PROGRESS ON OLGA TAUSSKY-TODD’S CIRCULANT PROBLEM

NORBERT KAIBLINGER

ABSTRACT. Determining the possible values of integer circulant determinants is an open
problem proposed by Taussky-Todd. Recent interest in this question comes from study-
ing the Lehmer constant of finite cyclic groups. By refining the approach by Laquer and
Newman we contribute to the circulant determinant problem in the case that the order
is a power of two.

1. INTRODUCTION AND MAIN RESULT

An integer circulant matrix is a matrix of the form

Qo aq . Qp—1
an-1 Go a1
Cv_ . . . R v_(ao,al,...,an,l)EZ.
ay
aq A Qp—1 Qo

Let 2(n) C Z denote the set of all possible values of n x n integer circulant determinants,
P(n) ={detC,: v eZ"}, n> 1.

Determining Z(n) for an arbitrary positive integer n is an open problem, suggested by
Taussky-Todd, see [15], and with implications for the Lehmer constant of finite cyclic
groups [7, 12].

It is known that the set Z! = {d € Z: ged(d,n) = 1} is always contained in Z(n). In
fact, Laquer [10] and Newman [15] showed that

(1) Z: Un’Z C 9(n), n > 1.

See [13] for viewing this result in a more general context. In some cases the inclusion (1) is
an identity. For example, the classical Diophantine result on the difference of two perfect
squares implies

PD(2) ={ai — a}: ap,a1 € L} = 7\ 275 = 75 U AZ.
More generally, for n = p prime, Laquer [10] and Newman [15] proved that

2 .
P(p) = 7\ pZ, = 7, U p°Z, p prime.
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For n = 2p, twice an odd prime number, Laquer [10] also showed that
2(2p) = 2(2) N Z(p)
(2) — Z\ (223 U ;) p> 3 prime.
= Z5, U 4AZ, U P75 U Ap*Z,
For n = p?, the square of an odd prime, Newman showed in [16] that
20) = Z,V {?)ZZ: i ; ?prime.

For n = p*, a prime power, Newman [15, 16] has proved the inclusions

PPz, p=2,3,

k> 2.
p**2Z,  p>>5prime,

* k k *
(3) ZPUpQZg@(p)gZpu{

By the next theorem, our main result, we improve these inclusions, for p = 2. In
particular, we obtain 2(4) and 2(8).

Theorem 1.1. We have 2(4) =Z3;U16Z, 2(8)=17Z5U32Z, and
ZyUu2?l7,. C 928 Cc Zyu ki, k> 4.

Proof. We apply the new lower bound derived in Section 4 (Theorem 4.4), and the new
upper bound derived in Section 5 (Theorem 5.8).

First, by (3) we have Z} U 16Z C Z(4), and by Theorem 5.8 with ¢ = 1 and k = 2 we
have 2(4) C Z5 U 16Z.

Next, by Theorem 4.4(i) with ¢ = 2873 we have Z} U 2**71Z C 9(2F), for k > 3; and
by Theorem 5.8 with ¢ = 1 we have 2(2F) C Z35 U 2*72Z, for k > 3. O
Ezrample 1.2. By Theorem 1.1 there exists an integer circulant 16 x 16 matrix with de-
terminant 128 and no such matrix exists with determinant 32. We do not know whether
such a matrix exists with determinant 64.

Remark 1.3. The power 2¥*2 in Theorem 1.1 is best possible in the sense that
D02 ¢ 75Uk, k> 1,
see Example 3.3 below.
Open question: Determine Z(n) in the presently unknown cases n = 12,15,16, 18, ...
The Section 2 contains preliminary results. In Section 4 we derive the lower bound for

Theorem 1.1, and in Section 5 we derive the upper bound for Theorem 1.1.

2. PRELIMINARY RESULTS

Denote by Res(f, g) the resultant of two polynomials f, g € Z[x|, expressed by a sim-
plified product notation that we will use below. For non-constant g,

Res(g, ) = ¢*= [ f(@)

=0 for c € Z and x4, ...,x, € C such that
g(z)=

gx)=c-(x —x1) - (v — xp);
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and for constant g,

0, g=0or f=0.

For the properties of the resultant we refer to [3, Section 4], [4, Chapter 12]. We will
frequently use the following property.

Lemma 2.1. Let f1, fo,g9 € Z[z] and suppose g is monic and non-constant. Then the
assumption f1 = fo (mod g) implies Res(g, f1) = Res(g, f2).

Proof. Apply [3, Lemma 4.1(i)]. Explicitly, if ¢ is monic and non-constant, then for
fo=fi+h-g, with h € Z[z],

Res(g, f2) = H (fl(x) + h(x) H fi(x) = Res(g, f1)-

g(x)=0 :0 g(x)=0 O

Remark 2.2. In Lemma 2.1 the condition that g is non-constant cannot be omitted, since
for example, Res(1,0) = 0 is not equal to Res(1,1) = 1.

The next lemma lists several resultant formulas for later use.

Lemma 2.3. Let k,n > 1 and let o = ged(k, n).

(1)

1 a=1
R 1 ce n—1 1 “e k—1 — ) s
es(1+---+2" 1+ +2"7) {O, A
(i) k
=1
Res(x”—1,1+...+xk—1):{, a=1,
0, o>
(iii)
~1
R 1 LAY n—1 1 _ k — n7 8} s
es(1+---+2" ", 1—2a") {0’ .
(iv) b o o
Res(m"+171+...+xk—l): ) ,
0, k/a even.
(v) -
2¢ dd
Res(l—k---—}-x”—l’l_’_lﬂk):{ ) n/a odd,
0, n/a even.
(vi)
20&
Res(z" + 1,1 —2F) ={ "~ k/a odd,
0, k/a even.
(vii)
2% dd
Res(z" — 1,1 + 2*) = { , n/a odd,
0, n/a even.

2% n/a even or k/a even,
0, n/a, k/a odd.

(ix) Res(z" — 1,1 —2*) = 0.

Res(z" + 1,1 + 2%) = {
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Proof. (i) First, suppose @ = 1. Applying the usual Euclidean algorithm to the pair of
integers (nq, ki) = (n, k) yields (ng, k), ... (n,, k) such that for each j =1,...,7 —1

(4) Nj+1 = nj(mod k?j), kj+1 = kj or Njy1 = Ny, kj+1 = ]{Ij(ITlOd nj),

and since o = ged(n, k) = 1,

(5) n.=1 k. >1 or n.>1, k., =1
For pnr = Res(1 + -+ + 2" 1 1+ -+ + 271, we observe by using Lemma 2.1 that (4)
implies pn;.\ k1 = Pnjk;> for j=1,...,7 =1, and (5) implies p,, x, = 1. Hence,

Res(l 4. 4 J;”—17 1+---4 xk—l) = Pnk = Proks =" = Proky = L.

Secondly, suppose o > 2. Then the polynomial 1 + --- + 22! divides both arguments
of the resultant, whence the resultant vanishes. Thus (i) is verified for all o > 1.

(ii) First, for n = 1, we have Res(z — 1,1+ - +2F 1) = (14 --- +2F71),_; = k. Hence,
for general n > 1, by also using (i),

Res(z" — 1,1+ -+ 2"
=Res(z — 1,1+ +2") Res(1 4+ -+ 2" 14 -+ 2F 1)

_{hl_h a=1,

k-0=0, a > 2.

(iii) From (ii) we obtain, since a = 1 implies (—1)~D*+1) = 1/
Res(1+ -+ +2" ' 1 — 2"
= (=)™ V*Res(1 — 2%, 1+ --- 42" 1)

= (=) DR (1)L Res(2F — 1,14 - + 2™ 1)
—_ (_1)(7171)(/64*1) R,eS(.ka o 17 1 S xnfl)

) 1-n=mn, a =1,
] (=D DEED g =, a>2.
(iv)-(ix) STEP I. (Preparatory computations). Suppose that o = 1.
Then by using (ii) we have
Res(z" + 1,1+ -+ 2"
(6) _ Res(@®™ —1,14---+a"")  Jk/k=1, kodd,
~ Res(z" —1,1+---+21)  10/k=0, k even,

(a=1).

From (6) we obtain
Res(1 +---+ 2" 1 +2%)
= (=) D*Res(aF + 1,1 4+ +2")

(7)
_{Ll:L n odd,

(—1)k-0=0, n even,
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Next, since
Res(z" + 1,1 — x)

=(—1)"Res(1 —z,2" + 1)
(a=1),
= (—=1)"(—=1)"Res(zx — 1,2" + 1)
=1 ("4 1) =1-2=2,
we have by using (6),
Res(z" 4+ 1,1 — 2¥)
= Res(z" + 1,1 —z) Res(2" + 1,14 --- +2"1)
(a=1).
2-1=2, k odd,
2-0=0, k even,

(8)

From (8) we obtain
Res(z" — 1,1 + 2")
= (=1)" Res(z" +1,2" — 1)
9) = (=" (=1)*Res(z" + 1,1 — 2™ (a=1).
_{ 1 .2=2  nodd,
(-1)*.0=0, n even,
From (8) and (9) we obtain, since Res (f(—z), g(—z)) = Res (f(z), g(z)),
Res(z" + 1,1 + 2¥)
= Res ((—2)" + 1,1+ (—2)")
(10) Res(z" + 1,1 — a%) = 2,
= ¢ Res(—a2" 4+ 1,1 + )
= (=1)*Res(2" — 1,14+ 2") =12,
We also note that
(11) Res(z" + 1,1+ 2F) =0, n,k odd, (0 =1),
since the polynomial x + 1 divides both arguments of the resultant.
STEP II (Proof of (iv)-(ix)).
Since by the chain rule for resultants [14] we have
Res (£(2%), g(s%)) = Res(f, )",

we observe that (vi) follows from (8); that (vii) follows from (9); and that (viii) follows
from (10) combined with (11).
Next, (iv) is obtained from (vi) by computing

n even, (@=1).

k even,

Res(z" + 1,1+ --- +2*1)

_ Res(z"+1,1—2F)  [2¢/2=2>"'" [/a odd,
~ Res(zn+1,1—2) 0/2=0, k/a even.
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and (v) is obtained from (vii) in an analogous way.
Finally, the resultant in (ix) vanishes indeed, since the polynomial x — 1 divides both
arguments of the resultant. 0

3. RESULTANTS AND THE STRUCTURE OF %(n)
In the first lemma we list some basic properties of Z(n), for n > 1.

Lemma 3.1. Letn > 1.
(i) Z(n) is a submonoid of Z with multiplication.

(i) d € 2(n) & —d € D(n).

Proof. (i) First, the integer circulant n x n matrices form an (abelian) submonoid of
the (non-commutative) monoid of all n X n integer matrices, with matrix multiplication.
Secondly, the determinant function is multiplicative.

(ii) Notice that det C,, = —1, for v = (0,—1,0,...,0) € Z", and use (i). d

The next lemma is concerned with the relation between circulant determinants and
polynomial resultants discussed in [2, p.76], used, e.g., in [1, 6, 7, 19]. The lemma
includes both directions of this relation.

Lemma 3.2. (i) Forv = (ag,...,a,_1) € Z", let f(x) = ag+axz+---+a, 12" . Then
det C,, = Res(z" — 1, f).
(ii) Conversely, for f € Zlx], let v = (ag,...,an—1) € Z" such that ay + a1z + - -+ +
an_12" 1 = f(z)mod (z" — 1). Then Res(z™ — 1, f) = det C,.
(iii) In particular,

P(n) ={Res(z" — 1, f): f € Z[x] }.
Proof. (i) See [2, p.76]. Explicitly, the usual formula expressing the determinant of a
circulant matrix as the product of its eigenvalues [2, p. 75|, [8, Theorem 17] implies

(12) det C, = H f(z) = Res(z" — 1, f).

" —1=0
(i) Let h(z) = ag + - -+ + ap,_12" ' By (i) we have det C, = Res(z" — 1, h) and thus by
applying Lemma 2.1 we obtain det C,, = Res(z™ — 1, h) = Res(z™ — 1, f).
(iii) Combine (i) and (ii). O
Ezample 3.3. Let v = (3,—1,0,...,0) € Z", n > 2. Then det C, = Res(z" — 1,3 —x) =

3" — 1. For n = 2% with k& > 1, this example verifies Remark 1.3; in fact, induction on
k > 1 shows that 3" — 1 = 282.0dd, and hence det C, ¢ Z3 U 237,

Remark 3.4. For v € Z", define the skew-circulant matrix .S, like the circulant matrix C,
but with reversed signs below the diagonal. The formula for a skew-circulant determinant
is analogous to (12), by using [2, p. 84], [9, Theorem 22| we have

(13) detS, = [] f(z)=Res(z"+1,f).

" +1=0
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By (12) and (13) we observe that Lemma 2.3 includes formulas for det C, and det S, for

v=(1,...,1,0,...,0) € Z", 1<k<n,
k k
v=(1,0,...,0,41,0,....0)€ Z", 1<k<n-—1;
k-1 k-1

thus in particular it yields a proof based solely on integer computations of a determinant
formula in [2, p.82], [10, Lemma 2], [15, Theorem 1].

By the next lemma we prove a property of resultants that we will use in the proof of
Lemma 3.6 below.

Lemma 3.5. Let f, g1, 92 € Z|x] and suppose g1, g2 are monic and non-constant. Define
h € Z|x| by h(u) = Res (gg(x) —u, f(x)) Then Res(gy © g2, f) = Res(g1, h).

Proof. Since g; and g5 are monic and non-constant, also g; o g, is monic and non-constant
and we have

Res(gioge, /)= [] f(x)

g10g2(x)=0

=11 Il r@
g1(u)=0 g2(x)—u=0
= H Res (g2(z) — u, f(z H h(u) = Res(g1, h).
g1(u)=0 g1(u)=0 ]
The lower bound for Z(n) in (1) is applicable for general n > 1. In contrast, upper
bounds are stated above only for special n. The next lemma allows us to deduce an
upper bound for Z(n), with arbitrary n > 1, from the case that n = p* is a prime power
(Equation (3) and Theorem 1.1). As usual, we write p* || n, when p* | n and p**! { n, for
p prime and k& > 1; thus n = Hpanpk.

Lemma 3.6. Let n,q > 1. If g | n, then Z(n) C Z(q). In particular,

n) C () 20"
p*|In
Proof. 1t is known from a construction by Torelli [18, p. 74], that an n x n integer circulant
determinant can be written, for any positive ¢ | n, as a ¢ X ¢ integer circulant determinant,

see also the specific formula in [10, Theorem 2]. We state a particularly transparent
construction in terms of resultants, as follows. Let ¢ > 1 such that ¢ | n, and define

h € Z|z] by
h(u) = Res(z™? — u, f(x)), for f € Z|x],
Then by Lemma 3.5 we have
Res(z" — 1, f) = Res(z? — 1, h). O
Example 3.7. For example, let n = 12 = 3-4. Then Lemma 3.6 allows us to deduce from
(1), (3), and Theorem 1.1 that

75 U 1447 C 9(12) C Z U 9Z5 U 1625 U 1447,
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note that Zj, = Z;.

4. REFINING THE LOWER BOUND

For n = 2%, a power of two, the lower bound in (3) reads
(14) ZyU2*7.C 9(2%), k>2.

In this section we sharpen this lower bound, see Theorem 4.4 below with ¢ = 2¥=3, for
k > 3. Our approach is based on the ideas in the proof of (2) by Laquer [10].

We formulate a result by Laquer for circulant determinants [10, Theorem 1], see also [15,
Theorem 4], in terms of resultants.

Lemma 4.1. Letn > 1 and fo € Z[z]. Fora € Z, let f,(x) = fo(z)+a-(1+---+a™ ).

If fo(1) # 0, then

fo(l) +n-a
fo(1)

This identity expresses det C,,, for v, = vy + (a,...,a) € Z", in terms of det C,,, for
vy € 4"

Res(z" — 1, f,) = Res(z" — 1, fo).

Proof. The case n = 1 is clear. Let n > 2. Since f, = fomod (1 + --- + z"!) and
fo(1) # 0, we have by Lemma 2.1 that
Res(x” - ]-7 fO) _ RGS($n — 17 fO)
fo(1) Res(z — 1, fo)
= Res(1 4+ +a"", o)
=Res(1+---+2"1 f,)
_ Res(z"—1,f,)  Res(z" -1, fa) O
 Res(z—1,f.) fo()+n-a
The next lemma is concerned with the determinant of an integer circulant n x n matrix
constructed by Laquer [10] for use in his proof of the identity (2) above. While Laquer
treats the case n = 2p, where p is an odd prime [10, Theorem 9], we are interested in the
case that n is a power of two and indeed we we determine det C), for generaln = 2,4,6, . ...
For example, the reduction principle in [10, Corollary of Theorem 2] is limited to the case

n = 2-odd; our more general version is inspired by a determinantal formula by Scott [18,
p. 75] and arguments in [19, Section 2].

Lemma 4.2. Let n =2,4,6,..., let a € Z, and let
fa@) =14 @+ +a") +a- (14 +a"").

Then
(2a+1)-n?/2,  n=0mod 8,
Res(z" — 1, f,) = { (2a + 1) - n%/4, n =2,6mod 8,
0, n = 4mod 8.
This identity expresses det C, forv = (1,0,1,...,1,0,...,0) + (a,...,a) € Z".
S—— ——

n/2—-1  nj2-1
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Proof. STEP 1 (a = 0). Let m = n/2, thus fo(z) =1+ (2% +--- + 2™). First, note that
(15) Res(z?™ — 1, fo) = Res(z — 1, fo) Res(1 + -+ 2™ 1, fo) Res(z™ + 1, fo).

The next two equations express a determinant in [10, Lemma 1], [15, Theorem 4], we
include a short proof in the language of resultants. First, note that

(16) Res(z — 1, fo) = fo(1) = m.
By using Lemma 2.1 and Lemma 2.3(iii) we have
Res(1+---+2™", fo)
(17) =Res(1+---+a™ " fo—z-(1+-+2™")
=Res(1+---+2"™ " 1—-2)=m.
Next, by using Lemma 2.1 and Lemma 2.3(iv) we compute
Res(z™ +1, fo) = Res (2™ + 1, fo + x - (2™ + 1))
2, m = 0mod 4,
=Res(z™ + 1,1+ +a™) =<1, m odd,
0, m = 2mod 4.

Combining (15), (16), (17), (18), and noting that n = 2m, we obtain the lemma for a = 0.

STEP 2 (a € Z). Apply Lemma 4.1 to the case a = 0 treated in Step I. Since fy(1) = n/2,
we obtain Res(z" — 1, f,) = (2a + 1) - Res(z™ — 1, fo). O

(18)

Part (i) of the next result is obtained from [10, Lemma 4], we include a simple proof
in terms of resultants.

Lemma 4.3. For ¢ > 1 odd, the following hold.
(i) Res(z?? — 1,1+ 29" =4  and Res(z® — 1,1 +x + 2% + 277) = 8.
(ii) 2F € 9(2¢), for k> 2.

Proof. (i) For the first identity, see Lemma 2.3(vii). For the second identity we compute
by using Lemma 2.3(vii),(viii), for f(z) =1+ z + 2? + x4,

Res(2% — 1, f)

= Res(2? — 1, f) Res(z?+ 1, f)

=Res(z?—1,f —z-(27—1)) Res (z?+ 1, f —z - (27 + 1))
= Res(z? — 1,1 + 2z + 2*) Res (27 + 1,1+ 27)
=Res(z? — 1,1+ 2)” Res (27 4+ 1,14+ 2%) =2°-2=38.

(ii) Since {4, 8, 4%, 84, 43, 842 ...} = {2¥: k > 2} and since Z(n) is closed under
multiplication, we observe that (i) implies (ii). O

Combining Lemma 4.2 and Lemma 4.3 we have the following.

Theorem 4.4. (i) We have Z3, U 32¢*Z C 2(8q), for ¢ > 1.
(i) We have Zs, U4Z; U ¢*Z5 U 4¢°7 C D(2q), for ¢ > 1 odd.
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Proof. (i) By Lemma 4.2 we have 32¢*Z% C 2(8¢). Combined with (1) we conclude that
32¢°Zy U (Z5, U 644°Z) C D(8q).

75, U324
(ii) By (1) we have Z3, € 2(2q) and 4¢’Z C Z(2q). By Lemma 4.2 we have ¢°Z3 C 2(2q).
By Lemma 4.3 we have {2¥: k > 2} C 9(2¢) and hence also
AZE ={2": k > 2} Z3, C 9(2q).

Combining these inclusions we obtain (ii). O

5. REFINING THE UPPER BOUND

For n = 2%, a power of two, the upper bound in (3) reads
902" Cczyutz, k> 2.

In this section we show how to complement Newman’s arguments in [15, 16] so to refine
this upper bound, see Theorem 5.8 below.

The next lemma is concerned with the factorization of an integer circulant determinant,
expressed as a resultant. The factors of the product in (12) are not integers, in general.
Newman [15, 16] makes use of a factorization by cyclotomic field norms, such that the
factors are integers. It is expressed in terms of resultants by the next lemma. Let
®,, € Z[x], m > 1, denote the m'™ cyclotomic polynomial, i.e., the monic polynomial
whose zeros are the primitive m'™ roots of unity, such as ®,(z) =z — 1, ®y(z) = 2 + 1,
Ps(z) =22 + 2+ 1, or y(x) = 2% + 1.

Lemma 5.1. Let f € Z|x].
(i) For generaln > 1,

Res(z" — 1, f) = HRes(CI)q, f)-
qln
(ii) In particular, for n = p*, a prime power,

Res(z”" — 1, f) = HRes (D, f) = HRes O, f),  pprime, k> 1.
(i) More specifically, for n = 2%, a power of two,

k
Res(2? — 1, f) = HRes Oy, f) = F(1) F(=1)|f(0)]* [] Res(®, f), k>3

=3
Proof. (i),(ii) Note that 2" —1 =], ®¢, for n > 1.
(iii) For n = 2%, also notice that

Res(z — 1, f) = f(1), J=0,

Res(®y;, f) = j
(P, f) ReS(JI2]_1 +1,f) = H f(z), J =1

z2 7110
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such as

(19)  Res(®1,f) = f(1), Res(®2, f) = f(=1), and Res(®4,f)=|f(0)]" 0
The next result will be used in the proof of Lemma 5.4 below.

Lemma 5.2. Let p prime and k > 1. Then @, (x) = (z — 1)?~' mod p.

Proof. CASE I (k =1). Let ¢ denote the Euler totient function. A formula by Guerrier [5]

k
states, if n > 1 and n = ¢p* such that pt ¢, then ®,(z) = (<I>q(x))¢(p
particular,

) mod p. Hence in

P,(z) = ((I>1(:U))p71 mod p.
= (x—1)r!
Casg II (k > 2). Note that ®,x(z) = ®, (27" ") = ®,(z) mod p, and apply Case I. [
Remark 5.3. The lemma can also be proved more explicitly by computing

Op(z) =1+a" +a%

k—1

B Lo

0, z = 1(mod p),

d
1, x # 1(mod p), oty

=l+z+a”+-- +aP = {
whence @, (z 4+ 1) = xo(z) mod p, where X, denotes the principal character modulo p.
Note that also 277! = yo(z) mod p.

The next lemma refines a key argument in the proof of [15, Theorem 2|. In fact, it can
be deduced from [15, Equation (4)] by applying Euler’s theorem. The use of resultants
allows us to give a simple self-contained proof.

Lemma 5.4. Let p prime and f € Zlz|. Then the following hold.
(i) We have the congruence

Res(®,, f) = Res(®,2, f) = Res(®ps, f) = -+ = {(1)’ Z;J[ ;8;’ mod p.

(ii) For k > 1, we have Res(a:pk —1,f) = f(1) mod p.
Proof. (i) By Lemma 5.2, we have @, (z) = (z — 1)?"' mod p. Hence,
Res(®,, f) = Res ((z — 1)P7', f)
1
= f(1)rt = 0, /(). mod p.
Lo ptf()
(ii) Apply (i) to Lemma 5.1(ii), reduced modulo p. O

Remark 5.5. Expressing Lemma 5.4(ii) in terms of determinants we have for n = p*, a
prime power, and v = (ag, ..., a,_1) € Z", that

(20) detC, =ag+ -+ an_1, mod p.
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Thus the lemma implies a more general version of the result in [10, Lemma 3], [11,
Theorem 1], [17, Theorem 7|, where (20) is obtained in the special case n = p. (The
two different expressions used in these references, ag+ -+ +a,—1 and af + -+ + ai,l, are
equivalent modulo p.) Related congruences are treated in [20] for a probabilistic analysis

of integer circulant determinants.

A key step by Newman in [16] is to determine, for p > 3 prime, whether there exists
f € Z[x] such that

() Res(®1, f) = Res(®,, f) = Res(P2, f) = p.

—_———
= f(1)
In fact, by [16, Theorem 2], and [16, Theorem 4], he proved that
(21) (%) is 'pOSSlbl.e, for p = 3, .
impossible, for p > 5 prime;

the case p = 3 being verified explicitly by the example f(z) = 1+ 2+ 2% Our next result
yields the complement of (21) for p = 2. Indeed in light of (19) the next lemma implies
that

(%) is impossible, for p = 2.
Lemma 5.6. Let f € Z[x]. Then {f(1), f(—=1),|f()]*} & 2Z3.

Proof. Write f in the form f(z) = ag+ a1x + asx? + . . ., with only finitely many non-zero
a; € Z. Let

A=ag+ay+as+... and

B=a+a3+a5+...
CASE I: Suppose that A # B (mod 2). Then f(1) = A+ B is odd, hence f(1) ¢ 2Z3.
CASE II: Suppose that A, B are odd. Then

Ff(=1) = (A+B)(A-B) = A* - B*

is the difference of two odd squares, and thus it divisible by 8. Hence, 8 | f(1)f(—1) and
thus {£(1), f(—1)} £ 2Z;,
CASE III: Suppose that A, B are even. Let

A:CLO—CL2+G4—CL6—|——... and

B=a,—a3s+as—a;+—....
Then A= A (mod 2) is even, B = B (mod 2) is even, and therefore
If()]? = |A+iB* = A + B?
is divisible by 4. Hence, 4 | |f(7)|* and thus |f(i)|* ¢ 2Z3. O
We obtain the following result.

Lemma 5.7. Let f € Z[z]. Then f(1) f(—1)|f(i)|> € Z5 U 16Z.
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Proof. Let d = f(1) f(—1)|f(i)|* and note that by Lemma 5.4(i) with p = 2,

F1) = f(-1) = |f@)P mod 2.
CASE I: Suppose that f(1), f(—=1),|f(i)|* are odd. Then d is odd, that is, d € Zs.

CAsE IT: Suppose that f(1), f(—1),|f(i)|*> are even. Then by Lemma 5.6 at least one of
these three numbers is divisible by 4. Hence, we conclude that 16 | d, that is, d € 16Z. O

By Lemma 3.2 and the fact that Res(z* — 1, f) = f(1) f(=1)|f(i)|? from Lemma 5.1
we observe that Lemma 5.7 yields

2(4) C Z35 U 16Z.

The next result is more general and it implies the new upper bound to be applied in the
proof of Theorem 1.1 above.

Theorem 5.8. We have 9(2%q) C Z3 U 282Z, for ¢ > 1 and k > 2.

Proof. Since 2(2%q) C 2(2%) by Lemma 3.6, we need to consider only ¢ = 1.
Let f € Z[z] and d = Res(ka — 1, f). In view of Lemma 3.2 we prove the lemma by
showing that d € Z35 U 2*27Z for k > 2.

CASE I: Suppose that f(1) is odd. Then Lemma 5.4(i) implies that d is factorized by
Lemma 5.1 into the product of solely odd numbers. Hence d is odd, that is, d € Z5.

CASE II: Suppose that f(1) is even. Then Lemma 5.4(i) implies that d is factorized by
Lemma 5.1 into the product of k41 many even numbers. By Lemma 5.7 the product of the
first three of these even numbers is divisible by 16. Hence d is divisible by 16-2F72 = 2k+2,
that is, d € 2F27Z. O
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