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1. Introduction

We justify Hamilton’s least action principle for the system of 
Maxwell–Lorentz equations coupled with the equations of motion 
of a rotating charged particle. Our main contribution is the varia-
tional derivation of the Lorentz torque equation, see Eq. (1.3) below.

First recall the case of a finite system of material points (qi , mi). 
The angular momentum is defined by

M :=
∑

qi ∧ pi :=
∑

qi ∧ miq̇i . (1.1)

By the second and the third Newton’s laws this implies

Ṁ =
∑

qi ∧ ṗi =
∑

qi ∧ Fi =
∑

qi ∧ F ext
i = T , (1.2)

where T is called the external force torque. Our aim is to derive the 
similar Abraham non-relativistic torque equation for a charged rigid 
body in the Maxwell field:

Iω̇ = e

∫
(x − q) ∧ [

E + Eext + (
q̇ + ω ∧ (x − q)

) ∧ (
B + Bext)]

× ρ(x − q)dx. (1.3)
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Here I is the moment of inertia, ω is the vector angular velocity, 
ρ(x) is a distribution of the charge, and the right hand side is the 
torque of the Lorentz force. Note that in our case the fields E and 
B are generated by the motion of the charged body, and Eext , Bext

are external fields.
Formally, the rigid body can be considered as an infinite sys-

tem of material points. However Eq. (1.3) cannot be obtained di-
rectly from (1.2) since we cannot correctly take into account all 
the forces of mutual interaction between the different pieces of 
the rigid body. That is why we look for a different approach to 
the derivation of (1.3). We show that (1.3) follows from the Hamil-
ton variational least action principle with the standard interaction 
term −A0ρ + �A · �j in the Lagrangian density, (A0, �A) being the po-
tential of the fields, see (3.1), (3.2) below.

Let us comment on previous works. For the free rigid body 
(when E, Eext, B, Bext = 0) Eq. (1.3) reduces to the Euler’s equa-
tions which have been obtained from the variational principle first 
by Poincaré [12]. In [1], this result has been extended to an exter-
nal force field with an axial symmetry.

Eq. (1.3) is well recognized since Abraham’s works [2,3]. In [2, 
Section 11] Abraham computed the Lagrangian of the Maxwell–
Lorentz equations as integral of −A0ρ + �A · �j for standing rotating
spherically symmetric electron subject to external fields obeying 
very special symmetry conditions. In this case the Lagrangian de-
pends only on one variable ω, the angular velocity. However, 
derivation of the torque equation (1.3) from the variational Hamil-
ton least action principle remained an open question.

http://dx.doi.org/10.1016/j.physleta.2014.10.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:ivm61@mail.ru
mailto:alexander.komech@univie.ac.at
mailto:spohn@ma.tum.de
http://dx.doi.org/10.1016/j.physleta.2014.10.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.10.038&domain=pdf


6 V. Imaykin et al. / Physics Letters A 379 (2015) 5–10
The main goal of the Nodvik’s paper [11] is a variational deriva-
tion of the Lorentz-covariant dynamics for the relativistic rotating 
charged particle in the Maxwell field, and the proof of the corre-
sponding conservation laws. The system of Nodvick’s equations is 
overdetermined, since they do not include rotational bare inertia. 
The situation was improved by Appel and Kiessling in [4], where 
they develop the theory for the relativistic rotating particle intro-
ducing a renormalization limit.

We propose an invariant derivation of the non-relativistic Abra-
ham equation (1.3) from the Hamilton least action principle relying 
on the Poincaré equations [1,12] on the Lie group SO(3).

The new interest for the rather old Abraham model is caused by 
the fact that a broad class of models of this type display soliton-
type asymptotics and scattering behavior as it was discovered in 
recent years, see e.g. [5–7]. Lagrangian and Hamiltonian structure 
of the models play a significant role in these methods, so it is of 
a considerable interest and importance, to include the Abraham 
model with rotating charge into the class of Lagrangian systems.

The plan of our article is as follows. In Section 2 we state the 
Maxwell–Lorentz equations for the rotating charge, and in Sec-
tion 3 we introduce the corresponding Lagrangian functional and 
formulate the Hamilton principle. In Section 4 we formulate our 
main result. In Section 5 we deduce the Lorentz force and the 
Maxwell equations. In Section 6 we deduce the Lorentz torque 
equation, and in Appendices A and B we collect some auxiliary 
calculations.

2. Maxwell–Lorentz equations

The Maxwell field consists of the electric field E(x, t) and the 
magnetic field B(x, t) generated by a motion of a rotating charge. 
The external fields Eext and Bext are generated by the correspond-
ing external charges and currents. Let the rotating charge be cen-
tered at the position q with the velocity q̇. For simplicity we 
assume that the mass distribution, mρ(x), and the charge distri-
bution, eρ(x), are proportional to each other. Here m is the total 
mass, e is the total charge, and we use a system of units such that 
m = 1, e = 1.

For the coupling function ρ we apply everywhere below the 
conditions of regularity and spherical symmetry

ρ(x) = ρr
(|x|), ρ ∈ C∞

0

(
R

3). (2.1)

Then the system of Maxwell–Lorentz equations with the rotating 
charge reads, see [13]

Ė = ∇ ∧ B − (
q̇ + ω ∧ (x − q)

)
ρ(x − q), (2.2a)

Ḃ = −∇ ∧ E, (2.2b)

∇ · E(x, t) = ρ
(
x − q(t)

)
, (2.3a)

∇ · B(x, t) = 0, (2.3b)

q̈ =
∫ [

E + Eext + (
q̇ + ω ∧ (x − q)

) ∧ (
B + Bext)]

× ρ(x − q)dx, (2.4)

I ω̇ =
∫

(x − q) ∧ [
E + Eext + (

q̇ + ω ∧ (x − q)
) ∧ (

B + Bext)]
× ρ(x − q)dx, (2.5)

where ω(t) is the vector angular velocity of the particle rotation 
(see Appendix A), and I is the moment of inertia defined by

I = 2

3

∫
x2ρ(x)dx. (2.6)

Eqs. (2.2) are Maxwell equations with the corresponding charge 
density and current, and Eqs. (2.3) are the constraints. The back 
reaction of the field onto the particle is given through the Lorentz 
force equation (2.4), and the Lorentz torque equation (2.5) deals 
with rotational degrees of freedom.

Note that in [10], the direct proofs of the corresponding conser-
vation laws are presented.

3. Lagrangian functional and the Hamilton principle

Our main goal is to deduce equations (2.2)–(2.5) from the 
Hamilton least action principle. First let us introduce electromag-
netic potentials A = (A0, A), Aext = (Aext

0 , Aext):

B = ∇ ∧ A, E = −∇ A0 − Ȧ. (3.1)

Bext = ∇ ∧ Aext, Eext = −∇ Aext
0 − Ȧext. (3.2)

Next we define the Lagrangian

L(A,q, R, Ȧ, q̇, Ṙ)

= 1

2

∫ (
E2 − B2)dx + 1

2
q̇2 + 1

2
Iω2

−
∫ [

A0 + Aext
0

]
ρ(x − q)dx

+
∫ (

q̇ + ω ∧ (x − q)
) · [A + Aext]ρ(x − q)dx, (3.3)

where E , B are expressed in terms of A, Ȧ by (3.1), and ω =
J −1 Ṙ R−1 by (A.2). The last two integrals represent the standard 
interaction term∫ [(

A0 + Aext
0

)
ρ − j · (A + Aext)]dx

in view of (A.1).

Remark 3.1. This Lagrangian functional does not depend on R due 
to the spherical symmetry of the charge and mass distributions. 
Respectively, the dynamical equations (2.2)–(2.5) do not involve R
as well. In the case of nonradial densities the Lagrangian and the 
equations should involve R . Moreover, the moment of inertia (2.6)
becomes a matrix in this case.

The corresponding action functional has the form

S = S(A,q, R) :=
t2∫

t1

L
(
A(t),q(t), R(t), Ȧ(t), q̇(t), Ṙ(t)

)
dt. (3.4)

Then the Hamilton least action principle reads

δS(A,q, R) = 0, (3.5)

where the variation is taken over A(t), q(t), R(t) with the bound-
ary conditions

(δA, δq, δR)|t=t1 = (δA, δq, δR)|t=t2 = 0. (3.6)

4. Regular solutions and main result

Below we state our results for regular solutions of the sys-
tem (2.2)–(2.5). This means that q ∈ C2(R, R3), ω ∈ C1(R, R3), 
and all the involved functions and fields/potentials are sufficiently 
smooth and have (with all the necessary derivatives) a sufficient 
decay as |x| → ∞ so that the partial integrations below are al-
lowed.

Our main result is the following theorem.
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Theorem 4.1. For regular solutions the Maxwell–Lorentz system
(2.2)–(2.5) is equivalent to the least action principle (3.5)–(3.6).

We will analyze the variations in A, q, R separately, namely, 
we prove that

δS

δA
= 0, (4.1a)

δS

δq
= 0, (4.1b)

δS

δR
= 0 (4.1c)

is equivalent to (2.2)–(2.5).

5. The Maxwell equations and the Lorentz force

Maxwell equations
Eq. (4.1a) is equivalent to the Euler–Lagrange equations d

dt
δL
δȦ =

LA . Finally, these equations are equivalent to the Maxwell equa-
tions (2.2) with the constraints (2.3), see details in [9,8].

Lorentz force equation
For the simplicity of exposition, we omit Aext

0 , Aext, Eext, and 
Bext in the further computations within this section.

Eq. (4.1b) is equivalent to d
dt Lq̇ = Lq . We check that these 

Euler–Lagrange equations are equivalent to the Lorentz force equa-
tion (2.4). First, we rewrite the sum of last two integrals of (3.3)
as

−
∫

A0(x + q, t)ρ(x) +
∫

(q̇ + ω ∧ x) · A(x + q, t)ρ(x)dx.

For simplicity of notations we omit the arguments x + q and t
and write simply A, A j, Ȧ, Ȧ j instead of A(x + q, t), A j(x + q, t),
Ȧ(x + q, t), Ȧ j(x + q, t). We only have to remember that d

dt A =
Ȧ + q̇ · ∇ A. We also write ρ instead of ρ(x). Differentiating, we 
obtain

Lq̇ = q̇ +
∫

Aρ dx,

Lq = −
∫

∇ A0ρ dx +
∫

(q̇ + ω ∧ x) · (∇ A)ρ dx.

Here, for a vector field b(x, t) we denote b · (∇ A) = ∑
b j∇ A j

(which differs from (b · ∇)A). In particular, if b does not depend 
on x the following identity holds:

b · (∇ A) − (b · ∇)A = b ∧ (∇ ∧ A). (5.1)

Hence, taking b = q̇, we obtain that the Euler–Lagrange equations

q̈ =
∫ [−(

Ȧ + (q̇ · ∇)A
) − ∇ A0 + (q̇ + ω ∧ x) · (∇ A)

]
ρdx

=
∫ [− Ȧ − ∇ A0 + q̇ ∧ (∇ ∧ A) + (ω ∧ x) · (∇ A)

]
ρdx.

Now let us proceed to the Lorentz force equation (2.4). Using (3.1)
and another change of variables, (2.4) turns into

q̈ =
∫ [− Ȧ − ∇ A0 + q̇ ∧ (∇ ∧ A) + (ω ∧ x) ∧ (∇ ∧ A)

]
ρ dx.

(5.2)

Hence, it remains to check that∫
(ω ∧ x) · (∇ A)ρ dx =

∫
(ω ∧ x) ∧ (∇ ∧ A)ρ dx. (5.3)
It suffices to show that∫ [
(ω ∧ x) · (∇ A) − (ω ∧ x) ∧ (∇ ∧ A)

]
ρ dx

= −
∫

A(ω · ∇θ )ρ dx, (5.4)

where ∇θ = (∇θ1 , ∇θ2 , ∇θ3 ), and ∇θ j is the differentiation in the 
angular coordinate θ j around the coordinate axis x j : ∇θ1 = x2∂3 −
x3∂2 etc. Then (5.3) follows since the last integral equals to zero 
by the spherical symmetry (2.1).

Let us check (5.4) for the first component, for the rest ones 
the computation is similar. The first component of the LHS of (5.3)
equals∫ [

(ω2x3 − ω3x2)∂1 A1 + (ω3x1 − ω1x3)∂1 A2

+ (ω1x2 − ω2x1)∂1 A3
]
ρdx.

The first component of the RHS of (5.3) equals∫ [
(ω3x1 − ω1x3)(∂1 A2 − ∂2 A1)

− (ω1x2 − ω2x1)(∂3 A1 − ∂1 A3)
]
ρdx.

For the difference of the LHS and the RHS we apply partial inte-
gration, and obtain∫ [

(ω2x3 − ω3x2)∂1 A1 + (ω3x1 − ω1x3)∂2 A1

+ (ω1x2 − ω2x1)∂3 A1
]
ρdx

= −
∫

A1
[
(ω2x3 − ω3x2)∂1 + (ω3x1 − ω1x3)∂2

+ (ω1x2 − ω2x1)∂3
]
ρdx

= −
∫

A1
[
ω1(x2∂3 − x3∂2) + ω2(x3∂1 − x1∂3)

+ ω3(x1∂2 − x2∂1)
]
ρdx

= −
∫

A1(ω · ∇θ )ρdx.

6. The Poincaré equations

It remains to check that (4.1c) is equivalent to (2.5). We are 
going to prove the equivalence applying the Poincaré method [1,
12] to the variation of the Lagrangian functional

L̂(R, Ṙ, t) := L
(
A(t),q(t), R, Ȧ(t), q̇(t), Ṙ

)
. (6.1)

Poincaré has obtained differential equations in local coordinates 
on M which are equivalent to the Hamilton least action princi-
ple, and replace the Euler–Lagrange equations in the case when 
the trajectories lye on a manifold M which is not a linear space 
[1,12].

In our case the trajectories R(t) lye on the Lie group SO(3) =
M , and respectively, the velocity Ṙ(t) ∈ T R(t)SO(3), and also the 
variational derivative of the trajectory

δR(t) := d

dε
Rε(t)

∣∣∣∣
ε=0

∈ T R(t)SO(3).

The main problem is to express the variational derivative of the 
velocity δ Ṙ(t) through the time derivative of δR(t). In the case of 
linear space we would have δ Ṙ(t) = d

dt δR(t) which results in the 
Euler–Lagrange equations after the partial integration.
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Applying the Poincaré method, we will fix a suitable basis vk(·), 
k = 1, 2, 3 of vector fields on SO(3), and expand the velocity and 
the variation of the trajectory as

Ṙ(t) =
3∑
1

ωk(t)vk
(

R(t)
)
,

δR(t) =
3∑
1

wk(t)vk
(

R(t)
)
, t ∈R. (6.2)

The Poincaré calculations [1,12] give similar representation for 
δ Ṙ(t) with the components

δωk(t) = ẇk(t) +
∑
i, j

ck
i j

(
R(t)

)
ωi

(
R(t)

)
w j

(
R(t)

)
, (6.3)

where the functions ck
i j arise from commutation relations

[vi, vk](R) =
∑

c j
ik(R)v j(R). (6.4)

Here the vector fields vk are identified with the corresponding 
differential operators (Lie derivatives along the vector fields). Fi-
nally, the formula (6.3) reduces the variational principle (4.1c) to 
the Poincaré equations

d

dt

∂ L̃

∂ωk
=

∑
i j

c j
ikωi

∂ L̃

∂ω j
+ vk L̃, k = 1,2,3 (6.5)

by the partial integration as in the case of Euler–Lagrange. Here 
L̃(R, ω, t) is the Lagrangian functional (6.1) with Ṙ expressed in ω: 
according to (6.2) we have Ṙ = ∑3

1 ωk vk(R), and hence

L̃(R,ω, t) := L

(
A(t),q(t), R, Ȧ(t), q̇(t),

3∑
1

ωk vk(R)

)
. (6.6)

6.1. Right invariant vector fields

Let us construct suitable vector fields vk on SO(3) which pro-
vide the first expansion of (6.2), and calculate the corresponding 
functions ck

i j(·). We will construct vk as the right-invariant vec-
tor fields on SO(3). Hence, it suffices to define vk(E) ∈ so(3) :=
T E SO(3).

The Lie algebra so(3) consists of skew-symmetric 3 ×3 matrices 
with the matrix commutation. It is isomorphic to the algebra R3

with vector product, through the isomorphism J of (A.2):⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎞
⎠ = J (ω1,ω2,ω3). (6.7)

In detail, if A, B ∈ so(3), a, b ∈ R
3, and A = J a, B = J b by the 

isomorphism (6.7), then

AB − B A = J (a ∧ b). (6.8)

Finally, denote by e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1) the 
orthonormal basis in R3. Then

e1 ∧ e2 = e3, e2 ∧ e3 = e1, e3 ∧ e1 = e2. (6.9)

Hence, setting ẽk :=J ek , we obtain from (A.2)

Ṙ(t)R−1(t) = J
∑

ωk(t)ek =
∑

ωk(t)ẽk. (6.10)

Therefore, we obtain the first expansion of (6.2):

Ṙ(t) = Ṙ(t)R−1(t)R(t) =
∑

ωk(t)vk
(

R(t)
)
,

vk(R) := ẽk R. (6.11)
In other words, Ṙ(t) has the same coordinates w.r.t. the vector 
fields vk at the point R(t) as ω(t) in the basis {ek}. The fields vk(R)

are right translations of ẽk , and hence they are right-invariant.
The next lemma is proved in Appendix B using the relations 

(6.9) and the isomorphism (6.7).

Lemma 6.1. For the above constructed vector fields vk on SO(3) the fol-
lowing commutation relations hold:

[v1, v2] = −v3, [v2, v3] = −v1,

[v3, v1] = −v2. (6.12)

This lemma gives the corresponding coefficients ck
i j :

c3
21 = c1

32 = c2
13 = 1,

c2
31 = c3

12 = c1
23 = −1, all the other c j

ik = 0. (6.13)

Lemma 6.2. The Lagrangian functional (6.6) does not depend on R.

Proof. The Lagrangian (3.3) does not depend on R . Hence, (6.6)
depends on R only through the term

1

2
I

∣∣∣∣∣J −1

[
3∑
1

ωk vk(R)

]
R−1

∣∣∣∣∣
2

= 1

2
I

3∑
1

|ωkek|2 = 1

2
Iω2, (6.14)

which does not depend on R . �
6.2. The Lorentz torque equation

Since the Lagrangian L̃ does not depend on R , we have vk(L̃) =
0 for k = 1, 2, 3, and hence the Poincaré equations (6.5) become

d

dt

∂ L̃

∂ωk
=

∑
i j

c j
ikωi

∂ L̃

∂ω j
, k = 1,2,3. (6.15)

It remains to check that these equations are equivalent to the 
Lorentz torque equation (2.5). First,

∂ L̃

∂ω
= Iω +

∫
(x ∧ A)ρ dx.

Therefore,

d

dt

∂ L̃

∂ω
= Iω̇ +

∫
x ∧ (

Ȧ + (q̇ · ∇)A
)
ρ dx.

On the other hand, (6.13) implies that the RHS of (6.15), in the 
vector form, equals

ω ∧
(

Iω +
∫

(x ∧ A)ρ dx

)
=

∫
ω ∧ (x ∧ A)ρ dx

=
∫ (

x(ω · A) − (ω · x)A
)
ρ dx.

Finally, the Poincaré equations read

Iω̇ =
∫ [−x ∧ (

Ȧ + (q̇ · ∇)A
) + x(ω · A) − (ω · x)A

]
ρ dx. (6.16)

Now let us proceed to the Lorentz torque equation (2.5). Intro-
duce E = −∇ · A0 − Ȧ, B = ∇ ∧ A, make the mentioned change of 
the variables and obtain that (2.5) reads

Iω̇ =
∫

x ∧ (−∇ · A0 − Ȧ)ρ dx +
∫

x ∧ (
q̇ ∧ (∇ ∧ A)

)
ρ dx

+
∫

x ∧ (
(ω ∧ x) ∧ (∇ ∧ A)

)
ρ dx. (6.17)
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After partial integration the first integral becomes

−
∫

(x ∧ Ȧ)ρ dx +
∫

A0∇θρ dx = −
∫

(x ∧ Ȧ)ρ dx,

since ∇θρ = 0 in view of spherical symmetry of ρ . Similarly, the 
second integral of (6.17) transforms to

−
∫ [

x ∧ (q̇ · ∇)A + (q̇ · ∇)∇θ

]
ρ dx = −

∫ (
x ∧ (q̇ · ∇)A

)
ρ dx.

For the third integral of (6.17) we apply the identity

x ∧ [
(ω ∧ x) ∧ (∇ ∧ A)

] = (ω ∧ x)
(
x · (∇ ∧ A)

)
and after partial integration obtain∫ [

x(ω · A) − (ω · x)A
]
ρ dx −

∫
(ω ∧ x)(A · ∇θ )ρ dx

=
∫ [

x(ω · A) − (ω · x)A
]
ρ dx.

Finally, (2.5) reads

Iω̇ = −
∫

(x ∧ Ȧ)ρ dx −
∫ (

x ∧ (q̇ · ∇)A
)
ρ dx

+
∫ [

x(ω · A) − (ω · x)A
]
ρ dx (6.18)

which coincides with (6.16). Theorem 4.1 is proved. �
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Appendix A. Angular velocity

We denote by ω(t) ∈ R
3 the vector angular velocity “in space” 

(in the terminology of [1]) of the charge rotation. Namely, the tra-
jectory x(·) of each fixed point of the body is given by

x(t) = q(t) + R(t)
(
x(0) − q(0)

)
,

where q(t) is the “trajectory of the body”, and R(t) ∈ SO(3). Re-
spectively, the velocity of this fixed point reads

ẋ(t) = q̇(t) + Ṙ(t)
(
x(0) − q(0)

) = q̇(t) + Ṙ(t)R−1(t)
(
x(t) − q(t)

)
= q̇(t) + ω(t) ∧ (

x(t) − q(t)
)
, (A.1)

where ω(t) ∈ R
3 corresponds to the skew-symmetric matrix 

Ṙ(t)R−1(t) by the rule

Ṙ(t)R−1(t) = Jω(t) :=
⎛
⎝ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎞
⎠ . (A.2)

Appendix B. Commutators of right-invariant vector fields

We prove Lemma 6.1

Step 1. By (6.8) the isomorphism (6.7) translates relations (6.9) to

[ẽ1, ẽ2] = ẽ3, [ẽ3, ẽ1] = ẽ2, [ẽ2, ẽ3] = ẽ1 (B.1)

in the sense of matrix commutator.
Step 2. Recall that the right-invariant vector fields vk on SO(3)

are defined by right translations vk(R) = ẽk R , where R ∈ SO(3). 
We should prove (6.12) in the sense of the commutators of vector 
fields on the Lie group SO(3).

Since the fields vk are right-invariant, it suffices to check the 
relations (6.12) at the group unit E . Let us compute the derivative 
v A f of a smooth function f on SO(3) along a right-invariant field 
v A such that v A(E) = A ∈ SO(3). In this case v A(R) = AR for R ∈
SO(3). Consider a smooth path R1(ε) ∈ SO(3) such that R1(0) = R , 
Ṙ1(0) = AR . Then

v A f (R) := d

dε
f
(

R1(ε)
)∣∣∣∣

ε=0

= [
f ′(R1(ε)

) · Ṙ1(ε)
]∣∣

ε=0 = f ′(R) · AR.

In particular,

v[A,B] f (E) = f ′(E) · [A, B], (B.2)

where [A, B] = AB − B A is the matrix commutator.
Now let us compute v A v B f (E) for a right-invariant field v B

such that v B(E) = B ∈ so(3), v B(R) = B R . Consider a smooth path 
R2(ε) ∈ SO(3) such that R2(0) = E , Ṙ2(0) = A. Then

v A v B f (E) = d

dε

[
f ′(R2(ε)

) · B R2(ε)
]∣∣∣∣

ε=0

= d

dε
f ′(R2(ε)

)∣∣∣∣
ε=0

· B R2(ε)|ε=0

+ f ′(R2(ε)
)∣∣

ε=0 · d

dε
B R2(ε)

∣∣∣∣
ε=0

= [
f ′′(R2(ε)

) · Ṙ2(ε)
]∣∣

ε=0 · B R2(ε)|ε=0

+ [
f ′(R(ε)

) · B Ṙ2(ε)
]∣∣

ε=0

= (
f ′′(E) · A

) · B + f ′(E) · B A.

Then, since the form ( f ′′(E) · A) · B is symmetric w.r.t. the matrices 
A, B one has

[v A, v B ] f (E) = v A v B f (E) − v B v A f (E) = f ′(E) · (B A − AB)

= −v[A,B] f (E)

by (B.2). Together with (B.1) this completes the proof.
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