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Abstract

The global attraction is established for all finite energy solutions to a modelU(1)-invariant nonlinear Klein-Gordon
equation in one dimension coupled to a finite number of nonlinear oscillators: We prove thateach finite energy solution
converges ast → ±∞ to the set of all “nonlinear eigenfunctions” of the formφ(x)e−iωt if all oscillators are strictly
nonlinear, and the distances between neighboring oscillators are sufficiently small.

Our approach is based on the analysis ofomega-limit trajectorieswhich form the global attractor. We show that their
time spectrum is a priori compact. Then the nonlinear spectral analysis based on the Titchmarsh convolution theorem
allows to reduce the time-spectrum to one point. This implies that each omega-limit trajectory is a solitary wave. Phys-
ically, theglobal attractionis caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum
and subsequent dispersive radiation. The Titchmarsh theorem allows to prove that this energy transfer and radiation are
absent only for the solitary waves.

To check the sharpness of our conditions, we construct counterexamples showing the global attractor can contain
“multifrequency solitary waves” if the distance between oscillators is large or if some of them are linear.

1 Introduction

The long time asymptotics for nonlinear wave equations havebeen the subject of intensive research, starting with the
pioneering papers by Segal [Seg63a, Seg63b], Strauss [Str68], and Morawetz and Strauss [MS72], where the nonlinear
scattering and the local attraction to zero solution were proved. Local attraction to solitary waves, orasymptotic stability,
in U(1)-invariant dispersive systems was addressed in [SW90, BP93, SW92, BP95] and then developed in [PW97, SW99,
Cuc01a, Cuc01b, BS03, Cuc03]. Global attraction tostatic, stationary solutions in the dispersive systemswithoutU(1)
symmetrywas established in [Kom91, Kom95, KV96, KSK97, Kom99, KS00].

We would like to have the dynamical description of the Bohr transitions to quantum stationary states in coupled
nonlinear systems of Quantum Physics. This suggests investigation of the global attractors in nonlinear Hamiltonian
hyperbolic equations withU(1)-symmetry (see [KK07] for the discussion). The first result about the global attraction to
solitary waves in a model with these properties was obtainedin [KK06, KK07], where we considered the Klein-Gordon
equation coupled to one nonlinear oscillator.
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Planck Institute for Mathematics in the Sciences (Leipzig), and by grants FWF P19138-N13, DFG 436 RUS 113/929/0-1, and RFBR 07-01-00018a.
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We are aware of only one other recent advance [Tao07] in the field of nonzero global attractors for Hamiltonian PDEs.
In that paper, the global attraction for the nonlinear Schr¨odinger equation in dimensionsn ≥ 5 was considered. The
dispersive wave was explicitly specified using the rapid decay of local energy in higher dimensions. The global attractor
was proved to be compact, but it was neither identified with the set of solitary waves nor was proved to be of finite
dimension [Tao07, Remark 1.18].

In the present paper, we prove the attraction to the set of solitary waves for all finite energy solutions to the Klein-
Gordon equation coupled to any finite number of nonlinear oscillators. For the proof, we develop an approach of the
spectral inflation [KK07] justified by the Titchmarsh Convolution Theorem. This justification requires new arguments
and appropriate conditions. We demonstrate the sharpness of these conditions constructing counterexamples.

Our model is based on the complex Klein-Gordon fieldψ(x, t), interacting withN nonlinear oscillators located at the
pointsX1 < X2 < . . . < XN :

ψ̈ = ψ′′ −m2ψ +
∑

J

δ(x−XJ)FJ (ψ(XJ , t)), x ∈ R, (1.1)

wherem > 0 andFJ are nonlinear functions describing nonlinear oscillatorsat the pointsXJ . The dots stand for the
derivatives int, and the primes for the derivatives inx. All derivatives and the equation are understood in the sense of
distributions. We assume that equation (1.1) isU(1)-invariant; that is,

FJ (eiθψ) = eiθFJ(ψ), θ ∈ R, ψ ∈ C, 1 ≤ J ≤ N. (1.2)

This symmetry leads to the charge conservation and to the existence of the solitary wave solutions, which are finite energy
solutions of the following form:

ψω(x, t) = φω(x)e−iωt, ω ∈ R, φω ∈ H1(R). (1.3)

Above,H1(R) denotes the Sobolev space.

Definition 1.1. S is the set of all functionsφω(x) ∈ H1(R) with ω ∈ R, so thatφω(x)e−iωt is a solution to (1.1).

Note thatS also contains the zero solution.
Generically, the factor-spaceS/U(1) is isomorphic to a finite union of one-dimensional intervals. The set of all

solitary waves for equation (1.1) is described in Proposition 2.8. Typically, such solutions exist forω from an interval or
a collection of intervals of the real line.

Our main result is the following long-time asymptotics: In the case when all oscillators are polynomial and strictly
nonlinear (see Assumptions 2.1 and 2.2 below) and all distances|XJ+1 −XJ | are sufficiently small, we prove that any
finite energy solution converges to the setS of all solitary waves:

ψ(·, t) −→ S, t→ ±∞, (1.4)

where the convergence holds in local energy seminorms.
Let us give a brief sketch of our approach. We introduce a concept of the omega-limit trajectoriesβ(x, t) which play

a crucial role in the proof. We define omega-limit trajectories as the limits

ψ(x, t+ sj) → β(x, t), (x, t) ∈ R
2,

for some sequence of timessj → +∞. We will prove that all omega-limit trajectories are solitary waves, thus finishing
the proof. To complete this program, we study the time spectrum of solutions, that is, their Fourier-Laplace transform in
time. We need to prove thatβ(x, t) = φω(x)e−iωt, that is, that the time spectrum ofβ consists of at most one frequency.
First, we show that the spectrum of the solution atx = X1 andx = XN is absolutely continuous for|ω| > m. At
the pointsx ∈ (X1, XN ), the nonlinearity may extend the singular part of the spectrum to be at most[−Λ,Λ], for some
boundedΛ. Outside of this interval, the spectrum is absolutely continuous. This allows to prove that the spectrum of
any omega-limit trajectory atx = X1 andx = XN is contained in[−m,m], while at the pointsx ∈ (X1, XN ) the
spectrum is contained in[−Λ,Λ]. The next important observation is that each omega-limit trajectory is also a solution to
the original nonlinear Klein-Gordon equation. This allowsto apply the Titchmarsh theorem and prove that the spectrum
of any omega-limit trajectory at all pointsx ∈ R consists of at most one frequency. At this last step, one needs the
assumptions that the oscillators are strictly nonlinear and located sufficiently close to one another.
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The requirement that the nonlinearitiesFJ are polynomial allows us to apply the Titchmarsh theorem which is vital
in the proof. We construct counterexamples showing the sharpness of our assumptions for the global attraction to the
solitary waves. Namely, forN = 2, we construct multifrequency solitary waves in the case when the distance|X2 −X1|
is sufficiently large or one of the oscillators is linear.

Let us mention that in the case ofN oscillators, considered in this paper, the general plan of the proof is similar to
the case of one oscillator (see [KK06, KK07]). However, the justifications of all steps are based on new arguments. In
particular, the application of the Titchmarsh theorem required a new construction.

Our paper is organized as follows. In Section 2, we formulateour main results. In Section 3, we separate the first
dispersive component. In Sections 4 and 5, we construct spectral representation for the remaining component, and prove
absolute continuity of its spectrum for high frequencies. In Sections 6, we separate the second dispersive component
corresponding to the high frequencies and establish compactness for the remainingboundcomponent with the bounded
spectrum. In Section 7, we study omega-limit trajectories of the solution. In Section 8 we collect counterexamples, and
in Appendix A we establish global well-posedness.

2 Main results

Model

We consider the Cauchy problem for the Klein-Gordon equation with the nonlinearity concentrated at the pointsX1 <
X2 < . . . < XN :

{
ψ̈(x, t) = ψ′′(x, t) −m2ψ(x, t) +

∑
J δ(x−XJ)FJ (ψ(XJ , t)), x ∈ R, t ∈ R,

ψ|
t=0

= ψ0(x), ψ̇|
t=0

= π0(x).
(2.1)

If we identify a complex numberψ = u+ iv ∈ C with the two-dimensional vector(u, v) ∈ R2, then, physically, equation
(2.1) describes small crosswise oscillations of the infinite string in three-dimensional space(x, u, v) stretched along the
x-axis. The string is subject to the action of an “elastic force” −m2ψ(x, t) and coupled to nonlinear oscillators of forces
FJ (ψ) attached at the pointsXJ . We denote byX the set of all the locations of oscillators:

X = {X1, X2, . . . , XN}. (2.2)

We will assume that the oscillator forcesFJ admit real-valued potentials:

FJ (ψ) = −∇UJ(ψ), ψ ∈ C, UJ ∈ C2(C), (2.3)

where the gradient is taken with respect toReψ andImψ. We defineΨ(t) =

[
ψ(x, t)

π(x, t)

]
and write the Cauchy problem

(2.1) in the vector form:

Ψ̇(t) =

[
0 1

∂2
x −m2 0

]
Ψ(t) +

∑

J

δ(x−XJ)

[
0

FJ (ψ)

]
, Ψ|

t=0
= Ψ0 ≡

[
ψ0

π0

]
. (2.4)

Equation (2.4) formally can be written as a Hamiltonian system,

Ψ̇(t) = J DH(Ψ), J =

[
0 1

−1 0

]
, (2.5)

whereDH is the variational derivative of the Hamilton functional

H(Ψ) =
1

2

∫

R

(
|π|2 + |ψ′|2 +m2|ψ|2

)
dx+

∑

J

UJ(ψ(XJ)), Ψ =

[
ψ(x)

π(x)

]
. (2.6)

We assume that the potentialsUJ(ψ) areU(1)-invariant, whereU(1) stands for the unitary groupeiθ, θ ∈ R mod2π.
Namely, we assume that there existuJ ∈ C2(R) such that

UJ(ψ) = uJ(|ψ|2), ψ ∈ C, 1 ≤ J ≤ N. (2.7)
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Remark2.1. In the context of the model of the infinite string inR3 that we described after (2.1), the assumption (2.7)
means that the potentialsUJ(ψ) are rotation-invariant with respect to thex-axis.

Conditions (2.3) and (2.7) imply that

FJ (ψ) = αJ (|ψ|2)ψ, ψ ∈ C, (2.8)

whereαJ(·) = −2u′J(·) ∈ C1(R) are real-valued. Therefore, (1.2) holds. Since (2.4) isU(1)-invariant, the Nöther
theorem formally implies that thecharge functional

Q(Ψ) =
i

2

∫

R

(
ψπ − πψ

)
dx, Ψ =

[
ψ(x)

π(x)

]
, (2.9)

is conserved for solutionsΨ(t) to (2.4).
Let us introduce the phase spaceE of finite energy states for equation (2.1). Denote byL2 the complex Hilbert space

L2(R) with the norm‖ · ‖L2 , and denote by‖ · ‖L2
R

the norm inL2(−R,R) for R > 0.

Definition 2.2. (i) E is the Hilbert space of the statesΨ = (ψ, π), with the norm

‖Ψ‖2
E := ‖π‖2

L2 + ‖ψ′‖2
L2 +m2‖ψ‖2

L2. (2.10)

(ii ) EF is the spaceE endowed with the Fréchet topology defined by local energy seminorms

‖Ψ‖2
E ,R := ‖π‖2

L2(−R,R) + ‖ψ′‖2
L2(−R,R) +m2‖ψ‖2

L2(−R,R), R > 0. (2.11)

Remark2.3. The spaceEF is metrizable. The metric could be introduced by

dist(Ψ,Φ) =

∞∑

R=1

2−R‖Ψ − Φ‖E ,R. (2.12)

Equation (2.4) is formally a Hamiltonian system with the phase spaceE and the Hamilton functionalH. BothH and
Q are continuous functionals onE . Let us note thatE = H1 ⊕ L2, whereH1 denotes the Sobolev space

H1 = H1(R) = {ψ(x) ∈ L2(R) : ψ′(x) ∈ L2(R)}.

We introduced into (2.10) the factorm2 > 0, to have a convenient relationH(ψ, ψ̇) = 1
2‖(ψ, ψ̇)‖2

E
+

∑
J UJ(ψ(XJ )).

Global well-posedness

To have a priori estimates available for the proof of the global well-posedness, we assume that

UJ(ψ) ≥ AJ −BJ |ψ|2 for ψ ∈ C, where AJ ∈ R, BJ ≥ 0, 1 ≤ J ≤ N ;
∑

J

BJ < m. (2.13)

Theorem 2.4. LetFJ (ψ) satisfy conditions (2.3) and (2.7):

FJ (ψ) = −∇UJ(ψ), UJ(ψ) = uJ(|ψ|2), uJ(·) ∈ C2(R).

Additionally, assume that (2.13) holds. Then:

(i) For everyΨ0 ∈ E the Cauchy problem (2.4) has a unique solutionΨ(t) such thatΨ ∈ C(R,E ).

(ii ) The mapW (t) : Ψ0 7→ Ψ(t) is continuous inE for eacht ∈ R.

(iii ) The energy and charge are conserved:H(Ψ(t)) = const, Q(Ψ(t)) = const, t ∈ R.

(iv) The followinga prioribound holds:‖Ψ(t)‖E ≤ C(Ψ0), t ∈ R.

We prove this Theorem in Appendix A.
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Solitary waves and the main theorem

Definition 2.5. (i) The solitary waves of equation (2.1) are solutions of the form

ψ(x, t) = φω(x)e−iωt, where ω ∈ R, φω ∈ H1(R). (2.14)

(ii ) The solitary manifold is the setS =
{
(φω ,−iωφω): ω ∈ R, φω ∈ H1(R)

}
⊂ E .

Remark2.6. (i) Identity (1.2) implies that the setS is invariant under multiplication byeiθ, θ ∈ R.

(ii ) Let us note that for anyω ∈ R there is a zero solitary wave withφω(x) ≡ 0 sinceFJ (0) = 0 by (2.8).

(iii ) According to (2.8),αJ(|C|2) = FJ (C)/C ∈ R for anyC ∈ C\0.

Definition 2.7. The functionFJ(ψ) is strictly nonlinearif the equationαJ (C2) = a has a discrete (or empty) set of
positive rootsC for each particulara ∈ R.

The following proposition provides a concise description of all solitary waves. Formally this proposition is not neces-
sary for our exposition.

Proposition 2.8. Assume thatFJ (ψ) satisfy (1.2) and thatFJ (ψ), 1 ≤ J ≤ N , are strictly nonlinear in the sense of
Definition 2.7. Then all solitary wave solutions to (2.1) aregiven by (2.14) with

φω(x) =
∑

J

CJe
−κ(ω)|x−XJ |, κ(ω) =

√
m2 − ω2, (2.15)

whereω ∈ [−m,m] andCJ ∈ C, 1 ≤ J ≤ N , satisfy the following relations:

2κ(ω)CJ = FJ

(∑

K

CKe
−κ(ω)|XJ−XK |

)
. (2.16)

Remark2.9. By (2.15),ω = ±m can only correspond to zero solution.

The proof of this Proposition repeats the proof of a similar result for the caseN = 1 in [KK07].
As we mentioned before, we need to assume that the nonlinearities are nonlinear polynomials. This condition is

crucial in our argument: It will allow to apply the Titchmarsh convolution theorem.

Let us formulate all the assumptions which we need to formulate the main result.

Assumption 2.1. For all1 ≤ J ≤ N ,

FJ (ψ) = −∇UJ(ψ), where UJ(ψ) =

pJ∑

n=0

uJ,n|ψ|2n , uJ,n ∈ R. (2.17)

Assumption 2.2. For all1 ≤ J ≤ N , we have

uJ,pJ
> 0 and pJ ≥ 2. (2.18)

Assumptions 2.1 and 2.2 guarantee that all nonlinearitiesFJ are strictly nonlinear and satisfy (2.3), (2.7), and also
that the bound (2.13) takes place.

We introduce the following quantities:

µ1 = m, µJ+1 = (2pJ − 1)µJ ; µ′
N = m, µ′

J = (2pJ+1 − 1)µ′
J+1, 1 ≤ J ≤ N − 1, (2.19)

wherepJ are exponentials from (2.17). We also denote

Λ = max
1≤J≤N

(2pJ − 1)MJ , where MJ = min(µJ , µ
′
J ). (2.20)

Assumption 2.3. The intervals[XJ , XJ+1], 1 ≤ J ≤ N − 1, are small enough so that

Λ <

√
π2

|XJ+1 −XJ |2
+m2, 1 ≤ J ≤ N − 1. (2.21)
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Our main result is the following theorem.

Theorem 2.10(Main Theorem). Let Assumptions 2.1, 2.2, and 2.3 hold. Then for anyΨ0 ∈ E the solutionΨ(t) ∈
C(R,E ) to the Cauchy problem (2.4) converges toS:

lim
t→±∞

dist(Ψ(t),S) = 0, (2.22)

wheredist(Ψ,S) := inf
s∈S

dist(Ψ, s), anddist is introduced in (2.12).

Remark2.11. (i) The solutionΨ(t) exists by Theorem 2.4 since Assumptions 2.1 and 2.2 guarantee that conditions
(2.3), (2.7), and (2.13) hold.

(ii ) It suffices to prove Theorem 2.10 fort→ +∞.

(iii ) In Sections 8.1 and 8.2, we construct counterexamples to the convergence (2.22) in the case when Assumption 2.2
or Assumption 2.3 are not satisfied.

(iv) For the real initial data, we obtain a real-valued solutionψ(t) to (2.1). Therefore, the convergence (2.22) ofΨ(t) =
(ψ(t), ψ̇(t)) to the set of pairs(φω ,−iωφω) with ω ∈ R implies thatΨ(t) locally converges to zero:

lim
t→∞

dist(Ψ(t), 0) = 0.

3 Separation of dispersive component

Let us split the solutionψ(x, t) into two components,ψ(x, t) = χ(x, t) + ϕ(x, t), which are defined for allt ∈ R as
solutions to the following Cauchy problems:

χ̈(x, t) = χ′′(x, t) −m2χ(x, t), (χ, χ̇)|
t=0

= (ψ0(x), π0(x)), (3.1)

ϕ̈(x, t) = ϕ′′(x, t) −m2ϕ(x, t) +
∑

J

δ(x−XJ )fJ(t), (ϕ, ϕ̇)|
t=0

= (0, 0), (3.2)

where(ψ0(x), π0(x)) is the initial data from (2.1), and

fJ(t) := FJ (ψ(XJ , t)), t ∈ R. (3.3)

The following lemma is proved in [KK07, Lemma 3.1].

Lemma 3.1. There is a local energy decay forχ:

lim
t→∞

‖(χ(·, t), χ̇(·, t))‖
E ,R = 0, ∀R > 0. (3.4)

Let k(ω) be the analytic function with the domainD := C\((−∞,−m] ∪ [m,+∞)) such that

k(ω) =
√
ω2 −m2, Im k(ω) > 0, ω ∈ D. (3.5)

Let us also denote its limit values forω ∈ R by

k±(ω) := k(ω ± i0), ω ∈ R. (3.6)

As illustrated on Figure 1 (where all square roots take positive values), we have

k−(ω) = k+(ω) for −m ≤ ω ≤ m, k−(ω) = −k+(ω) for ω ∈ R\(−m,m), (3.7)

and also
ω k+(ω) ≥ 0 for ω ∈ R\(−m,m). (3.8)

We setFt→ω[g(t)] =

∫

R

eiωtg(t) dt for a functiong(t) from the Schwartz spaceS (R). Let us study the Fourier

transformχ̂(x, ω) := Ft→ω[χ(x, t)], which is a continuous function ofx valued in tempered distributions.
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︸ ︷︷ ︸
k(ω±i0)=i

√
m2−ω2

k(ω−i0)=−
√
ω2−m2

k(ω+i0)=+
√
ω2−m2

k(ω−i0)=+
√
ω2−m2

k(ω+i0)=−
√
ω2−m2

m0−m
..

Figure 1: DomainD and the values ofk±(ω) := k(ω ± i0), ω ∈ R.

Lemma 3.2. • χ̂(x, ω) is a continuous function ofx ∈ R with values inL1
loc(R), and

χ̂(x, ω) = 0, |ω| < m. (3.9)

• The following bound holds:

sup
x∈R

∫

|ω|>m
|χ̂(x, ω)|2ω k+(ω) dω <∞. (3.10)

Proof. Setω(k) = sgn k
√
m2 + k2 for k ∈ R. Note that the functionk+(ω) for |ω| > m is inverse to the functionω(k),

k 6= 0. We have:

χ(x, t) =
1

2π

∫

R

e−ikx
[
ψ̂0(k) cos(ω(k)t) + π̂0(k)

sin(ω(k)t)

ω(k)

]
dk. (3.11)

Hence, for the Fourier transform ofχ(x, t), we obtain, for anyx ∈ R:

χ̂(x, ω) =

∫

R

e−ikx
[
ψ̂0(k)

δ(ω − ω(k)) + δ(ω + ω(k))

2
+ π̂0(k)

δ(ω − ω(k)) − δ(ω + ω(k))

2iω(k)

]
dk

=

∫

|ω′|>m
e−ik+(ω′)x

[
ψ̂0(k+(ω′))

δ(ω − ω′) + δ(ω + ω′)

2
+ π̂0(k+(ω′))

δ(ω − ω′) − δ(ω + ω′)

2iω′

] ω′ dω′

k+(ω′)
.

The above relation is understood in the sense of distributions ofω ∈ R. We used the substitutionk = k+(ω′). Now (3.9)
is obvious. Evaluating the last integral, we get:

χ̂(x, ω) =
ω

2k+(ω)

{
e−ik+(ω)xψ̂0(k+(ω)) + eik+(ω)xψ̂0(−k+(ω)) + e−ik+(ω)x π̂0(k+(ω))

iω
− eik+(ω)x π̂0(−k+(ω))

iω

}
, |ω| > m.

We took into account thatk+(−ω) = −k+(ω) for ω ∈ R\(−m,m) (see (3.7)). Thus, we have:

∫

|ω|>m

|χ̂(x, ω)|2ω k+(ω) dω ≤
∫

|ω|>m

[ω2|ψ̂0(k+(ω))|2
k2
+(ω)

+
|π̂0(k+(ω))|2

k2
+(ω)

]
ω k+(ω) dω =

∫

R

[
|ψ̂0(k)|2+

|π̂0(k)|2
ω2(k)

]
ω2(k) dk.

The finiteness of the right-hand side follows from the finiteness of the energy of the initial data(ψ0, π0):

‖(ψ0, π0)‖2
E

=
1

2π

∫

R

[
ω2(k)|ψ̂0(k)|2 + |π̂0(k)|2

]
dk <∞.

4 Spectral representation

The functionϕ(x, t) = ψ(x, t) − χ(x, t) satisfies the following Cauchy problem:

ϕ̈(x, t) = ϕ′′(x, t) −m2ϕ(x, t) +
∑

J

δ(x −XJ)fJ(t), (ϕ, ϕ̇)|
t=0

= (0, 0), (4.1)
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with fJ(t) defined in (3.3). Note thatψ(XJ , ·) ∈ Cb(R) for 1 ≤ J ≤ N by the Sobolev embedding, since(ψ(x, t), ψ̇(x, t)) ∈
Cb(R,E ) by Theorem 2.4 (iv). Hence,fJ(t) ∈ Cb(R). On the other hand, sinceχ(x, t) is a finite energy solution to the
free Klein-Gordon equation, we also have

(χ(x, t), χ̇(x, t)) ∈ Cb(R,E ). (4.2)

Therefore, the functionϕ(x, t) = ψ(x, t) − χ(x, t) satisfies

(ϕ(x, t), ϕ̇(x, t)) ∈ Cb(R,E ). (4.3)

The Fourier transform
ϕ̂(x, ω) = Ft→ω[ϕ(x, t)], (x, ω) ∈ R

2, (4.4)

is a continuous function ofx ∈ R with values in tempered distributions ofω ∈ R. It satisfies the following equation (Cf.
(4.1)):

− ω2ϕ̂(x, ω) = ϕ̂′′(x, ω) −m2ϕ̂(x, ω) +
∑

J

δ(x−XJ)f̂J (ω), (x, ω) ∈ R
2. (4.5)

We are going to construct a representation for the solutionϕ̂(x, ω) in a form suitable for our purposes.

Lemma 4.1. ϕ̂ is a smooth function ofx ∈ R\X (whereX = {X1, X2, . . . , XN}), with values in tempered distributions
ofω ∈ R, and there exist quasimeasuresΦ̂±

J , 1 ≤ J ≤ N , andΘ̂J , 1 ≤ J ≤ N − 1, so that

ϕ̂(x, ω) =






Φ̂+
1 (ω)e−ik+(ω)(x−X1) + Φ̂−

1 (ω)e−ik−(ω)(x−X1), x ≤ X1,

Φ̂J (ω) cos(k+(ω)(x−XJ)) + Θ̂J (ω) sin(k+(ω)(x−XJ ))
k+(ω) , x ∈ [XJ , XJ+1], 1 ≤ J ≤ N − 1,

Φ̂+
N (ω)eik+(ω)(x−XN ) + Φ̂−

N (ω)eik−(ω)(x−XN ), x ≥ XN ,

(4.6)

whereΦ̂J(ω) := Φ̂+
J (ω) + Φ̂−

J (ω).

Remark4.2. A tempered distributionµ(ω) ∈ S ′(R) is called aquasimeasureif µ̌(t) = F
−1
ω→t[µ(ω)] ∈ Cb(R). For more

details, see [KK07, Appendix B].

Remark4.3. The representation (4.6) implies that

Φ̂J (ω) = ϕ̂(XJ , ω), 1 ≤ J ≤ N, (4.7)

Φ̂+
1 (ω) + Φ̂−

1 (ω) = Φ̂1(ω) = ϕ̂(X1, ω), Φ̂+
N (ω) + Φ̂−

N (ω) = ϕ̂(XN , ω), (4.8)

and also that
ϕ̂′(XJ + 0, ω) = Θ̂J(ω), 1 ≤ J ≤ N − 1. (4.9)

Proof. Step 1: Complex Fourier-Laplace transform. We denote

f±
J (t) := θ(±t)fJ(t) = θ(t)FJ (ψ(XJ , t)) (4.10)

and splitϕ(x, t) into

ϕ(x, t) = ϕ+(x, t) + ϕ−(x, t), where ϕ±(x, t) := θ(±t)ϕ(x, t). (4.11)

Thenϕ±(x, t) satisfy

ϕ̈±(x, t) = ∂2
xϕ

±(x, t) −m2ϕ±(x, t) +
∑

J

δ(x−XJ)f±
J (t), t ∈ R, (4.12)

since(ϕ±, ϕ̇±)|
t=0

= (0, 0). Let us analyze the complex Fourier-Laplace transforms ofϕ±(x, t):

ϕ̃±(x, ω) = Ft→ω[θ(±t)ϕ(x, t)] :=

∫ ∞

0

eiωtθ(±t)ϕ(x, t) dt, ω ∈ C
±, (4.13)

whereC± := {z ∈ C : ±Im z > 0}. Due to (4.3),ϕ̃±(·, ω) areH1-valued analytic functions ofω ∈ C±. In what
follows, we will considerϕ+; the functionϕ− considered in the same way.
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Equation (4.12) implies that̃ϕ+ satisfies

− ω2ϕ̃+(x, ω) = ∂2
xϕ̃

+(x, ω) −m2ϕ̃+(x, ω) +
∑

J

δ(x−XJ)f̃+
J (ω), ω ∈ C

+. (4.14)

The fundamental solutionsG±(x, ω) =
e±ik(ω)|x|

±2ik(ω)
satisfy

G′′
±(x, ω) + (ω2 −m2)G±(x, ω) = δ(x), ω ∈ C

+.

The solutionϕ̃+(x, ω) could be written as a linear combination of these fundamental solutions. We use the standard
“limiting absorption principle” for the selection of the appropriate fundamental solution: Sincẽϕ+(·, ω) ∈ H1 for ω ∈
C+, onlyG+ is acceptable, because forω ∈ C+ the functionG+(·, ω) is inH1 by definition (3.5), whileG− is not. This
suggests the following representation:

ϕ̃+(x, ω) = −
∑

J

f̃+
J (ω)G+(x−XJ , ω) = −

∑

J

f̃+
J (ω)

eik(ω)|x−XJ |

2ik(ω)
, ω ∈ C

+. (4.15)

The proof is straightforward since (4.15) belongs toH1(R) for ω ∈ C+ while the solution to (4.14) which is anH1-valued
analytic function inω is unique. Forx ≤ X1, the relation (4.15) yields

ϕ̃+(x, ω) = −
∑

J

f̃+
J (ω)

e−ik(ω)(x−XJ )

2ik(ω)
= e−ik(ω)(x−X1)ϕ̃+(X1, ω), x ≤ X1, ω ∈ C

+. (4.16)

Forx ∈ [XJ , XJ+1], 1 ≤ J ≤ N − 1, the relation (4.15) implies that

ϕ̃+(x, ω) = Φ̃+
J (ω) cos(k(ω)(x −XJ)) + Θ̃+

J (ω)
sin(k(ω)(x −XJ))

k(ω)
, x ∈ [XJ , XJ+1], ω ∈ C

+, (4.17)

whereΦ̃+
J andΘ̃+

J , 1 ≤ J ≤ N − 1, are analytic functions ofω ∈ C+. We note that, by (4.15),

Φ̃+
J (ω) = ϕ̃+(XJ , ω), Θ̃+

J (ω) = ∂xϕ̃
+(XJ + 0, ω) = −

∑

J′

sgn(XJ −XJ′)f̃+
J′(ω)

eik(ω)|XJ−XJ′ |

2
. (4.18)

Step 2: Traces on real line. Now we need to extend the relations (4.16) and (4.17) toω ∈ R. The Fourier transform
ϕ̂+(x, ω) := Ft→ω[θ(t)ϕ(x, t)] is a temperedH1-valued distribution ofω ∈ R by (4.3). It is the boundary value of the
analytic functionϕ̃+(x, ω), in the following sense:

ϕ̂+(x, ω) = lim
ε→0+

ϕ̃+(x, ω + iε), ω ∈ R, (4.19)

where the convergence is in the space of tempered distributionsS ′(R, H1(R)). Indeed,

ϕ̃+(x, ω + iε) = Ft→ω[θ(t)ϕ(x, t)e−εt], θ(t)ϕ(x, t)e−εt −→
ε→0+

θ(t)ϕ(x, t),

where the convergence holds inS ′(R, H1(R)). Therefore, (4.19) holds by the continuity of the Fourier transformFt→ω

in S ′(R).
The distributionsΦ̂+

J (ω), Θ̂+
J (ω) ∈ S ′(R), ω ∈ R, are defined as the boundary values of the functionsΦ̃+

J (ω) and
Θ̃+
J (ω) analytic inω ∈ C+:

Φ̂+
J (ω) = lim

ε→0+
Φ̃+
J (ω + iε), ω ∈ R, 0 ≤ J ≤ N, (4.20)

Θ̂+
J (ω) = lim

ε→0+
Θ̃+
J (ω + iε), ω ∈ R, 1 ≤ J ≤ N − 1. (4.21)

The above convergence holds in the space of quasimeasures by(4.18), sinceϕ̃+(XJ , ω) andf̃+
J (ω) are quasimeasures

(see Remark 4.2) while the exponential factors in (4.18) aremultiplicators in the space of quasimeasures [KK07, Appendix
B]. Therefore, the formulas (4.17) with1 ≤ J ≤ N − 1 imply, in the limit Imω → 0+, that

ϕ̂+(x, ω) = Φ̂+
J (ω) cos(k(ω+i0)(x−XJ))+Θ̂+

J (ω)
sin(k(ω + i0)(x−XJ))

k(ω + i0)
, x ∈ [XJ , XJ+1], ω ∈ R, (4.22)
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sincecos(k(ω + i0)(x −XJ)) and sin(k(ω+i0)(x−XJ ))
k(ω+i0) are smooth functions ofω ∈ R. Similar representation holds for

ϕ̂−(x, ω). Therefore, the representation (4.6) follows forX1 ≤ x ≤ XN .
The formula (4.6) forx ≤ X1 follows from taking the limitImω → 0+ in the expression (4.16) for̃ϕ+(x, ω) and the

limit Imω → 0− in a similar expression for̃ϕ−(x, ω):

ϕ̃−(x, ω) = −
∑

J

f̃−
J (ω)

e−ik(ω)(x−XJ )

2ik(ω)
= e−ik(ω)(x−X1)ϕ̃−(X1, ω), x ≤ X1, ω ∈ C

−, (4.23)

and then taking the sum of the resulting expressions. This justifies (4.6) forx ≤ X1. Similarly we justify (4.6) for
x ≥ XN .

5 Absolute continuity of the spectrum

Lemma 5.1. The distributionŝΦ±
1 (ω), Φ̂±

N (ω) are absolutely continuous for|ω| > m, and moreover
∫

|ω|>m

[
|Φ̂±

1 (ω)|2 + |Φ̂±
N (ω)|2

]
ω k+(ω) dω <∞, (5.1)

whereω k+(ω) ≥ 0 by (3.8).

The bound for each of̂Φ±
1 (ω), Φ̂±

N (ω) is obtained verbatim by applying the proof of [KK07, Proposition 3.3].

Proposition 5.2. The distributionsΦ̂J (ω), 1 ≤ J ≤ N , and Θ̂J(ω), 1 ≤ J ≤ N − 1, are absolutely continuous for
|ω| > µJ and|ω| > (2pJ − 1)µJ , respectively, withµJ defined in (2.19). Moreover, for anyǫ > 0,

∫

|ω|>µJ+ǫ

|Φ̂J (ω)|2ω2 dω <∞, 1 ≤ J ≤ N ;

∫

|ω|>(2pJ−1)µJ+ǫ

|Θ̂J(ω)|2 dω <∞, 1 ≤ J ≤ N − 1. (5.2)

Proof. We will use induction, proving the absolute continuity ofϕ̂(XJ , ω) and∂xϕ̂(XJ ± 0, ω) starting withJ = 1 and
going toJ = N . By Lemma 4.1,ϕ̂(X1, ω) = Φ̂1(ω) = Φ̂+

1 (ω) + Φ̂−
1 (ω) and∂xϕ̂(X1 − 0, ω) = −ik+(ω)Φ̂+

1 (ω) −
ik−(ω)Φ̂−

1 (ω). Hence, Lemma 5.1 implies that, for anyǫ > 0,
∫

|ω|>m+ǫ

|ϕ̂(X1, ω)|2ω2 dω <∞,

∫

|ω|>m+ǫ

|ϕ̂′(X1 − 0, ω)|2 dω <∞. (5.3)

Now assume that for some1 ≤ J < N and for anyǫ > 0 we have:
∫

|ω|>µJ+ǫ

|ϕ̂(XJ , ω)|2ω2 dω <∞,

∫

|ω|>µJ+ǫ

|ϕ̂′(XJ − 0, ω)|2 dω <∞. (5.4)

Lemma 4.1 and equation (4.5) yield the jump condition

Θ̂J (ω) = ϕ̂′(XJ + 0, ω) = ϕ̂′(XJ − 0, ω) − f̂J(ω), ω ∈ R, (5.5)

wherefJ(t) = FJ (ψ(XJ , t)) by (3.3).

Lemma 5.3. For anyǫ > 0 the following inequality holds:
∫

|ω|>(2pJ−1)(µJ+2ǫ)

|f̂J(ω)|2 dω <∞. (5.6)

Proof. Let ζJ(ω) ∈ C∞
0 (R) be such thatζJ (ω) ≡ 1 for |ω| ≤ µJ + ǫ andζJ(ω) ≡ 0 for |ω| ≥ µJ + 2ǫ. We denote

ψ(XJ , t) byψJ(t), and split it into
ψJ(t) = ψJ,b(t) +ψJ,d(t), (5.7)

where the functions in the right-hand side are defined by their Fourier transforms:

ψ̂J,b(ω) = ζJ (ω)ψ̂J(ω) = ζJ (ω)ψ̂(XJ , ω), ψ̂J,d(ω) = (1 − ζJ (ω))ψ̂J (ω) = (1 − ζJ (ω))ψ̂(XJ , ω). (5.8)
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By Lemma 3.2 and by (5.4), we have
∫

R

|(1 − ζJ (ω))χ̂(XJ , ω)|2 ω2 dω <∞,

∫

R

|(1 − ζJ (ω))ϕ̂(XJ , ω)|2 ω2 dω <∞. (5.9)

Sinceψ̂J,d(ω) = (1 − ζJ(ω))(χ̂(XJ , ω) + ϕ̂(XJ , ω)), we also have
∫

R

∣∣∣(1 − ζJ(ω))ψ̂J (ω)
∣∣∣
2

ω2 dω <∞,

proving that
ψJ,d(t) ∈ H1(R). (5.10)

For f̂J(ω) = Ft→ω[FJ (ψJ(t))] = Ft→ω[FJ(ψ(XJ , t))], taking into account (2.17) and (5.7), we have:

f̂J(ω) = −
pJ∑

n=1

2nuJ,n (ψ̂J ∗ ψ̂J ) ∗ . . . ∗ (ψ̂J ∗ ψ̂J)︸ ︷︷ ︸
n−1

∗ψ̂J

= . . . . . −
pJ∑

n=1

2nuJ,n (ψ̂J,b ∗ ψ̂J,b) ∗ . . . ∗ (ψ̂J,b ∗ ψ̂J,b)︸ ︷︷ ︸
n−1

∗ψ̂J,b, (5.11)

where the dots in the right-hand side denote the convolutions of ψ̂J,b, ψ̂J,b, ψ̂J,d, andψ̂J,d that contain at least one of

ψ̂J,d, ψ̂J,d. SinceψJ,b(t), ψJ,d(t) are bounded whileψJ,d(t) ∈ H1(R) by (5.10), all these terms belong toL2(R).

Finally, sincesupp ψ̂J,b ⊂ [−µJ − 2ǫ, µJ + 2ǫ], the convolutions under the summation sign in the right-hand side of
(5.11) are supported inside[−(2pJ − 1)(µJ + 2ǫ), (2pJ − 1)(µJ + 2ǫ)] and do not contribute into the integral (5.6).

Using (5.4) and Lemma 5.3 to estimate the norms of∂xϕ̂(XJ − 0, ω) andf̂J(ω) in the right-hand side in the relation
(5.5), we conclude that ∫

|ω|>(2pJ−1)(µJ+2ǫ)

|ϕ̂′(XJ + 0, ω)|2 dω <∞. (5.12)

Now the inequalities
∫

|ω|>(2pJ−1)(µJ+2ǫ)

|ϕ̂(XJ+1, ω)|2ω2 dω <∞,

∫

|ω|>(2pJ−1)(µJ+2ǫ)

|ϕ̂′(XJ+1 − 0, ω)|2 dω <∞ (5.13)

follow from the representation (4.6) forx ∈ [XJ , XJ+1], where we apply the first inequality from (5.4) and the inequality
(5.12). Therefore, starting with (5.3), one shows by induction that (5.4) holds for all1 ≤ J ≤ N . The estimates on
Φ̂J (ω) = ϕ̂(XJ , ω) andΘ̂J (ω) = ϕ̂′(XJ +0, ω) stated in the Proposition follow from (5.4) and (5.12), respectively. This
finishes the proof of Proposition 5.2.

Corollary 5.4. The distributionsΦ̂J(ω) = ϕ̂(XJ , ω), 1 ≤ J ≤ N , are absolutely continuous for|ω| > MJ , while
Θ̂J (ω) = ∂xϕ̂(XJ+0, ω), 1 ≤ J ≤ N−1, are absolutely continuous for|ω| > (2pJ−1)MJ , whereMJ := min(µJ , µ

′
J )

is defined in (2.20).

Proof. In the proof of Proposition 5.2, we could as well proceed fromJ = N to J = 1, proving the result stated in the
Corollary.

6 Compactness

Second dispersive component

Let ζ(ω) ∈ C∞
0 (R) be such thatζ(ω) ≡ 1 for |ω| < Λ, whereΛ is from (2.20). Defineϕd(x, t) by its Fourier transform:

ϕ̂d(x, ω) := (1 − ζ(ω))ϕ̂(x, ω) x ∈ R, ω ∈ R. (6.1)
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Lemma 6.1. ϕd(x, t) is a bounded continuous function oft ∈ R with values inH1(R):

ϕd(x, t) ∈ Cb(R, H
1(R)). (6.2)

The local energy decay holds forϕd(x, t):

lim
t→∞

‖(ϕd, ϕ̇d)‖E ,R = 0, ∀R > 0. (6.3)

Proof. We generalize the proof of [KK07, Proposition 3.6]. By Lemma4.1,

ϕ̂d(x, ω) =





(1 − ζ(ω))
[
Φ̂+

1 (ω)e−ik+(ω)(x−X1) + Φ̂−
1 (ω)e−ik−(ω)(x−X1)

]
, x ≤ X1,

(1 − ζ(ω))Φ̂J (ω) cos(k+(ω)(x−XJ)) + (1 − ζ(ω))Θ̂J (ω) sin(k+(ω)(x−XJ ))
k+(ω)(x−XJ ) , x ∈ [XJ , XJ+1],

(1 − ζ(ω))
[
Φ̂+
N (ω)eik+(ω)(x−XN ) + Φ̂−

N (ω)eik−(ω)(x−XN )
]
, x ≥ XN .

(6.4)
Each of the functions entering the above expression, considered on the whole real line, corresponds to a finite energy
solution to a linear Klein-Gordon equation, satisfying theproperties stated in the lemma. For example, defineu(x, t) by
its Fourier transform:

û(x, ω) := (1 − ζ(ω))Φ̂1(ω) cos(k+(ω)(x−X1)), x ∈ R.

Thenu(x, t) is a solution to a linear Klein-Gordon equation, and, by Proposition 5.2, the corresponding initial data are of
finite energy:

(u(x, 0), u̇(x, 0)) ∈ E .

Henceu(x, t) ∈ Cb(R, H
1(R)) and satisfies the local energy decay of the form (6.3) (see [KK07, Lemma 3.1]. This

finishes the proof.

Compactness for the bound component

We introduce the bound component ofϕ(x, t) by

ϕb(x, t) = ϕ(x, t) − ϕd(x, t) = ψ(x, t) − χ(x, t) − ϕd(x, t), x ∈ R, t ∈ R. (6.5)

By Lemma 6.1,
ϕb(x, t) ∈ Cb(R, H

1(R)). (6.6)

Lemma 4.1 and (6.1), (6.5) imply the multiplicative relation

ϕ̂b(x, ω) =






ζ(ω)
[
Φ̂+

1 (ω)e−ik+(ω)(x−X1) + Φ̂−
1 (ω)e−ik−(ω)(x−X1)

]
, x ≤ X1,

ζ(ω)
[
Φ̂J (ω) cos(k+(ω)(x −XJ)) + Θ̂J (ω) sin(k+(ω)(x−XJ ))

k+(ω)

]
, x ∈ [XJ , XJ+1],

ζ(ω)
[
Φ̂+
N (ω)eik+(ω)(x−XN ) + Φ̂−

N (ω)eik−(ω)(x−XN )
]
, x ≥ XN .

(6.7)

By (6.6), the functions
ϕb,J(t) := ϕb(XJ , t) = ϕ(XJ , t) − ϕd(XJ , t)

are bounded and continuous. Therefore,ϕ̂b(XJ , ·) ∈ S ′(R) are quasimeasures (see Remark 4.2).

Proposition 6.2. (i) The functionϕb(x, t) is smooth forx ∈ R\X (whereX = {X1, X2, . . . , XN}) andt ∈ R.

(ii ) For anyR > 0,
sup

|x|≤R,x/∈X
sup
t∈R

|∂mx ∂nt ϕb(x, t)| <∞. (6.8)

The argument repeats the proof of Proposition [KK07, Proposition 4.1].

Remark6.3. Let us note that the bounds (6.8) are independent ofx and remain valid forx /∈ X , although the derivatives
∂mx ∂

n
t ϕb(x, t) with m 6= 0 may have jumps atx = XJ . (Note that this is the case for the solitary waves in (2.15).)

We now may deduce the compactness of the set of translations of the bound component,{ϕb(x, s+ t): s ≥ 0}.
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Corollary 6.4. (i) By the Ascoli-Arzelà Theorem, for any sequencesj → ∞ there exists a subsequencesj′ → ∞ such
that

ϕb(x, sj′ + t) → β(x, t), x ∈ R, t ∈ R, (6.9)

and also for any nonnegative integersm andn,

∂mx ∂
n
t ϕb(x, sj′ + t) → ∂mx ∂

n
t β(x, t), x /∈ X , t ∈ R, (6.10)

for someβ(x, t) ∈ Cb(R, H
1(R)). The convergence in (6.9) and (6.10) is uniform inx andt as long as|x|+|t| ≤ R,

for anyR > 0. The convergence in (6.10) also holds forx = XJ ± 0.

(ii ) By the Fatou Lemma,
sup
t∈R

‖β(·, t)‖H1 <∞. (6.11)

We callomega-limit trajectoryany functionβ(x, t) that can appear as a limit in (6.9), (6.10).

Remark6.5. Previous analysis demonstrates that the long-time asymptotics of the solutionψ(x, t) in EF depends only
on the singular componentϕ(x, t). Due to Corollary 6.4, to conclude the proof of Theorem 2.10,it suffices to check that
every omega-limit trajectory belongs to the set of solitarywaves; that is,

β(x, t) = φω+
(x)e−iω+t for some ω+ ∈ [−m,m]. (6.12)

7 Nonlinear spectral analysis

Bounds for the spectrum

By Lemmas 3.1 and 6.1, the dispersive componentsχ(·, t) andϕd(·, t) converge to zero inEF ast → ∞. On the other
hand, by Corollary 6.4, the bound componentϕb(x, t+ sj′) converges toβ(x, t) asj′ → ∞, uniformly in every compact
set of the planeR2. Hence,ψ(x, t + sj′ ) = ϕb(x, t + sj′) + χ(x, t + sj′) + ϕd(x, t + sj′) also converges toβ(x, t)
uniformly in every compact set of the planeR2. Therefore, taking the limit in equation (2.1), we concludethat the
omega-limit trajectoryβ(x, t) also satisfies the same equation:

β̈(x, t) = β′′(x, t) −m2β(x, t) +
∑

J

δ(x−XJ)FJ (β). (7.1)

Remark7.1. Note that the bound componentϕb(x, t) itself generally does not satisfy equation (7.1).

Taking the Fourier transform ofβ in time, we see by (6.10) that̂β(x, ω) is a continuous function ofx ∈ R, smooth
for x ∈ R\X , with values in tempered distributions ofω ∈ R, and that it satisfies the corresponding stationary equation

− ω2β̂(x, ω) = β̂′′(x, ω) −m2β̂(x, ω) +
∑

J

δ(x−XJ)ĝJ (ω), (x, ω) ∈ R
2, (7.2)

valid in the sense of tempered distributions of(x, ω) ∈ R2, whereĝJ(ω) are the Fourier transforms of the functions

gJ(t) := FJ (β(XJ , t)), 1 ≤ J ≤ N. (7.3)

We also denote
βJ (t) := β(XJ , t), ΣJ := supp β̂J , 1 ≤ J ≤ N. (7.4)

From (6.7), we know that the spectrum ofϕb(x, t) is bounded for allx ∈ R. Hence, the convergence (6.10) implies
that the spectrum ofβ(x, t) is also bounded. We will need more precise bounds on the size of the spectrum ofβ:

Lemma 7.2. (i) ΣJ := supp β̂J ⊂ [−MJ ,MJ ], 1 ≤ J ≤ N ;

(ii ) supp β̂′(XJ + 0, ω) ⊂ [−(2pJ − 1)MJ , (2pJ − 1)MJ ], 1 ≤ J ≤ N − 1, withMJ > 0 defined in (2.20).
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Proof. We have the relation

ϕb(x, sj + t) =
1

2π

∫

R

e−iωte−iωsj ϕ̂b(x, ω) dω, x ∈ R, t ∈ R,

where the integral is understood as the pairing of a smooth function (oscillating exponent) with a compactly supported
distribution. Then the convergence (6.9) implies that

e−iωsj′ ϕ̂b(x, ω) → β̂(x, ω), x ∈ R, sj′ → ∞, (7.5)

in the sense of quasimeasures. Sinceϕ̂b(XJ , ω) is locallyL2 for |ω| > MJ by Corollary 5.4, the convergence (7.5) at
x = XJ shows that̂βJ(ω) := β̂(XJ , ω) vanishes for|ω| > MJ . This proves the first statement of the lemma.

The second statement is proved similarly. Namely, the convergence (6.10) implies that

e−iωsj′ ∂xϕ̂b(XJ + 0, ω) → ∂xβ̂(XJ + 0, ω), sj′ → ∞, (7.6)

in the sense of quasimeasures. Sinceϕ̂′
b(XJ+0, ω) is locallyL2 for |ω| > (2pJ−1)MJ by Corollary 5.4, the convergence

(7.6) shows that̂β′(XJ + 0, ω) vanishes for|ω| > (2pJ − 1)MJ .

We denote
κ(ω) := −ik+(ω), ω ∈ R, (7.7)

wherek+(ω) was introduced in (3.6). We then haveReκ(ω) ≥ 0, and also

κ(ω) =
√
ω2 −m2 > 0 for −m < ω < m,

in accordance with (2.15).

Proposition 7.3. The distributionβ̂(x, ω) admits the following representation:

β̂(x, ω) =





β̂1(ω)eκ(ω)(x−X1), x ≤ X1,

β̂J(ω)cosh(κ(ω)(x−XJ )) + β̂′(XJ + 0, ω) sinh(κ(ω)(x−XJ ))
κ(ω) , x ∈ [XJ , XJ+1], 1 ≤ J ≤ N − 1,

β̂N (ω)e−κ(ω)(x−XN ), x ≥ XN .

(7.8)

Proof. By (7.5), the middle line in (7.8) follows from the representation (4.6) since the multiplicators are smooth bounded
functions ofω ∈ R. Taking the limit in the first line of (4.6), we obtain the firstline in (7.8) sinceΣ1 ⊂ [−m,m] by
Lemma 7.2, whilek+(ω) = k−(ω) = iκ(ω) for −m ≤ ω ≤ m (Cf. (3.7), (7.7)). Similarly we explain the last line in
(7.8).

Reduction to point spectrum

Proposition 7.4. Any omega-limit trajectoryβ(x, t) is a solitary wave:

β(x, t) = φ(x)e−iω+t with ω+ ∈ [−m,m] and φ(x) ∈ H1(R).

Proof. The proof is based on the following lemmas.

Lemma 7.5. If Σ1 = ∅, thenβ(x, t) ≡ 0.

Proof. According to equation (7.2), the function̂β satisfies the following continuity and jump conditions at the pointX1:

β̂(X1 + 0, ω) = β̂(X1 − 0, ω) = β̂1(ω), β̂′(X1 + 0, ω) = β̂′(X1 − 0, ω) + ĝ1(ω), ω ∈ R. (7.9)

Σ1 = ∅ means that̂β1(ω) ≡ 0, that is,β1(t) ≡ 0. Hence,g1(t) ≡ F1(β1(t)) ≡ 0, andĝ1(ω) ≡ 0. On the other hand,
the first line of (7.8) implies that̂β(x, ω) ≡ 0 for x ≤ X1, and in particular̂β′(X1 − 0, ω) ≡ 0. Therefore, the jump
condition (7.9) implies that̂β′(X1 + 0, ω) ≡ 0. Hence,β̂(x, ω) ≡ 0 for x ∈ [X1, X2] by the middle line of (7.8). By
induction,β̂J (x, ω) ≡ 0.
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Now we consider the caseΣ1 6= ∅.

Lemma 7.6. If Σ1 6= ∅, thenΣ1 = {ω+} for someω+ ∈ [−m,m].

Proof. By Lemma 7.2, we know thatΣ1 ⊂ [−m,m]. To show thatΣ1 consists of a single point, we assume that, on the
contrary,inf Σ1 < supΣ1. By (2.17), the Fourier transform̂g1(ω) of g1(t) := F1(β(X1, t)) is given by

ĝ1 = −
p1∑

n=1

2nu1,n (β̂1 ∗ β̂1) ∗ . . . ∗ (β̂1 ∗ β̂1)︸ ︷︷ ︸
n−1

∗β̂1. (7.10)

Applying the Titchmarsh Convolution Theorem [Tit26] (see also [Lev96, p.119] and [Hör90, Theorem 4.3.3]) to the
convolutions in (7.10), we obtain the following equalities:

inf supp ĝ1 = inf supp β̂1 + (p1 − 1) inf supp(β̂1 ∗ β̂1) = inf Σ1 + (p1 − 1)(inf Σ1 − sup Σ1), (7.11)

sup supp ĝ1 = sup supp β̂1 + (p1 − 1) sup supp(β̂1 ∗ β̂1) = sup Σ1 + (p1 − 1)(sup Σ1 − inf Σ1), (7.12)

where we used the relationsinf supp β̂1 = − sup supp β̂1, sup supp β̂1 = − inf supp β̂1. Note that the Titchmarsh
theorem is applicable sincesupp β̂1 is compact by Lemma 7.2. Since we assumed thatinf Σ1 < sup Σ1, (7.11) and
(7.12) imply thatinf supp ĝ1 < inf Σ1, sup supp ĝ1 > sup Σ1. Therefore, the jump condition (7.9) withJ = 1 implies
that

inf supp β̂′(X1 + 0, ·) = inf supp ĝ1 < inf Σ1, sup supp β̂′(X1 + 0, ·) = sup supp ĝ1 > supΣ1. (7.13)

The ratiosinh(κ(ω)(X2 −X1))/κ(ω) could only vanish at the pointsω = ±ω1,n, where

ωJ,n :=

√
π2n2

|XJ+1 −XJ |2
+m2, 1 ≤ J ≤ N − 1, n ∈ N.

Due to Assumption 2.3 and Lemma 7.2,supp β̂′(X1 + 0, ω) ∩ {±ω1,n: n ∈ N} = ∅. Hence, the middle line of (7.8) at
x = X2 − 0 and the inequalities (7.13) imply that

inf Σ2 = inf supp ĝ1 < inf Σ1, sup Σ2 = sup supp ĝ1 > sup Σ1. (7.14)

We proceed by induction, proving that

inf Σ1 > inf Σ2 > . . . > inf ΣN , sup Σ1 < supΣ2 < . . . < sup ΣN . (7.15)

It then follows thatinf ΣN < sup ΣN . Starting fromJ = N and going to the left, we also prove the opposite inequalities:

inf Σ1 < inf Σ2 < . . . < inf ΣN , sup Σ1 > supΣ2 > . . . > sup ΣN . (7.16)

The contradiction of (7.15) and (7.16) shows that our assumption thatinf Σ1 < sup Σ1 was false, henceΣ1 = {ω+} for
someω+ ∈ [−m,m].

Thus,supp β̂1(ω) = Σ1 ⊂ {ω+}, with ω+ ∈ [−m,m]. Therefore,

β̂1(ω) = a1δ(ω − ω+), with some a1 ∈ C. (7.17)

Note that the derivativesδ(k)(ω − ω+), k ≥ 1 do not enter the expression forβ̂1(ω) = Ft→ω[β(X1, t)] sinceβ(x, t) is a
bounded continuous function of(x, t) ∈ R2 due to the bound (6.11).

Lemma 7.7. β̂(x, ω) = a(x)δ(ω − ω+), wherea(x) is a bounded continuous function.

Proof. For x ≤ X1, the representation stated in the lemma follows from the first line in (7.8) and from (7.17). Let us
prove this representation forX1 ≤ x ≤ X2. By (7.17), we haveβ1(t) := β(X1, t) = a1e

−iω+t/2π, henceg1(t) :=
F1(β1(t)) = b1e

−iω+t for someb1 ∈ C due to theU(1)-invariance (1.2). Therefore,ĝ1(ω) = 2πb1δ(ω−ω+). Moreover,
by (7.8), we havêβ′(X1 − 0, ω) = κ(ω+)a1δ(ω − ω+). Hence, the jump condition (7.9) implies thatβ̂′(X1 + 0, ω) =

c1δ(ω − ω+), for somec1 ∈ C. Finally, (7.8) implies that̂β(x, ω) = a(x)δ(ω − ω+) for x ∈ [X1, X2], with a(x) a
continuous complex-valued function ofx. Proceeding by induction, we obtain similar representation for β̂(x, ω) for all
x ∈ R.
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Now we can finish the proof of Proposition 7.4. Lemma 7.7 implies thatβ(x, t) = φ(x)e−iω+t, whereφ(x) =
a(x)/2π. We conclude from (6.11) thatφ ∈ H1(R), finishing the proof of Proposition 7.4. Note thatω = ±m could only
correspond to the zero solution (see Remark 2.9).

According to Remark 6.5, Proposition 7.4 completes the proof of Theorem 2.10.

8 Multifrequency solitary waves

We will show that when the assumptions of Theorem 2.10 are notsatisfied, then the attractor could be more complicated
because the equation admits multifrequency solitary wave solutions.

8.1 Wide gaps

Let us consider equation (2.1) withN = 2, under Assumptions 2.1 and 2.2.

Proposition 8.1. If the Assumption 2.3 is violated, then the conclusion of Theorem 2.10 may no longer be correct.

Proof. We will show that ifL := X2 −X1 is sufficiently large, then one can takeF1(ψ) andF2(ψ) satisfying Assump-
tions 2.1 and 2.2 such that the global attractor of the equation contains the multifrequency solutions which do not converge
to solitary waves of the form (2.14). For our convenience, weassume thatX1 = 0,X2 = L. We consider the model (2.1)
with the nonlinearity

F1(ψ) = F2(ψ) = F (ψ), where F (ψ) = αψ + β|ψ|2ψ, α, β ∈ R. (8.1)

In terms of the condition (2.17),p1 = p2 = 2. We takeL to be large enough:

L >
π

23/2m
. (8.2)

Consider the function

ψ(x, t) = A(e−κ(ω)|x| + e−κ(ω)|x−L|) sin(ωt) +Bχ[0,L](x) sin(k(3ω)x) sin(3ωt), A, B ∈ C. (8.3)

Thenψ(x, t) solves (2.1) forx away from the pointsXJ . We require that

k(3ω) =
π

L
, (8.4)

so thatψ(x, t) is continuous inx ∈ R and symmetric with respect tox = L/2:

ψ(x, t) = ψ(
L

2
− x, t), x ∈ R.

We need|ω| < m to haveκ(ω) > 0, and3|ω| > m to havek(3ω) ∈ R. We takeω > 0, and thusm < 3ω < 3m. By
(8.4), this means that we need

m <

√
π2

L2
+m2 < 3m.

The second inequality is satisfied by (8.2).
Due to the symmetry ofψ(x, t) with respect tox = L/2, the jump condition (7.9) both atx = 0 and atx = L takes

the following identical form:

2Aκ(ω) sinωt−Bk(3ω) sin 3ωt = F
(
A(1 + e−κ(ω)L) sin(ωt)

)
. (8.5)

Using the identity

sin3 θ =
3

4
sin θ − 1

4
sin 3θ, (8.6)

we see that

F (A(1+e−κ(ω)L) sinωt) =
(
αA(1+e−κ(ω)L)+

3

4
β|A|2A(1+e−κ(ω)L)3

)
sin(ωt)− 1

4
β|A|2A(1+e−κ(ω)L)3 sin(3ωt).

(8.7)
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Collecting in (8.5) the terms atsinωt and atsin 3ωt, we obtain the following system:

{
2Aκ(ω) = αA(1 + e−κ(ω)L) + 3

4β|A|2A(1 + e−κ(ω)L)3,

Bk(3ω) = 1
4β|A|2A(1 + e−κ(ω)L)3.

(8.8)

Assuming thatA 6= 0, we divide the first equation byA:

2κ(ω) = α(1 + e−κ(ω)L) +
3

4
β|A|2(1 + e−κ(ω)L)3. (8.9)

The condition for the existence of a solutionA 6= 0 is

( 2κ(ω)

1 + e−κ(ω)L
− α

)
β > 0. (8.10)

Once we foundA, the second equation in (8.8) can be used to expressB in terms ofA.

Remark8.2. Condition (8.10) shows that we can chooseβ < 0 taking largeα > 0. The corresponding potential
U(ψ) = −α|ψ|2/2 − β|ψ|4/4 satisfies (2.13) and Assumptions 2.1 and 2.2.

8.2 Linear degeneration

Let us consider equation (2.1) withN = 2, under Assumptions 2.1 and 2.3.

Proposition 8.3. If the Assumption 2.2 is violated, then the conclusion of Theorem 2.10 may no longer be correct.

Proof. Again, we construct multifrequency solutions. Consider the equation

ψ̈ = ψ′′ −m2ψ + δ(x)F1(ψ) + δ(x− L)F2(ψ), (8.11)

where
F1(ψ) = αψ + β|ψ|2ψ, F2(ψ) = γψ, α, β, γ ∈ R. (8.12)

Note that the functionF2 is linear, failing to satisfy Assumption 2.2. The function

ψ(x, t) =






(A+B)eκ(ω)x sin(ωt), x ≤ 0,
(
Ae−κ(ω)x +Beκ(ω)x

)
sin(ωt) + C sinh(κ(3ω)x) sin(3ωt), x ∈ [0, L],

(Ae−κ(ω) +Beκ(ω)(2L−x)) sin(ωt) + C
sinh(κ(3ω)L)e

−κ(3ω)(x−L) sin(3ωt), x ≥ L,

whereω ∈ (0,m/3), will be a solution if the jump conditions are satisfied atx = 0 and atx = L:

− ψ′(0+, t) + ψ′(0−, t) = αψ(0, t) + βψ3(0, t), (8.13)

− ψ′(L+, t) + ψ′(L−, t) = αψ(L, t) + βψ3(L, t). (8.14)

We use the identity

α(A +B) sin(ωt) + β((A+B) sin(ωt))3 =
(
α(A +B) + β

3(A+B)3

4

)
sin(ωt) − β

(A+B)3

4
sin(3ωt)

which follows from (8.6). Collecting the terms atsin(ωt) and atsin(3ωt), we write the condition (8.13) as the following
system of equations:

2κ(ω)A =
(
α(A +B) + β

3(A+B)3

4

)
, (8.15)

−κ(3ω)C = −β (A+B)3

4
. (8.16)
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Similarly, the condition (8.14) is equivalent to the following two equations:

2Bκ(ω)eκ(ω)L = γ(Ae−κ(ω)L +Beκ(ω)L), (8.17)

κ(3ω)C

sinh(κ(3ω)L)
+ κ(3ω)C cosh(κ(3ω)L) = γC sinh(κ(3ω)L). (8.18)

Equations (8.15), (8.16), (8.17), and (8.18) could be satisfied for arbitraryL > 0. Namely, for anyω ∈ (0,m/3), one
uses (8.18) to determineγ. For anyβ 6= 0, there is always a solutionA, andB to the nonlinear system (8.15), (8.17).
Finally,C is obtained from (8.16).

A Global well-posedness

Here we prove Theorem 2.4. We first need to adjust the nonlinearity F so that it becomes bounded, together with its
derivatives. Define

λ0 =

√
H(ψ0, π0) −

∑
J AJ

m− ∑
J BJ

, (A.1)

where(ψ0, π0) ∈ E is the initial data from Theorem 2.4 andAJ , BJ are constants from (2.13). Then we may pick a
modified potential functioñUJ ∈ C2(C,R), ŨJ(ψ) = ŨJ(|ψ|), j = 1, 2, so that

ŨJ (ψ) = UJ(ψ) for |ψ| ≤ λ0, ψ ∈ C, (A.2)

ŨJ(ψ) satisfy (2.13) with the same constantsAJ ,BJ asUJ(ψ) do:

ŨJ(ψ) ≥ AJ −BJ |ψ|2, for ψ ∈ C, where AJ ∈ R, BJ ≥ 0, 1 ≤ J ≤ N,
∑

J

BJ < m, (A.3)

and so that|ŨJ(ψ)|, |Ũ ′
J(ψ)|, and|Ũ ′′

J (ψ)| are bounded forψ ≥ 0. We define

F̃J(ψ) = −∇ŨJ(ψ), ψ ∈ C, (A.4)

where∇ denotes the gradient with respect toReψ, Imψ; ThenF̃J (eisψ) = eisF̃J(ψ) for anyψ ∈ C, s ∈ R.
We consider the Cauchy problem of type (2.1) with the modifiednonlinearity,

{
ψ̈(x, t) = ψ′′(x, t) −m2ψ(x, t) +

∑
J δ(x−XJ)F̃J (ψ(XJ , t)), x ∈ R, t ∈ R,

ψ|
t=0

= ψ0(x), ψ̇|
t=0

= π0(x).
(A.5)

Equation (A.5) formally can be written as the following Hamiltonian system (Cf. (2.5)):

Ψ̇(t) = J DH̃(Ψ), J =

[
0 1

−1 0

]
, (A.6)

whereDH̃ is the variational derivative of the Hamilton functional

H̃(Ψ) =

∫

R

(
|π|2 + |∇ψ|2 +m2|ψ|2

)
dx+

∑

J

ŨJ(ψ(XJ , t)), Ψ =

[
ψ(x)

π(x)

]
∈ E , (A.7)

which is Fréchet differentiable in the spaceE = H1 × L2. By the Sobolev embedding theorem,L∞(R) ⊂ H1(R), and
there is the following inequality:

‖ψ‖2
L∞ ≤ 1

2m
(‖ψ′‖2

L2 +m2‖ψ‖2
L2) ≤ 1

2m
‖Ψ‖2

E . (A.8)

Thus, (A.3) leads to

ŨJ(ψ(0)) ≥ AJ −BJ‖ψ‖2
L∞ ≥ AJ − BJ

2m
‖Ψ‖2

E
. (A.9)
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Taking into account (A.7), we obtain the inequality

‖Ψ‖2
E

= 2H̃(Ψ) − 2
∑

J

ŨJ(ψ(XJ )) ≤ 2H̃(Ψ) − 2
∑

J

AJ +

∑
J BJ
m

‖Ψ‖2
E
, Ψ ∈ E . (A.10)

It follows that

‖Ψ‖2
E ≤ 2m

m− ∑
J BJ

(
H̃(Ψ) −

∑

J

AJ

)
, Ψ ∈ E . (A.11)

Lemma A.1. (i) There is the identitỹH(Ψ0) = H(Ψ0).

(ii ) If Ψ =

[
ψ(x)

π(x)

]
∈ E satisfiesH̃(Ψ) ≤ H̃(Ψ0), then ŨJ(ψ(x)) = UJ(ψ(x)) for anyx ∈ R.

Proof. According to (A.11), the Sobolev embedding (A.8), and the choice ofλ0 in (A.1),

‖ψ0‖2
L∞ ≤ 1

2m
‖Ψ0‖2

E ≤ H(Ψ0) −
∑

J AJ
m− ∑

J BJ
= λ2

0. (A.12)

Thus, by (A.2),Ũ(ψ0(x)) = U(ψ0(x)) for all x ∈ R. This proves (i).
By (A.8), the relation (A.11), the conditioñH(Ψ) ≤ H̃(Ψ0), and part (i) of the Lemma, we have:

‖ψ‖2
L∞ ≤ 1

2m
‖Ψ‖2

E
≤ H̃(Ψ) − ∑

J AJ
m− ∑

J BJ
≤ H̃(Ψ0) −

∑
J AJ

m− ∑
BJ

=
H(Ψ0) −

∑
J AJ

m− ∑
J BJ

= λ2
0.

Now the statement (ii ) follows by (A.2).

If Ψ(t) solves (A.6), theñH(Ψ(t)) = H̃(Ψ0), By Lemma A.1 (ii ), ŨJ(ψ(x, t)) = UJ(ψ(x, t)) for all x ∈ R, t ∈ R.
Hence,F̃J (ψ(x, t)) = FJ (ψ(x, t)) for all x ∈ R, t ≥ 0, allowing us to conclude thatψ(t) solves (2.1) as well as (A.5).
The rest of the proof of Theorem 2.4 repeats the proof of a similar result for the caseN = 1 [KK07, Theorem 2.3].
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