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Abstract

We establish soliton-like asymptotics for finite energy solutions to the Dirac
equation coupled to a relativistic particle. Any solution with initial state close to
the solitary manifold, converges in long time limit to a sum of traveling wave and
outgoing free wave. The convergence holds in global energy norm. The proof uses
spectral theory and symplectic projection onto solitary manifold in the Hilbert phase
space.
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1 Introduction

We prove long time convergence to sum of a soliton and dispersive wave for the Dirac
equation coupled to a relativistic particle. The convergence holds in global energy norm
for finite energy solutions with initial state close to the solitary manifold. Our main
motivation is to develop techniques of Buslaev and Perelman [2, 3] in the context of the
Dirac equation. The development is not straightforward because of known peculiarities
of the Dirac equation: nonpositivity of the energy, algebra of the Dirac matrices, etc. We
expect that the result might be extended to relativistic nonlinear Dirac equations relying
on an appropriate development of our techniques.

Let ¢ (z) € C* be a Dirac spinor field in R3, coupled to a relativistic particle with
position ¢ and momentum p, governed by

i(x,t) = [~ia1 0y — 10y — iag0s + fmly(x,t) + p(x — q(t))

4(t) =p(t)//1+p*(1),  p(t) = Re(ip(x,1), Vp(z — q(t)))

where p € C(R3,C?) and (-,-) stands for the Hermitian scalar product on L*(R?) @ C*.
Here 0; = 0/0x;, oj and [ are 4 x 4 Dirac matrices. The standard representation for the
Dirac matrices o; and 3 (in 2 x 2 blocks) is

=20 (0 o -
5—040—<0 _[2)7 aj_(ajo)a ]_17273

where [ denotes the unit 2 x 2 matrix, and

0 1 0 —i 1 0
(o) e (00) ()

The matrices o, j = 0,1, 2,3 are Hermitian, and satisfy the anticommutation relations

reR? (1.1)

o =y, ajag + apag = 204 (1.2)

We will use the following real orthogonality relations

B¢a]w:07 j:]-aga and a2¢'¢:07 ¢€R4 (13)

“wo»

Here and below stands for the Hermitian scalar product on C" with appropriate n.
System (1.1) is translation-invariant, and admits soliton solutions

San(t) = (Vy(x — vt —a),vt +a,p,), Py =v/V1—02 (1.4)
for all a,v € R with |v| < 1. The states Sy, := S4.,(0) form the solitary manifold
S = {Sus:a,v €R? |v| < 1}
Our main result is soliton-type asymptotics
Y(x,t) ~hy (x —vet —ag) + Wo(t)py, t— too (1.5)

for solutions to (1.1) with initial data close to solitary manifold S. Here Wy () is the dy-
namical group of the free Dirac equation, ¢ are the corresponding asymptotic scattering
states, and the asymptotics hold in the global norm of the Hilbert space L?(R3) ® C*. For
the particle trajectory we prove that

q(t) = vy, q(t) ~vit+ag, t— £o0 (1.6)



The results are established under the following conditions on the complex valued charge
distribution: for some v > 5/2

(L+[a))"|0%p(x)| € L*(R?),  |af <3 (1.7)

We assume that p(x) is spherically symmetric for simplicity of calculations. Finally, we

assume the Wiener condition for the Fourier transform p = (27)~3/2 / e*p(x)da:

B(k) =mpBp(k) - pk) >0, keR? (1.8)

which is nonlinear version of the Fermi Golden Rule in our case (cf. [4, 13, 14, 15]):
nonlinear perturbation is not orthogonal to eigenfunctions of continuous spectrum of the
linear part. The examples are easily constructed. Namely, let us rewrite (1.8) in the form

B(k) = mlpu(k)[* + 1p2(k)* = |ps(k)[* — 1pa(K)]*] > 0, k€ R (1.9)

Therefore, we can take e.g. p; constructed in [12], and ps = p3 = py = 0.

The system (1.1) describes charged particle interacting with its “own” Dirac field.
The asymptotics (1.5)-(1.6) mean asymptotic stability of uniform motion, i.e. “law of
inertia”. The stability is caused by “radiative damping”’, i.e. radiation of energy to
infinity appearing analytically as a local energy decay for solutions to linearized equation.
The radiative damping was suggested first by M.Abraham in 1905 in the context of the
Maxwell-Lorentz equations, [1].

One could expect asymptotics (1.5) for small perturbations of solitons for relativistic
nonlinear Dirac equations and for coupled nonlinear Maxwell-Dirac equations whose soli-
tons were constructed in [6]. Our result models this situation though the relativistic case
is still open problem.

Asymptotics of type (1.5)-(1.6) were obtained previously for the Klein-Gordon and
Schrodinger equations coupled to the particle [8, 10]. More weak asymptotics of type
(1.5) in the local energy norms, and without the dispersive wave, were obtained in [7] and
[11] for all finite energy solutions to the Maxwell-Lorentz and wave equations.

Let us comment on our approach. For 1D translation invariant Schrédinger equation,
the asymptotics of type (1.5) were proved for the first time by Buslaev and Perelman
[2, 3, 4], and extended by Cuccagna [5] to higher dimensions. We prove the asymp-
totics (1.5)— (1.6) applying approach [8] where general Buslaev and Perelman strategy
has been developed for the case of 3D Klein-Gordon equation: i) symplectic orthogonal
decomposition of the dynamics near the solitary manifold, ii) modulation equations for
the symplectic projection onto the manifold, and iii) time decay in transversal directions,
etc (see more details in Introduction [8]). Our main novelties are the following.

[. Tt is well known that the Hamiltonian of the Dirac equation is nonpositive. Re-
spectively, the energy conservation does not provide a uniform a priori estimate for the
solution. We obtain an estimate for L? norm of the solution using unitarity of free Dirac
propagator. This estimate provides existence of global solution.

On the other hand, for linearized equation unitarity of free propagator provides only
exponential bounds ~ e for L? norm of the solution. This guarantees existence of global
solution and analyticity of the resolvent for Re A\ > a. However, we need the analyticity
for Re A > 0 which we obtain by bifurcation arguments relying on our analysis of the
Fourier-Laplace transform (Lemma 14.4).

IT. We establish an appropriate decay of the linearized dynamics:



i) We prove time decay ~ ¢~3/2 in weighted norms for a modified free Dirac equation

(Lemma 15.1). The proof relies on a “soft version” of strong Huygens principle for the
Dirac equation. Namely, the free Dirac propagator is concentrated mainly near the light
cone, while contribution of inner zone is a Hilbert-Schmidt operator.

ii) We compute all needed spectral properties of the linearized equation at the soliton
in contrast to majority of works in the field, where the corresponding spectral properties
are postulated. Namely, we find that under the Wiener condition (1.8), discrete spectrum
consists only of one zero point with algebraic multiplicity 6. The multiplicity is totally
due to the translation invariance of the system (1.1).

iii) We exactly calculate the symplectic orthogonality conditions (15.18) for initial
data of the linearized equation. These conditions are necessary for the proof of the decay.

All computations differ significantly from the case of the Klein-Gordon equation [8]
because of algebra of the Dirac matrices. An important role play the real orthogonality
relations (1.3).

Our paper is organized as follows. In Section 2, we formulate the main result. In
Section 3, we introduce symplectic projection onto the solitary manifold. The linearized
equation is considered in Sections 4 and 5. In Section 6, we split the dynamics in two
components: along the solitary manifold, and in transversal directions. The time decay
of transversal component is established in sections 7-10. In Section 11 we prove main
result. In Sections 12 - 15 we justify the time decay of the linearized dynamics relying on
weighted decay for the free Dirac equation in a moving frame. In Appendices A, B and
C we collect some technical calculations.

2 Main results

2.1 Existence of dynamics

We consider the Cauchy problem for the system (1.1) which we write as
Y(t)=F(Y(t), teR: Y(0)=Y, (2.1)

Here Y (t) = (¢(t), q(t), p(t)), Yo = (¥(0), qo, po). We introduce a suitable phase space for
equation (2.1). Let L2, o € R be weighted Agmon spaces with norm [[¢|lo = [[¢)]| 12 =

I+ 2D e

Definition 2.1. i) The phase space & is the Hilbert space L? @ R ® R? of states Y =
(1, q,p) with finite norm

1Y [le = [l¥llo + lal + |p| -
i) Ey is the space L2 ® R® @ R3 with finite norm
1Y lleo = 1lla + lal + Ip] -

Proposition 2.2. Let (1.7) hold. Then
(i) For every Yy € € the Cauchy problem (2.1) has a unique solution Y (t) € C(R,E).
(i1) For every t € R, map U(t) : Yy — Y (t) is continuous on &.

Proof. Step i) First, we fix an arbitrary b > 0 and prove (i)-(ii) for Y, € € such that
lollo < b and |t] < e = e(b) for some sufficiently small £(b) > 0. We rewrite (2.1) as

Y(t) = F(Y() + F(Y(t), teR, Y(0)=Y;, (2.2)



Fi YV ((ma-V—=16m)y,0,0), Fp:Y — (=ip(z —q), p//1+p*, Re(¥, Vp(z —q))

The Fourier transform provides existence and uniqueness of solution Y;(t) € C'(R, &) to
(2.2) with F, = 0. Let Uy(¢) : Yy — Yi(t) be the corresponding strongly continuous group
of bounded linear operators on £. Then (2.2) for Y (t) € C(R, €) is equivalent to integral
Duhamel equation

Y(t) = Uy (£)Ye + /0 " s Up(t — $)Fa(Y (s)) . (2.3)

Further, the map F, : Y — F,(Y) is locally Lipschitz continuous in &: for each b > 0
there exist a 2 = 2(b) > 0 such that for all Y} = (¢1,q1,p1), Yo = (¥9,q2,p2) € € with

U010, [1¥2]lo0 < 0,
[ Fo (Y1) — Fo(Ya)|le < »||Y1 — Yalle .

Therefore, by the contraction mapping principle, equation (2.3) has a unique local solution
Y () € C([—¢,¢],E) with € > 0 depending only on b.
Step i) Second, we derive a priori estimate. Consider ¢y € C5°(R3) @ C*. Then

GO = [ b vyde =2 [ I (ofe — ) v(a))do < o

Hence,
1
@0 < 5C+ [[$(0)]lo

Last two equalities (1.1) imply a priori estimates for |p| and ||. The a priori estimates
for general initial data 1), € L? follow by approximating initial data by functions from
Cs(R3) @ C*.

Step iii) Properties (i)-(ii) for arbitrary t € R now follow from the same properties for
small |t| and from a priori estimate. O

2.2 Solitary manifold and main result

Let us compute the solitons (1.4). Substitution to (1.1) gives stationary equations

—iv - Vip(y) = [—iae- V + Bm|, (y) + p(y)

(2.4)
v=pu/\/1+p;, 0=Re(u(y), Vp(y))
Applying Fourier transform to first equation in (2.4) we obtain
(—v-k+a-k—Bm)b,(k) = p(k) .
Then
- v-k+a-k—pm)pk v-k+a-k—pPBm)plk
P oy i) )

(v-k+a-k—pm)v-k—a-k+pm)  kE+m2—(v-k)
The soliton is given by the formula

e_mw(y_$)H+(y_$)L|p(y)d3y v

sy P =YV = .
Yy — )+ (y — )| N

¢v(x):i—1(v-v+a-v+iﬁm)/




Here we set v = 1/v/1 —v? and © = x4z, where z||v and 2, Lv for z € R®. It remains
to prove that last equation of (2.4) holds. Indeed, (2.5) and Parseval identity imply

Re(t0). B30} = Reliks 0. (k) = Re [, L EEPIA 00

since the integrand is pure imaginary by (1.3). Hence, the soliton solution (1.4) exists
and is defined uniquely for [v| < 1 and a € R®. Denote V := {v € R® : |v| < 1}.

Definition 2.3. A soliton state is S(0) := (¥, (z — b),b,v), where o := (b,v) with b € R?
andv V.

Obviously, the soliton solution admits representation S(o(t)), where
o(t) = (b(t), v()) = (vt +a,0) 2.7)
Definition 2.4. A solitary manifold is the set S := {S(0) : 0 € L :=R3 x V}.

The main result of our paper is the following theorem.

Theorem 2.5. Let (1.7)-(1.8) hold, v > 5/2 be the number from (1.7), and Y (t) be the
solution to the Cauchy problem (2.1) with initial state Yy which is sufficiently close to the
solitary manifold:

do = distg, (Y5, S) < 1. (2.8)

Then the asymptotics hold for t — +o0,
(t) = ve + O(|t]7), q(t) = vat +ax + O(t|7) (2.9)

U(x,t) = Yy (v — vet — ag) + Wo(t)px + r(z,t) (2.10)
with
lr+(8)llo = Ot 7'/?) .

It suffices to prove asymptotics (2.9)-(2.10) for ¢ — +oo since system (1.1) is time
reversible.

3 Symplectic projection

3.1 Hamiltonian structure

Denote 1; = Re ), 1o = Im), p1 = Rep, po = Imp, o = —iay. Then (1.1) reads

1/:11 (x,t) = —(0q 01 +a303) 1 (2, 1) + (G202 + Bm)ia(x, t) + p2(x — q(t))
t

) = —(&gﬁg—i—ﬁm)d}l(az, f}) - (a181 —|—Oé363)1/}2(1’7t) — pl(gj — q(t))
q(t) = p(t)/ /1 + p*(t) reR (31)
)

p(t) = [ (r(x,t) - Vpi(z — q(t) + ol 1) - Via(z — (1)) d

This is a Hamilton system with the Hamilton functional

H(Y1,v2,q,p) = %/(1/11 - (G202 + M)y + by - (02 +m )1y + 20 - (0 01+ 303) 1) dx

+ /(wl(ﬂf)'l)l(x— q) +Ya(x) - po(r — q))dx + /1 + p? .



Equation (3.1) can be written as a Hamilton system

0O I, 0 O

. - o I, 0 0 O

Y - ‘]DH(Y)7 Y - (,lvz)la @Z)Q, qap)a J O 0 0 0 13 (32)
0 0 —-I3 0

where DH is the Fréchet derivative with respect to ¥, ¥or, k = 1,2,3,4, p and ¢ of the
Hamilton functional.

3.2 Symplectic projection onto solitary manifold

Let us identify tangent space to &, at every point, with £. Consider symplectic form €2
defined on &€ by Q) = /d@/}l(x) A dipg(x) dx + dg N dp, i.e.

QVLY?) = (YL JY?), Y= (¢ p) el =12 (3.3)
where (Y1 Y?2) = (1,93 + (¥d, 03 + ¢* - ¢* + p' - p?. Tt is clear that the form € is
non-degenerate, i.e.

QYL Y?) =0 forevery Y?€& = Y'=0
Definition 3.1. i) Y' 1 Y2 means that Y* € £, Y? € £, and Y is symplectic orthogonal
to Y2, de. QY1 Y?) =0.

ii) A projection operator P : £ — & s called symplectic orthogonal if Y' 1 Y? for
Y!e KerP and Y? € ImP.

Let us consider tangent space 7g(»)S to the manifold S at a point S(o). Vectors
7j 1= 0,,5(0), where 0,, 1= 0,, and 0y, , := 0,; with j = 1,2, 3, form a basis in 7,S. In
detail,

7 =T7j(v) = O,;S(0) = (=0 (y), —0i¥w(y), ¢, 0 )| . _
Tj+3 - Tj+3<v> = aij(O') - ( a”jw”1<y)7 avjwzﬁ(y)v 0 ) avjpv> 7= 1’ 273 <34>

where 1,1 = Re ), o = Im ), y := x—0bis the “moving frame coordinate”, e; = (1,0, 0)
etc. Formula (2.6) and condition (1.7) imply that

Ti(v) €&, veV, j=1,...,6, VaeR. (3.5)
Lemma 3.2. The matriz with the elements Q(1;(v), 7j(v)) is non-degenerate Vv € V.

Proof. The elements are computed in Appendix A. As a result, matrix Q(7, 7;) reads

0 Qt (v
200) = s = Loy o ) (3.5
where the 3 x 3-matrix Q7 (v) equals
Qtw)=K+(1-)"VPE+ 1 -0v) 3 veu. (3.7)

Here K is a symmetric 3 x 3-matrix with the elements

k*+m?+3(v-k)?

where B(k) > 0 is defined in (1.8). The matrix K is the integral of symmetric nonnegative
definite matrix k@ k = (k;k;) with a positive weight. Hence, the matrix K is nonnegative
definite. Since unite matrix F is positive definite, the matrix Q7 (v) is symmetric and
positive definite, hence non-degenerate. Then the matrix (7, 7;) also is non-degenerate.

O

(3.8)



Let us introduce translations T, : (¥(-),q,p) — (¢¥(- — a),q + a,p), a € R®. Note
that the manifold S is invariant with respect to the translations. Let us denote v(p) :=

p//1+ p? for p € R3.

Definition 3.3. i) For any a € R and v < 1 denote by E,(0) = {Y = (¢,q¢,p) € & :
lv(p)| <T}. We set E(V) := & (D).

i) For any © < 1 denote by X(0) = {o = (b,v) : b € R? |v| < v}.

Next Lemma means that in a small neighborhood of the soliton manifold S a “sym-
plectic orthogonal projection” onto § is well-defined.

Lemma 3.4. (¢f.[8, Lemma 3.4]) Let (1.7) hold, « € R and v < 1. Then
i) there exists a neighborhood On(S) of S in &, and a map I1: O,(S) — S such that T1
is uniformly continuous on O (S) N E,(V) in the metric of &,,

IIY =Y for Y €8, and Y —S17TsS, where S=1IY . (3.9)
ii) Ou(S) is invariant with respect to translations T,, and
7T,y =T,IIY,  for Y € O,(S) and a € R* .

iii) For any v < 1 there exists a 0 < 1 s.t. IIY = S(o) with 0 € X(0) for Y €
Oa(8) N Ea(0).

iv) For any v < 1 there exists an 1,(0) > 0 s.t. S(o) + Z € Ou(S) if o € X(0) and
121l < 7a(0).

We will call IT a symplectic orthogonal projection onto S.
Corollary 3.5. Condition (2.8) implies that Yo = S + Zy where S = S(0y) = I1Y}, and
1 Zoll, < 1. (3.10)
Proof. Lemma 3.4 implies that ITY; = S is well defined for small dy > 0. Furthermore,
condition (2.8) means that there exists a point S; € S such that ||Yy — 51|, = do. Hence,
Yy, S1 € O,(S)NE, (D) with aT < 1 which does not depend on dy for sufficiently small dj.
On the other hand, ILS; = 57, hence the uniform continuity of the map IT implies that
|51 =S|, — 0asdy — 0. Therefore, finally, || Zo||, = ||[Yo—5||. < [|[Yo—=S1|l.+|[S1 =S|, <
do + o(1) < 1 for small dy. O
4 Linearization on solitary manifold
Let us consider a solution to the system (3.1), and split it as the sum

Y(t) = S(e(t) + Z(t) (4.1)

where o(t) = (b(t),v(t)) € ¥ is an arbitrary smooth function of ¢ € R. In detail, denote
Y = (¢,q,p) and Z = (V,Q, P). Then (4.1) means that

Y(x,t) = Yy (@ — (1)) + W(x —b(t),t), q(t) =b(t) +Q(t), p(t) = pue +P(t) . (4.2)



Let us substitute (4.2) to (1.1), and linearize the equations in Z. Setting y = x — b(t)
which is “moving frame coordinate”, we obtain that

= [~V —=ifm|(¥u(y) + ¥y, 1)) —iply — Q)

Py + P
1+ (p, + P)?

g = b+Q=

p = @'VUPU+P: Re<¢v(y)+qj(y>t)7Vp(y_Q)>

Let us extract linear terms in Q. First note that p(y — Q) = p(y) — Q - Vp(y) + N1(Q),

Voly — Q) = Vo(y) = V(Q- Vpy)) + Ni(Q).
Condition (1.7) implies that for N;(Q) and N;(Q) the bound holds,

1M (@) + [N(Q)]l < C(Q)Q? (4.4)
uniformly in |@Q| < @ for any fixed Q. Second, the Taylor expansion gives

po+ P P = o P))+ Ny(o, P)

= ’U+
V1t (po+ P)? g

where 1/7 =1 — 02 = (14 p?)""/2, and
No(o, P)| < C(5)P? (45)

uniformly with respect to |v] < o < 1. Using (2.4), we obtain from (4.3) the following
equations for components of Z(t):

U(y,t) = [—a -V —ipm]U(y,t) + b VU(y,t) +iQ - Vp(y)

+ (b - ’U) ' V%(?/) —v- vav(y) - ZNl

Qt) = LE—v@v)P+ (v—1b)+ Ny

P(t) =—0- vvpv + Re<\11(y7 t)v vp(?/» + Re<v¢v(y)v Q ' vﬂ(?/» + N3('U7 Z)
where N3(v, Z) = — Re(V,, N1(Q))—Re(¥, V(Q-Vp))+Re(¥, N1 (Q)). Clearly, N5(v, Z)

satisfies the following estimate
Ny(v. 2)] < Culp,7,Q)[ @+ W] Q] (47)

uniformly in |v] < @ and |Q| < @ for any fixed & < 1. For the vector version Z =
(U, Uy, Q, P) with ¥y = Re V¥, ¥y = Im ¥ we rewrite equations (4.6) as

Z(t)=AM)Z1t) +T(t)+ N(t), teR. (4.8)

Here operator A(t) = A, (t) depends on two parameters, v = v(t), and w = b(t) and can
be written as

\Ill —04181—043634—11) -V 5(262 + ﬁm —Vp2~ 0 \1’1

A \112 _ —(5[282 + ﬁm) —alﬁl—agﬁg—i—w -V Vpl 0 \1’2
v Q) 0 0 0 B, Q
P <'> Vp1> <'a VP2> <V77Z)vj7 'ij> 0 P
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where B, = %(E — v ®v). Furthermore, T'(t) = T,,(t) and N(t) = N(t,0,Z) in (4.8)
stand for

(w - 'U) ’ V?/}vl —v- vavl ng(Z)
Tv,w - v —2’11] ? ’ N(Uu Z) - A]\%(S7 Z) (41())
—0 - vvpv Ng(’l}, Z)

where v = v(t), w = w(t), o = o(t) = (b(t),v(t)), and Z = Z(t). Estimates (4.4), (4.5)
and (4.7) imply that

IN(o, Z2)|l, < C(5,Q)l1Z]1%, (4.11)
uniformly in ¢ € ¥(9) and || Z||-, < r_,(0) for any fixed v < 1.
Remark 4.1. i) Term A(t)Z(t) in right hand side of equation (4.8) is linear in Z(t), and
N(t) is a high order term in Z(t). On the other hand, T'(t) is a zero order term which
does not vanish at Z(t) = 0 since S(o(t)) generally is not a soliton solution if (2.7) does

not hold (though S(o(t)) belongs to the solitary manifold).
ii) Formulas (3.4) and (4.10) imply:

T(t) == [(w—v)m + 073 (4.12)

and hence T'(t) € Tg1)S, t € R.

5 Linearized equation

Here we collect some Hamiltonian and spectral properties of generator (4.9) of the lin-
earized equation. First, let us consider linear equation

Xt)=A,,X(1), teR, veV, weR’ (5.1)

Lemma 5.1. (¢f. Lemma 5.1 [8]) i) For any v € V and w € R? equation (5.1) can be
written as the Hamilton system (cf. (3.2)),

X(t) = JDH,o(X (1), teR (5.2)

where D'H,, ,, 15 the Fréchet derivative with respect to Wy, Vor, k =1,2,3,4, P and Q) of
the Hamilton functional

1 _ ~
Hv,w<X> = 5 /(‘I’l . (a282 -+ ﬁm)\lfl —+ \IIQ . (()6282 —+ ﬁm)\IIQ -+ 2\111 . (04161 —+ 04383)\112)dy
1

+/pj(y)Q~V\I’jdy+§P-BUP—%@V%j(y),Qij(y)), X =(V,9,,Q,P)e€.

ii) The skew-symmetry relation holds,
QA X1, Xo) = —Q(X1, 4,0 X2), X1€E, Xo€ HR)OH(R)OR*OR? . (5.3)

Lemma 5.2. Operator A,, acts on tangent vectors 7j(v) to the solitary manifold as
follows,

A7 (0)] = (W =) - V73 (), Apulrjs(v)] = (0 =) - Vrya(v) +75(v), j = 1,2,3 .
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Proof. In detail, we have to show that

—0jthn (v —w) - Vi
o | o | | w—w) Vo
vw €; 0
0 0
avj ,lvz)vl (U} - U) : Vavj ,lvz)vl - jwvl
3vj (O _ (w - U) : Vavj%z - j1/1v2
Ay 0 = 0 + ‘, . (5.4)
avjpv 0 0

Indeed, differentiate equations (2.4) in b; and v;, and obtain that derivatives of soliton
state in parameters satisfy the following equations,

—v - VO, =[—a - V — im|0;1p, — i0;p

- jwv —vU- vanwU = [—O[ -V - Zﬁm]avjd)v

2\—1/2 Uj (5:5)
&)jpv:ej(l — ) +“<1 — 2)3/2
0 - <avj ¢v17 vpl) + <avj ¢v27 V,O2>
for j =1,2,3. Then (5.4) follows from (5.5) by definition of A, , in (4.9) O

Corollary 5.3. Letw =v € V. Then 7j(v) are eigenvectors, and 7;43(v) are root vectors
of operator A, ., corresponding to zero eigenvalue, i.e.

Ay omi(v)] =0, Ayy[tizs(v)] =75(v), j=1,2,3. (5.6)

6 Symplectic decomposition of dynamics

Here we decompose the dynamics in two components: along manifold § and in transversal
directions. Equation (4.8) is obtained without any assumption on o(¢) in (4.1). We are
going to choose S(o(t)) := IIY (t), but then we need to know that

Y(t)e O_,(S), teR. (6.1)

It is true for ¢ = 0 by our main assumption (2.8) with sufficiently small dy > 0. Then
S(o(0)) =I1IY(0) and Z(0) = Y(0) — S(c(0)) are well defined. We will prove below that
(6.1) holds if dy is sufficiently small. Let us choose an arbitrary ¢ such that |v(0)| < 0 < 1
and let § = o — |v(0)|. Denote by r_,(0) the positive numbers from Lemma 3.4 iv)
which corresponds to @ = —v. Then S(o) + Z € O_,(S) if 0 = (b,v) with |v] < ©
and ||Z||-, < r_,(9). Note that ||Z(0)||-, < r_,(0) if dy is sufficiently small. Therefore,
S(o(t)) = IIY(t) and Z(t) = Y(t) — S(o(t)) are well defined for ¢ > 0 so small that
|v| <o and ||Z(t)||-, < r—, (D). This is formalized by the following standard definition.

Definition 6.1. ¢, is “exit time”,

te =sup{t > 0:[|Z(s)| - <7_,(0), |v(s)—0v(0)]<d, 0<s<t}. (6.2)
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One of our main goals is to prove that ¢, = oo if dy is sufficiently small. This would
follow if we show that

1Z(B)]|—0 < r0(®)/2, |0(s) —v(0)] < 6/2, 0<t<t, . (6.3)

Note that
QW) <Q=r_,(0), 0<t<t.. (6.4)

Now N(t) in (4.8) satisfies, by (4.11), the following estimate,

INOI < C.@IZ@)Z,, 0<t <t (6.5)

—)

6.1 Modulation equations

From now on we fix the decomposition Y (t) = S(o(t)) + Z(t) for 0 < t < t, by setting
S(o(t)) = IIY (t) which is equivalent to symplectic orthogonality condition of type (3.9),

Z(t) J(TS(U(t))S, 0<t<t,. (66)

This allows us to simplify drastically asymptotic analysis of dynamical equations (4.8) for
the transversal component Z(t). As a first step, we derive “modulation equations” for
the parameters o(t). For this purpose, we write (6.6) in the form

O(Z(t), 7)) =0, j=1,....6, 0<t<t,. (6.7)

where vectors 7;(t) = 7;(c(t)) span tangent space Tg())S. Note that o(t) = (b(t), v(t)),
where |v(t)] <0 < 1for 0 <t < t, by Lemma 3.4 iii). It would be convenient for us to
use some other parameters (c, v) instead of o = (b, v), where

c(t) = b(t) — /0 o(r)dr, ) = b(t) —v(t) =w(t) —v(t), 0<t<t..  (6.8)

The following statement can be proved similar to Lemma 6.2 from [8].

Lemma 6.2. Let Y (t) be a solution to the Cauchy problem (3.1), and (4.1), (6.7) hold.
Then
e + 1@ < C@O)Z]2, - (6.9)

6.2 Decay for transversal dynamics

In Section 11 we will show that our main Theorem 2.5 can be derived from the following
time decay of the transversal component Z(¢):

Proposition 6.3. Let all conditions of Theorem 2.5 hold. Then t, = oo, and

Clpvdo) =y (6.10)

1201 < T o >

We will derive (6.10) in Sections 7-10 from equation (4.8) for the transversal component
Z(t). This equation can be specified using Lemma 6.2. Indeed, the lemma implies that

1Tl < C@IZ®)2,, 0<t<t, (6.11)
by (4.10) since w — v = é. Thus (4.8) becomes the equation
Z(t)=At)Z(t) + N(t), 0<t<t, (6.12)
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where A(t) = Ay@)w(), and N(t) := T(t) + N(t) satisfies the estimate
IN®IL < C@,QNZB)]2,. 0<t<t. (6.13)

In all remaining part of our paper we will analyze mainly basic equation (6.12) to estab-
lish decay (6.10). We are going to derive the decay using bound (6.13) and orthogonality
condition (6.6).

Similarly [8] we reduce the problem to analysis of frozen linear equation,

X(t)=A4,X(), teR (6.14)

where Ay = A, ,, with v; = v(¢;) and a fixed ¢; € [0,£.). Then we can apply some
methods of scattering theory and then estimate the error by the method of majorants.

Note, that even for the frozen equation (6.14), decay of type (6.10) for all solutions
does not hold without orthogonality condition of type (6.6). Namely, by (5.6) equation
(6.14) admits secular solutions

3

X(t) =Y _Cimi(0) + Y D[ ()t + 7143(v)] (6.15)

1

which arise by differentiation of soliton (1.4) in the parameters a and v.

Remark 6.4. The solution (6.15) lies in tangent space Tg(,,)S with o1 = (by,v1) (for an
arbitrary b; € R) that suggests an unstable character of the nonlinear dynamics along the
solitary manifold.

Further, we will apply the corresponding symplectic orthogonal projection which kills
“runaway solutions” (6.15).

Definition 6.5. i) For v € V', denote by I1, symplectic orthogonal projection of £ onto
tangent space Tg()S, and P, =1 —1I,.
ii) Denote by Z, = P,E the space symplectic orthogonal to TS with o = (b, v).

Note that by linearity,
IL,Z =) TL(v)7;(0)Qn(v), 2), Zeé& (6.16)

with some smooth coeflicients I1;;(v). Hence, projector II,, in variable y = x — b, does
not depend on b. Now we have the symplectic orthogonal decomposition

£ = ,ZS'(J)S + Z,, o= (b, U) , (617)
and symplectic orthogonality (6.6) can be written in the following equivalent forms,
Hv(t)Z(t) =0, Pv(t)Z(t) = Z(t), 0<t<t,. (618)

Remark 6.6. The tangent space 7g(,)S is invariant under operator A, , by Lemma 5.3 i),
hence the space Z, also is invariant by (5.3): A, ,Z € Z, for sufficiently smooth Z € Z,.

Below in section 12-16 we will prove the following proposition which will be one of
main ingredients for proving (6.10). Consider the Cauchy problem for equation (6.14)
with A = A,, for a fixed v € V. Recall that parameter v > 5/2 is also fixed.

Proposition 6.7. Let conditions (1.7)- (1.8) hold, |v| <0 < 1, and Xy € €. Then

i) Equation (6.14), with A = A, ., admits the unique solution e** X, := X (t) € C(R, &)
with initial condition X (0) = Xo.

ii) For Xo € Z,NE,, the decay holds,

Cy(p,0)

At
Xoll-v £ ——55
e ol = T

1Xol, tER. (6.19)
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7 Frozen transversal dynamics

Now let us fix an arbitrary t; € [0,%,), and rewrite equation (6.12) in a “frozen form”
Z(t) = A Z(t) + (A(t) — AN Z({t) + N(t), 0<t<t, (7.1)
where Ay = Ay¢,),0(t,) and

[w(t)—v(t)] -V 0 0 0

B 0 [w(t)—v(t)] -V 0 0
A(t)=Ar = 0 0 1 0 Byt — By, )

0 0 (V(¥ot)yj — Vo)) V3) 0

Next trick allows us to kill the “bad terms” [w(t)—v(t1)] - V in operator A(t) — A;.
Definition 7.1. Let us change the variables (y,t) — (y1,t) = (y + di(t),t), where

dy(t) == /t(w(s) —o(ty))ds, 0<t<t. (7.2)

t1

Next define
Zi(t) = (Vi(yr — di(t), 1), Valyr — di(t),1),Q(1), P(1)) .

Then we obtain final form of the “frozen equation” for the transversal dynamics
Zy(t) = Ay Zy(t) + By() Zy(t) + N1 (1), 0<t<t (7.3)

where Ny(t) = N(t) expressed in terms of y = y; — dy(t), and

0 0 0 0
0 0 0 0

B =14 o 0 By — Buyt)
00 (V¥ —tui)i)s Vis) 0

Let us estimate the “remainder terms” By (t)Zy(t) and Ny (t).
Lemma 7.2. The bound holds

1B () Z: @)1 < C(@)IIZ(t)Hu/t Nz, ds, 0<t<t. (7.4)

Proof. Lemma 6.2 implies

t
|Buty — Buy] < \/@( - VyBysyds| < C (o /HZ (s)||%,ds

[V (s = ). Vios| < €0 / 22 ds

Therefore,
1BL(1)Z1(B)ll = [(V(Yuwy; = Yow)s), Vi) Qu(t)] + [(Buy — Buyr)) 1 (1)]
t

< COIQWI+IPB) [ 1Z(s)II2,ds < C(@)HZ(t)Hu/ttl 1Z(s)1%,ds -

O
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Lemma 7.3. The bounds hold
INL(@)]l, < C@, Q)1+ |di) )1 Z(1)]1%,, 0<t<t;. (7.5)

Proof. For any ® € L? and d € R?® we have

ot - 2 = [ 18- P+ lyh*dy = [ 18P0+ -+ d)dy
< /|‘I> L+ [yl (1 +[d)**dy < 1+ ]d)* [ @], aeR.
Hence, bound (7.5) follows. O

8 Integral inequality

Equation (7.3) can be written in integral form:

t
Zl(t) = eAltZl(O) +/ GAl(tis) [BlZl(s) -+ Nl(S)]dS, 0 S t S tl (81)
0

Now we apply symplectic orthogonal projection Py := P,y to both sides of (8.1):

t

P, Z,(t) = eM'P1Z,(0) + / eMUIP (B Zy(s) + Ni(s)]ds .
0

Projector P; commutes with the group e1? since the space Z, := P& is invariant with

respect to e'! by Remark 6.6. Applying (6.19) we obtain that

1P 2y < NP0

P1Z:(0 ||u / |P1] Blzl )+ Ni(s)]||, ds
(1+1)32 14|t — s])3/2 '

Operator P; = I —II; is continuous in &, by (6.16). Hence, (7.4)-(7.5) imply

Bz < 2Dy z0), 82)

@) [ e 1260 [ 1200 126, 6 0<i<,

where d; (t) := supy<,<; |d1(s)|. Let us introduce the “majorant”

m(t) .= sup (1 +5)*%|Z(s)|—,, t€[0,t,). (8.3)

s€[0,t]

Now we reduce further the exit time. Denote by ¢ < 1 a fixed positive number which we
will specify below.

Definition 8.1. t is the exit time
t. =sup{t € [0,t,) :m(s) <e, 0<s<t}. (8.4)

To estimate d;(t), note that

w(s) —v(t1) = w(s) —v(s) +v(s) —v(t1) =¢(s) + /tl o(T)dr (8.5)
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by (6.8). Hence, (7.2), Lemma 6.2 and definition (8.3) imply that for ¢; < ¢,

i (¢ |_\/ s) — v(t1))ds| </ttl <|c'(s)|—i—/:1 |@(T)\d7) ds (8.6)

< Co)m (“)/t (ﬁ+/ (117)) ds < C@m(L) < C(3), 0<t<t.

1+s
Now we can to replace C'(d;) with C(?) in (8.2): for t; < ¢’

C()

P < iy 2Ol

+00) [ g 1200 [ 126+ 1261, as 0<e<a
(8.7)

9 Symplectic orthogonality

Finally, we are going to change P1Z(t) by Z(t) in the left hand side of (8.7). We will
prove that it is possible using again that dy < 1 in (2.8).

Lemma 9.1. (¢f./8]) For sufficiently small € > 0, we have for t; < t,
12O - < CIIPLZy ()] - 0<t<t, (9-1)
where C' depends only on p and v.

Proof. Since |di(t)] < C for t < t; < ¢, then || Z(t)||-, < C||Z1(t)||-, and it suffices to
prove that
12 (O)]-0 < 2[P1Z1(t)[|-0 , O<t<1y. (9.2)

Recall that Py Z(t) = Zi(t) — IL,,)Z1(t). Then estimate (9.2) will follow from
1
ML 21— < 120, 0st<ti. (9-3)

Symplectic orthogonality (6.18) implies
Hv(t),lzl(t) =0 s t e [O,tl] R (94)

where IT,¢) 17 (t) is I, Z(t) expressed in terms of variable y; = y + d;(t). Hence, (9.3)
follows from (9.4) if difference IT, ¢,y — I, is small uniformly in ¢, i.e.

ML) — Myl <1/2,  0<t<t. (9.5)

It remains to justify (9.5) for small enough ¢ > 0. Formula (6.16) implies

0aZ1(t) = Y Tu(v(0) 71 (0())Qna(u(t)), Zi(t)) | (9.6)

where 7;1(v(t)) are vectors 7;(v(t)) expressed in variable y;. Since |dy(t)] < C and V7
are smooth and fast decaying at infinity functions, we have

752 (0(®) = 7 (@), < Cla@)" <C, 0<t <t (9.7)
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for all j =1,2,...,6. Furthermore,

H0(0) = rlot) = [ 5)- Turstols)ids.
and therefore
175 (v(t)) = 7(v()]ly < C/t 1 [o(s)lds , 0<t<t. (9.8)

Similarly,

L (0(t) ~TL(v(t1) \—\/ S Mo(s)dsl < C [ iolds, 0=t 09)

Hence, bounds (9.5) will follow from (6.16), (9.6) and (9.7)-(9.9) if we establish that
integral in the right hand side of (9.8) can be made as small as we please by choosing
e > 0 small enough. Indeed,

t1 t1 d
/ |@(5)\d$§0m2(t1)/ <0, 0<t<t . (9.10)
t t

0

10 Decay of transversal component

Here we prove Proposition 6.3.
Step i) We fix 0 < e < 1 and ¢, = t/,(¢) for which Lemma 9.1 holds. Then bound of type
(8.7) holds with ||P1Z;(¢)]|—, in the left hand side replaced by ||Z(¢)]|-, :

1200 < 5 2O,

t 1 t ) )
+c/0 (RS EE [HZ@)HV/S HZ(T)HUdT—I—HZ(S)HV] ds, 0<t<t, (10.1)

for t; < t/. This implies an integral inequality for majorant m(¢) defined in (8.3). Namely,
multiplying both sides of (10.1) by (1 +¢)*?, and taking supremum in ¢ € [0,,], we get

(1 41)3/? m(s) "om?(r)dr m?2(s)
nit) S CWZOIAC s [ o el s

for t; < t/. Taking into account that m(t¢) is a monotone increasing function, we get
m(ty) < CIIZ(0)|, + Clm?*(t) + m* ()] I(L) , 6 <L, (10.2)

where

t 3/2 t
(1+1)% { 1 /1 dr 1 _
I(t1) = su + ds < 1 < o0 .
. te[o,%}/o A+ [t—s)32 [(1+s)%2 ), 1+7)3 (1+s)3] =

Therefore, (10.2) becomes

m(ty) < C|Z0)|, + CIm?(t)) +m*(ty)], t<t.. (10.3)
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This inequality implies that m(¢;) is bounded for ¢; < ¢/, and moreover,
m(ty) < Cil|Z(0)]], , ty <t (10.4)

since m(0) = ||Z(0)]|, is sufficiently small by (3.10).

Step ii) The constant C; in estimate (10.4) does not depend on ¢, and ¢, by Lemma 9.1.
We choose dj in (2.8) so small that || Z(0)||, < e/(2C}). It is possible due to (3.10). Then
estimate (10.4) implies that ¢, = ¢, and therefore (10.4) holds for all ¢; < t.. Further,

lv(t) — v(0)] S/o |o(s)|ds < CmQ(t)/O (11788)3

Hence both inequalities (6.3) also holds if ||Z(0)||, is sufficiently small by (8.3). Finally,
this implies that t, = oo, hence also ¢/, = oo and (10.4) holds for all t; > 0 if dy is small
enough. It complete proof of Proposition 6.3.

< Om?(t) .

11 Soliton asymptotics

Here we prove our main Theorem 2.5 under the assumption that decay (6.10) holds. First
we will prove asymptotics (2.9) for vector components, and afterwards asymptotics (2.10)

for the fields. o
Asymptotics for vector components. From (4.3) we have ¢ = b+ @Q, and from (6.12),
(6.13), (4.9) it follows that Q@ = P + O(||Z]|%,). Thus,
¢ =b+Q=u(t)+t) + Pt) + O(|Z]2,) (11.1)
Bounds (6.9) and (6.10) imply that
. . Cl(pvﬁa do)
t ) < —
)] + (o) < St

Therefore, ¢(t) = ¢, + O(t™2) and v(t) = vy + O(t?), t — oo. Since |P| < || Z] -,
estimate (6.10), and (11.1)-(11.2), imply that

t>0. (11.2)

G(t) =vy +O732) ) b(t) = c(t) + /Otv(s)ds =vt+a, +O@1).

Hence second part of (1.6) follows:
q(t) = b(t) + Q(t) = vt +ar +O(7)

since Q(t) = O(t~*/?) by (6.10).

Asymptotics for fields. For field part of the solution 1 (z,t) let us define the “accom-
panying soliton field” as vy« (x —q(t)), where we define now v(t) = ¢(t), cf. (11.1). Then
for difference z(x,t) = ¥(x,t) — by (x — ¢q(t)) we obtain the equation

2w, t) = [—a -V —ifm]z(x,t) — i - Vb (x — q(t)) .
Then .
2(t) = Wo(t)=(0) —/0 Wo(t — 8)[iv(s) - Vithes) (- — q(s))]ds . (11.3)

To obtain asymptotics (2.10) it suffices to prove that z(t) = Wy(t)¢s + ry(t) with some
¢y € L2 and ||r, (t)]|o = O(t~Y/?). This is equivalent to

Wo(=t)2(t) = ¢+ + 1. () (11.4)
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where ||/, (t)|lo = O(t~'/?) since Wy(t) is a unitary group in L3 by charge conservation
for the free Dirac equation. Finally, (11.4) holds since (11.3) implies

Wo(—t)z(t)ZZ(O)—/O Wo(=s)f(s)ds . [(s) = iV(s) - Vithys) (- = q(s))

where the integral in the right hand side converges in L2 with rate O(t~'/2). The
latter holds since ||[Wo(—s)f(s)llo = O(s™%/2?) by unitarity of Wy(—s) and the decay
rate || f(s)]lo = O(s7%?). Let us prove this rate of decay. It suffices to prove that
[V(s)| = O(s73/?), or equivalently [p(s)| = O(s~%/?). Substitute (4.2) to last equation of
(1.1) and obtain

p(t) = Re/ [y (z = b(t)) + U(z — b(t),1)] - Vp(z — b(t) — Q(t))dx
= e [ o) Tolwty + Re [ vuofv) oty ~ Q) ~ Volw)ldy
© Re / Uy, 1) - Vply — Q(t))dy

First integral in the right hand side is zero by stationary equations (2.4). The second
integral is O(t~%/?), since Q(t) = O(t%/?), and by conditions (1.7) on p. Finally, the
third integral is O(t=3/2) by estimate (6.10). The proof is complete.

12 Decay for linearized dynamics

In remaining sections we prove Proposition 6.7. Applying the Gronwall inequality to
frozen linear equation (6.14) we obtain

IX(@®)lle < Ce™[|X(0)]e (12.1)

with some o > 0. Now we can apply the Fourier-Laplace transform
X(\) = / e MX(t)dt | ReX >« (12.2)
0

0 (6.14). Integral (12.2) converges and is analytic for Re A > . We will write A and v
instead of A; and vy in remaining part of the paper. After the Fourier-Laplace transform,
equation (6.14) reads

AX(\) =AX(\) 4+ Xo, Red>a. (12.3)
We will construct the resolvent R(A)) = (A — A)~! for ReA > 0 and prove that it is
a continuous operator in & ,. Then X(\) = —(A — \)"'X, € £, and is an analytic

function for Re A > 0.
This analyticity and the Paley-Wiener arguments (see [9]) should provide existence of
a &_, - valued distribution X (¢), t € R, with a support in [0, 00). Formally,

- 1 S
Xt)=A"'X= 7 / €' X(iw+0)dw, teR (12.4)
T JR

To check continuity of X (t) for ¢ > 0, we need additionally an asymptotics for X (iw+0) at
large |w|. Finally, for time decay of X (t), we need an additional information on smoothness
and decay of X (iw + 0). More precisely, we should prove that X (iw + 0)

i) is smooth outside w = 0 and w = £, where p = u(v) > 0;

ii) decays in a certain sense as |w| — oo;

iii) admits the Puiseux expansion at w = +u;

iv) is analytic at w = 0 if X, € Z, := P, and X, € &,.
Then decay (6.19) would follow from the Fourier-Laplace representation (12.4).
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13 Solving linearized equation

Here we construct the resolvent. By (12.3)

i o

\112 \1102
A— A Sl ==
A= o

P P

It is system of equations

(—ondy — agds +v -V — MUy + (Bm + G20,)V5 — Q - Vpy = — Ty

—(ﬁm -+ &262)\1’1 -+ (—Oélal — 04363 +v- V — )\)\1’2 -+ @ . Vp1 = —\1’02
o (13.1)
B,P —AQ = —Q

—(Vj, p;) + (Vtb, Q - Vp;) — AP = — P,

Step i) Let us study first two equations. First, we compute matrix integral kernel G (y—1/)
of the Green operator

o —04181 — oz383 +v- V - A ﬁm + 6[282 -
GA o ( —ﬁm — 6[262 —04181 — &383 +v- VvV — A (132>
In Fourier space
G (k’) . iOélkl + ’i()égkg —w-k—A\ ﬁm — 042/{?2 -
A o —ﬁm + Ozgk’g iOélkl + ’iagkfg —w-k— )\
To invert the matrix, we solve the system
afi +bfa=q
13.3
—bfi+afs=go (13:3)
where a = ia1ky + iaszks —iv -k — X, b = fm — agks. Multiplying first equation of (13.3)
by ¢ = —ianky — tagks — v - k — A and the second equation by —b, we obtain
cafi +cbfa = cqi
Vfi—cbfy = —bgs (134)

since ba = cb by anticommutations (1.2). Further, b* + ac = k* + m? + (iv - k + \)2
Therefore, summing up equations (13.4), we obtain that

£ = cg1 — bgo
TR m2 (v k+ A2

Similarly, we obtain

fy = bg1 + cgo
TR Am2 4 (v k4 M2
Hence
é (]{Z>_ 1 —i&lkl—’iagk’g—’iv'k}—)\ —ﬁm+a2/{32
MY TR+ (v - k)2 Bm — asks —ionky —iasks—iv - k—\

(13.5)
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Taking the inverse Fourier transform we obtain

. oz181 + 04363 +v- V-2 —ﬁm — &282
GA<y> - ( ﬁm + 5(282 a181 + 06383 + v - V=X ) <y) (136)
where )
) = F y e R’ (13.7)

F
VR L m2 4 (v kN2

Note that denominator in RHS (13.7) does not vanish for Re A > 0 since |v| < 1. This
implies

Lemma 13.1. Operator Gy with integral kernel Gy(y — '), is continuous operator L2 @
Li — L3 @ L3 for Re A > 0.

From now on we use system of coordinates in y-space in which v = (|v],0,0), hence
v -k = |v|ky. Let us compute the function g,(y). One has

1 1
E24+m?+(ilvlki+0)? = ﬁkf+k§+k§+2i|v\k1)\+)\2+m2 = ﬁ(k1+m2|v\)\)2+k§+k§+ 2

where
V22 A2
7:1/\/1—1)2, %2:1_ +)\2+m 1_v2+m2:72(>\2+,u2)’ ,u:m/'y
(13.8)
Hence,

W = / e *udk el / iy
RN O LIl [ N (I Y P R I I O CER (- Ay e

_ fye_’YIUIAgl / _Zkydk
o @2n)32 ] kR kR kR 4 k2

= e A Ry (7, —k7) (13.9)
Here 41 = vy1, § = (Yy1,%2,93), and Ro(y — 3/, () is integral kernel of operator Ry(¢) =
(—=A — )", Tt is well known that Ry(y, () = eVl /4x|y|. Therefore,

e_%‘m_%lgl

o) = =V A2, =] (13.10)

4rly]
We choose Rex > 0 for Re A > 0. Note that for 0 < |v| < 1

0 < Res; <Resr, ReA>0. (13.11)
Let us state the result which we have got above.

Lemma 13.2. i) The function gx(y) decays exponentially in y for Re A > 0.

ii) Formulas (13.10) and (13.8) imply that for every fized y, function gx(y) admits an
analytic continuation in \ to the Riemann surface of algebraic function /A% + u? with
branching points A = tiu.

Thus, from (13.1) and (13.2) we obtain the representation

Uy o= =Gy - Gy — (G)\ Vpl) Q+(GY'Vp)-Q, (13.12)
Uy = —GiWy — G0 — (GY¥Vpr) - Q + (GX'Vps) - Q
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Step i) Now we proceed to last two equations (13.1):

—AQ+B,P=—Qy, (Vi ,Q - Vp;) = (VU p;) = AP = =P, (13.13)
We rewrite equations (13.12) as W; = ¥;(Q) + ¥,;(¥,), where
Uy (Ug) = —GAWo — G2y, Ty(Tg) = G2 W — G2 (13.14)

U1(Q) = (=G2Vp, + GVVp) - Q, Ty(Q) = (—GPVp, + GVp,)-Q . (13.15)

Then (VV;, p;) = (VU;(Q), p;) + (VI,(¥yg), p;), and last equation (13.13) becomes
(Vibuy, Q- V) = (VU5(Q), pj) = AP = =Py + (V(Wo), p;) =: =Py — B(\)
where .
B(\) = (W,(Ty), Vpy) (13.16)
First we compute the term
(Vi Q- Vi) =Y Vb, Quiips) = Y (Vibuy, ip)Q1 -
lj lj

Applying the Fourier transform F),_.;, we have by the Parseval identity and (A.25) that

Z(aﬂ/’vja ap;) = Z<_iki1/;vja —ikip;) = /kikl@z}vl -p1+ Vo - p2)dk (13.17)
j j
Bp1 - pr+ Bpa - pa / kikB(k)dk
— [ kk dk = — I
/ 2 me — (o )2 K2+ m? — (Jo]kr)? i

As a result, (Vi),;, Q- Vp;) = —LQ, where L is 3 x 3 matrix with matrix elements L;.
The matrix L is diagonal and positive defined by (1.8).

Now we compute the term —(V¥;(Q), p;) = (¥;(Q), Vp;). One has

(T;(Q), 0ipj) =Y _ (<—G§25JP1+Gi131P2a 0ip1) (G 01 =G Dupo, 5¢P2>> Q=Y Ha(NQi
l l

and by the Parseval identity and (1.2)-(1.3) we have
Hy(N) 2 = (=G20ip1 + G}l Op2, Oip1) — (GX2Opr — G5 01p2, Dipa)
= <[(ﬁm — oz2k:2)[31 — (iOzlkfl ‘I— iagk}g ‘f‘ Z|’U|k’1 —f‘ )\)pAQ]gAk’l, k2ﬁ1>
+ <[(ia1k1 + iagkg + Z|UV€1 + )\)ﬁ1 + (ﬁm - 042/{?2),62]@)\]6[, /{Zzﬁ2> (1318)
01+ P Do+ P k. kB(k)dk
_ /kiklm 5P pr + Bis - o dk;:/ kiBk)dk
k? +m? — (|v]ky —iN)? k2 +m? — (Jv|ky — iA)?
The matrix H is well defined for Re A > 0 since the denominator does not vanish. The

matrix H is diagonal. Indeed, if i # [, then at least one of these indices is not equal to
one, and the integrand in (13.17) is odd with respect to the corresponding variable. Thus,

H; = 0. As a result, (V;(Q),Vp;) = HQ, where H is the matrix with matrix elements
H;. Finally, (13.13) becomes

A ~B ) (13.19)

MW(%): ( P0+Q<%(>\))’ where M(3) = ( L—H(\) AE

Assume for a moment that the matrix M (\) is invertible (later we will prove this). Then

we obtain Q o
(p):M‘l(A)<PO+SD<)\)> , Re\ >0 . (13.20)

Finally, formula (13.20) and formulas (13.12), where Q is expressed from (13.20), give the
expression of the resolvent R(\) = (A — X)~!, Re X > 0.
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Lemma 13.3. i) M(\) admits an analytic continuation from complex half-plane Re A > 0

to the Riemann surface 2 of the function \/u? + \?;
ii)M(N) is Hélder continuous on each compact set in 3;
ii) M~*(\) is meromorphic on 2.

Proof. 1) The analytic continuation of M () exists by Lemma 13.1, conditions (1.7), and
last line in (13.18):

H;;j(X) = (mg\B % 0jp1,0;p1) + (mgrB * 0;p2,0jp2) , j=1,2,3 (13.21)

since g, is analytic on X by (13.10).

ii) The Hoélder continuity holds by the same arguments.

iii) The inverse matrix is meromorphic since it exists for large Re A. The latter follows
from (13.19) since H(A\) — 0, Re A — oo, by (13.18). O

14 Inverse matrix

Here we study smoothness of M~!()\) on imaginary axis and in half-plane Re A > 0.

14.1 Regularity on imaginary axis

By Lemma 13.3, the limit matrix M (iw) := M (iw + 0) exists for w € R, and its entries
are continuous functions of w € R, smooth for |w| < p and |w| > p.

Proposition 14.1. Let p satisfy conditions (1.7)- (1.8), and |v| < 1. Then the matriz
M (iw) is invertible for w € R\ 0.

This proposition follows by methods from [8, Proposition 15.1].

Now let us obtain asymptotics of M ~1()\) near singular points A = 0 and A = +ipu.

I. First we consider the points A = +ip.

Lemma 14.2. The asymptotics hold

M7 () =C*+O((AFiw)?) , M (N =0((AFip)?), 82M_1()\):(’)(()\:Fw<)_%)>
14.1

Proof. 1t suffices to prove similar asymptotics for M(A). Then (14.1) holds also for
M~*()\), since the matrices M (+ip) are invertible. The asymptotics for M () hold by con-
volution representation (13.21) since g, admits the corresponding asymptotics by (13.10).
Namely

=— A A — +i ReA >0
g)\<y) 47T|g| _'_Ti( 7y) ) — LU, eA >
where
1 1 N
re(\ y)=O((AFin)?) , Owre(Ay)=0((AFiu)2) , Ore(\y)=O((1+y)(AFin) )
Condition (1.7) provides convergence of all integrals arising in 05 Hj;. O

I1. Second, we consider the point w = 0 which is an isolated pole of a finite degree by
Lemma 13.3. In Appendix B we prove that determinant of M (iw) can be written as

S (w) for(w) f33(w)
) F2l)y Sl
where f;;(w) € C®(—p, i) and f;;(0) > 0.

det M (iw) = —w®(1+ (14.2)
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14.2 Behavior at infinity
Here we study asymptotic behavior of M~1()) at infinity.

Lemma 14.3. There exist a matriz Dy and a matriz-function Dy(\), such that

M*I(A)ZTJFDI(A), Al =00, ReA>0 (14.3)

where

oo <S8 S, Reas0, k=012, (14.4)

A7
Proof. The structure of M () provides that it suffices to prove the estimate for Hj;;(\):
OVH;;(M < C(k), AeC, N=p+1, j=123, k=0,1,2.  (145)

This estimate follows from representation (13.21) and the bounds

C
+C37 0395 (y )|§|?4|+C'5|y|, ReX >0

C
loa(y)| < ﬁ, 1Oxgx(y)| <

14.3 Analyticity in half-plane

Lemma 14.4. M~Y()\) is holomorphic in CT := {\ € C: Re A > 0}.

Proof. We apply a bifurcation argument. Namely, we replace p by ep with € € [0, 1], and
write M_()\) for the corresponding matrix M()\) with 2L and e?H(\) instead of L and
H(A). Then (13.19) in the case ¢ = 0 yields

= (55

Hence, My ' ()) is a holomorphic matrix function for A € C*. Let us extend this analyticity
to M_1(\) with € € (0,1].

Step i) Asymptotics of type (14.3)-(14.4) hold for M_'(\) uniformly in ¢ € [0,1].
Therefore, there exists an R > 0 such that M'()) is a holomorphic matrix function of
A € C* with |A| > R for all € € (0,1].

Step ii) Similarly, formulas (14.2), (14.6) imply asymptotics

det Mc(A) ~ X%, A —0
which hold uniformly in € € [0, 1]. Therefore, there exists a d; > 0 such that
a) M-'(\) is holomorphic in the semicircle A € C*, |\| < 24, for all € € (0, 1];

£

b) M:'(X) is bounded on the ring R(d;) := {A € CT : §; < |A\| < 26} uniformly in

€
€ (0,1].
Step iii) Proposition 14.1 implies, by a continuity argument, that M '()\) is bounded
on the set {iw : w € R, §; < |w| < R+ 1} uniformly in € € (0,1]. Furthermore, the
Holder continuity from Lemma 13.3 ii) is obviously uniform in e € (0,1]. Hence, M_*(\)
is holomorphic and bounded on a region

H(R,(sl,ég) = {)\ e C: (51 < \Im)\\ < R"—l, 0<ReA < 52}
uniformly in € € (0, 1], where o = 0(R, 1) > 0.
Step iv) Finally, we consider a closed path I' = T'; U T's, where I'; lies in the union
II(R, d2) UR(d1), and I'y lies on the semicircle [A\| = R, ReA > 0. By the arguments

above, M_1()) is bounded on I" uniformly in ¢ € [0, 1]. Therefore, M_*(\) is holomorphic
inside T for € € (0,1] as well as for e = 0. O

(14.6)
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15 Transversal decay for linearized equation

Here we prove Proposition 6.7. First, we establish decay in weighted norm for the solution
to free Dirac equation.

15.1 Weighted decay for free Dirac equation

Denote by W*(t) dynamical groups (propagators) of the following “modified” free Dirac
equations

0 VE(z,t) = [£a - VEipm +v - V] (1) . (15.1)
Lemma 15.1. For any ® € L? with v > 3/2 the bound holds
Co ()] ®lly
WEH|-, < >0 . 15.2
IWEOO- < G L 1 (15.2)

Proof. Step i) For concreteness we consider the case “+”. Note, that
Or+a-V+iBm+v-V) (0 —a-V—iBm+v-V)=(0—A+(v-V)*+20-VI,+m?) .
Hence the integral kernel W, (x — y,t) of the operator W' (t) reads
Wiz, t) = (0 +a-V+ifm+v-V)Gy(z,t), (15.3)
where G,(z,1) is a fundamental solution of the "modified” Klein-Gordon operator
(O} = A+ (v- V)2 +20- VO, + m?)G,(2,t) = 5(2)d(t) .

Let G,(t), t > 0 be the operator with the integral kernel G,(x — y,t). It is easy to see
that
(G, (1)®](x) = [Go(t)®](x —vt), x€R® t>0.

Then

Ot — |z — ot m Ot — |z — vt J (m/12 — |z — vt]?
Golot) = Gole—ut, 1) = 2 Jm D_E( | \/% VUtP' B s

where J; is the Bessel function of order 1, and 6 is the Heavyside function. Let us fix an
arbitrary € € (|v[,1). Well known asymptotics of the Bessel function imply that

0,Go(2,8)] , 10.,Gol(2,8)| < CE)1+)32, |z—vt|<et, t>1, j=1,2,3. (154)

Step ii) Consider an arbitrary ¢t > 1. Denote €1 = ¢ — |v|. We split the function ® in two
terms, ® = &, + Py, such that

1Prillzz + 1Poll 2z < Oz, ¢ 21 (15.5)

and
€1t 81t

®y4(x) =0 for |z| > - and Oy, () =0 for |z] < ik (15.6)

Estimate (15.2) for W,F(¢)®,; follows by charge conservation for Dirac equation, (15.5)
and (15.6):

(&) P2llzz _ L@z
L+t = (42

C
W () Paallrz, < W (O P2ullrz = 1D24]l23 < t>1

(15.7)
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since v > 3/2.
Step i) Next we consider W, (¢)®, ;. Now we split the operator W, (¢) in two terms:

W) =0 =W, () +Wf (), t=1

v

where ( is the operator of multiplication by the function ((|x|/t) such that { = ((s) €
CP(R), ((s) = 1 for |s| < e1/4, ¢(s) = 0 for |s| > &1/2. Since 1 — ((|z|/t) = 0 for
|x| < e1t/4, then applying the charge conservation and (15.5), we have for ¢t > 1

CENWFO)Prll2  CE)]|Prall 2
10— QWO lye, < ST Oy CENBLg

GNPl _ Cole)Dlss
- (1 + t)u S (1 + t)3/2 (158)

Step iv) It remains to estimate (W, (¢)®; . Let x; be the characteristic function of the
ball |z| < e1t/2. We will use the same notation for operator of multiplication by this
characteristic function. By (15.6), we have

W, ()1 = (W, (1)x: P (15.9)
The matrix kernel of the operator (W, (¢)x; is equal to
W (@ = y.t) = (=l /W, (& = v, )x(y)
Since (|z|/t) = 0 for |z| > e1t/2 and x,(y) = 0 for |y| > e1¢/2 then W, (z —y,t) = 0 for
|z —y| > e1t. On the other hand, |z —y| < 1t implies |z —y — vt| < et, since €1 + |v| = ¢
by definition of €;. Hence, (15.3) and (15.4) yield
WiH(z—y,t)| <CA+)732,  t>1. (15.10)
The norm of the operator (W, (¢)x; : L2 — L? , is equivalent to the norm of the operator
(@) WS (Oxe(y)(y) ™« L* — L* (15.11)

Therefore, (15.10) implies that operator (15.11) is Hilbert-Schmidt operator since v > 3/2,
and its Hilbert-Schmidt norm does not exceed C(1 + ¢)~%/2. Hence, by (15.9)

ICW, ()®rallz, < CL+ 2@z, t>1. (15.12)

Finally, (15.7), (15.8) and (15.12) imply (15.2). O

15.2 Decay of vector components

Here we establish the decay (6.19) for Q(t) and P(t).

Lemma 15.2. Let Xy € Z,NE,. Then Q(t), P(t) are continuous and
QW)+ P(1)] < Culp,0) (1 + [t)) %7, t>0. (15.13)

Proof. The components Q(t) and P(t) are given by the Fourier integral

(20 ) =3 i (g S ) @ 51
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with ®(iw) := ®(iw + 0) where ®(\) is defined in (13.16). The integral converges in the
sense of distributions to a continuous function of ¢ > 0 by (14.1), (14.3) and (B.31). Note
that the condition X, € Z, implies that the whole trajectory X (¢) lies in Z,. This follows
from the invariance of the space Z, under the generator A, , (cf. Remark 6.6). If X, &€ Z,,
then Q(t) and P(t) may contain non-decaying terms which correspond to singular point
w = 0 since the linearized dynamics admits the secular solutions without decay, see
(6.15). We will show that the symplectic orthogonality condition leads to (15.13). We
split integral (15.14) into three terms using the partition of unity (;(w)+(w)+G(w) = 1,
weR:

(30)) =55 [ e+ @)+ atonpr o +0) (5 % )do= ]Zi;w)
where the functions ¢;(w) € C>(R) are supported by
supp (i C {w €R:e0/2 < |w| < ji+2}
suppls C {wER: |w| > g+ 1} (15.15)

supp(s C {weR: |w| <ep}

i) Let us represent I;(t), j = 1,2 as

L) = % ¢ (w) [M*l(m) < C]_?,s ) + M (iw) < q)(?,w> ) ]dw
= s,(t) ( %(? ) + 5;(t) * ( f?t> ) (15.16)
where
si(t) = ATIG(W)M (iw+0),  f(t)=AT1d(iw) . (15.17)

By (13.14) and (15.1)

Ty (Ug) = —ARe W, ()T, Ta(To) = —ATm W, (t)T, .
Hence, (13.16), (15.17) and Lemma 15.1 imply
[F(O)] = | Re(W; (1) ¥, Vp)| < Cup,v)(1+1)2.

Further, the function s, (¢) decays as (1+ [t|)~%/2 by (14.1), and s5(t) decays as (1 + |t]) 2
due to Proposition 14.3. Hence, I;(t) and I5(t) decay as (1 + [t|)~%/2 by (15.16).
iii) Finally, the function I3(¢) decays as t~ since

< ggzii ) = M (iw) ( n +Qq0)(w) ) €C®(—pu,p) if Xo€Z,.

Indeed, in Appendix C we prove that the symplectic orthogonality conditions (6.7) at
t =0 imply

Py+®0)=0, B,'Qy+®(0)=0. (15.18)
Then

Py + ®(iw) = @(iw) — P(0) = iwY(w)
d(iw) — P(0)

B, Qo+ Ti(w) = ————— = #/(0) = iwTs(w)
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where T;(w) € C*(—p, ) by (13.6), (13.14) and (13.16). Therefore, (B.31)-(B.32) imply

ok

(i) = Ma(w)Qo+iMap(w)Ti(w) € C%F(~p,p)
Qliw) = iMn(W)Qo + £M12(W)T1(w) = 5/\/112(3;1@0 + 11 (w))
= —MpTy(w) € CF(—u, 1)

15.3 Decay of fields

Here we prove the decay (6.19) for the field components Wi(y,t), ¥o(y,t). First two
equations of (6.14) may be written as one equation:

U(y,t) =[-a-V —iBm+v-V|U(y,t) —iQ(t)-Vp(y), ze€R>*, tecR (15.19)

where U(y,t) = Uy(y,t) +iWs(y,t)). Applying the Duhamel representation, we obtain

U(t) =W, (t)¥ —/tWU(t—s)Q(s)~Vp ds, t>0

where W, (t) is defined in section 15.1. Hence, Lemma 15.1 and the decay of @ from
(15.13) yield
I(@)]-0 < Culp, 0)[Wollu (L + )2, t20. (15.20)

It completes the proof of Proposition 6.7.

A Computing symplectic form

Here we justify formulas (3.6)-(3.8) for the matrix €.
1) First, the Parseval identity implies

Q<Tj77—l): <3j%1, 3l¢v2>—<8j%2, 311/1v1> I//fj/fl dk(lﬁvrl@vz—d}m'd}m) =0 > J}l = 17 27 3.

since the integrand is odd function.

2) Second, we consider

U7j43, Tig3) = (Ov; Vu1, O ho2) — (O, Yv2, O 1) - (A.21)
Let us derive the formulas for 1,; and 1,5. First equation of (2.4) implies
[(v-V)? = A+m?ep, = [iv-V +ia-V — Bm]p; .
Hence
[(v-V)? = A+ m*hy = —[v -V + 101 + azds)ps — [0, + Bm]p:
[(v-V)? = A+m?|he = [v-V 4+ 101 + azds]pr — [G205 + Bm]ps .
Applying the Fourier transform, we obtain

- vk Aok +dasks]pa + [agks — Bm]p
vl —
—(v- k)2 4 k2 +m?
@/A) _ —[w - k 4+ iarky + iasks|pr + [agks — Bm]ps (A.22)
o (v R)E+ k22
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Differentiating, we get

5 ,lj) B ikjﬁQ ijv . /ﬁ/;m
R S T Sy (123
81)11/;@2 = _iklﬁl lev . kwv2

—(v-k)?2+k2+m?2  —(v-k)?+ k%4 m?
Hence, (A.21) implies
Q(T‘ T ) _ /kjkl[lal : 162 B /62 : ﬁl]dk /4kjkl<v : k>2[lﬁv1 : ’l/;v2 - 121112 : lﬁvl]dk
5+35 Ti+3 (k2 +m2 — (v- k)?)? (k2 +m2 — (v- k)?)?

T /Qik]’kﬂ} . /{Z[ﬁQ : ¢v2 + ¢v2 : ,62 + ,61 : QZJUI + QZJUI ' ﬁl]
(B = (v k)P

=0

since all integrands are odd functions.

3) Finally, (A.23) implies

Q(Tj’ Tl+3) - _<6jwvl’ avl,l?bUQ) + <6jwv2> 8Uz¢v1> + €j - awpv
B / ikjwvl . [_iklﬁl i 2]{711} i kw”2)] — ikﬂ/}zﬁ : [ZklﬁQ + 2/{71?] : kwvl)]
k2 +m2— (v-k)?
= //{Zk _[Q/A}vl Pt ez - o] + 2iv - k:[q[;vl ys — o - @Z)vl]
il /{32+m2—(’0-k3)2

dk + €j - &)lpv

dk + €j 8vlpv <A24)

Recall, that p;(x) are even, then p;(k) are real. Hence (1.2)-(1.3) and (A.22) imply

(K +m? — (v k)z)(lﬁvl P+ 1&1}2 < p2) = [aoky — Bm]p1 - p1 + [oka — Bm]pa - p
+[’LU -k + ’ialkl + iagk?g]ﬁg . ,51 - [Z’U -k + ialkl -+ iO[gk’g]ﬁl . ﬁg = —Bﬁ . ﬁ (A25)

<k2 + m2 - (U ’ k)2>2(1@v1 ' ¢v2 - 1/3112 : QZJUI) = 22(k2 + m2 - (U : k)2)2 Im(@vl ' ¢v2>
= —Zﬁmﬁl . [’M) -k + iOélkl + ’iagkfg]ﬁl - Q[Z’U -k + iOélkfl + ’iagkﬁg]ﬁg . ﬁmﬁg (A26)
= —2iv-kBp-p

Substituting (A.25) and (A.26) into the right hand site of (A.24), we obtain

I B(k) A KB
m%mﬁ—/WﬂW+W—@wwﬁXmmw—wmm

that correspond to (3.6) - (3.8).

ﬁhmf%m

B Computing inverse matrix

Denote F(w) := —L + H (iw + 0) which is diagonal. Then by (13.19) for w € R we obtain

det M (iw)=det <Z_WF£?<W) ;}%) = —<w2+ Fl;gW)) <w2+FQQT(w)> (w2+ Fggv(w)> (B.27)

where

1 1
Fii(w) = [ k?Bdk — =1,2,3.
) = [ 158 <m2+W—umm+wv nﬁ+W—ummv)’j %3
(B.28)




30

Formula (B.27) is obvious since both matrices F'(w) and B, are diagonal, hence the matrix
M (iw) is equivalent to three independent matrices 2 x 2. Namely, let us transpose the
columns and rows of the matrix M (iw) in the order (142536). Then we get the matrix
with three 2 x 2 blocks on the main diagonal. Therefore, the determinant of M (iw) is
product of the determinants of these three matrices. Further,

3
—wy —1
wiy3+Fiy 0 0 wy3+Fiy 01 0
—iwry _
0 w2+ Fa O 0 w2+ Fa 01
0 0 Wy 0 0 -1
—1es 0\ — w2y +F3 w2y+F33
M (Z(.U) — —’YFll 0 0 —iw'y3 O 0 (B29)
wiy3+Fiy w2y +F1y )
0 —vFoo O 0 —wy 0
w2y+Faa w2y +Foo )
0 0 ks 0 0 _mwy
w?y+Fs3 w?y+Fs3

where Fj; = Fj;(w). Let us prove that for w € (—u, p)
Fjj(w) = wfi;(w),  fij(w) € C¥(=p, ), £3;(0)>0. (B.30)
Indeed, formula (B.28) implies that F};(0) = 0. Differentiating (B.28), we obtain

/ o 2 |U‘k1 _
0 =2 [ B0 G =0

since integrand is odd function in respect to kq, and

k? +m? + 3(|v|k1)?
F'(0)=2 [ K2B(k)dk 0.
]J( ) / j (k) (k2 + m2 — (Jo]k)2)3 >

By (B.30) we can represent the matrices M ~!(iw) as

iMn((x)) &Mu((ﬂ)
M (iw) = (B.31)
Mgl(w) %Mgg(w)

where .
iy 0
Y3+ f11 —i
M) = Mal) = [ 707 =2 o
iy
0 0 Y+f33
I =’
Y+ 11 _01 0 “/;YJrfu B Of 0
M) =| 0 0 Ma@)=| 05 0
— —7J33
0 0 Y+ fa3 0 0 Y+ £33
where f;; := f;;j(w), M;j(w) € C®°(—p, ), and
My =iMpB) b (B.32)

C Symplectic orthogonality conditions

Here we derive conditions (15.18) from the symplectic orthogonality conditions (6.7).
First let us compute ®(0). Formulas (13.14) and (13.16) imply

(@(0)); = (Go' Vo1 + Gy Woa, ikspn) + (G Vo — G, ikjpa) ,  j=1,2,3.
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On the other hand, by (13.5) formulas (A.22) read
Yo = —Gilps + GR2p1, e = Gl pr + Gi2p, .
Hence, for j =1,2,3

0= —Q(Zo,7j) = (Vor1, 0j%u2) — (Yoo, 0ju1) + Fo - €;
= —(Wou, ik (G pr + Go?p2)) + (Woo, ik (Go* o1 — Go' p2)) + Po - e = (2(0) + Fy);

since (G1)* = —Gi, (GE2)* = GI2. Hence the first condition (15.18) follows. Further,

12 kGY
r=0  k24+m2— (v-k)?2’

=2 kG
A=0  k2+m2—(v-k)2’

8,\6&1 8)\6%\2

Then (13.14) and (13.16) imply for j =1,2,3

\1’01 + 20 - k(éél\i/m + 67%2\1/02) A
(®'(0)); = —< o m?— (v k) ,zkj,01>
(R 2 K G
k2 +m?— (v- k)2 T

On the other hand, from (A.22) and (A.23) it follows that for j = 1,2, 3

ik;pa + 2k - k(=GELpo + Gi2p)
k2 +m? — (v-k)?

—ik;p1 + 2kjv - k(GEp1 + GE2pn)

Oy Dy =
31/11 k:2+m2—(v-k)2

) avj 1/%2 =

Hence,

0 = QZo, Tj13) = (Yo, Ov; Vu2) — (Vo2, Oy, ¥u1) + Qo - Oy, Do
_ <\I'01 —ik;pr + 2kjv - k(G pr + G52ﬁ2)> B <‘I’02 thipa+ Zhyv - WG — G61ﬁ2)>
’ k2 +m?2 — (v- k)2 ’ k2 +m?2 — (v- k)2
+ Qo 0upo = (¥'(0) + B, Qo)js j=1,2,3

since Qo - 9y, py = Qo - By 'e; = B, ' Qo - ¢;. Hence the second condition (15.18) follows.
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