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Note on B-Splines, Wavelet Scaling Functions, and
Gabor Frames

Karlheinz Gröchenig,
Augustus J. E. M. Janssen, Senior Member, IEEE, Norbert Kaiblinger,

and Götz E. Pfander

Abstract—Let be a continuous, compactly supported function on
such that the integer translates of constitute a partition of unity. We show
that the Gabor system( ), with window and time-shift and fre-
quency-shift parameters 0 has no lower frame bound larger than
0 if = 2 3 . . . and 0. In particular, ( ) is not a Gabor
frame if is a continuous, compactly supported wavelet scaling function
and if = 2 3 . . . and 0. We give an example for our result for
the case that = , the triangle function supported by [ 1 1], by
showing pictures of the canonical dual corresponding to( ) where

= 1 4 and crosses the lines = 2 3 . . ..

Index Terms—B-splines, Gabor frame, partition of unity, Ron–Shen con-
dition, wavelet scaling function.

I. INTRODUCTION

Let a > 0, b > 0, andg 2 L2( ). We call the function system

gna;mb
n;m2

� (g; a; b) (1)

a Gabor frame if there areA > 0,B <1 such that for allf 2 L2( )

Akfk2 �
n;m

f; gna;mb

2

� Bkfk2 : (2)

Heregx;y denotes forx; y 2 the time–frequency-shifted function

gx;y(t) = e2�iytg(t� x); t 2 : (3)

The numbersA andB that appear in (2) are called the lower and the
upper frame bound, respectively. It is well known that(g; a; b) can be
a Gabor frame only ifab � 1; also, ifab = 1 and(g; a; b) is a Gabor
frame, theng cannot be continuous and compactly supported. We refer
for basic information about (Gabor) frames to [1, Sec. 3.4, 3.5, 4.1,
and 4.2]; a comprehensive and recent treatment of Gabor systems and
frames can be found in [2, Ch. 5–9, 11–13]. We shall use here the fol-
lowing criterion, due to Ron and Shen [3], for being a Gabor frame, see
[2, p. 117, Proposition 6.3.4]; for convenience, we restrict ourselves to
continuous, compactly supported windowsg. The system(g; a; b) is a
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Gabor frame with frame boundsA > 0, B < 1 if and only if for all
c 2 l2( ) and allt 2

Akck2 �
1

b

1

n=�1

1

k=�1

g(t� na� k=b)ck

2

� Bkck2 : (4)

For g 2 L2( ), we denote byFg the set

Fg = (a; b) j a > 0; b > 0; (g; a; b) is a Gabor frame: (5)

It is often quite hard to determine the setFg for a given window
g 2 L2( ). In certain cases, for instance when one has restrictions on
the supporting set ofg, the Ron–Shen criterion can be of great help in
telling whether(a; b) belongs toFg . In [4, Sec. 3], a considerable effort
has been made to determineFg for the case thatg=B0 =�[0;1); the
result is a complicated subset off (a; b) j a>0; b>0; ab� 1g where
(ir)rationality ofab plays a key role. Furthermore, only in a few cases of
well-behaved windowsg it has been shown thatFg = f (a; b) j a>0;
b > 0; ab < 1g; among theseg are the Gaussians [5], [6], hyperbolic
secants [7] and two-sided exponentials [8, Sec. 5].

In this correspondence, we ask the question whether for certain stan-
dard windowsg from approximation theory and wavelet theory the set
Fg consists of all(a; b) with a > 0, b > 0, andab < 1 as well. Unlike
the exampleg = B0 given earlier, the windows of this type are smooth
and well decaying, which implies that the setsFg are open sets [9]. We
shall show in Section II that for any continuous, compactly supported
g satisfying the partition-of-unity identity

1

k=�1

g(t� k) = 1; t 2 (6)

no lower frame boundA > 0 for the Gabor system(g; a; b) exists when
a > 0 andb = 2; 3; . . . . Condition (6) can be shown to hold for large
classes of windows; in particular, it is satisfied for some commonly
used windows in signal processing, such as the raised cosine

RC(t) =
(1 + cos�t)=2; whenjtj � 1

0; otherwise
(7)

and the trapezoidal function, for0 < � < 1=2 defined as

T(t) =

1; jtj � 1=2� �

(2�)�1(1=2 + � � jtj); jtj � 1=2 < �

0; otherwise.

(8)

Further, condition (6) ong is satisfied wheng is a compactly supported,
continuous scaling function from the theory of wavelets [1, Remark 5
on pp. 144–145 and Note 9 on p. 165], or wheng is a B-spline with
knots at the integers [10]. Hence, in these cases, the setFg consists
apparently of countably many open sets, separated from one another
by the horizontal linesb = N = 2; 3; . . ..

This result came as a big surprise to us, because it is generally as-
sumed that any “nice” windowg and “reasonable” choice ofa; b > 0
yield Gabor frames. Our observation demonstrates that even for
window functions that are perfectly natural in approximation theory
and wavelet theory,a andb have to be chosen extremely carefully.

In Section III, we consider the linear B-spline or triangle function
g(t) = B1(t) = max(0; 1� jtj) as an example. We show pictures of
the canonical dual function corresponding to the Gabor system(g; a; b)
with ab = 1=4 andb close to2 and3. It is conjectured thatFg consists
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of all (a; b) with 0 < a < 2, b > 0, ab < 1, andb 6= 2; 3; . . .. The
pictures in Section III support this conjecture.

II. PROOF OF THEMAIN RESULT

We assume thatg is continuous and compactly supported (later we
comment on weakening those conditions), and thatg satisfies (6). Also,
we leta > 0 andb = 2; 3; . . .. We shall show that the Gabor system
(g; a; b) has no positive lower frame bound (the Ron–Shen criterion (4)
implies that(g; a; b) has a finite upper frame bound). To that end, we
shall displaycK 2 l2( ), K = 1; 2; . . ., such that for allt 2

1

kcKk2

1

n=�1

1

k=�1

g(t� na� k=N) cKk

2

! 0; K !1 :

(9)
Let b = N = 2; 3; . . . and set

ck = e2�ikr=N ; k 2 ; (10)

wherer = 1; . . . ; N � 1. Then for allt 2 , n 2 , we have

1

k=�1

g(t� na� k=N) ck

=

N�1

k=0

1

l=�1

g t� na� k
N
� l e2�ir( +l)

=

N�1

k=0

e2�ikr=N = 0: (11)

ForK = 1; 2; . . . we define the sequencecK 2 l2( ) by

cKk =
ck; jkj � K;

0; jkj > K;
k 2 (12)

and the subsets of indexes

Vk = l 2 j g(t� na� k
N
� l) 6= 0

Wk = l 2 j cKk+lN 6= 0 : (13)

Then the equality k g(t � na � k
N
) cKk = 0 holds for allt 2 ,

n 2 whenever either

Vk �Wk; k = 0; . . . ; N � 1 (14)

or

Vk \Wk = ; k = 0; . . . ; N � 1 : (15)

Conversely, fort 2 , n 2 both (14) and (15) fail to be true if and
only if Wk n Vk 6= , i.e., if there arej1; j2 2 such that

g(t� na� j
N
) 6= 0 6= g(t� na� j

N
); cKj = 0 6= cKj : (16)

Let jIj be the length of a supporting intervalI of g. Then the number of
n 2 such that both (14) and (15) fail to hold is at most2(jIj=a+ 1)
for any t 2 . Hence,

1

n=�1

1

k=�1

g(t� na� k=N)cKk

2

� 2(jIj=a+ 1)

1

k=�1

jg(t� na� k=N)j2

� 2(jIj=a+ 1)(MN(jIj+ 1))2 (17)

whereM is an upper bound forjgj. Since (17) is independent ofK and
sincekcKk = (2K + 1)1=2, we obtain (9) for anyt 2 .

Fig. 1. The canonical Gabor dual
 = S g of the triangle functiong =
B , see (19), forab = 1=4, b = 1:5; 1:8; 2:2;2:5;2:8;3:2;3:5;3:8.

Remark

The property (11) withck given in (10) can be phrased as
(Zg)(s; r=N) = 0 for s 2 , r = 1; . . . ; N � 1. Here

(Zg)(s; �) = N�1=2
1

k=�1

g
s� k

N
e2�ik� ; s; � 2 (18)

is a Zak transform ofg, see [11, Sec. 1.5]. Using Gabor frame operator
theory in the Zak transform domain, one can get the main result under
considerably weaker conditions ong than the ones made previously.

III. EXAMPLE

In this section, we consider the choice

g(t) = B1(t) = max(0; 1� jtj); t 2 (19)

and we display the canonical dual
a;b = S�1a;b g, see [2, Sec. 7.6] for
the role of the canonical dual in Gabor analysis, for some values of
a > 0, b > 0, with ab = 1=4 andb near2 or 3 (Fig. 1). HereSa;b is
the frame operator corresponding to(g; a; b), which is invertible when
(g; a; b) is a frame. One easily sees from the Ron–Shen criterion in
(4) or [2, Theorem 6.4.1] that(g; a; b) is a frame whena < 2 � 1=b.
For the other cases that are shown in the figure, we have only numerical
evidence that the lower frame boundA for (g; a; b) is positive. The dual
windows were approximated by considering sampled Gabor systems
for l2( ) and their dual systems, see [12], [13] for details, with sample
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rates taken so high that further increasing them produced no visible
changes in the figure. As can be seen, the
a;b obtained in that way
turns from a well-behaved function for the valuesb = 1:5, 2:5 into a
quite irregularly behaved one whenb approaches2 or 3.
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Sparse Representations in Unions of Bases

Rémi Gribonval, Member, IEEE,and Morten Nielsen

Abstract—The purpose of this correspondence is to generalize a result
by Donoho and Huo and Elad and Bruckstein on sparse representations of
signals in a union of two orthonormal bases for . We consider general
(redundant) dictionaries for , and derive sufficient conditions for having
uniquesparserepresentationsofsignals insuchdictionaries.Thespecialcase
where the dictionary is given by the union of 2 orthonormal bases for

isstudiedinmoredetail.Inparticular,it isprovedthattheresultofDonoho
and Huo, concerning the replacement of the optimization problem with
a linear programming problem when searching for sparse representations,
has an analog for dictionaries that may be highly redundant.

Index Terms—Dictionaries, Grassmannian frames, linear programming,
mutually incoherent bases, nonlinear approximation, sparse representa-
tions.

I. INTRODUCTION

We consider vectors (also referred to as signals) inH=
N (resp.,

H=
N ). The goal is to find an efficient representation of a signals 2

Manuscript received November 13, 2002; revised August 4, 2003.
R. Gribonval is with IRISA-INRIA, Campus de Beaulieu, F-35042 Rennes

Cedex, France (remi.gribonval@inria.fr).
M. Nielsen is with the Department of Mathematical Sciences, Aalborg Uni-

versity, DK-9220 Aalborg East, Denmark (mnielsen@math.auc.dk).
Communicated by G. Battail, Associate Editor At Large.
Digital Object Identifier 10.1109/TIT.2003.820031

H. One well-known way to do this is to take an orthonormal basis� =

f�1; . . . ;�Ng for H and use the Fourier coefficientsfhs; �kigNk=1 to
represents. This approach is simple and works reasonably well in many
cases. However, one can also consider a more general type of expansion
where the orthonormal basis is replaced by a so-called dictionary forH.

Definition 1: A dictionary inH = N (resp.,H = N ) is a family
of K � N unit (column) vectorsfgkg that spansH. We will use the
matrix notationDDD = [g1; . . . ; gK ] for a dictionary.

By a representation ofs in DDD we mean a (column) vector� =
(�k) 2 K (resp., in K ) such thats = DDD�. We notice that when
K > N , the vectors ofDDD are no longer linearly independent and the
representation ofs is not unique. The hope is that among all possible
representations ofs there is avery sparserepresentation, i.e., a repre-
sentation with few nonzero coefficients. The tradeoff is that we have
to searchall possible representations ofs to find the sparse represen-
tations, and then determine whether there is a unique sparsest repre-
sentation. Following [1] and [2], we will measure the sparsity of a rep-
resentations = DDD� by two quantities: thè0 and the`1 norm of�,
respectively (thè0-norm simply counts the number of nonzero entries
of a vector). This leads to the following two minimization problems to
determine the sparsest representation ofs:

minimize k�k0 subject tos = DDD� (1)

and

minimize k�k1 subject tos = DDD�: (2)

It turns out that the optimization problem (2) is much easier to handle
than (1) through the use of linear programming (LP), so it is important
to know the relationship between the solution(s) of (1) and (2), and to
determine sufficient conditions for the two problems to have the same
unique solution. This problem has been studied in detail in [1] and later
has been refined in [2] in the special case where the dictionaryDDD is the
union of two orthonormal bases. In what follows, we generalize the
results of [1] and [2] to arbitrary dictionaries.1 The case whereDDD is
the union ofL � 2 orthonormal bases forH is studied in detail. This
leads to a natural generalization of the recent results from [2] valid for
L = 2.

In Section II, we provide conditions for a solution� of the problem

minimize k�k� subject tos = DDD� (3)

to be indeed the unique solution, with0 � � � 1 and an arbitrary
dictionaryDDD. We put a special emphasis on sufficient conditions of the
type k�k0 < f(DDD) and prove a sufficient condition for� 2 f0; 1g
with f(DDD) = (1 + 1=M(DDD))=2 where

M(DDD) := max
k 6=k

jhgk; gk ij (4)

is thecoherenceof the dictionary. The special case whereDDD is the
union ofL � 2 bases is studied in Section III, leading to explicit suf-
ficient conditions for� = 0 with

f(DDD) = 1=2 +
1

2(L� 1)
=M(DDD)

and for� 2 f0; 1g with

f(DDD) =
p
2� 1 +

1

2(L� 1)
=M(DDD):

1Parallel work done independently by Donoho and Elad [3] also addresses the
question of generalizing previous results to general dictionaries. Though there
are some similarities between this work to the work in [3], a somewhat different
perspective on the problem is adopted and the proofs use different techniques.
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