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Note on B-Splines, Wavelet Scaling Functions, and
Gabor Frames

Karlheinz Grdchenig,
Augustus J. E. M. JansseBenior Member, IEEENorbert Kaiblinger,
and Gotz E. Pfander

Abstract—Let g be a continuous, compactly supported function orR
such that the integer translates ofg constitute a partition of unity. We show
that the Gabor system(g, a, b), with window g and time-shift and fre-
quency-shift parametersa, b > 0 has no lower frame bound larger than
0ifb = 2,3,...anda > 0. In particular, (g, a,bd) is not a Gabor
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Gabor frame with frame bound$ > 0, B < o if and only if for all
c €1*(z)andallt € R

&S]

. 1
Alelf <7 >

n=—o0

oo

Z g(t —na — k/b)cy

k=—occ

2

< Bllell*. (4)

Forg € L*(R), we denote by, the set
F, = {(a,b) |a>0,b>0,(g,a,b)is aGabor fram}. (5)

It is often quite hard to determine the sk} for a given window

frame if g is a continuous, compactly supported wavelet scaling function g€ LZ(H). In certain cases, for instance when one has restrictions on

andif b = 2,3,...anda > 0. We give an example for our result for
the case thatg = B4y, the triangle function supported by [—1, 1], by
showing pictures of the canonical dual corresponding td g, a, b) where
ab = 1/4 and b crosses the linedV = 2, 3,....

Index Terms—B-splines, Gabor frame, partition of unity, Ron—Shen con-
dition, wavelet scaling function.

|. INTRODUCTION

Leta > 0,b > 0, andg € L*(R). We call the function system

na,mb = . a b
(g ’ I)anEZ (g ’ )

a Gabor frame if there aré > 0, B < oc such that for allf € L*(R)

1)

AUAE < 32| (Fgmam )| < BISI. @

Heregy.. , denotes for:, y € R the time—frequency-shifted function

Gey(t) = 2"V g(t — 1), teR.

@)

the supporting set af, the Ron—Shen criterion can be of great help in
telling whether(e, b) belongs taF,. In [4, Sec. 3], a considerable effort
has been made to determifg for the case thag = Bo = x[0,1); the
result is a complicated subsetpfa,b) | « >0, b>0, ab< 1} where
(inrationality ofab plays a key role. Furthermore, only in a few cases of
well-behaved windows it has been shown thd, = { (a,b) | >0,

b >0, ab < 1}; among thesg are the Gaussians [5], [6], hyperbolic
secants [7] and two-sided exponentials [8, Sec. 5].

In this correspondence, we ask the question whether for certain stan-
dard windowsy from approximation theory and wavelet theory the set
F, consists of alla, b) witha > 0,b > 0, andab < 1 as well. Unlike
the exampley = B, given earlier, the windows of this type are smooth
and well decaying, which implies that the sé{sare open sets [9]. We
shall show in Section Il that for any continuous, compactly supported
g satisfying the partition-of-unity identity

=S

k=—oco

teR (6)

no lower frame bound > 0 for the Gabor systerty, a, b) exists when
a > 0andb = 2,3,.... Condition (6) can be shown to hold for large
classes of windows; in particular, it is satisfied for some commonly

The numbersi and B that appear in (2) are called the lower and thgsed windows in signal processing, such as the raised cosine

upper frame bound, respectively. It is well known thata, b) can be

a Gabor frame only i&b < 1; also, ifab = 1 and(g, a,b) is a Gabor
frame, thery cannot be continuous and compactly supported. We refer

(14 cosnt)/2, when|t| < 1
0, otherwise

RC(t) = { (7)

for basic information about (Gabor) frames to [1, Sec. 3.4, 3.5, 4.1,
and 4.2]; a comprehensive and recent treatment of Gabor systems andl the trapezoidal function, for< § < 1/2 defined as
frames can be found in [2, Ch. 5-9, 11-13]. We shall use here the fol-

lowing criterion, due to Ron and Shen [3], for being a Gabor frame, see 1
[2, p. 117, Proposition 6.3.4]; for convenience, we restrict ourselves to

continuous, compactly supported windowsT he systenig, a,b) is a

, 1 <1/2-5
T(t) =4 (26)°"(1/2 46 — [t]), )|t|—1/2‘<5 ®)
0, otherwise.

Further, condition (6) on is satisfied whem is a compactly supported,
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g(t) = Bi(t) = max(0,1 — |t|) as an example. We show pictures of
the canonical dual function corresponding to the Gabor sy&jem b)
with ab = 1/4 andb close to2 and3. Itis conjectured thaF, consists
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of all (a,b) with0 < a < 2,5 > 0,ab < 1,andb # 2,3,.... The
pictures in Section Il support this conjecture.
Il. PROOF OF THEMAIN RESULT
We assume that is continuous and compactly supported (later we
comment on weakening those conditions), and gheattisfies (6). Also, :
we leta > 0 andb = 2, 3,.... We shall show that the Gabor system : ; . : : : :
(g, a,b) has no positive lower frame bound (the Ron-Shen criterion (4) ‘10__(; """ 4 2 o 5 PR 6
implies that(g, a, b) has a finite upper frame bound). To that end, we T T T ; T T y
shall displayc,]‘ €1*(2), K =1,2,...,such that for alt € R
1 o0 oo - 2
B n;@@ k_z;oog(f —na—k/N)e,| — 0, K — oc.
)
Leth = N = 2,3,... and set
o= GQﬂkr//\” kez, (10)
wherer = 1,...,N — 1. Thenforallt € R, n € Z, we have
Z gt —na — k/N) ey
k=—o
N—-1 o o
_ Z Z g(t—na— Lv _I)SZTN(WJ'*I)
k=0 l=—c¢
N—1 ]
— Z eZ?rzlcr/lN = 0. (11)
k=0
ForK = 1,2,... we define the sequeneé ¢ 1%(Z) by
K Ck, |k| < K,
= kez 12
"k {o, > K, "E (12)
and the subsets of indexes
Vi :{l €7|g(t—na— % -1 # 0}
- Fig. 1. The canonical Gabor dual , = S ;¢ of the triangle functiory =
I K a,b
Wi :{1 EZ|chun # 0}- (13) B, see (19), fonb = 1/4,b=15,1.8,2.9.3.5,2.8.3.2,3.5,3.8.

Then the equality", g(t — na — £)c;’ = 0 holds for allt € R,

n € Z whenever either Remark

The property (11) withe;, given in (10) can be phrased as

Vi CWee  h=0.....N -1 (14)  (Zg)(s.r/N)=0fors € R,r =1,...,N — 1. Here
o (Zp)s) =N Y a( ;,v"" ) TR s eR (18)
VinWe=0, k=0, ,N-1. (15) k=—oo

is a Zak transform of;, see [11, Sec. 1.5]. Using Gabor frame operator
Conversely, fot € R, n € Z both (14) and (15) fail to be true if and theory in the Zak transform domain, one can get the main result under
only if Wi, \ Vi # &, i.e., if there arg1, j» € Z such that considerably weaker conditions grthan the ones made previously.

g(t — na — %) £0# g(t —na—2), Lﬁ =0# cﬁz . (16) Hl. EXAMPLE

Let |I| be the length of a supporting intenladf g. Then the number of  In this section, we consider the choice
n € Z such that both (14) and (15) fail to hold is at m@§fl|/« + 1)

for any# € R . Hence, g(t) = Bi(t) = max(0,1 — [t]), teR (19)
- - N and we display the canonical dugal , = S;i g, see [2, Sec. 7.6] for
Z Z g(t = na — k/N)ek the role of the ganonlcal dual in Gabor analys_ls, for some va_Iues of
Sl Pt a > 0,b > 0,withab = 1/4 andb near2 or 3 (Fig. 1). HereS, ; is
oo the frame operator correspondingtp a, b), which is invertible when
<2([1|/a+1) Z lg(t = na — k/N)|2 (g,a,b) is a frame. One easily sees from the Ron—Shen criterion in
k= — oo (4) or [2, Theorem 6.4.1] thdy, a, ) is a frame whem < 2 < 1/b.
< 2(1/a + 1)(MN([I] 4+ 1))* (17) For the other cases that are shown in the figure, we have only numerical

evidence that the lower frame bouAdor (g, a, b) is positive. The dual
whereM is an upper bound fdg|. Since (17) is independent &f and  windows were approximated by considering sampled Gabor systems
since||c” || = (2K +1)'/2, we obtain (9) for any € R. for 1(Z) and their dual systems, see [12], [13] for details, with sample
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rates taken so high that further increasing them produced no visifite One well-known way to do this is to take an orthonormal bésis

changes in the figure. As can be seen, thg obtained in that way {¢:,...,é~} for H and use the Fourier coefficienfés, ¢x)} 1, to
turns from a well-behaved function for the values= 1.5, 2.5 into a represent. This approach is simple and works reasonably well in many
quite irregularly behaved one whérapproacheg or 3. cases. However, one can also consider a more general type of expansion

where the orthonormal basis is replaced by a so-called dictionalty.for
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Abstract—The purpose of this correspondence is to generalize a result In Section I1, we provide conditions for a solutionof the problem

by Donoho and Huo and Elad and Bruckstein on sparse representations of . .

signals in a union of two orthonormal bases fofR™Y . We consider general minimize [|o|, subjecttos = Da ®3)
(redundant) dictionaries for R™, and derive sufficient conditions for having . . . . .

unique sparse representations of signalsin suchdictionaries.Thespecialcasetc_’ b_e indeed the unique 59|Ut|0n1 Wm’_‘ﬁ T < _1_ and an g.rbltrary
where the dictionary is given by the union ofL. > 2 orthonormal bases for ~ dictionaryD. We put a special emphasis on sufficient conditions of the
RY isstudiedinmore detail. Inparticular,itis provedthatthe resultof Donoho type||o]lo < f(D) and prove a sufficient condition far € {0, 1}

and Huo, concerning the replacement of th(i_’,0 optimization problem with vy #(D) = (1+ 1/M(D))/2 where

a linear programming problem when searching for sparse representations,

has an analog for dictionaries that may be highly redundant. M(D) := maf/( gx. g (4)

Index Terms—DPictionaries, Grassmannian frames, linear programming,
mutually incoherent bases, nonlinear approximation, sparse representa-

tions is the coherenceof the dictionary. The special case whdeis the

union of . > 2 bases is studied in Section lll, leading to explicit suf-
ficient conditions forr = 0 with

£(D) = (1/2 + 2(;7_1» /M (D)

|. INTRODUCTION

We consider vectors (also referred to as signalgyis R" (resp.,

TN . ) - . .
H=C"). The goal is to find an efficient representation of a signal and forr € {0,1} with
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