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Abstract

We establish soliton-like asymptotics for finite energy solutions to the Dirac

equation coupled to a relativistic particle. Any solution with initial state close to

the solitary manifold, converges in long time limit to a sum of traveling wave and

outgoing free wave. The convergence holds in global energy norm. The proof uses

spectral theory and symplectic projection onto solitary manifold in the Hilbert phase

space.
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1 Introduction

We prove long time convergence to sum of a soliton and dispersive wave for the Dirac
equation coupled to a relativistic particle. The convergence holds in global energy norm
for finite energy solutions with initial state close to the solitary manifold. Our main
motivation is to develop techniques of Buslaev and Perelman [2, 3] in the context of the
Dirac equation. The development is not straightforward because of known peculiarities
of the Dirac equation: nonpositivity of the energy, algebra of the Dirac matrices, etc. We
expect that the result might be extended to relativistic nonlinear Dirac equations relying
on an appropriate development of our techniques.

Let ψ(x) ∈ C4 be a Dirac spinor field in R3, coupled to a relativistic particle with
position q and momentum p, governed by







iψ̇(x, t) = [−iα1∂1 − iα2∂2 − iα3∂3 + βm]ψ(x, t) + ρ(x− q(t))

q̇(t) = p(t)/
√

1 + p2(t), ṗ(t) = Re〈ψ(x, t),∇ρ(x− q(t))〉

∣

∣

∣

∣

∣

∣

x ∈ R3 (1.1)

where ρ ∈ C(R3,C4) and 〈·, ·〉 stands for the Hermitian scalar product on L2(R3) ⊗ C4.
Here ∂j = ∂/∂xj , αj and β are 4× 4 Dirac matrices. The standard representation for the
Dirac matrices αj and β (in 2 × 2 blocks) is

β = α0 =

(

I2 0
0 −I2

)

, αj =

(

0 σj

σj 0

)

, j = 1, 2, 3

where I2 denotes the unit 2 × 2 matrix, and

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

The matrices αj , j = 0, 1, 2, 3 are Hermitian, and satisfy the anticommutation relations

α∗
j = αj, αjαk + αkαj = 2δjk (1.2)

We will use the following real orthogonality relations

βψ · αjψ = 0, j = 1, 3, and α2ψ · ψ = 0, ψ ∈ R4 (1.3)

Here and below “ · ” stands for the Hermitian scalar product on Cn with appropriate n.
System (1.1) is translation-invariant, and admits soliton solutions

sa,v(t) = (ψv(x− vt− a), vt+ a, pv), pv = v/
√

1 − v2 (1.4)

for all a, v ∈ R3 with |v| < 1. The states Sa,v := sa,v(0) form the solitary manifold

S := {Sa,v : a, v ∈ R3, |v| < 1}

Our main result is soliton-type asymptotics

ψ(x, t) ∼ ψv±(x− v±t− a±) +W0(t)φ±, t→ ±∞ (1.5)

for solutions to (1.1) with initial data close to solitary manifold S. Here W0(t) is the dy-
namical group of the free Dirac equation, φ± are the corresponding asymptotic scattering
states, and the asymptotics hold in the global norm of the Hilbert space L2(R3)⊗C4. For
the particle trajectory we prove that

q̇(t) → v±, q(t) ∼ v±t+ a±, t→ ±∞ (1.6)
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The results are established under the following conditions on the complex valued charge
distribution: for some ν > 5/2

(1 + |x|)ν|∂αρ(x)| ∈ L2(R3), |α| ≤ 3 (1.7)

We assume that ρ(x) is spherically symmetric for simplicity of calculations. Finally, we

assume the Wiener condition for the Fourier transform ρ̂ = (2π)−3/2

∫

eikxρ(x)dx:

B(k) = mβρ̂(k) · ρ̂(k) > 0, k ∈ R3 (1.8)

which is nonlinear version of the Fermi Golden Rule in our case (cf. [4, 13, 14, 15]):
nonlinear perturbation is not orthogonal to eigenfunctions of continuous spectrum of the
linear part. The examples are easily constructed. Namely, let us rewrite (1.8) in the form

B(k) = m[|ρ̂1(k)|2 + |ρ̂2(k)|2 − |ρ̂3(k)|2 − |ρ̂4(k)|2] > 0, k ∈ R3 (1.9)

Therefore, we can take e.g. ρ1 constructed in [12], and ρ2 = ρ3 = ρ4 = 0.
The system (1.1) describes charged particle interacting with its “own” Dirac field.

The asymptotics (1.5)-(1.6) mean asymptotic stability of uniform motion, i.e. “law of
inertia”. The stability is caused by “radiative damping”, i.e. radiation of energy to
infinity appearing analytically as a local energy decay for solutions to linearized equation.
The radiative damping was suggested first by M.Abraham in 1905 in the context of the
Maxwell-Lorentz equations, [1].

One could expect asymptotics (1.5) for small perturbations of solitons for relativistic
nonlinear Dirac equations and for coupled nonlinear Maxwell-Dirac equations whose soli-
tons were constructed in [6]. Our result models this situation though the relativistic case
is still open problem.

Asymptotics of type (1.5)-(1.6) were obtained previously for the Klein-Gordon and
Schrödinger equations coupled to the particle [8, 10]. More weak asymptotics of type
(1.5) in the local energy norms, and without the dispersive wave, were obtained in [7] and
[11] for all finite energy solutions to the Maxwell-Lorentz and wave equations.

Let us comment on our approach. For 1D translation invariant Schrödinger equation,
the asymptotics of type (1.5) were proved for the first time by Buslaev and Perelman
[2, 3, 4], and extended by Cuccagna [5] to higher dimensions. We prove the asymp-
totics (1.5)– (1.6) applying approach [8] where general Buslaev and Perelman strategy
has been developed for the case of 3D Klein-Gordon equation: i) symplectic orthogonal
decomposition of the dynamics near the solitary manifold, ii) modulation equations for
the symplectic projection onto the manifold, and iii) time decay in transversal directions,
etc (see more details in Introduction [8]). Our main novelties are the following.

I. It is well known that the Hamiltonian of the Dirac equation is nonpositive. Re-
spectively, the energy conservation does not provide a uniform a priori estimate for the
solution. We obtain an estimate for L2 norm of the solution using unitarity of free Dirac
propagator. This estimate provides existence of global solution.

On the other hand, for linearized equation unitarity of free propagator provides only
exponential bounds ∼ eαt for L2 norm of the solution. This guarantees existence of global
solution and analyticity of the resolvent for Reλ > α. However, we need the analyticity
for Reλ > 0 which we obtain by bifurcation arguments relying on our analysis of the
Fourier-Laplace transform (Lemma 14.4).

II. We establish an appropriate decay of the linearized dynamics:
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i) We prove time decay ∼ t−3/2 in weighted norms for a modified free Dirac equation
(Lemma 15.1). The proof relies on a “soft version” of strong Huygens principle for the
Dirac equation. Namely, the free Dirac propagator is concentrated mainly near the light
cone, while contribution of inner zone is a Hilbert-Schmidt operator.

ii) We compute all needed spectral properties of the linearized equation at the soliton
in contrast to majority of works in the field, where the corresponding spectral properties
are postulated. Namely, we find that under the Wiener condition (1.8), discrete spectrum
consists only of one zero point with algebraic multiplicity 6. The multiplicity is totally
due to the translation invariance of the system (1.1).

iii) We exactly calculate the symplectic orthogonality conditions (15.18) for initial
data of the linearized equation. These conditions are necessary for the proof of the decay.

All computations differ significantly from the case of the Klein-Gordon equation [8]
because of algebra of the Dirac matrices. An important role play the real orthogonality
relations (1.3).

Our paper is organized as follows. In Section 2, we formulate the main result. In
Section 3, we introduce symplectic projection onto the solitary manifold. The linearized
equation is considered in Sections 4 and 5. In Section 6, we split the dynamics in two
components: along the solitary manifold, and in transversal directions. The time decay
of transversal component is established in sections 7-10. In Section 11 we prove main
result. In Sections 12 - 15 we justify the time decay of the linearized dynamics relying on
weighted decay for the free Dirac equation in a moving frame. In Appendices A, B and
C we collect some technical calculations.

2 Main results

2.1 Existence of dynamics

We consider the Cauchy problem for the system (1.1) which we write as

Ẏ (t) = F (Y (t)), t ∈ R : Y (0) = Y0 (2.1)

Here Y (t) = (ψ(t), q(t), p(t)), Y0 = (ψ(0), q0, p0). We introduce a suitable phase space for
equation (2.1). Let L2

α, α ∈ R be weighted Agmon spaces with norm ‖ψ‖α = ‖ψ‖L2
α

:=
‖(1 + |x|)αψ‖L2.

Definition 2.1. i) The phase space E is the Hilbert space L2 ⊕ R3 ⊕ R3 of states Y =
(ψ, q, p) with finite norm

‖Y ‖E = ‖ψ‖0 + |q| + |p| .
ii) Eα is the space L2

α ⊕ R3 ⊕ R3 with finite norm

‖ Y ‖Eα
= ‖ψ‖α + |q| + |p| .

Proposition 2.2. Let (1.7) hold. Then
(i) For every Y0 ∈ E the Cauchy problem (2.1) has a unique solution Y (t) ∈ C(R, E).
(ii) For every t ∈ R, map U(t) : Y0 7→ Y (t) is continuous on E .

Proof. Step i) First, we fix an arbitrary b > 0 and prove (i)-(ii) for Y0 ∈ E such that
‖ψ0‖0 ≤ b and |t| ≤ ε = ε(b) for some sufficiently small ε(b) > 0. We rewrite (2.1) as

Ẏ (t) = F1(Y (t)) + F2(Y (t)), t ∈ R, Y (0) = Y0 , (2.2)
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F1 : Y 7→ ((−α · ∇ − iβm)ψ, 0, 0), F2 : Y 7→ (−iρ(x− q), p/
√

1 + p2, Re〈ψ,∇ρ(x− q)〉
The Fourier transform provides existence and uniqueness of solution Y1(t) ∈ C(R, E) to
(2.2) with F2 = 0. Let U1(t) : Y0 7→ Y1(t) be the corresponding strongly continuous group
of bounded linear operators on E . Then (2.2) for Y (t) ∈ C(R, E) is equivalent to integral
Duhamel equation

Y (t) = U1(t)Y0 +

∫ t

0

ds U1(t− s)F2(Y (s)) . (2.3)

Further, the map F2 : Y 7→ F2(Y ) is locally Lipschitz continuous in E : for each b > 0
there exist a κ = κ(b) > 0 such that for all Y1 = (ψ1, q1, p1), Y2 = (ψ2, q2, p2) ∈ E with
‖ψ1‖0, ‖ψ2‖0 ≤ b,

‖F2(Y1) − F2(Y2)‖E ≤ κ‖Y1 − Y2‖E .
Therefore, by the contraction mapping principle, equation (2.3) has a unique local solution
Y (·) ∈ C([−ε, ε], E) with ε > 0 depending only on b.
Step ii) Second, we derive a priori estimate. Consider ψ0 ∈ C∞

0 (R3) ⊗ C4. Then

d

dt
‖ψ‖2

0 =

∫

(ψ · ψ̇ + ψ̇ · ψ)dx = 2

∫

Im
(

ρ(x− q) · ψ(x)
)

dx ≤ C‖ψ‖0 .

Hence,

‖ψ(t)‖0 ≤
1

2
Ct+ ‖ψ(0)‖0

Last two equalities (1.1) imply a priori estimates for |ṗ| and |q̇|. The a priori estimates
for general initial data ψ0 ∈ L2 follow by approximating initial data by functions from
C∞

0 (R3) ⊗ C4.
Step iii) Properties (i)-(ii) for arbitrary t ∈ R now follow from the same properties for
small |t| and from a priori estimate.

2.2 Solitary manifold and main result

Let us compute the solitons (1.4). Substitution to (1.1) gives stationary equations

−iv · ∇ψv(y) = [−iα · ∇ + βm]ψv(y) + ρ(y)

v = pv/
√

1 + p2
v, 0 = Re〈ψv(y),∇ρ(y)〉

∣

∣

∣

∣

∣

∣

(2.4)

Applying Fourier transform to first equation in (2.4) we obtain

(−v · k + α · k − βm)ψ̂v(k) = ρ̂(k) .

Then

ψ̂v(k) = − (v · k + α · k − βm)ρ̂(k)

(v · k + α · k − βm)(v · k − α · k + βm)
=

(v · k + α · k − βm)ρ̂(k)

k2 +m2 − (v · k)2
. (2.5)

The soliton is given by the formula

ψv(x) =
iγ

4π
(v · ∇ + α · ∇ + iβm)

∫

e−m|γ(y−x)‖+(y−x)⊥|ρ(y)d3y

|γ(y − x)‖ + (y − x)⊥|
, pv = γv =

v√
1 − v2

.

(2.6)
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Here we set γ = 1/
√

1 − v2 and x = x‖+x⊥, where x‖‖v and x⊥⊥v for x ∈ R3. It remains
to prove that last equation of (2.4) holds. Indeed, (2.5) and Parseval identity imply

Re〈ψv(y), ∂jρ(y)〉 = Re〈ikjψ̂v(k), ρ̂(k)〉 = Re

∫

ikj
(v · k+α · k−βm)ρ̂(k) · ρ̂(k)

k2 +m2 − (v · k)2
dk = 0

since the integrand is pure imaginary by (1.3). Hence, the soliton solution (1.4) exists
and is defined uniquely for |v| < 1 and a ∈ R3. Denote V := {v ∈ R3 : |v| < 1}.

Definition 2.3. A soliton state is S(σ) := (ψv(x− b), b, v), where σ := (b, v) with b ∈ R3

and v ∈ V .

Obviously, the soliton solution admits representation S(σ(t)), where

σ(t) = (b(t), v(t)) = (vt+ a, v) . (2.7)

Definition 2.4. A solitary manifold is the set S := {S(σ) : σ ∈ Σ := R3 × V }.

The main result of our paper is the following theorem.

Theorem 2.5. Let (1.7)-(1.8) hold, ν > 5/2 be the number from (1.7), and Y (t) be the
solution to the Cauchy problem (2.1) with initial state Y0 which is sufficiently close to the
solitary manifold:

d0 := distEν
(Y0,S) ≪ 1 . (2.8)

Then the asymptotics hold for t→ ±∞,

q̇(t) = v± + O(|t|−2), q(t) = v±t+ a± + O(|t|−1) (2.9)

ψ(x, t) = ψv±(x− v±t− a±) +W0(t)φ± + r±(x, t) (2.10)

with
‖r±(t)‖0 = O(|t|−1/2) .

It suffices to prove asymptotics (2.9)-(2.10) for t → +∞ since system (1.1) is time
reversible.

3 Symplectic projection

3.1 Hamiltonian structure

Denote ψ1 = Reψ, ψ2 = Imψ, ρ1 = Re ρ, ρ2 = Im ρ, α̃2 = −iα2. Then (1.1) reads























ψ̇1(x, t) = −(α1∂1+α3∂3)ψ1(x, t) + (α̃2∂2+βm)ψ2(x, t) + ρ2(x− q(t))

ψ̇2(x, t) = −(α̃2∂2+βm)ψ1(x, t) − (α1∂1+α3∂3)ψ2(x, t) − ρ1(x− q(t))

q̇(t) = p(t)/
√

1 + p2(t)

ṗ(t) =

∫

(

ψ1(x, t) · ∇ρ1(x− q(t)) + ψ2(x, t) · ∇ρ2(x− q(t))
)

dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x ∈ R3 (3.1)

This is a Hamilton system with the Hamilton functional

H(ψ1, ψ2, q, p) =
1

2

∫

(ψ1 · (α̃2∂2+βm)ψ1 + ψ2 · (α̃2∂2+βm)ψ2 + 2ψ1 · (α1∂1+α3∂3)ψ2)dx

+

∫

(ψ1(x) · ρ1(x− q) + ψ2(x) · ρ2(x− q))dx+
√

1 + p2 .
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Equation (3.1) can be written as a Hamilton system

Ẏ = JDH(Y ), Y = (ψ1, ψ2, q, p), J :=









0 I4 0 0
−I4 0 0 0
0 0 0 I3
0 0 −I3 0









(3.2)

where DH is the Fréchet derivative with respect to ψ1k, ψ2k, k = 1, 2, 3, 4, p and q of the
Hamilton functional.

3.2 Symplectic projection onto solitary manifold

Let us identify tangent space to E , at every point, with E . Consider symplectic form Ω

defined on E by Ω =

∫

dψ1(x) ∧ dψ2(x) dx+ dq ∧ dp, i.e.

Ω(Y 1, Y 2) = 〈Y 1, JY 2〉, Y j = (ψj
1, ψ

j
2, q

j, pj) ∈ E , j = 1, 2 (3.3)

where 〈Y 1, Y 2〉 := 〈ψ1
1, ψ

2
1〉 + 〈ψ1

2 , ψ
2
2〉 + q1 · q2 + p1 · p2. It is clear that the form Ω is

non-degenerate, i.e.

Ω(Y 1, Y 2) = 0 for every Y 2 ∈ E =⇒ Y 1 = 0

Definition 3.1. i) Y 1 ∤ Y 2 means that Y 1 ∈ E , Y 2 ∈ E , and Y 1 is symplectic orthogonal
to Y 2, i.e. Ω(Y 1, Y 2) = 0.

ii) A projection operator P : E → E is called symplectic orthogonal if Y 1 ∤ Y 2 for
Y 1 ∈ KerP and Y 2 ∈ ImP.

Let us consider tangent space TS(σ)S to the manifold S at a point S(σ). Vectors
τj := ∂σj

S(σ), where ∂σj
:= ∂bj

and ∂σj+3
:= ∂vj

with j = 1, 2, 3, form a basis in TσS. In
detail,

τj = τj(v) := ∂bj
S(σ) = ( −∂jψv1(y) ,−∂jψv2(y) , ej , 0 )

τj+3 = τj+3(v) := ∂vj
S(σ) = ( ∂vj

ψv1(y) , ∂vj
ψv2(y) , 0 , ∂vj

pv )

∣

∣

∣

∣

j = 1, 2, 3 (3.4)

where ψv1 = Reψv, ψv2 = Imψv, y := x−b is the “moving frame coordinate”, e1 = (1, 0, 0)
etc. Formula (2.6) and condition (1.7) imply that

τj(v) ∈ Eα, v ∈ V, j = 1, . . . , 6, ∀α ∈ R . (3.5)

Lemma 3.2. The matrix with the elements Ω(τl(v), τj(v)) is non-degenerate ∀v ∈ V .

Proof. The elements are computed in Appendix A. As a result, matrix Ω(τl, τj) reads

Ω(v) := (Ω(τl, τj))l,j=1,...,6 =

(

0 Ω+(v)
−Ω+(v) 0

)

(3.6)

where the 3 × 3-matrix Ω+(v) equals

Ω+(v) = K + (1 − v2)−1/2E + (1 − v2)−3/2v ⊗ v . (3.7)

Here K is a symmetric 3 × 3-matrix with the elements

Kij =

∫

dkkikjB(k)
k2 +m2 + 3(v · k)2

(k2 +m2 − (v · k)2)3
(3.8)

where B(k) > 0 is defined in (1.8). The matrix K is the integral of symmetric nonnegative
definite matrix k⊗k = (kikj) with a positive weight. Hence, the matrix K is nonnegative
definite. Since unite matrix E is positive definite, the matrix Ω+(v) is symmetric and
positive definite, hence non-degenerate. Then the matrix Ω(τl, τj) also is non-degenerate.
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Let us introduce translations Ta : (ψ(·), q, p) 7→ (ψ(· − a), q + a, p), a ∈ R3. Note
that the manifold S is invariant with respect to the translations. Let us denote v(p) :=
p/

√

1 + p2 for p ∈ R3.

Definition 3.3. i) For any α ∈ R and v < 1 denote by Eα(v) = {Y = (ψ, q, p) ∈ Eα :
|v(p)| ≤ v}. We set E(v) := E0(v).
ii) For any ṽ < 1 denote by Σ(ṽ) = {σ = (b, v) : b ∈ R3, |v| ≤ ṽ}.

Next Lemma means that in a small neighborhood of the soliton manifold S a “sym-
plectic orthogonal projection” onto S is well-defined.

Lemma 3.4. (cf.[8, Lemma 3.4]) Let (1.7) hold, α ∈ R and v < 1. Then
i) there exists a neighborhood Oα(S) of S in Eα and a map Π : Oα(S) → S such that Π

is uniformly continuous on Oα(S) ∩ Eα(v) in the metric of Eα,

ΠY = Y for Y ∈ S, and Y − S ∤ TSS, where S = ΠY . (3.9)

ii) Oα(S) is invariant with respect to translations Ta, and

ΠTaY = TaΠY, for Y ∈ Oα(S) and a ∈ R3 .

iii) For any v < 1 there exists a ṽ < 1 s.t. ΠY = S(σ) with σ ∈ Σ(ṽ) for Y ∈
Oα(S) ∩ Eα(v).

iv) For any ṽ < 1 there exists an rα(ṽ) > 0 s.t. S(σ) + Z ∈ Oα(S) if σ ∈ Σ(ṽ) and
‖Z‖α < rα(ṽ).

We will call Π a symplectic orthogonal projection onto S.

Corollary 3.5. Condition (2.8) implies that Y0 = S + Z0 where S = S(σ0) = ΠY0, and

‖Z0‖ν ≪ 1 . (3.10)

Proof. Lemma 3.4 implies that ΠY0 = S is well defined for small d0 > 0. Furthermore,
condition (2.8) means that there exists a point S1 ∈ S such that ‖Y0 −S1‖ν = d0. Hence,
Y0, S1 ∈ Oν(S)∩Eν(v) with a v < 1 which does not depend on d0 for sufficiently small d0.
On the other hand, ΠS1 = S1, hence the uniform continuity of the map Π implies that
‖S1−S‖ν → 0 as d0 → 0. Therefore, finally, ‖Z0‖ν = ‖Y0−S‖ν ≤ ‖Y0−S1‖ν+‖S1−S‖ν ≤
d0 + o(1) ≪ 1 for small d0.

4 Linearization on solitary manifold

Let us consider a solution to the system (3.1), and split it as the sum

Y (t) = S(σ(t)) + Z(t) (4.1)

where σ(t) = (b(t), v(t)) ∈ Σ is an arbitrary smooth function of t ∈ R. In detail, denote
Y = (ψ, q, p) and Z = (Ψ, Q, P ). Then (4.1) means that

ψ(x, t) = ψv(t)(x− b(t)) + Ψ(x− b(t), t), q(t) = b(t) +Q(t), p(t) = pv(t) + P (t) . (4.2)
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Let us substitute (4.2) to (1.1), and linearize the equations in Z. Setting y = x − b(t)
which is “moving frame coordinate”, we obtain that

ψ̇ = v̇ · ∇vψv(y) − ḃ · ∇ψv(y) + Ψ̇(y, t) − ḃ · ∇Ψ(y, t)

= [−α · ∇ − iβm](ψv(y) + Ψ(y, t)) − iρ(y −Q)

q̇ = ḃ+ Q̇ =
pv + P

√

1 + (pv + P )2

ṗ = v̇ · ∇vpv + Ṗ = Re〈ψv(y) + Ψ(y, t),∇ρ(y −Q)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.3)

Let us extract linear terms in Q. First note that ρ(y − Q) = ρ(y) − Q · ∇ρ(y) + N1(Q),
∇ρ(y −Q) = ∇ρ(y) −∇(Q · ∇ρ(y)) + Ñ1(Q).

Condition (1.7) implies that for N1(Q) and Ñ1(Q) the bound holds,

‖N1(Q)‖ν + ‖Ñ1(Q)‖ν ≤ Cν(Q)Q2 (4.4)

uniformly in |Q| ≤ Q for any fixed Q. Second, the Taylor expansion gives

pv + P
√

1 + (pv + P )2
= v +

1

γ
(P − v(v · P )) +N2(v, P )

where 1/γ =
√

1 − v2 = (1 + p2
v)

−1/2, and

|N2(v, P )| ≤ C(ṽ)P 2 (4.5)

uniformly with respect to |v| ≤ ṽ < 1. Using (2.4), we obtain from (4.3) the following
equations for components of Z(t):

Ψ̇(y, t) = [−α · ∇ − iβm]Ψ(y, t) + ḃ · ∇Ψ(y, t) + iQ · ∇ρ(y)

+ (ḃ− v) · ∇ψv(y) − v̇ · ∇vψv(y) − iN1

Q̇(t) = 1
γ
(E − v ⊗ v)P + (v − ḃ) +N2

Ṗ (t) = −v̇ · ∇vpv + Re〈Ψ(y, t),∇ρ(y)〉+ Re〈∇ψv(y), Q · ∇ρ(y)〉 +N3(v, Z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.6)

whereN3(v, Z) = −Re〈∇ψv, N1(Q)〉−Re〈Ψ,∇(Q·∇ρ)〉+Re〈Ψ, Ñ1(Q)〉. Clearly, N3(v, Z)
satisfies the following estimate

|N3(v, Z)| ≤ Cν(ρ, v, Q)
[

Q2 + ‖Ψ‖−ν |Q|
]

(4.7)

uniformly in |v| ≤ ṽ and |Q| ≤ Q for any fixed ṽ < 1. For the vector version Z =
(Ψ1,Ψ2, Q, P ) with Ψ1 = Re Ψ, Ψ2 = Im Ψ we rewrite equations (4.6) as

Ż(t) = A(t)Z(t) + T (t) +N(t), t ∈ R . (4.8)

Here operator A(t) = Av,w(t) depends on two parameters, v = v(t), and w = ḃ(t) and can
be written as

Av,w









Ψ1

Ψ2

Q
P









=









−α1∂1−α3∂3+w ·∇ α̃2∂2 + βm −∇ρ2· 0
−(α̃2∂2 + βm) −α1∂1−α3∂3+w ·∇ ∇ρ1· 0

0 0 0 Bv

〈·,∇ρ1〉 〈·,∇ρ2〉 〈∇ψvj , ·∇ρj〉 0

















Ψ1

Ψ2

Q
P









(4.9)
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where Bv = 1
γ
(E − v ⊗ v). Furthermore, T (t) = Tv,w(t) and N(t) = N(t, σ, Z) in (4.8)

stand for

Tv,w =









(w − v) · ∇ψv1 − v̇ · ∇vψv1

(w − v) · ∇ψv2 − v̇ · ∇vψv2

v − w
−v̇ · ∇vpv









, N(σ, Z) =









N12(Z)
−N11(Z)
N2(v, Z)
N3(v, Z)









(4.10)

where v = v(t), w = w(t), σ = σ(t) = (b(t), v(t)), and Z = Z(t). Estimates (4.4), (4.5)
and (4.7) imply that

‖N(σ, Z)‖ν ≤ C(ṽ, Q)‖Z‖2
−ν (4.11)

uniformly in σ ∈ Σ(ṽ) and ‖Z‖−ν ≤ r−ν(ṽ) for any fixed ṽ < 1.

Remark 4.1. i) Term A(t)Z(t) in right hand side of equation (4.8) is linear in Z(t), and
N(t) is a high order term in Z(t). On the other hand, T (t) is a zero order term which
does not vanish at Z(t) = 0 since S(σ(t)) generally is not a soliton solution if (2.7) does
not hold (though S(σ(t)) belongs to the solitary manifold).
ii) Formulas (3.4) and (4.10) imply:

T (t) = −
3

∑

l=1

[(w − v)lτl + v̇lτl+3] (4.12)

and hence T (t) ∈ TS(σ(t))S, t ∈ R.

5 Linearized equation

Here we collect some Hamiltonian and spectral properties of generator (4.9) of the lin-
earized equation. First, let us consider linear equation

Ẋ(t) = Av,wX(t), t ∈ R, v ∈ V, w ∈ R3 (5.1)

Lemma 5.1. (cf. Lemma 5.1 [8]) i) For any v ∈ V and w ∈ R3 equation (5.1) can be
written as the Hamilton system (cf. (3.2)),

Ẋ(t) = JDHv,w(X(t)), t ∈ R (5.2)

where DHv,w is the Fréchet derivative with respect to Ψ1k, Ψ2k, k = 1, 2, 3, 4, P and Q of
the Hamilton functional

Hv,w(X) =
1

2

∫

(Ψ1 · (α̃2∂2 + βm)Ψ1 + Ψ2 · (α̃2∂2 + βm)Ψ2 + 2Ψ1 · (α1∂1 + α3∂3)Ψ2)dy

+

∫

ρj(y)Q ·∇Ψjdy+
1

2
P ·BvP− 1

2
〈Q ·∇ψvj(y), Q ·∇ρj(y)〉, X = (Ψ1,Ψ2, Q, P ) ∈ E .

ii) The skew-symmetry relation holds,

Ω(Av,wX1, X2) = −Ω(X1, Av,wX2), X1 ∈ E , X2 ∈ H1(R3)⊕H1(R3)⊕R3⊕R3 . (5.3)

Lemma 5.2. Operator Av,w acts on tangent vectors τj(v) to the solitary manifold as
follows,

Av,w[τj(v)] = (w − v) · ∇τj(v), Av,w[τj+3(v)] = (w − v) · ∇τj+3(v) + τj(v), j = 1, 2, 3 .
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Proof. In detail, we have to show that

Av,w









−∂jψv1

−∂jψv2

ej

0









=









(v − w) · ∇∂jψv1

(v − w) · ∇∂jψv2

0
0









.

Av,w









∂vj
ψv1

∂vj
ψv2

0
∂vj
pv









=









(w − v) · ∇∂vj
ψv1

(w − v) · ∇∂vj
ψv2

0
0









+









−∂jψv1

−∂jψv2

ej

0









. (5.4)

Indeed, differentiate equations (2.4) in bj and vj , and obtain that derivatives of soliton
state in parameters satisfy the following equations,

−v · ∇∂jψv = [−α · ∇ − iβm]∂jψv − i∂jρ

−∂jψv − v · ∇∂vj
ψv = [−α · ∇ − iβm]∂vj

ψv

∂vj
pv = ej(1 − v2)−1/2 + v

vj

(1 − v2)3/2

0= 〈∂vj
ψv1,∇ρ1〉 + 〈∂vj

ψv2,∇ρ2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.5)

for j = 1, 2, 3. Then (5.4) follows from (5.5) by definition of Av,v in (4.9)

Corollary 5.3. Let w = v ∈ V . Then τj(v) are eigenvectors, and τj+3(v) are root vectors
of operator Av,v, corresponding to zero eigenvalue, i.e.

Av,v[τj(v)] = 0, Av,v[τj+3(v)] = τj(v), j = 1, 2, 3 . (5.6)

6 Symplectic decomposition of dynamics

Here we decompose the dynamics in two components: along manifold S and in transversal
directions. Equation (4.8) is obtained without any assumption on σ(t) in (4.1). We are
going to choose S(σ(t)) := ΠY (t), but then we need to know that

Y (t) ∈ O−ν(S), t ∈ R . (6.1)

It is true for t = 0 by our main assumption (2.8) with sufficiently small d0 > 0. Then
S(σ(0)) = ΠY (0) and Z(0) = Y (0) − S(σ(0)) are well defined. We will prove below that
(6.1) holds if d0 is sufficiently small. Let us choose an arbitrary ṽ such that |v(0)| < ṽ < 1
and let δ = ṽ − |v(0)|. Denote by r−ν(ṽ) the positive numbers from Lemma 3.4 iv)
which corresponds to α = −ν. Then S(σ) + Z ∈ O−ν(S) if σ = (b, v) with |v| < ṽ
and ‖Z‖−ν < r−ν(ṽ). Note that ‖Z(0)‖−ν < r−ν(ṽ) if d0 is sufficiently small. Therefore,
S(σ(t)) = ΠY (t) and Z(t) = Y (t) − S(σ(t)) are well defined for t ≥ 0 so small that
|v| < ṽ and ‖Z(t)‖−ν < r−ν(ṽ). This is formalized by the following standard definition.

Definition 6.1. t∗ is “exit time”,

t∗ = sup{t > 0 : ‖Z(s)‖−ν < r−ν(ṽ), |v(s) − v(0)| < δ, 0 ≤ s ≤ t} . (6.2)



12

One of our main goals is to prove that t∗ = ∞ if d0 is sufficiently small. This would
follow if we show that

‖Z(t)‖−ν < r−ν(ṽ)/2, |v(s) − v(0)| < δ/2, 0 ≤ t < t∗ . (6.3)

Note that
|Q(t)| ≤ Q := r−ν(ṽ), 0 ≤ t < t∗ . (6.4)

Now N(t) in (4.8) satisfies, by (4.11), the following estimate,

‖N(t)‖ν ≤ Cν(ṽ)‖Z(t)‖2
−ν, 0 ≤ t < t∗ . (6.5)

6.1 Modulation equations

From now on we fix the decomposition Y (t) = S(σ(t)) + Z(t) for 0 < t < t∗ by setting
S(σ(t)) = ΠY (t) which is equivalent to symplectic orthogonality condition of type (3.9),

Z(t) ∤ TS(σ(t))S, 0 ≤ t < t∗ . (6.6)

This allows us to simplify drastically asymptotic analysis of dynamical equations (4.8) for
the transversal component Z(t). As a first step, we derive “modulation equations” for
the parameters σ(t). For this purpose, we write (6.6) in the form

Ω(Z(t), τj(t)) = 0, j = 1, . . . , 6, 0 ≤ t < t∗ . (6.7)

where vectors τj(t) = τj(σ(t)) span tangent space TS(σ(t))S. Note that σ(t) = (b(t), v(t)),
where |v(t)| ≤ ṽ < 1 for 0 ≤ t < t∗ by Lemma 3.4 iii). It would be convenient for us to
use some other parameters (c, v) instead of σ = (b, v), where

c(t) = b(t) −
∫ t

0

v(τ)dτ, ċ(t) = ḃ(t) − v(t) = w(t) − v(t), 0 ≤ t < t∗ . (6.8)

The following statement can be proved similar to Lemma 6.2 from [8].

Lemma 6.2. Let Y (t) be a solution to the Cauchy problem (3.1), and (4.1), (6.7) hold.
Then

|ċ(t)| + |v̇(t)| ≤ C(ṽ)‖Z‖2
−ν . (6.9)

6.2 Decay for transversal dynamics

In Section 11 we will show that our main Theorem 2.5 can be derived from the following
time decay of the transversal component Z(t):

Proposition 6.3. Let all conditions of Theorem 2.5 hold. Then t∗ = ∞, and

‖Z(t)‖−ν ≤ C(ρ, v, d0)

(1 + |t|)3/2
, t ≥ 0 . (6.10)

We will derive (6.10) in Sections 7-10 from equation (4.8) for the transversal component
Z(t). This equation can be specified using Lemma 6.2. Indeed, the lemma implies that

‖T (t)‖ν ≤ C(ṽ)‖Z(t)‖2
−ν , 0 ≤ t < t∗ (6.11)

by (4.10) since w − v = ċ. Thus (4.8) becomes the equation

Ż(t) = A(t)Z(t) + Ñ(t), 0 ≤ t < t∗ (6.12)
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where A(t) = Av(t),w(t), and Ñ(t) := T (t) +N(t) satisfies the estimate

‖Ñ(t)‖ν ≤ C(ṽ, Q)‖Z(t)‖2
−ν, 0 ≤ t < t∗ . (6.13)

In all remaining part of our paper we will analyze mainly basic equation (6.12) to estab-
lish decay (6.10). We are going to derive the decay using bound (6.13) and orthogonality
condition (6.6).

Similarly [8] we reduce the problem to analysis of frozen linear equation,

Ẋ(t) = A1X(t), t ∈ R (6.14)

where A1 = Av1,v1
with v1 = v(t1) and a fixed t1 ∈ [0, t∗). Then we can apply some

methods of scattering theory and then estimate the error by the method of majorants.
Note, that even for the frozen equation (6.14), decay of type (6.10) for all solutions

does not hold without orthogonality condition of type (6.6). Namely, by (5.6) equation
(6.14) admits secular solutions

X(t) =

3
∑

1

Cjτj(v) +

3
∑

1

Dj[τj(v)t+ τj+3(v)] (6.15)

which arise by differentiation of soliton (1.4) in the parameters a and v.

Remark 6.4. The solution (6.15) lies in tangent space TS(σ1)S with σ1 = (b1, v1) (for an
arbitrary b1 ∈ R) that suggests an unstable character of the nonlinear dynamics along the
solitary manifold.

Further, we will apply the corresponding symplectic orthogonal projection which kills
“runaway solutions” (6.15).

Definition 6.5. i) For v ∈ V , denote by Πv symplectic orthogonal projection of E onto
tangent space TS(σ)S, and Pv = I −Πv.
ii) Denote by Zv = PvE the space symplectic orthogonal to TS(σ)S with σ = (b, v).

Note that by linearity,

ΠvZ =
∑

Πjl(v)τj(v)Ω(τl(v), Z), Z ∈ E (6.16)

with some smooth coefficients Πjl(v). Hence, projector Πv, in variable y = x − b, does
not depend on b. Now we have the symplectic orthogonal decomposition

E = TS(σ)S + Zv, σ = (b, v) , (6.17)

and symplectic orthogonality (6.6) can be written in the following equivalent forms,

Πv(t)Z(t) = 0, Pv(t)Z(t) = Z(t), 0 ≤ t < t∗ . (6.18)

Remark 6.6. The tangent space TS(σ)S is invariant under operator Av,v by Lemma 5.3 i),
hence the space Zv also is invariant by (5.3): Av,vZ ∈ Zv for sufficiently smooth Z ∈ Zv.

Below in section 12-16 we will prove the following proposition which will be one of
main ingredients for proving (6.10). Consider the Cauchy problem for equation (6.14)
with A = Av,v for a fixed v ∈ V . Recall that parameter ν > 5/2 is also fixed.

Proposition 6.7. Let conditions (1.7)- (1.8) hold, |v| ≤ ṽ < 1, and X0 ∈ E . Then
i) Equation (6.14), with A = Av,v, admits the unique solution eAtX0 := X(t) ∈ C(R, E)
with initial condition X(0) = X0.
ii) For X0 ∈ Zv ∩ Eν, the decay holds,

‖eAtX0‖−ν ≤ Cν(ρ, ṽ)

(1 + |t|)3/2
‖X0‖ν , t ∈ R . (6.19)
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7 Frozen transversal dynamics

Now let us fix an arbitrary t1 ∈ [0, t∗), and rewrite equation (6.12) in a “frozen form”

Ż(t) = A1Z(t) + (A(t) − A1)Z(t) + Ñ(t), 0 ≤ t < t∗ (7.1)

where A1 = Av(t1),v(t1) and

A(t)−A1 =









[w(t)−v(t1)] · ∇ 0 0 0
0 [w(t)−v(t1)] · ∇ 0 0
0 0 0 Bv(t)−Bv1(t)

0 0 〈∇(ψv(t)j−ψv(t1)j),∇ρj〉 0









Next trick allows us to kill the “bad terms” [w(t)−v(t1)] · ∇ in operator A(t) − A1.

Definition 7.1. Let us change the variables (y, t) 7→ (y1, t) = (y + d1(t), t), where

d1(t) :=

∫ t

t1

(w(s) − v(t1))ds, 0 ≤ t ≤ t1 . (7.2)

Next define

Z1(t) := (Ψ1(y1 − d1(t), t),Ψ2(y1 − d1(t), t), Q(t), P (t)) .

Then we obtain final form of the “frozen equation” for the transversal dynamics

Ż1(t) = A1Z1(t) +B1(t)Z1(t) + Ñ1(t), 0 ≤ t ≤ t1 (7.3)

where Ñ1(t) = Ñ(t) expressed in terms of y = y1 − d1(t), and

B1(t) =









0 0 0 0
0 0 0 0
0 0 0 Bv(t) − Bv1(t)

0 0 〈∇(ψv(t)j−ψv(t1)j),∇ρj〉 0









.

Let us estimate the “remainder terms” B1(t)Z1(t) and Ñ1(t).

Lemma 7.2. The bound holds

‖B1(t)Z1(t)‖ν ≤ C(ṽ)‖Z(t)‖−ν

∫ t1

t

‖Z(s)‖2
−νds, 0 ≤ t ≤ t1 . (7.4)

Proof. Lemma 6.2 implies

|Bv(t) −Bv1(t)| ≤ |
t

∫

t1

v̇(s) · ∇vBv(s)ds| ≤ C(ṽ)

t
∫

t1

‖Z(s)‖2
−νds

|〈∇(ψv(t)j − ψv(t1)j),∇ρj | ≤ C(ṽ)

t
∫

t1

‖Z(s)‖2
−νds .

Therefore,

‖B1(t)Z1(t)‖ν = |〈∇(ψv(t)j − ψv(t1)j),∇ρj〉Q1(t)| + |(Bv(t) − Bv1(t))P1(t)|

≤ C(ṽ)(|Q(t)| + |P (t)|)
t

∫

t1

‖Z(s)‖2
−νds ≤ C(ṽ)‖Z(t)‖−ν

∫ t1

t

‖Z(s)‖2
−νds .
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Lemma 7.3. The bounds hold

‖Ñ1(t)‖ν ≤ C(ṽ, Q)(1 + |d1(t)|)ν‖Z(t)‖2
−ν , 0 ≤ t ≤ t1 . (7.5)

Proof. For any Φ ∈ L2
α and d ∈ R3 we have

‖Φ(y − d)‖2
α =

∫

|Φ(y − d)|2(1 + |y|)2αdy =

∫

|Φ(y)|2(1 + |y + d|)2αdy

≤
∫

|Φ(y)|2(1 + |y|)2α(1 + |d|)2αdy ≤ (1 + |d|)2α‖Φ‖2
α, α ∈ R .

Hence, bound (7.5) follows.

8 Integral inequality

Equation (7.3) can be written in integral form:

Z1(t) = eA1tZ1(0) +

∫ t

0

eA1(t−s)[B1Z1(s) + Ñ1(s)]ds, 0 ≤ t ≤ t1 (8.1)

Now we apply symplectic orthogonal projection P1 := Pv(t1) to both sides of (8.1):

P1Z1(t) = eA1tP1Z1(0) +

∫ t

0

eA1(t−s)P1[B1Z1(s) + Ñ1(s)]ds .

Projector P1 commutes with the group eA1t since the space Z1 := P1E is invariant with
respect to eA1t by Remark 6.6. Applying (6.19) we obtain that

‖P1Z1(t)‖−ν ≤ C
‖P1Z1(0)‖ν

(1 + t)3/2
+ C

∫ t

0

‖P1[B1Z1(s) + Ñ1(s)]‖ν ds

(1 + |t− s|)3/2
.

Operator P1 = I − Π1 is continuous in Eν by (6.16). Hence, (7.4)-(7.5) imply

‖P1Z1(t)‖−ν ≤ C(d1(0))

(1 + t)3/2
‖Z(0)‖ν (8.2)

+C(d1(t))

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2
−νdτ + ‖Z(s)‖2

−ν

]

ds, 0 ≤ t ≤ t1

where d1(t) := sup0≤s≤t |d1(s)|. Let us introduce the “majorant”

m(t) := sup
s∈[0,t]

(1 + s)3/2‖Z(s)‖−ν , t ∈ [0, t∗) . (8.3)

Now we reduce further the exit time. Denote by ε < 1 a fixed positive number which we
will specify below.

Definition 8.1. t′∗ is the exit time

t′∗ = sup{t ∈ [0, t∗) : m(s) ≤ ε, 0 ≤ s ≤ t} . (8.4)

To estimate d1(t), note that

w(s) − v(t1) = w(s) − v(s) + v(s) − v(t1) = ċ(s) +

∫ t1

s

v̇(τ)dτ (8.5)
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by (6.8). Hence, (7.2), Lemma 6.2 and definition (8.3) imply that for t1 < t′∗

|d1(t)| = |
∫ t

t1

(w(s) − v(t1))ds| ≤
∫ t1

t

(

|ċ(s)| +
∫ t1

s

|v̇(τ)|dτ
)

ds (8.6)

≤ C(ṽ)m2(t1)

∫ t1

t

(

1

(1 + s)3
+

∫ t1

s

dτ

(1 + τ)3

)

ds ≤ C(ṽ)m2(t1) ≤ C(ṽ), 0 ≤ t ≤ t1 .

Now we can to replace C(d1) with C(ṽ) in (8.2): for t1 < t′∗

‖P1Z1(t)‖−ν ≤ C(ṽ)

(1 + t)3/2
‖Z(0)‖ν

+ C(ṽ)

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2
−νdτ + ‖Z(s)‖2

−ν

]

ds, 0 ≤ t ≤ t1 .

(8.7)

9 Symplectic orthogonality

Finally, we are going to change P1Z1(t) by Z(t) in the left hand side of (8.7). We will
prove that it is possible using again that d0 ≪ 1 in (2.8).

Lemma 9.1. (cf.[8]) For sufficiently small ε > 0, we have for t1 < t′∗

‖Z(t)‖−ν ≤ C‖P1Z1(t)‖−ν , 0 ≤ t ≤ t1 , (9.1)

where C depends only on ρ and v.

Proof. Since |d1(t)| ≤ C for t ≤ t1 < t′∗ then ‖Z(t)‖−ν ≤ C‖Z1(t)‖−ν , and it suffices to
prove that

‖Z1(t)‖−ν ≤ 2‖P1Z1(t)‖−ν , 0 ≤ t ≤ t1 . (9.2)

Recall that P1Z1(t) = Z1(t) − Πv(t1)Z1(t). Then estimate (9.2) will follow from

‖Πv(t1)Z1(t)‖−ν ≤ 1

2
‖Z1(t)‖−ν , 0 ≤ t ≤ t1 . (9.3)

Symplectic orthogonality (6.18) implies

Πv(t),1Z1(t) = 0 , t ∈ [0, t1] , (9.4)

where Πv(t),1Z1(t) is Πv(t)Z(t) expressed in terms of variable y1 = y+ d1(t). Hence, (9.3)
follows from (9.4) if difference Πv(t1) −Πv(t),1 is small uniformly in t, i.e.

‖Πv(t1) − Πv(t),1‖ < 1/2 , 0 ≤ t ≤ t1 . (9.5)

It remains to justify (9.5) for small enough ε > 0. Formula (6.16) implies

Πv(t),1Z1(t) =
∑

Πjl(v(t))τj,1(v(t))Ω(τl,1(v(t)), Z1(t)) , (9.6)

where τj,1(v(t)) are vectors τj(v(t)) expressed in variable y1. Since |d1(t)| ≤ C and ∇τj
are smooth and fast decaying at infinity functions, we have

‖τj,1(v(t)) − τj(v(t))‖ν ≤ C|d1(t)|ν ≤ C , 0 ≤ t ≤ t1 (9.7)
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for all j = 1, 2, . . . , 6. Furthermore,

τj(v(t)) − τj(v(t1)) =

∫ t1

t

v̇(s) · ∇vτj(v(s))ds ,

and therefore

‖τj(v(t)) − τj(v(t1))‖ν ≤ C

∫ t1

t

|v̇(s)|ds , 0 ≤ t ≤ t1 . (9.8)

Similarly,

|Πjl(v(t))−Πjl(v(t1))| = |
∫ t1

t

v̇(s)·∇vΠjl(v(s))ds| ≤ C

∫ t1

t

|v̇(s)|ds, 0 ≤ t ≤ t1 . (9.9)

Hence, bounds (9.5) will follow from (6.16), (9.6) and (9.7)-(9.9) if we establish that
integral in the right hand side of (9.8) can be made as small as we please by choosing
ε > 0 small enough. Indeed,

∫ t1

t

|v̇(s)|ds ≤ Cm2(t1)

∫ t1

t

ds

(1 + s)3
≤ Cε2 , 0 ≤ t ≤ t1 . (9.10)

10 Decay of transversal component

Here we prove Proposition 6.3.
Step i) We fix 0 < ε < 1 and t′∗ = t′∗(ε) for which Lemma 9.1 holds. Then bound of type
(8.7) holds with ‖P1Z1(t)‖−ν in the left hand side replaced by ‖Z(t)‖−ν :

‖Z(t)‖−ν ≤ C

(1 + t)3/2
‖Z(0)‖ν

+ C

∫ t

0

1

(1 + |t− s|)3/2

[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2
−νdτ + ‖Z(s)‖2

−ν

]

ds , 0 ≤ t ≤ t1 (10.1)

for t1 < t′∗. This implies an integral inequality for majorant m(t) defined in (8.3). Namely,
multiplying both sides of (10.1) by (1 + t)3/2, and taking supremum in t ∈ [0, t1], we get

m(t1) ≤ C‖Z(0)‖ν+C sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2

[

m(s)

(1 + s)3/2

∫ t1

s

m2(τ)dτ

(1 + τ)3
+

m2(s)

(1 + s)3

]

ds

for t1 ≤ t′∗. Taking into account that m(t) is a monotone increasing function, we get

m(t1) ≤ C‖Z(0)‖ν + C[m3(t1) +m2(t1)]I(t1) , t1 ≤ t′∗ (10.2)

where

I(t1) = sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2

[

1

(1 + s)3/2

∫ t1

s

dτ

(1 + τ)3
+

1

(1 + s)3

]

ds ≤ I < ∞ .

Therefore, (10.2) becomes

m(t1) ≤ C‖Z(0)‖ν + CI[m3(t1) +m2(t1)] , t1 < t′∗ . (10.3)
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This inequality implies that m(t1) is bounded for t1 < t′∗, and moreover,

m(t1) ≤ C1‖Z(0)‖ν , t1 < t′∗ (10.4)

since m(0) = ‖Z(0)‖ν is sufficiently small by (3.10).
Step ii) The constant C1 in estimate (10.4) does not depend on t∗ and t′∗ by Lemma 9.1.
We choose d0 in (2.8) so small that ‖Z(0)‖ν < ε/(2C1). It is possible due to (3.10). Then
estimate (10.4) implies that t′∗ = t∗ and therefore (10.4) holds for all t1 < t∗. Further,

|v(t) − v(0)| ≤
∫ t

0

|v̇(s)|ds ≤ Cm2(t)

∫ t

0

ds

(1 + s)3
≤ Cm2(t) .

Hence both inequalities (6.3) also holds if ‖Z(0)‖ν is sufficiently small by (8.3). Finally,
this implies that t∗ = ∞, hence also t′∗ = ∞ and (10.4) holds for all t1 > 0 if d0 is small
enough. It complete proof of Proposition 6.3.

11 Soliton asymptotics

Here we prove our main Theorem 2.5 under the assumption that decay (6.10) holds. First
we will prove asymptotics (2.9) for vector components, and afterwards asymptotics (2.10)
for the fields.
Asymptotics for vector components. From (4.3) we have q̇ = ḃ+ Q̇, and from (6.12),
(6.13), (4.9) it follows that Q̇ = P + O(‖Z‖2

−ν). Thus,

q̇ = ḃ+ Q̇ = v(t) + ċ(t) + P (t) + O(‖Z‖2
−ν) (11.1)

Bounds (6.9) and (6.10) imply that

|ċ(t)| + |v̇(t)| ≤ C1(ρ, v, d0)

(1 + t)3
, t ≥ 0 . (11.2)

Therefore, c(t) = c+ + O(t−2) and v(t) = v+ + O(t−2), t → ∞. Since |P | ≤ ‖Z‖−ν,
estimate (6.10), and (11.1)-(11.2), imply that

q̇(t) = v+ + O(t−3/2) , b(t) = c(t) +

∫ t

0

v(s)ds = v+t+ a+ + O(t−1) .

Hence second part of (1.6) follows:

q(t) = b(t) +Q(t) = v+t+ a+ + O(t−1)

since Q(t) = O(t−3/2) by (6.10).
Asymptotics for fields. For field part of the solution ψ(x, t) let us define the “accom-
panying soliton field” as ψv(t)(x− q(t)), where we define now v(t) = q̇(t), cf. (11.1). Then
for difference z(x, t) = ψ(x, t) − ψv(t)(x− q(t)) we obtain the equation

ż(x, t) = [−α · ∇ − iβm]z(x, t) − iv̇ · ∇vψv(t)(x− q(t)) .

Then

z(t) = W0(t)z(0) −
∫ t

0

W0(t− s)[iv̇(s) · ∇vψv(s)(· − q(s))]ds . (11.3)

To obtain asymptotics (2.10) it suffices to prove that z(t) = W0(t)φ+ + r+(t) with some
φ+ ∈ L2

0 and ‖r+(t)‖0 = O(t−1/2). This is equivalent to

W0(−t)z(t) = φ+ + r′+(t) (11.4)
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where ‖r′+(t)‖0 = O(t−1/2) since W0(t) is a unitary group in L2
0 by charge conservation

for the free Dirac equation. Finally, (11.4) holds since (11.3) implies

W0(−t)z(t) = z(0) −
∫ t

0

W0(−s)f(s)ds , f(s) = iv̇(s) · ∇vψv(s)(· − q(s))

where the integral in the right hand side converges in L2
0 with rate O(t−1/2). The

latter holds since ‖W0(−s)f(s)‖0 = O(s−3/2) by unitarity of W0(−s) and the decay
rate ‖f(s)‖0 = O(s−3/2). Let us prove this rate of decay. It suffices to prove that
|v̇(s)| = O(s−3/2), or equivalently |ṗ(s)| = O(s−3/2). Substitute (4.2) to last equation of
(1.1) and obtain

ṗ(t) = Re

∫

[

ψv(t)(x− b(t)) + Ψ(x− b(t), t)
]

· ∇ρ(x− b(t) −Q(t))dx

= Re

∫

ψv(t)(y) · ∇ρ(y)dy + Re

∫

ψv(t)(y) · [∇ρ(y −Q(t)) −∇ρ(y)] dy

+ Re

∫

Ψ(y, t) · ∇ρ(y −Q(t))dy .

First integral in the right hand side is zero by stationary equations (2.4). The second
integral is O(t−3/2), since Q(t) = O(t−3/2), and by conditions (1.7) on ρ. Finally, the
third integral is O(t−3/2) by estimate (6.10). The proof is complete.

12 Decay for linearized dynamics

In remaining sections we prove Proposition 6.7. Applying the Gronwall inequality to
frozen linear equation (6.14) we obtain

‖X(t)‖E ≤ Ceαt‖X(0)‖E (12.1)

with some α > 0. Now we can apply the Fourier-Laplace transform

X̃(λ) =

∫ ∞

0

e−λtX(t)dt , Reλ > α (12.2)

to (6.14). Integral (12.2) converges and is analytic for Reλ > α. We will write A and v
instead of A1 and v1 in remaining part of the paper. After the Fourier-Laplace transform,
equation (6.14) reads

λX̃(λ) = AX̃(λ) +X0 , Reλ > α . (12.3)

We will construct the resolvent R(λ)) = (A − λ)−1 for Reλ > 0 and prove that it is
a continuous operator in E−ν . Then X̃(λ) = −(A − λ)−1X0 ∈ E−ν and is an analytic
function for Reλ > 0.

This analyticity and the Paley-Wiener arguments (see [9]) should provide existence of
a E−ν - valued distribution X(t), t ∈ R, with a support in [0,∞). Formally,

X(t) = Λ−1X̃ =
1

2π

∫

R

eiωtX̃(iω + 0)dω , t ∈ R (12.4)

To check continuity of X(t) for t ≥ 0, we need additionally an asymptotics for X̃(iω+0) at
large |ω|. Finally, for time decay ofX(t), we need an additional information on smoothness
and decay of X̃(iω + 0). More precisely, we should prove that X̃(iω + 0)

i) is smooth outside ω = 0 and ω = ±µ, where µ = µ(v) > 0;
ii) decays in a certain sense as |ω| → ∞;
iii) admits the Puiseux expansion at ω = ±µ;
iv) is analytic at ω = 0 if X0 ∈ Zv := PvE and X0 ∈ Eν .

Then decay (6.19) would follow from the Fourier-Laplace representation (12.4).



20

13 Solving linearized equation

Here we construct the resolvent. By (12.3)

(A− λ)









Ψ̃1

Ψ̃2

Q̃

P̃









= −









Ψ01

Ψ02

Q0

P0









.

It is system of equations

(−α1∂1 − α3∂3 + v · ∇ − λ)Ψ̃1 + (βm+ α̃2∂2)Ψ̃2 − Q̃ · ∇ρ2 = −Ψ01

−(βm+ α̃2∂2)Ψ̃1 + (−α1∂1 − α3∂3 + v · ∇ − λ)Ψ̃2 + Q̃ · ∇ρ1 = −Ψ02

BvP̃ − λQ̃ = −Q0

−〈∇Ψ̃j, ρj〉 + 〈∇ψvj , Q̃ · ∇ρj〉 − λP̃ = −P0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(13.1)

Step i) Let us study first two equations. First, we compute matrix integral kernel Gλ(y−y′)
of the Green operator

Gλ =

(

−α1∂1 − α3∂3 + v · ∇ − λ βm+ α̃2∂2

−βm− α̃2∂2 −α1∂1 − α3∂3 + v · ∇ − λ

)−1

. (13.2)

In Fourier space

Ĝλ(k) =

(

iα1k1 + iα3k3 − iv · k − λ βm− α2k2

−βm+ α2k2 iα1k1 + iα3k3 − iv · k − λ

)−1

.

To invert the matrix, we solve the system

af1 + bf2 = g1

−bf1 + af2 = g2

∣

∣

∣

∣

(13.3)

where a = iα1k1 + iα3k3 − iv · k − λ, b = βm− α2k2. Multiplying first equation of (13.3)
by c = −iα1k1 − iα3k3 − iv · k − λ and the second equation by −b, we obtain

caf1 + cbf2 = cg1

b2f1 − cbf2 = −bg2

∣

∣

∣

∣

(13.4)

since ba = cb by anticommutations (1.2). Further, b2 + ac = k2 + m2 + (iv · k + λ)2.
Therefore, summing up equations (13.4), we obtain that

f1 =
cg1 − bg2

k2 +m2 + (iv · k + λ)2

Similarly, we obtain

f2 =
bg1 + cg2

k2 +m2 + (iv · k + λ)2

Hence

Ĝλ(k)=
1

k2+m2+(iv · k+λ)2

(

−iα1k1−iα3k3−iv · k−λ −βm+ α2k2

βm− α2k2 −iα1k1−iα3k3−iv · k−λ

)

(13.5)
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Taking the inverse Fourier transform we obtain

Gλ(y) =

(

α1∂1 + α3∂3 + v · ∇ − λ −βm− α̃2∂2

βm+ α̃2∂2 α1∂1 + α3∂3 + v · ∇ − λ

)

gλ(y) (13.6)

where

gλ(y) = F−1
k→y

1

k2 +m2 + (iv · k + λ)2
, y ∈ R3 (13.7)

Note that denominator in RHS (13.7) does not vanish for Reλ > 0 since |v| < 1. This
implies

Lemma 13.1. Operator Gλ with integral kernel Gλ(y − y′), is continuous operator L2
0 ⊕

L2
0 → L2

0 ⊕ L2
0 for Reλ > 0.

From now on we use system of coordinates in y-space in which v = (|v|, 0, 0), hence
v · k = |v|k1. Let us compute the function gλ(y). One has

k2+m2+(i|v|k1+λ)2 =
1

γ2
k2

1+k2
2+k2

3+2i|v|k1λ+λ2+m2 =
1

γ2
(k1+iγ

2|v|λ)2+k2
2+k2

3+κ2

where

γ = 1/
√

1 − v2 , κ2 =
v2λ2

1 − v2
+ λ2 +m2 =

λ2

1 − v2
+m2 = γ2(λ2 + µ2) , µ := m/γ .

(13.8)
Hence,

gλ(y) =
1

(2π)3/2

∫

e−ikydk
1
γ2 (k1 + iγ2|v|λ)2 + k2

2 + k2
3 + κ2

=
e−γ2|v|λy1

(2π)3/2

∫

e−ikydk
1
γ2k

2
1 + k2

2 + k2
3 + κ2

=
γe−γ|v|λỹ1

(2π)3/2

∫

e−ikỹdk

k2
1 + k2

2 + k2
3 + κ2

= γe−γ|v|λỹ1R0(ỹ,−κ2) (13.9)

Here ỹ1 = γy1, ỹ = (γy1, y2, y3), and R0(y − y′, ζ) is integral kernel of operator R0(ζ) =
(−∆ − ζ)−1. It is well known that R0(y, ζ) = ei

√
ζ|y|/4π|y|. Therefore,

gλ(y) =
e−κ|ỹ|−κ1ỹ1

4π|ỹ| , κ = γ
√

λ2 + µ2, κ1 := γ|v|λ (13.10)

We choose Reκ > 0 for Reλ > 0. Note that for 0 < |v| < 1

0 < Re κ1 < Re κ , Reλ > 0 . (13.11)

Let us state the result which we have got above.

Lemma 13.2. i) The function gλ(y) decays exponentially in y for Reλ > 0.
ii) Formulas (13.10) and (13.8) imply that for every fixed y, function gλ(y) admits an
analytic continuation in λ to the Riemann surface of algebraic function

√

λ2 + µ2 with
branching points λ = ±iµ.

Thus, from (13.1) and (13.2) we obtain the representation

Ψ̃1 = −G11
λ Ψ01 −G12

λ Ψ02 − (G12
λ ∇ρ1) · Q̃+ (G11

λ ∇ρ2) · Q̃ , (13.12)

Ψ̃2 = −G21
λ Ψ01 −G22

λ Ψ02 − (G22
λ ∇ρ1) · Q̃+ (G21

λ ∇ρ2) · Q̃
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Step ii) Now we proceed to last two equations (13.1):

−λQ̃+BvP̃ = −Q0 , 〈∇ψvj , Q̃ · ∇ρj〉 − 〈∇Ψ̃j , ρj〉 − λP̃ = −P0 (13.13)

We rewrite equations (13.12) as Ψ̃j = Ψ̃j(Q̃) + Ψ̃j(Ψ0), where

Ψ̃1(Ψ0) = −G11
λ Ψ01 −G12

λ Ψ02 , Ψ̃2(Ψ0) = −G21
λ Ψ01 −G22

λ Ψ02 (13.14)

Ψ̃1(Q̃) = (−G12
λ ∇ρ1 +G11

λ ∇ρ2) · Q̃ , Ψ̃2(Q̃) = (−G22
λ ∇ρ1 +G21

λ ∇ρ2) · Q̃ . (13.15)

Then 〈∇Ψ̃j, ρj〉 = 〈∇Ψ̃j(Q̃), ρj〉 + 〈∇Ψ̃j(Ψ0), ρj〉, and last equation (13.13) becomes

〈∇ψvj , Q̃ · ∇ρj〉 − 〈∇Ψ̃j(Q̃), ρj〉 − λP̃ = −P0 + 〈∇Ψ̃j(Ψ0), ρj〉 =: −P0 − Φ(λ)

where
Φ(λ) = 〈Ψ̃j(Ψ0),∇ρj〉 . (13.16)

First we compute the term

〈∇ψvj , Q̃ · ∇ρj〉 =
∑

lj

〈∇ψvj , Q̃l∂lρj〉 =
∑

lj

〈∇ψvj , ∂lρj〉Q̃l .

Applying the Fourier transform Fy→k, we have by the Parseval identity and (A.25) that

∑

j

〈∂iψvj , ∂lρj〉 =
∑

j

〈−ikiψ̂vj ,−iklρ̂j〉 =

∫

kikl(ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2)dk (13.17)

= −
∫

kiklm
βρ̂1 · ρ̂1 + βρ̂2 · ρ̂2

k2 +m2 − (|v|k1)2
dk = −

∫

kiklB(k)dk

k2 +m2 − (|v|k1)2
=: −Lil .

As a result, 〈∇ψvj , Q̃ · ∇ρj〉 = −LQ̃, where L is 3 × 3 matrix with matrix elements Lil.
The matrix L is diagonal and positive defined by (1.8).

Now we compute the term −〈∇Ψ̃j(Q̃), ρj〉 = 〈Ψ̃j(Q̃),∇ρj〉. One has

〈Ψ̃j(Q̃), ∂iρj〉=
∑

l

(

〈−G12
λ ∂lρ1+G

11
λ ∂lρ2, ∂iρ1〉−〈G22

λ ∂lρ1−G21
λ ∂lρ2, ∂iρ2〉

)

Q̃l =
∑

l

Hil(λ)Q̃l

and by the Parseval identity and (1.2)-(1.3) we have

Hil(λ) : = 〈−G12
λ ∂lρ1 +G11

λ ∂lρ2, ∂iρ1〉 − 〈G22
λ ∂lρ1 −G21

λ ∂lρ2, ∂iρ2〉
= 〈[(βm− α2k2)ρ̂1 − (iα1k1 + iα3k3 + i|v|k1 + λ)ρ̂2]ĝλkl, kiρ̂1〉
+ 〈[(iα1k1 + iα3k3 + i|v|k1 + λ)ρ̂1 + (βm− α2k2)ρ̂2]ĝλkl, kiρ̂2〉 (13.18)

=

∫

kiklm
βρ̂1 · ρ̂1 + βρ̂2 · ρ̂2

k2 +m2 − (|v|k1 − iλ)2
dk =

∫

kiklB(k)dk

k2 +m2 − (|v|k1 − iλ)2
.

The matrix H is well defined for Reλ > 0 since the denominator does not vanish. The
matrix H is diagonal. Indeed, if i 6= l, then at least one of these indices is not equal to
one, and the integrand in (13.17) is odd with respect to the corresponding variable. Thus,
Hil = 0. As a result, 〈Ψ̃j(Q̃),∇ρj〉 = HQ̃, where H is the matrix with matrix elements
Hil. Finally, (13.13) becomes

M(λ)

(

Q̃

P̃

)

=

(

Q0

P0 + Φ(λ)

)

, where M(λ) =

(

λE −Bv

L−H(λ) λE

)

. (13.19)

Assume for a moment that the matrix M(λ) is invertible (later we will prove this). Then
we obtain

(

Q̃

P̃

)

= M−1(λ)

(

Q0

P0 + Φ(λ)

)

, Reλ > 0 . (13.20)

Finally, formula (13.20) and formulas (13.12), where Q̃ is expressed from (13.20), give the
expression of the resolvent R(λ) = (A− λ)−1, Reλ > 0.
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Lemma 13.3. i) M(λ) admits an analytic continuation from complex half-plane Reλ > 0
to the Riemann surface Σ of the function

√

µ2 + λ2;
ii)M(λ) is Hölder continuous on each compact set in Σ;
iii) M−1(λ) is meromorphic on Σ.

Proof. i) The analytic continuation of M(λ) exists by Lemma 13.1, conditions (1.7), and
last line in (13.18):

Hjj(λ) = 〈mgλβ ∗ ∂jρ1, ∂jρ1〉 + 〈mgλβ ∗ ∂jρ2, ∂jρ2〉 , j = 1, 2, 3 (13.21)

since gλ is analytic on Σ by (13.10).
ii) The Hölder continuity holds by the same arguments.
iii) The inverse matrix is meromorphic since it exists for large Reλ. The latter follows
from (13.19) since H(λ) → 0, Reλ→ ∞, by (13.18).

14 Inverse matrix

Here we study smoothness of M−1(λ) on imaginary axis and in half-plane Reλ > 0.

14.1 Regularity on imaginary axis

By Lemma 13.3, the limit matrix M(iω) := M(iω + 0) exists for ω ∈ R, and its entries
are continuous functions of ω ∈ R, smooth for |ω| < µ and |ω| > µ.

Proposition 14.1. Let ρ satisfy conditions (1.7)- (1.8), and |v| < 1. Then the matrix
M(iω) is invertible for ω ∈ R \ 0.

This proposition follows by methods from [8, Proposition 15.1].

Now let us obtain asymptotics of M−1(λ) near singular points λ = 0 and λ = ±iµ.

I. First we consider the points λ = ±iµ.

Lemma 14.2. The asymptotics hold

M−1(λ)=C± + O((λ∓ iµ)
1

2 ) , ∂M−1(λ)=O((λ∓ iµ)−
1

2 ) , ∂2M−1(λ)=O((λ∓ iµ)−
3

2 )
(14.1)

Proof. It suffices to prove similar asymptotics for M(λ). Then (14.1) holds also for
M−1(λ), since the matricesM(±iµ) are invertible. The asymptotics forM(λ) hold by con-
volution representation (13.21) since gλ admits the corresponding asymptotics by (13.10).
Namely

gλ(y) =
1

4π|ỹ| + r±(λ, y) , λ→ ±iµ, Reλ > 0

where

r±(λ, y)=O((λ∓ iµ)
1

2 ) , ∂λr±(λ, y)=O((λ∓ iµ)−
1

2 ) , ∂2
λr±(λ, y)=O((1+|y|)(λ∓ iµ)−

3

2 )

Condition (1.7) provides convergence of all integrals arising in ∂k
λHjj.

II. Second, we consider the point ω = 0 which is an isolated pole of a finite degree by
Lemma 13.3. In Appendix B we prove that determinant of M(iω) can be written as

detM(iω) = −ω6
(

1 +
f11(ω)

γ3

)(

1 +
f22(ω)

γ

)(

1 +
f33(ω)

γ

)

(14.2)

where fjj(ω) ∈ C∞(−µ, µ) and fjj(0) > 0.
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14.2 Behavior at infinity

Here we study asymptotic behavior of M−1(λ) at infinity.

Lemma 14.3. There exist a matrix D0 and a matrix-function D1(λ), such that

M−1(λ) =
D0

λ
+D1(λ) , |λ| → ∞ , Reλ > 0 (14.3)

where

|∂k
λD1(λ)| ≤ C(k)

|λ|2 , |λ| → ∞ , Reλ > 0 , k = 0, 1, 2 . (14.4)

Proof. The structure of M(λ) provides that it suffices to prove the estimate for Hjj(λ):

|∂k
λHjj(λ)| ≤ C(k) , λ ∈ C , |λ| ≥ µ+ 1 , j = 1, 2, 3 , k = 0, 1, 2 . (14.5)

This estimate follows from representation (13.21) and the bounds

|gλ(y)| ≤
C1

|y| , |∂λgλ(y)| ≤
C2

|y| + C3, |∂2
λgλ(y)| ≤

C4

|y| + C5|y|, Reλ > 0

14.3 Analyticity in half-plane

Lemma 14.4. M−1(λ) is holomorphic in C+ := {λ ∈ C : Reλ > 0}.
Proof. We apply a bifurcation argument. Namely, we replace ρ by ερ with ε ∈ [0, 1], and
write Mε(λ) for the corresponding matrix M(λ) with ε2L and ε2H(λ) instead of L and
H(λ). Then (13.19) in the case ε = 0 yields

M0(λ) =

(

λE −Bv

0 λE

)

(14.6)

Hence, M−1
0 (λ) is a holomorphic matrix function for λ ∈ C+. Let us extend this analyticity

to M−1
ε (λ) with ε ∈ (0, 1].

Step i) Asymptotics of type (14.3)-(14.4) hold for M−1
ε (λ) uniformly in ε ∈ [0, 1].

Therefore, there exists an R > 0 such that M−1
ε (λ) is a holomorphic matrix function of

λ ∈ C+ with |λ| > R for all ε ∈ (0, 1].

Step ii) Similarly, formulas (14.2), (14.6) imply asymptotics

detMε(λ) ∼ λ6 , λ→ 0

which hold uniformly in ε ∈ [0, 1]. Therefore, there exists a δ1 > 0 such that

a) M−1
ε (λ) is holomorphic in the semicircle λ ∈ C+, |λ| < 2δ1 for all ε ∈ (0, 1];

b) M−1
ε (λ) is bounded on the ring R(δ1) := {λ ∈ C+ : δ1 < |λ| < 2δ1} uniformly in

ε ∈ (0, 1].

Step iii) Proposition 14.1 implies, by a continuity argument, that M−1
ε (λ) is bounded

on the set {iω : ω ∈ R, δ1 < |ω| < R + 1} uniformly in ε ∈ (0, 1]. Furthermore, the
Hölder continuity from Lemma 13.3 ii) is obviously uniform in ε ∈ (0, 1]. Hence, M−1

ε (λ)
is holomorphic and bounded on a region

Π(R, δ1, δ2) := {λ ∈ C : δ1 < | Imλ| < R+ 1, 0 < Reλ ≤ δ2}
uniformly in ε ∈ (0, 1], where δ2 = δ(R, δ1) > 0.

Step iv) Finally, we consider a closed path Γ = Γ1 ∪ Γ2, where Γ1 lies in the union
Π(R, δ2) ∪ R(δ1), and Γ2 lies on the semicircle |λ| = R, Reλ > 0. By the arguments
above, M−1

ε (λ) is bounded on Γ uniformly in ε ∈ [0, 1]. Therefore, M−1
ε (λ) is holomorphic

inside Γ for ε ∈ (0, 1] as well as for ε = 0.
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15 Transversal decay for linearized equation

Here we prove Proposition 6.7. First, we establish decay in weighted norm for the solution
to free Dirac equation.

15.1 Weighted decay for free Dirac equation

Denote by W±
v (t) dynamical groups (propagators) of the following “modified” free Dirac

equations
∂tΨ

±(x, t) = [±α · ∇ ± iβm+ v · ∇]Ψ±(x, t) . (15.1)

Lemma 15.1. For any Φ ∈ L2
ν with ν > 3/2 the bound holds

‖W±
v (t)Φ‖−ν ≤ Cν(v)‖Φ‖ν

(1 + |t|)3/2
, t ≥ 0 . (15.2)

Proof. Step i) For concreteness we consider the case “+”. Note, that

(∂t + α · ∇ + iβm+ v · ∇) (∂t − α · ∇ − iβm+ v · ∇) = (∂2
t −∆+(v ·∇)2+2v ·∇∂t+m

2) .

Hence the integral kernel W+
v (x− y, t) of the operator W+

v (t) reads

W+
v (z, t) = (∂t + α · ∇ + iβm+ v · ∇)Gv(z, t) , (15.3)

where Gv(z, t) is a fundamental solution of the ”modified” Klein-Gordon operator

(∂2
t − ∆ + (v · ∇)2 + 2v · ∇∂t +m2)Gv(z, t) = δ(z)δ(t) .

Let Gv(t), t ≥ 0 be the operator with the integral kernel Gv(x − y, t). It is easy to see
that

[Gv(t)Φ](x) = [G0(t)Φ](x− vt) , x ∈ R3, t ≥ 0 .

Then

Gv(z, t) = G0(z−vt, t) =
δ(t− |z − vt|)

4πt
−m

4π

θ(t− |z − vt|)J1(m
√

t2 − |z − vt|2)
√

t2 − |z − vt|2
, t > 0

where J1 is the Bessel function of order 1, and θ is the Heavyside function. Let us fix an
arbitrary ε ∈ (|v|, 1). Well known asymptotics of the Bessel function imply that

|∂tGv(z, t)| , |∂zj
Gv(z, t)| ≤ C(ε)(1+ t)−3/2 , |z−vt| ≤ εt , t ≥ 1 , j = 1, 2, 3 . (15.4)

Step ii) Consider an arbitrary t ≥ 1. Denote ε1 = ε− |v|. We split the function Φ in two
terms, Φ = Φ1,t + Φ2,t such that

‖Φ1,t‖L2
ν

+ ‖Φ2,t‖L2
ν
≤ C‖Φ‖L2

ν
, t ≥ 1 (15.5)

and

Φ1,t(x) = 0 for |x| > ε1t

2
, and Φ2,t(x) = 0 for |x| < ε1t

4
. (15.6)

Estimate (15.2) for W+
v (t)Φ2,t follows by charge conservation for Dirac equation, (15.5)

and (15.6):

‖W+
v (t)Φ2,t‖L2

−ν
≤ ‖W+

v (t)Φ2,t‖L2
0

= ‖Φ2,t‖L2
0
≤ C(ε)‖Φ2,t‖L2

ν

(1 + t)ν
≤ C1(ε)‖Φ‖L2

ν

(1 + t)3/2
, t ≥ 1

(15.7)
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since ν > 3/2.
Step iii) Next we consider W+

v (t)Φ1,t. Now we split the operator W+
v (t) in two terms:

W+
v (t) = (1 − ζ)W+

v (t) + ζW+
v (t) , t ≥ 1

where ζ is the operator of multiplication by the function ζ(|x|/t) such that ζ = ζ(s) ∈
C∞

0 (R), ζ(s) = 1 for |s| < ε1/4, ζ(s) = 0 for |s| > ε1/2. Since 1 − ζ(|x|/t) = 0 for
|x| < ε1t/4, then applying the charge conservation and (15.5), we have for t ≥ 1

‖(1 − ζ)W+
v (t)Φ1,t‖L2

−ν
≤

C(ε)‖W+
v (t)Φ1,t‖L2

0

(1 + t)ν
=
C(ε)‖Φ1,t‖L2

0

(1 + t)ν

≤ C1(ε)‖Φ1,t‖L2
ν

(1 + t)ν
≤ C2(ε)‖Φ‖L2

ν

(1 + t)3/2
. (15.8)

Step iv) It remains to estimate ζW+
v (t)Φ1,t. Let χt be the characteristic function of the

ball |x| ≤ ε1t/2. We will use the same notation for operator of multiplication by this
characteristic function. By (15.6), we have

ζW+
v (t)Φ1,t = ζW+

v (t)χtΦ (15.9)

The matrix kernel of the operator ζW+
v (t)χt is equal to

W+
v (x− y, t) = ζ(|x|/t)W+

v (x− y, t)χt(y)

Since ζ(|x|/t) = 0 for |x| > ε1t/2 and χt(y) = 0 for |y| > ε1t/2 then W+
v (x− y, t) = 0 for

|x− y| > ε1t. On the other hand, |x− y| ≤ ε1t implies |x− y− vt| ≤ εt, since ε1 + |v| = ε
by definition of ε1. Hence, (15.3) and (15.4) yield

|W+
v (x− y, t)| ≤ C(1 + t)−3/2 , t ≥ 1 . (15.10)

The norm of the operator ζW+
v (t)χt : L2

ν → L2
−ν is equivalent to the norm of the operator

〈x〉−νζW+
v (t)χt(y)〈y〉−ν : L2 → L2 (15.11)

Therefore, (15.10) implies that operator (15.11) is Hilbert-Schmidt operator since ν > 3/2,
and its Hilbert-Schmidt norm does not exceed C(1 + t)−3/2. Hence, by (15.9)

‖ζW+
v (t)Φ1,t‖L2

−ν
≤ C(1 + t)−3/2‖Φ‖L2

ν
, t ≥ 1 . (15.12)

Finally, (15.7), (15.8) and (15.12) imply (15.2).

15.2 Decay of vector components

Here we establish the decay (6.19) for Q(t) and P (t).

Lemma 15.2. Let X0 ∈ Zv ∩ Eν. Then Q(t), P (t) are continuous and

|Q(t)| + |P (t)| ≤ Cν(ρ, ṽ)(1 + |t|)−3/2 , t ≥ 0 . (15.13)

Proof. The components Q(t) and P (t) are given by the Fourier integral

(

Q(t)
P (t)

)

=
1

2π

∫

eiωtM−1(iω)

(

Q0

P0 + Φ(iω)

)

dω (15.14)
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with Φ(iω) := Φ(iω + 0) where Φ(λ) is defined in (13.16). The integral converges in the
sense of distributions to a continuous function of t ≥ 0 by (14.1), (14.3) and (B.31). Note
that the condition X0 ∈ Zv implies that the whole trajectory X(t) lies in Zv. This follows
from the invariance of the space Zv under the generator Av,v (cf. Remark 6.6). If X0 6∈ Zv,
then Q(t) and P (t) may contain non-decaying terms which correspond to singular point
ω = 0 since the linearized dynamics admits the secular solutions without decay, see
(6.15). We will show that the symplectic orthogonality condition leads to (15.13). We
split integral (15.14) into three terms using the partition of unity ζ1(ω)+ζ2(ω)+ζ3(ω) = 1,
ω ∈ R:

(

Q(t)
P (t)

)

=
1

2π

∫

eiωt(ζ1(ω) + ζ2(ω) + ζ3(ω))M−1(iω + 0)

(

Q0

P0 + Φ(iω)

)

dω =
3

∑

j=1

Ij(t)

where the functions ζj(ω) ∈ C∞(R) are supported by

supp ζ1 ⊂ {ω ∈ R : ε0/2 < |ω| < µ+ 2}

supp ζ2 ⊂ {ω ∈ R : |ω| > µ+ 1}

supp ζ3 ⊂ {ω ∈ R : |ω| < ε0}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(15.15)

i) Let us represent Ij(t), j = 1, 2 as

Ij(t) =
1

2π

∫

eiωtζj(ω)
[

M−1(iω)

(

Q0

P0

)

+M−1(iω)

(

0
Φ(iω)

)

]

dω

= sj(t)

(

Q0

P0

)

+ sj(t) ∗
(

0
f(t)

)

(15.16)

where
sj(t) = Λ−1ζj(ω)M−1(iω + 0) , f(t) = Λ−1Φ(iω) . (15.17)

By (13.14) and (15.1)

Ψ̃1(Ψ0) = −Λ ReW+
v (t)Ψ0 , Ψ̃2(Ψ0) = −Λ ImW+

v (t)Ψ0 .

Hence, (13.16), (15.17) and Lemma 15.1 imply

|f(t)| = |Re〈W+
v (t)Ψ0,∇ρ〉| ≤ Cν(ρ, v)(1 + t)−3/2 .

Further, the function s1(t) decays as (1+ |t|)−3/2 by (14.1), and s2(t) decays as (1+ |t|)−2

due to Proposition 14.3. Hence, I1(t) and I2(t) decay as (1 + |t|)−3/2 by (15.16).
iii) Finally, the function I3(t) decays as t−∞ since

(

Q̃(iω)

P̃ (iω)

)

= M−1(iω)

(

Q0

P0 + Φ(iω)

)

∈ C∞(−µ, µ) if X0 ∈ Zv .

Indeed, in Appendix C we prove that the symplectic orthogonality conditions (6.7) at
t = 0 imply

P0 + Φ(0) = 0 , B−1
v Q0 + Φ′(0) = 0 . (15.18)

Then
P0 + Φ(iω) = Φ(iω) − Φ(0) = iωΥ1(ω)

B−1
v Q0 + Υ1(ω) =

Φ(iω) − Φ(0)

iω
− Φ′(0) = iωΥ2(ω)
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where Υj(ω) ∈ C∞(−µ, µ) by (13.6), (13.14) and (13.16). Therefore, (B.31)-(B.32) imply

P̃ (iω) = M21(ω)Q0 + iM22(ω)Υ1(ω) ∈ C∞(−µ, µ)

Q̃(iω) =
1

ω
M11(ω)Q0 +

i

ω
M12(ω)Υ1(ω) =

i

ω
M12(B

−1
v Q0 + Υ1(ω))

= −M12Υ2(ω) ∈ C∞(−µ, µ)

15.3 Decay of fields

Here we prove the decay (6.19) for the field components Ψ1(y, t),Ψ2(y, t). First two
equations of (6.14) may be written as one equation:

Ψ̇(y, t) = [−α · ∇ − iβm+ v · ∇]Ψ(y, t) − iQ(t) · ∇ρ(y) , x ∈ R3 , t ∈ R (15.19)

where Ψ(y, t) = Ψ1(y, t) + iΨ2(y, t)). Applying the Duhamel representation, we obtain

Ψ(t) = W−
v (t)Ψ0 −

∫ t

0

W−
v (t− s)Q(s) · ∇ρ ds , t ≥ 0

where W−
v (t) is defined in section 15.1. Hence, Lemma 15.1 and the decay of Q from

(15.13) yield
‖Ψ(t)‖−ν ≤ Cν(ρ, ṽ)‖Ψ0‖ν(1 + |t|)−3/2 , t ≥ 0 . (15.20)

It completes the proof of Proposition 6.7.

A Computing symplectic form

Here we justify formulas (3.6)-(3.8) for the matrix Ω.
1) First, the Parseval identity implies

Ω(τj , τl)=〈∂jψv1, ∂lψv2〉−〈∂jψv2, ∂lψv1〉=
∫

kjkl dk(ψ̂v1 ·ψ̂v2−ψ̂v2 ·ψ̂v1) = 0 , j, l = 1, 2, 3 .

since the integrand is odd function.

2) Second, we consider

Ω(τj+3, τl+3) = 〈∂vj
ψv1, ∂vl

ψv2〉 − 〈∂vj
ψv2, ∂vl

ψv1〉 . (A.21)

Let us derive the formulas for ψv1 and ψv2. First equation of (2.4) implies

[(v · ∇)2 − ∆ +m2]ψv = [iv · ∇ + iα · ∇ − βm]ρ1 .

Hence

[(v · ∇)2 − ∆ +m2]ψv1 = −[v · ∇ + α1∂1 + α3∂3]ρ2 − [α̃2∂2 + βm]ρ1 ,

[(v · ∇)2 − ∆ +m2]ψv2 = [v · ∇ + α1∂1 + α3∂3]ρ1 − [α̃2∂2 + βm]ρ2 .

Applying the Fourier transform, we obtain

ψ̂v1 =
[iv · k + iα1k1 + iα3k3]ρ̂2 + [α2k2 − βm]ρ̂1

−(v · k)2 + k2 +m2

ψ̂v2 =
−[iv · k + iα1k1 + iα3k3]ρ̂1 + [α2k2 − βm]ρ̂2

−(v · k)2 + k2 +m2

∣

∣

∣

∣

∣

∣

∣

∣

(A.22)
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Differentiating, we get

∂vj
ψ̂v1 =

ikj ρ̂2

−(v · k)2 + k2 +m2
+

2kjv · kψ̂v1

−(v · k)2 + k2 +m2

∂vl
ψ̂v2 =

−iklρ̂1

−(v · k)2 + k2 +m2
+

2klv · kψ̂v2

−(v · k)2 + k2 +m2

∣

∣

∣

∣

∣

∣

∣

∣

(A.23)

Hence, (A.21) implies

Ω(τj+3, τl+3) =

∫

kjkl[ρ̂1 · ρ̂2 − ρ̂2 · ρ̂1]dk

(k2 +m2 − (v · k)2)2
+

∫

4kjkl(v · k)2[ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1]dk

(k2 +m2 − (v · k)2)2

+

∫

2ikjklv · k[ρ̂2 · ψ̂v2 + ψ̂v2 · ρ̂2 + ρ̂1 · ψ̂v1 + ψ̂v1 · ρ̂1]

(k2 +m2 − (v · k)2)2
= 0

since all integrands are odd functions.

3) Finally, (A.23) implies

Ω(τj , τl+3) = −〈∂jψv1, ∂vl
ψv2〉 + 〈∂jψv2, ∂vl

ψv1〉 + ej · ∂vl
pv

=

∫

ikjψ̂v1 · [−iklρ̂1 + 2klv · kψ̂v2)] − ikjψ̂v2 · [iklρ̂2 + 2klv · kψ̂v1)]

k2 +m2 − (v · k)2
dk + ej · ∂vl

pv

=

∫

kjkl
−[ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2] + 2iv · k[ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1]

k2 +m2 − (v · k)2
dk + ej · ∂vl

pv (A.24)

Recall, that ρj(x) are even, then ρ̂j(k) are real. Hence (1.2)-(1.3) and (A.22) imply

(k2 +m2 − (v · k)2)(ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2) = [α2k2 − βm]ρ̂1 · ρ̂1 + [α2k2 − βm]ρ̂2 · ρ̂
+[iv · k + iα1k1 + iα3k3]ρ̂2 · ρ̂1 − [iv · k + iα1k1 + iα3k3]ρ̂1 · ρ̂2 = −Bρ̂ · ρ̂ (A.25)

(k2 +m2 − (v · k)2)2(ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1) = 2i(k2 +m2 − (v · k)2)2 Im(ψ̂v1 · ψ̂v2)

= −2βmρ̂1 · [iv · k + iα1k1 + iα3k3]ρ̂1 − 2[iv · k + iα1k1 + iα3k3]ρ̂2 · βmρ̂2 (A.26)

= −2iv · kBρ̂ · ρ̂

Substituting (A.25) and (A.26) into the right hand site of (A.24), we obtain

Ω(τj , τl+3) =

∫

kjkl

( B(k)

(k2 +m2 − (v · k)2)2
+

4(v · k)2B(k)

(k2 +m2 − (v · k)2)3

)

dk + ej · ∂vl
pv

that correspond to (3.6) - (3.8).

B Computing inverse matrix

Denote F (ω) := −L+H(iω+ 0) which is diagonal. Then by (13.19) for ω ∈ R we obtain

detM(iω)=det

(

iωE −Bv

−F (ω) iωE

)

= −
(

ω2+
F11(ω)

γ3

)(

ω2+
F22(ω)

γ

)(

ω2+
F33(ω)

γ

)

(B.27)

where

Fjj(ω) =

∫

k2
jBdk

(

1

m2 + k2 − (|v|k1 + ω)2
− 1

m2 + k2 − (|v|k1)2

)

, j = 1, 2, 3 .

(B.28)
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Formula (B.27) is obvious since both matrices F (ω) and Bv are diagonal, hence the matrix
M(iω) is equivalent to three independent matrices 2 × 2. Namely, let us transpose the
columns and rows of the matrix M(iω) in the order (142536). Then we get the matrix
with three 2 × 2 blocks on the main diagonal. Therefore, the determinant of M(iω) is
product of the determinants of these three matrices. Further,

M−1(iω) =





















−iωγ3

ω2γ3+F11
0 0 −1

ω2γ3+F11
0 0

0 −iωγ
ω2γ+F22

0 0 −1
ω2γ+F22

0

0 0 −iωγ
ω2γ+F33

0 0 −1
ω2γ+F33

−γF11

ω2γ3+F11
0 0 −iωγ3

ω2γ3+F11
0 0

0 −γF22

ω2γ+F22
0 0 −iωγ

ω2γ+F22
0

0 0 −γF33

ω2γ+F33
0 0 −iωγ

ω2γ+F33





















(B.29)

where Fjj = Fjj(ω). Let us prove that for ω ∈ (−µ, µ)

Fjj(ω) = ω2fjj(ω), fjj(ω) ∈ C∞(−µ, µ) , fjj(0) > 0 . (B.30)

Indeed, formula (B.28) implies that Fjj(0) = 0. Differentiating (B.28), we obtain

F ′
jj(0) = 2

∫

k2
jB(k)dk

|v|k1

(k2 +m2 − (|v|k1)2)2
= 0

since integrand is odd function in respect to k1, and

F ′′
jj(0) = 2

∫

k2
jB(k)dk

k2 +m2 + 3(|v|k1)
2

(k2 +m2 − (|v|k1)2)3
> 0 .

By (B.30) we can represent the matrices M−1(iω) as

M−1(iω) =





1
ω
M11(ω) 1

ω2M12(ω)

M21(ω) 1
ω
M22(ω)



 (B.31)

where

M11(ω) = M22(ω) =







−iγ3

γ3+f11
0 0

0 −iγ
γ+f22

0

0 0 −iγ
γ+f33







M12(ω) =





−1
γ3+f11

0 0

0 −1
γ+f22

0

0 0 −1
γ+f33



 , M21(ω) =







−γ3f11

γ3+f11
0 0

0 −γf22

γ+f22
0

0 0 −γf33

γ+f33







where fjj := fjj(ω), Mij(ω) ∈ C∞(−µ, µ), and

M11 = iM12B
−1
ν . (B.32)

C Symplectic orthogonality conditions

Here we derive conditions (15.18) from the symplectic orthogonality conditions (6.7).
First let us compute Φ(0). Formulas (13.14) and (13.16) imply

(Φ(0))j = 〈Ĝ11
0 Ψ̂01 + Ĝ12

0 Ψ̂02, ikjρ̂1〉 + 〈Ĝ11
0 Ψ̂02 − Ĝ12

0 Ψ̂01, ikjρ̂2〉 , j = 1, 2, 3 .
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On the other hand, by (13.5) formulas (A.22) read

ψ̂v1 = −Ĝ11
0 ρ̂2 + Ĝ12

0 ρ̂1, ψ̂v2 = Ĝ11
0 ρ̂1 + Ĝ12

0 ρ̂2 .

Hence, for j = 1, 2, 3

0 = −Ω(Z0, τj) = 〈Ψ01, ∂jψv2〉 − 〈Ψ02, ∂jψv1〉 + P0 · ej

= −〈Ψ01, ikj(Ĝ
11
0 ρ̂1 + Ĝ12

0 ρ̂2)〉 + 〈Ψ02, ikj(Ĝ
12
0 ρ̂1 − Ĝ11

0 ρ̂2)〉 + P0 · ej = (Φ(0) + P0)j

since (Ĝ11
0 )∗ = −Ĝ11

0 , (Ĝ12
0 )∗ = Ĝ12

0 . Hence the first condition (15.18) follows. Further,

∂λĜ
11
λ

∣

∣

∣

λ=0
=

−1 − 2iv · kĜ11
0

k2 +m2 − (v · k)2
, ∂λĜ

12
λ

∣

∣

∣

λ=0
=

−2iv · kĜ12
0

k2 +m2 − (v · k)2
.

Then (13.14) and (13.16) imply for j = 1, 2, 3

(Φ′(0))j = −
〈Ψ̂01 + 2iv · k(Ĝ11

0 Ψ̂01 + Ĝ12
0 Ψ̂02)

k2 +m2 − (v · k)2
, ikjρ̂1

〉

−
〈Ψ̂02 + 2iv · k(Ĝ11

0 Ψ̂02 −G12
0 Ψ̂01)

k2 +m2 − (v · k)2
, ikjρ̂2

〉

On the other hand, from (A.22) and (A.23) it follows that for j = 1, 2, 3

∂vj
ψ̂v1 =

ikj ρ̂2 + 2kjv · k(−Ĝ11
0 ρ̂2 + Ĝ12

0 ρ̂1)

k2 +m2 − (v · k)2
, ∂vj

ψ̂v2 =
−ikj ρ̂1 + 2kjv · k(Ĝ11

0 ρ̂1 + Ĝ12
0 ρ̂2)

k2 +m2 − (v · k)2

Hence,

0 = Ω(Z0, τj+3) = 〈Ψ01, ∂vj
ψv2〉 − 〈Ψ02, ∂vj

ψv1〉 +Q0 · ∂vj
pv

=
〈

Ψ01,
−ikj ρ̂1 + 2kjv · k(Ĝ11

0 ρ̂1 + Ĝ12
0 ρ̂2)

k2 +m2 − (v · k)2

〉

−
〈

Ψ02,
ikj ρ̂2 + 2kjv · k(Ĝ12

0 ρ̂1 − Ĝ11
0 ρ̂2)

k2 +m2 − (v · k)2

〉

+ Q0 · ∂vj
pv = (Φ′(0) +B−1

v Q0)j, j = 1, 2, 3

since Q0 · ∂vj
pv = Q0 · B−1

v ej = B−1
v Q0 · ej . Hence the second condition (15.18) follows.
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