4)

q̈ =

∫
[E + Eext + (q̇ + ω ∧ (x− q)) ∧ (B +Bext)]ρ(x− q)dx, (2.5)

I ω̇ =

∫
(x− q) ∧ [E + Eext + (q̇ + ω ∧ (x− q)) ∧ (B +Bext)]ρ(x− q)dx, (2.6)

where I is the moment of inertia defined by

I =
2

3

∫
x2ρ(x)dx. (2.7)

The equations (2.3) are Maxwell equations with the corresponding charge density and current;
equations (2.4) are the constraints. The back reaction of the field onto the particle is given through
the Lorentz force equation (2.5), and the Lorentz torque equation (2.6) deals with rotational
degrees of freedom.

2.3 The variational Hamilton principle

Let us introduce the electromagnetic potentials A = (A0, A), Aext = (Aext
0 , Aext):

B = ∇∧ A, E = −∇A0 − Ȧ. (2.8)

Bext = ∇∧ Aext, Eext = −∇Aext
0 − Ȧext. (2.9)

Next we define the Lagrangian

L(A, q, R, Ȧ, q̇, Ṙ) =
1

2

∫ (
E2(x)−B2(x)

)
dx+

1

2
q̇2 +

1

2
Iω2

−
∫

[A0(x) + Aext
0 (x)]ρ(x− q)dx+

∫
(q̇ + ω ∧ (x− q)) · [A(x) + Aext(x)]ρ(x− q)dx, (2.10)

where E(x) and B(x) are expressed in terms of A(x) and Ȧ(x) according to (2.8), and ω =
J −1ṘR−1 by (2.2).

This Lagrangian functional depends on R only trough ω due to the spherical symmetry of the
charge and mass distributions (C). Respectively, the dynamical equations (2.3)–(2.6) involve R
only through ω. On the other hand, in the case of non-radial densities the Lagrangian and the
equations involve R explicitly, and the moment of inertia I becomes a matrix with x⊗ x instead
of x2 in (2.7). The corresponding action functional has the form

S = S(A, q, R) :=

∫ t2

t1

L(A(t), q(t), R(t), Ȧ(t), q̇(t), Ṙ(t)) dt (2.11)
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The Hamilton least action principle now reads

δS(A, q, R) = 0, (2.12)

where the variation is taken over A(t), q(t), R(t) with the boundary conditions

(δA, δq, δR)|t=t1 = (δA, δq, δR)|t=t2 = 0. (2.13)

Regular solutions and external potential. Everywhere below we consider regular solutions
to the system (2.3)–(2.6). This means that q ∈ C2(IR, IR3), ω ∈ C1(IR, IR3), and all the involved
functions and fields/potentials are sufficiently smooth and have (with all the necessary derivatives)
a sufficient decay as |x| → ∞ so that the partial integrations below are allowed.

In [5, Theorem 2.1] we have shown that, for regular solutions, the Maxwell-Lorentz system
(2.3)–(2.6) is equivalent to the least action principle (2.12)–(2.13). In detail,

δS

δA
= 0 (a),

δS

δq
= 0 (b),

δS

δR
= 0 (c). (2.14)

Here (2.14), (a) and (b) are equivalent respectively to the standard Euler-Lagrange equations

d

dt

δL

δȦ
= LA (a)

d

dt
Lq̇ = Lq (b) (2.15)

for the Lagrangian (2.10). The equation (2.15), (a) is equivalent to the Maxwell equations (2.3)
with the constraints (2.4), and the equation (2.15), (b) is equivalent to the Lorentz force equation
(2.5). Note that the equations (2.14), (a), (b) are equivalent to the standard Euler–Lagrange
equations (2.15), because the variables A, Ȧ, q, and q̇ vary in the corresponding linear spaces. So,
we will call these variables the “Lagrange variables”.

On the other hand, R ∈ SO(3), and so, the variational equation (2.14) (c) cannot be trans-
formed to a Euler-Lagrange equation since SO(3) is not a linear space. We have shown in [5,
Theorem 2.1] that (2.14) (c) is equivalent to the Lorentz torque equation (2.6). This follows from
the variational Poincaré equations with the Lagrangian L expressed in suitable coordinates on the
tangent bundle to SO(3).

The coordinates are defined in the basis of right-invariant vector fields on the group SO(3).
Namely, consider an orthonormal basis {ek} with the right orientation in IR3. Then

e1 ∧ e2 = e3, e2 ∧ e3 = e1, e3 ∧ e1 = e2, (2.16)

and the angular velocity ω(t) = J −1Ṙ(t)R−1(t) can be expanded as

ω(t) =
∑

ωk(t)ek. (2.17)

Further, the algebra so(3) of skew-symmetric 3 × 3 matrices with the matrix commutator is
isomorphic to the algebra IR3 with the vector product through the isomorphism J of (2.2): 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = J (ω1, ω2, ω3). (2.18)

Namely, let A,B ∈ so(3), a, b ∈ IR3, and A = J a, B = J b. Then
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AB −BA = J (a ∧ b). (2.19)

Further, ṘR−1 ∈ TESO(3) is the tangent vector Ṙ to SO(3) at the point R translated to the unit
E of SO(3) by the right translation R−1. By the linear isomorphism (2.18),

ṘR−1 =
∑

ωkẽk, ẽk := J ek. (2.20)

Hence,

Ṙ = ṘR−1R =
∑

ωkvk(R), vk(R) := ẽkR. (2.21)

As the result, Ṙ has the same coordinates w.r.t. the vector fields vk at the point R as ω in the
basis {ek}. The fields vk(R) are right translations of ẽk and hence are right-invariant.

In [5, Lemma 6.1] it was shown that for the vector fields vk on SO(3) the following commutation
relations hold:

[v1, v2] = −v3, [v2, v3] = −v1, [v3, v1] = −v2. (2.22)

We will identify vector fields with the corresponding opertors of differentiation. According to the
Poincaré theory [2, 8], the equation (2.14) (c) is equivalent to the Poincaré equations

d

dt
L̂ωk

(Y (t)) =
∑
ij

cjikωi(t)L̂ωj
(Y (t)) + vkL̂(Y (t)), k = 1, 2, 3, (2.23)

where Y (t) := (A(t), q(t), Ȧ(t), q̇(t), ω(t)) and L̂(A, q, Ȧ, q̇, ω) is defined as the right hand side of
(2.10), and the constants cjik arise from commutation relations

[vi, vk](R) =
∑

cjikvj(R).

In Appendix A, we recall the calculation of the Poincaré equations (2.23). These calculations will
be used througough the paper.

Note that the Lagrangian L̂ does not depend explicitly on R, and hence vk(L̂) = 0, k = 1, 2, 3.
Now the corresponding Poincaré equations read

d

dt

∂L̂(ω(t))

∂ωk

=
∑
ij

cjikωi
∂L̂(ω(t))

∂ωj

, k = 1, 2, 3. (2.24)

In our case (2.22) and (A.7) imply

c321 = c132 = c213 = 1, c231 = c312 = c123 = −1, all the rest cjik = 0.

Thus, we can rewrite (2.24) as

d

dt

∂L̂(ω(t))

∂ω
= ω ∧ ∂L̂(ω(t))

∂ω
, (2.25)

where ∂L̂
∂ω

is the column vector with the components ∂L̂
∂ωk

, k = 1, 2, 3.

We summarize the situation as follows (see [5]). The Lagrangian L̂ depends on the two groups
of variables: on the ‘Lagrangian variables’ A, Ȧ, q, q̇ and on the variables ωk which we will call
the ‘Poincaré variables’. The variational equations (2.14) (a), (b) imply the Maxwell-Lorentz
equations (2.3)–(2.5), while (2.14) (c) give the Lorentz torque equations (2.6).
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3 Invariants for the Poincaré equations

When the external fields possess a symmetry with respect to the Lagrangian variables, the corre-
sponding conservation laws are given by the Noether theorem on invariants [1]. In this section we
extend the Noether theory to the Poincaré equations.

Let v1(g), . . . , vn(g) be vector fields on an n-dimensional manifold M , which are linearly inde-
pendent at each point g ∈M . In particular such vector fields exist for any open region M ⊂ IRn.
Then TM is isomorphic to M × IRn, and any function L(g, ġ) on TM can be expressed in the
Poincaré variables g, ω:

L̂(g, ω) := L(g, ġ), ġ =
∑

ωkvk(g). (3.1)

In [8], Poincaré discovered that the corresponding Hamilton least action principle is equivalent to
the equations

d

dt
L̂ωk

(g(t), ω(t)) =
∑
ij

cjik(g)ωiL̂ωj
(g, ω) + vk(g)L̂(g, ω), k = 1, ..., n. (3.2)

where the ‘structure constants’ cjik(g) arise from the commutation relations

[vi, vj](g) =
∑

ckij(g)vk(g), g ∈M.

see the details in Appendix A. Here we develop the theory of invariant for the Poincaré equations
(3.2). Let us start with the energy conservation.

Theorem 3.1 The ‘energy’

E := L̂ω · ω − L̂ =
∑
k

L̂ωk
ωk − L̂ (3.3)

is conserved along the paths of the Poincaré equations (3.2).

Proof Let a smooth path (g(t), ω(t)) satisfy the Poincaré equations (3.2). Using (3.2) we obatin

d

dt
(L̂ω · ω − L̂) =

d

dt
L̂ω · ω + L̂ω · ω̇ − L̂g · ġ − L̂ω · ω̇ =

∑
k

d

dt
L̂ωk

ωk − L̂g · ġ (3.4)

=
∑
k

(
∑
ij

cjikωiL̂ωj
+ vk(L̂))ωk − L̂g · ġ.

Note that L̂g · ġ = L̂g ·
∑
ωkvk =

∑
ωkL̂g · vk =

∑
vk(L̂)ωk. Thus, we obtain

d

dt
(L̂ω · ω − L̂) =

∑
k

(
∑
ij

cjikωiL̂ωj
)ωk =

∑
j

L̂ωj

∑
ik

cjikωiωk = 0, (3.5)

since
∑
ik

cjikωiωk = 0 by the skew-symmetry property (A.1) of the coefficients cjik. �

Remark 3.2 In the Lagrangian case (i.e., when M is a linear space and ω = ġ), the invariant
(3.3) coincides with the standard energy functional.

Now let us consider the general case of a one-parametric group of diffeomorphisms hs : M →M
(in particular, h0 = IdM). Let the Lagrangian L be invariant with respect to the diffeomorphisms
hs, i.e.,

L(hsg, dhsġ) = L(g, ġ), (g, ġ) ∈ TM, s ∈ IR. (3.6)
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Definition 3.3 The corresponding Poincaré invariant I and the corresponding ‘current’ w =
(w1, ..., wn) are defined as

I(g, ω) :=
∑

L̂ωk
wk(g),

dhsg

ds

∣∣∣
s=0

=
∑

wk(g)vk(g). (3.7)

These definitions generalize the corresponding Noether formulas [1] to the case of Poincaré equa-
tions.

Theorem 3.4 Let condition (3.6) hold. Then the function I(g, ω) is conserved along the paths of
the Poincaré equations (3.2).

Proof Let a smooth path (g(t), ω(t)) satisfy the Poincaré equations (3.2). Setting g(s, t) := hsg(t),
we obtain

ġ(s, t) = dhsġ(t) =
∑

ωk(s, t)vk(g(s, t)).

In particular, g(0, t) = g(t) and ġ(t) :=
∑
ωk(t)vk(g(t)). By (3.6), the quantity

L̂(g(s, t), ω(s, t)) := L(g(s, t),
∑
k

ωk(s, t)vk(g(s, t))) = L(g(s, t), dhsġ(t))

does not depend on s; here ω(s, t) = (ω1(s, t), ..., ωn(s, t)). Denote by prime the derivative in s,
and by dot the derivative in t. Then we obtain

0 =
d

ds
L̂(g(s, t), ω(s, t)) = L̂g · g′ +

∑
k

L̂ωk
ω′k = L̂g · g′ +

∑
k

L̂ωk
(
∑
ij

ckijωiwj + ẇk) =: S (3.8)

by the formula (A.3) of Appendix A. First we change the order of summation on the right-hand
side:

S = L̂g · g′ +
∑
k

L̂ωk
ẇk +

∑
j

(
∑
ik

ckijωiL̂ωk
)wj. (3.9)

Next we wish to evaluate the term
∑
ik

ckijωiL̂ωk
for s = 0. Namely, g(0, t) = g(t) together with

ω(0, t) = ω(t) satisfy the Poincaré equations (3.2). Hence, for s = 0

S = L̂g · g′ +
∑
k

L̂ωk
ẇk +

∑
j

(
d

dt
L̂ωj
− vj(L̂)

)
wj

=
∑
k

L̂ωk
ẇk +

∑
j

d

dt
L̂ωj
· wj + L̂g · g′ −

∑
j

vj(L̂)wj. (3.10)

However, the definition of the current w in (3.7) implies that

L̂g · g′ −
∑
j

vj(L̂)wj =
∑
j

L̂g · vjwj −
∑
j

vj(L̂)wj = 0

Therefore, (3.10) gives

S =
∑
k

L̂ωk
ẇk +

∑
k

d

dt
L̂ωk
· wk =

d

dt
(
∑
k

L̂ωk
wk) = İ(t). (3.11)

The proof is complete, since S = 0 by (3.8). �

Remark 3.5 Let M = IRn and vk = ∇gk denote the commuting vector fields of the differentiations
w.r.t. coordinates gk. Then the Poincaré equations (3.2) read as the Euler-Lagrange equations,

and the Poincaré invariant (3.7) coinsides with the Noether invariant Lġ · dh
sg
ds

∣∣∣
s=0

.
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4 Invariants for the Lagrange-Poincaré equations

Here we generalize the theory of the previous section to systems with the configuration space
Y × M , where Y is a Hilbert space either of finite or infinite dimension, while M is a finite-
dimensional manifold endowed with the vector fields vk(g) as above. Then TY ' Y × Y and
TM ' M × IRn. Let L(X, V, g, ġ) be a differentiable Lagrangian which is defined on TY × TM .
Let us define

L̂(X, V, g, ω) := L(X, V, g, ġ), ġ =
∑

ωkvk(g). (4.1)

Next, let a smooth path (X(t), V (t)), g(t), ω(t) satisfy the standard Euler–Lagrange equations
w.r.t. the variables (X, V ) and the Poincaré equations w.r.t. the variables (g, ω):

d

dt
L̂V = LX ,

d

dt
L̂ωk

=
∑
ij

cjik(g)ωiL̂ωj
+ vk(g)L̂, k = 1, ..., n.

∣∣∣∣∣∣∣∣∣∣
(4.2)

Theorem 4.1 Let (4.2) hold. Then the energy

E := L̂V · V + L̂ω · ω − L̂ (4.3)

is conserved along the path.

Proof Differentiating formally, we get

d

dt

(
L̂V · V + L̂ω · ω − L̂

)
=

=

(
d

dt
L̂V (X, V ) · V − L̂X · Ẋ

)
+
( d
dt
L̂ω(g, ω) · ω − L̂g · ġ

)
= 0.

Indeed, here the first bracket of the last line vanishes by the first equation of (4.2). The second
bracket vanishes by the second equation of (4.2). This follows by the calculations similar to (3.4)–
(3.5). �

Further, consider a one-parametric group of diffeomorphisms

hs : (X, g) 7→ (hs1(X), hs2(g)). (4.4)

Let us suppose that the Lagrangian functional is hs-invariant, i.e.,

L(hs1X, dh
s
1V, h

s
2g, dh

s
2ġ) ≡ L(X, V, g, ġ). (4.5)

Theorem 4.2 Let (4.2), (4.5) hold. Then the sum

L̂V ·
dhs1X

ds

∣∣∣
s=0

+
∑

L̂ωk
wk(g) (4.6)

is conserved along the path.

Proof Let X(s, t) := hs1X, g(s, t) := hs2g, and let ω(s, t) be defined as above. Then ġ(s, t) =∑
k vk(g(s, t))ωk(s, t), and formally,

0 =
d

ds
L̂(X(s, t), Ẋ(s, t), g(s, t), ω(s, t)) = L̂X ·X ′ + L̂Ẋ · Ẋ(s, t)′ + L̂g · g′ +

∑
L̂ωk

ω′k.

At s = 0, the sum of the first two terms reduces to d
dt

(LẊ ·
dhs1X
ds

∣∣∣
s=0

) as in the proof of the standard

theorem on Noether invariants [1]. The sum of the last two terms transforms to d
dt

(
∑
L̂ωk

wk(g))
as in the proof of Theorem 3.4 (calculations (3.8)–(3.11)). �
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5 Conservation laws for Maxwell-Lorentz equations

We now apply the theory of Noether invariants and Poincare invariants for our system of Maxwell-
Lorentz equations with rotating charge. As above, we denote

L̂(A, q, Ȧ, q̇, ω) = L(A, q, R, Ȧ, q̇, Ṙ) (5.1)

where ω = (ω1, ω2, ω3) is defined by (2.21). In other words, ωk are coordinates of Ṙ in the basis
v1(R), v2(R), v3(R); recall that L̂ does not depend explicitly on R.

5.1 Energy

Let us note that L is independent of Ȧ0. Hence, Theorem 4.1 formally implies the following
corollary.

Corollary 5.1 Suppose Aext
0 end Aext do not depend on time. Then the functional

E(A, q, Ȧ, q̇, R, ω) := L̂Ȧ · Ȧ+ L̂q̇ · q̇ + L̂ω · ω − L̂ (5.2)

is conserved along the regular solutions of the Maxwell-Lorentz system (2.3)–(2.5).

5.2 Momentum

Let the external field

Aext(x) = (Aext
0 (x), Aext(x)) be independent of xk for some k. (5.3)

Then the Lagrangian (5.1) is invariant w.r.t to the one-parametric group of spatial translations

hsk(A(x), q) = (A(x− sek), q + sek), (5.4)

where ek ∈ IR3 is the corresponding basis vector. Since the group acts only on the Lagrange
coordinates X := (A, q), V := (Ȧ, q̇), we may formally apply the Noether theory [1, 7] to obtain

Corollary 5.2 Under the condition (5.3) the functional

Pk = Pk(X, V,R, ω) := L̂V ·
dhskX

ds

∣∣∣
s=0

(5.5)

is conserved for regular solutions to the Maxwell–Lorentz system (2.3)–(2.5).

Definition 5.3 Pk is called the k-th component of momentum of a state (X, V,R, ω).

5.3 Angular momentum

Let the external potential Aext be axially symmetric,

Aext
0 (Ukx) = Aext

0 (x), Aext(Ukx) = UkA
ext(x), (5.6)

where Uk is any rotation around the axis Oxk.
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Lemma 5.4 Let (5.6) hold. Then the Lagrangian (2.10) is invariant w.r.t. the axial rotations

A0(x) 7→ A0(U
−1
k x), A(x) 7→ UkA(U−1k x), Ȧ(x) 7→ UkȦ(U−1k x), (5.7)

R 7→ UkR, Ṙ 7→ UkṘ, (5.8)

q 7→ Ukq, q̇ 7→ Ukq̇. (5.9)

Proof By (2.8) the transforms (5.7) of the potentials induce the following transforms of the fields:

E(x) 7→ UkE(U−1k x), B(x) 7→ UkB(U−1k x). (5.10)

In the operator notation, J ω = ω∧, where ω∧ is the operator of the vector product by ω in
IR3. Hence, it is easy to check that J (Ukω) = UkJ (ω)U−1k . Thus, for ω = J −1ṘR−1 we obtain
J ω = ṘR−1 and hence J (Ukω) = Uk(ṘR−1)U−1k = (UkṘ)(UkR)−1. Finally,

Ukω = J −1(UkṘ)(UkR)−1.

This means that the transforms (5.8) induce the following transform of ω:

ω 7→ Ukω. (5.11)

Hence, the Lagrangian L is invarient w.r.t. the transforms (5.9), (5.10), (5.11) by (5.6), since ρ is
spherically symmetric. �

Recall that ẽk is the image of the basis vector ek w.r.t. the isomorphism (2.18). By Lemma 5.4
the Lagrangian L̂ (5.1) is invariant w.r.t. the spatial rotations (5.9), (5.10), (5.11). In particular,
L̂ is invariant under the transform group hsk = esẽk ∈ SO(3).

In detail, we have the situation of previous section, when L̂ depends on the Lagrangian variables
(X;V ) = (A, q; Ȧ, q̇) and on the Poincaré variables (R,ω). The action of this group on the state
(X,R) reads

hsk(X,R) = (αs
kX, β

s
kR) : αs

kX = (A0(e
−sẽkx), esẽkA(e−sẽkx), esẽkq); βs

kR = esẽkR.

The currents wk
1(R), wk

2(R), wk
3(R) are defined from

dβs
kR

ds

∣∣∣
s=0

=
3∑

j=1

wk
j (R)vj(R), R ∈ SO(3). (5.12)

Hence, by Theorem 4.2 we come to the following result.

Corollary 5.5 Under the condition (5.6) the quantity

Mk = Mk(X, V,R, ω) := L̂V ·
dαs

kX

ds

∣∣∣
s=0

+
3∑

j=1

L̂ωj
wk

j (R) (5.13)

is conserved for regular solutions to the Maxwell-Lorentz system (2.3)–(2.5).

Definition 5.6 Mk is called k-th component of the angular momentum of a state (X, V,R, ω).
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6 Expressions for energy and momenta

Let us show that the Poincaré invariants from previous section coincide with the classical known
expressions considered in [6] (where their conservation was shown by direct differentiation).

Proposition 6.1 The invariants for the Maxwell-Lorentz system (2.3)–(2.5) read as follows:

i) The energy:

E =
1

2

∫
(|E(x)|2 + |B(x)|2)dx+

1

2
q̇2 +

1

2
Iω2 +

∫
Aext

0 (x)ρ(x− q)dx. (6.1)

ii) The momentum:

P = q̇ +

∫
E(x) ∧B(x)dx+

∫
Aext(x)ρ(x− q)dx. (6.2)

iii) The angular momentum:

M = q ∧ q̇ + Iω +

∫
x ∧ E(x) ∧B(x)dx+

∫
x ∧ Aext(x)ρ(x− q)dx. (6.3)

Proof i) By (5.1) and (2.10), one has

L̂Ȧ · Ȧ = −
∫

E · Ȧdx, L̂q̇ · q̇ = q̇2 +

∫
q̇ · (A+ Aext)ρ(x− q)dx,

and

L̂ω · ω = Iω2 +

∫
(ω ∧ (x− q)) · (A+ Aext)ρ(x− q)dx.

Hence,

E = L̂Ȧ · Ȧ+ L̂q̇ · q̇ + L̂ω · ω − L̂ =
1

2
q̇2 +

1

2
Iω2 +

1

2

∫
(|B|2 − |E|2)dx

+

∫
(−E · Ȧ+ A0ρ(x− q) dx+

∫
Aext

0 ρ(x− q))dx. (6.4)

Since ∫
(−E · Ȧ+ A0ρ(x− q))dx =

∫
(−E · Ȧ+ A0 · ∇E)dx

= −
∫

E(Ȧ−∇A0) dx =

∫
E2 dx, (6.5)

formula (6.4) gives (6.1).

ii) Let us compute Pj. Formula (5.4) implies that

dhsj(X)

ds
|s=0 = −(ej · ∇A(x), ej).

As a result, we obtain that

Pj = LV ·
dhsj(X)

ds
|s=0 = −LȦ · (ej · ∇)A+ Lq̇ · ej

= −
∫

(∇A0 + Ȧ) · (ej · ∇)Adx+ q̇ · ej +

∫
ej · Aρ(x− q)dx+

∫
Aext

j ρ(x− q)dx

= q̇j +

∫
Ajρ(x− q)dx−

∫
(∇A0 + Ȧ) · ∂jAdx+

∫
Aext

j ρ(x− q)dx. (6.6)
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By partial integration∫
Aj(x)ρ(x− q)dx =

∫
Aj(∇ · E)dx =

∫
Aj∇ · (−∇A0 − Ȧ)dx

=

∫
Aj(−∆A0 −∇Ȧ)dx =

∫
(∇A0 · ∇Aj + (Ȧ · ∇)Aj)dx.

Hence,

Pj = q̇j +

∫
(∇A0 · ∇Aj + (Ȧ · ∇)Aj)dx−

∫
(∇A0 · ∂jA+ Ȧ · ∂jA)dx+

∫
Aext

j ρ(x− q)dx. (6.7)

On the other hand, the j-th component of the RHS of (6.2) equals

q̇j +

∫
(E ∧B)j dx+

∫
Aext

j ρ(x− q)dx.

Inserting E = −Ȧ−∇A0 and B = ∇∧ A, we obtain

q̇j +

∫
Aext

j ρ(x− q)dx+

∫ (
(Ȧ · ∇)Aj − Ȧ · ∂jA+∇A0 · ∇Aj −∇A0 · ∂jA

)
dx

which coincides with (6.7).

iii) For example, let us compute M1. We have

αs
1(X) = (A0(e

−sẽ1x), esẽ1A(e−sẽ1x), esẽ1q).

Hence,

dαs
1X

ds

∣∣∣
s=0

= (−ẽ1e−sẽ1x ·∇)A0(e
−sẽ1x), ẽ1e

sẽ1A(e−sẽ1x)+esẽ1(−ẽ1e−sẽ1x ·∇)A(e−sẽ1x), ẽ1e
sẽ1q)|s=0

= (ẽ1A0(x), ẽ1A(x)− (ẽ1x · ∇)A(x), ẽ1q).

Further,
dβs

1R

ds

∣∣∣
s=0

=
desẽ1R

ds

∣∣∣
s=0

= ẽ1R = v1(R)

by definition (2.21) of the fields vk(R). Hence, for the currents w1
j of (5.12) we have w1

1 = 1,

w1
2 = w1

3 = 0. Now using that L̂ does not depend on Ȧ0, we obtain

M1 = L̂Ȧ · (ẽ1A(x)− (ẽ1x · ∇)A(x)) + L̂q̇ · (ẽ1q) + L̂ω1

=

∫ (
Ȧ · (ẽ1A(x)− (ẽ1x · ∇)A(x)) +∇A0 · (ẽ1A(x)− (ẽ1x · ∇)A(x))

)
dx

+q̇ · (ẽ1q) +

∫
(ẽ1q) · (A+ Aext)ρ(x− q)dx+ Iω · e1 +

∫
(e1 ∧ (x− q)) · [A+ Aext]ρ(x− q)dx

= (q ∧ q̇)1 + Iω1 +

∫
(x2A

ext
3 − x3Aext

2 )ρ(x− q)dx

+

∫
(x2A3 − x3A2)ρ(x− q)dx+

∫
(Ȧ+∇A0) · ((0,−A3, A2) + (x3∂2 − x2∂3)A)dx. (6.8)
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We have to prove that this expression equals to the first component of the RHS of (6.3). It

suffices to prove that the last line (6.8) equals to the first component of

∫
x∧ (E∧B)dx. Indeed,

ρ(x− q) = ∇ · E = ∇ · (−∇A0 − Ȧ), and hence,∫
(x2A3−x3A2)ρ(x−q)dx=

∫
(x2A3−x3A2)(−∇Ȧ−∇2A0)dx=

∫
∇(x2A3−x3A2)(Ȧ+∇A0)dx. (6.9)

Now the last line of (6.8) transforms to∫ (
∂1(x2A3 − x3A2)(Ȧ1 + ∂1A0) + x2∂2A3(Ȧ2 + ∂2A0)− x3∂3A2(Ȧ3 + ∂3A0)

)
dx

+

∫ (
(x3∂2 − x2∂3)A1(Ȧ1 + ∂1A0)− x2∂3A2(Ȧ2 + ∂2A0) + x3∂2A3(Ȧ3 + ∂3A0)

)
dx. (6.10)

On the other hand, substituting E = −Ȧ − ∇A0 and B = ∇ ∧ A, we obtain that the first

component of

∫
x ∧ (E ∧B)dx equals∫
x2((∂1A3 − ∂3A1)(Ȧ1 + ∂1A0) + (∂2A3 − ∂3A2)(Ȧ2 + ∂2A0))dx

−
∫
x3((∂3A2 − ∂2A3)(Ȧ3 + ∂3A0) + (∂1A2 − ∂2A1)(Ȧ1 + ∂1A0))dx

which coincides with (6.10). The proof is complete. �

A The Poincaré equations

Poincaré suggested the form of the Hamilton least action principle for Lagrangian systems on
manifolds [8]. We present the derivation of the Poincaré equations [2] since we use some of
intermediate calculations.

Let v1, . . . , vn be vector fields on a n-dimensional manifold M which are linearly independent
at every point g ∈M . Then the commutation relations hold,

[vi, vj](g) =
∑

ckij(g)vk(g), g ∈M

where the commutator [vi, vj] is defined by

[vi, vj](f) := vi(vj(f))− vj(vi(f)),

and v(f) is the derivative of a smooth function f on M w.r.t. the vector field v. Note that by the
skew-symmetry property of the commutators one has

ckij(g) = −ckji(g), ∀ k = 1, ..., n. (A.1)

If g(t) is a smooth path in M and f is a smooth function on M , one has

d

dt
f(g(t)) = f ′(g(t)) · ġ = f ′(g(t)) ·

∑
ωi(t)vi(g(t)) =

∑
vi(f)ωi(t), (A.2)

since ġ(t) =
∑
ωi(t)vi(g(t)). Now consider an arbitrary variation g(s, t) of the path g(t). Then

similarly to (A.2),

∂sf(g(s, t)) =
∑
j

vj(f)wj(s, t),
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where wj(s, t) are the components of ∂g
∂s

(s, t) ∈ Tg(s,t)M . Hence

∂s∂tf(g(s, t)) =
∑
i

∑
j

vj(vi(f))wjωi +
∑
i

vi(f)ω′i,

∂t∂sf(g(s, t)) =
∑
j

∑
i

vi(vj(f))wjωi +
∑
j

vj(f)ẇj,

where the prime (respectively, the dot) stands for the differentiation in s (respectively, in t).
However, the differentiations in t and s commute, hence we obtain by subtraction∑

k

vk(f)ω′k =
∑
k

∑
ij

ckijωiwjvk(f) +
∑
k

vk(f)ẇk.

Since f is an arbitrary smooth function, we come to the relations

ω′k(s, t) =
∑
ij

ckijωiwj + ẇk. (A.3)

Further, let us consider an arbitrary Lagrangian function L(g, ġ) on TM . Then L(g, ġ) can be
expressed in the variables ω: L(g, ġ) = L̂(g, ω). Let us compute the variation of the corresponding
action functional, taking (A.3) into account:

d

ds

∫ t2

t1

L̂(g(s, t), ω(s, t))dt =

∫ t2

t1

(∑
k

∂L̂

∂ωk

ω′k +∇gL̂ · g′
)
dt =

∫ t2

t1

[∑
k

∂L̂

∂ωk

(ẇk +
∑
ij

ckijωiwj) +∇gL̂ ·
∑
k

wkvk

]
dt =

∑
k

∂L̂

∂ωk

wk

∣∣∣t2
t1

+

∫ t2

t1

∑
k

[
− d

dt

∂L̂

∂ωk

+
∑
ij

cjikωi
∂L̂

∂ωj

+ vk(L̂)

]
wk dt.

The variation should be zero by the Hamilton least action principle, under the boundary value
conditions

g(s, t1) = g1, g(s, t2) = g2. (A.4)

Since wk(t1) = wk(t2) = 0 by (A.4), we obtain the following Poincaré equations:

d

dt

∂L̂

∂ωk

=
∑
ij

cjikωi
∂L̂

∂ωj

+ vk(L̂). (A.5)

Remarks i) If g is expressed in a local map as (g1, ..., gn) ∈ IRn, and vk = ∂gk , then (A.5) reduce
to the standard Euler-Lagrange equations.

ii) If the Lagrangian L does not depend on g, then L̂ = L̂(ω) and so

vk(L̂) = 0. (A.6)

Indeed, vk(L̂) = ∇gL̂ · vk(g) = 0.

iii) Suppose M = G is a Lie group, and let vk, k = 1, ..., n be left-invariant (or right-invariant)
vector fields on G. Then ckij(g) are constant:

ckij(g) ≡ ckij, g ∈ G. (A.7)
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