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DILATION OF THE WEYL SYMBOL AND BALIAN-LOW

THEOREM

GERARD ASCENSI, HANS G. FEICHTINGER, AND NORBERT KAIBLINGER

Abstract. The key result of this paper describes the fact that for an im-

portant class of pseudodifferential operators the property of invertibility is

preserved under minor dilations of their Weyl symbols. This observation has
two implications in time-frequency analysis. First, it implies the stability of

general Gabor frames under small dilations of the time-frequency set, previ-

ously known only for the case that the time-frequency set is a lattice. Secondly,
it allows us to derive a new Balian-Low theorem (BLT) for Gabor systems with

window in the standard window class and with general time-frequency fami-
lies. In contrast to the classical versions of BLT the new BLT does not only

exclude orthonormal bases and Riesz bases at critical density, but indeed it

even excludes irregular Gabor frames at critical density.

1. Introduction and main results

Gabor frames are a key object in time-frequency analysis. They are families of
functions obtained by applying a discrete family of time-frequency shift operators
to a given function, called Gabor atom resp. window. The standard setting are
so-called regular Gabor frames, where the time-frequency set is a lattice. The focus
of this paper is on the general case of irregular Gabor frames, without restrictions
on the (countable) set.

It is known that regular Gabor frames are robust under small dilations of the
underlying set of points in the time-frequency plane [18]. This paper is motivated
by the question whether also irregular Gabor frames share this property. We were
led to investigate whether the invertibility of a pseudodifferential operator

Aσf(x) =

∫
R2n

σ
(x+ y

2
, ξ
)
e2πiξT (x−y)f(y) dy dξ, f ∈ L2(Rn)

is preserved under small dilations of the Weyl symbol σ on R2n. Notice that dila-
tions of Weyl symbols are not as well-behaved as translations or modulations [23,
p.91, “Warning”]. Note that standard perturbation results for linear operators do
not apply in this case. In fact, even starting from a decent operator Aσ one does not
have continuous dependence of the corresponding operators in the operator norm,
even for some arbitrary small dilations.
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Our first main theorem gives a positive result about dilation stability. It is for-
mulated for operators Aσ in the Sjöstrand class, that is, we assume that the symbol
σ belongs to the modulation space M∞,1(R2n). The Sjöstrand class is meanwhile
recognized as a standard setting for pseudodifferential operator symbols in time-
frequency analysis [28, 29]. In Section 2 we include the definition of modulation
spaces, for details we refer to [14, 27].

Let GL(n,R) be the group of invertible n× n matrices with the usual topology,
induced for example by the maximum norm

‖ρ‖max = max
j,k=1,...,n

|ρj,k|, ρ ∈ GL(n,R).

The n × n identity matrix is denoted by In. For ρ ∈ GL(n,R), we denote the
dilation operator applied to a function f on Rn by

Dρf(z) = f(ρ−1z), z ∈ Rn.
The following theorem is the main result of this paper. The proof will be given

in Section 3, based on a series of technical results, some of which are of independent
interest.

Theorem 1.1. Let Aσ denote the pseudodifferential operator with Weyl symbol σ ∈
M∞,1(R2n). For ρ ∈ GL(2n,R), let ADρσ denote the operator with dilated symbol
Dρσ. Let

Σ = {(σ, ρ) ∈M∞,1(R2n)×GL(2n,R) : ADρσ is invertible}.
Then Σ is an open set in M∞,1(R2n)×GL(2n,R).

Remark 1.2. Let us rephrase the key implication of Theorem 1.1 for the case that
σ is fixed. Suppose the operator Aσ with Weyl symbol σ ∈M∞,1(R2n) is invertible
on L2(Rn). Then there exists δ > 0 such that for ‖ρ − I2n‖max < δ the operator
ADρσ with dilated symbol Dρσ(λ) = σ(ρ−1λ) is also invertible on L2(Rn).

Balian-Low Theorem for Gabor frames. Theorem 1.1 has significant appli-
cations to Gabor frames, described next. A Gabor system is formed by the time-
frequency shifts of some function g ∈ L2(Rn) along a set Λ of time-frequency points
in R2n,

(1.1)
G(g,Λ) = {gλ : λ ∈ Λ},

gλ(t) = e2πiωT tg(t− x) = MωTxg(t), λ = (x, ω) ∈ R2n,

where Mω and Tx are the modulation and translation operators respectively.
The system G(g,Λ) is a Gabor frame if there exist C1, C2 > 0 such that

C1‖f‖2L2 ≤
∑
λ∈Λ

|〈f, gλ〉|2 ≤ C2‖f‖2L2 , for all f ∈ L2(Rn),

or, equivalently, if the frame operator, given by

Sg,Λf =
∑
λ∈Λ

〈f, gλ〉gλ,

is bounded and invertible on L2(Rn). See [27] for the details of Gabor analysis. We
assume that g belongs to the standard window class, the modulation space M1(Rn),
also known as Feichtinger algebra S0(Rn). For details on M1(Rn), see [12, 21, 27]
and Section 2. Note that the Schwartz class S (Rn) is a dense subspace of M1(Rn),
so our results apply to arbitrary Schwartz atoms g in particular.
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The first important consequence of Theorem 1.1 is the robustness of time-
frequency sets generating irregular Gabor frames, under small dilations (including
rotations, shearing and other operations close to the identity) described in the next
theorem. In order to formulate it properly we write ρΛ = (ρλ)λ∈Λ, for Λ ⊂ R2n

and a matrix ρ ∈ GL(2n,R).
For the regular case, i.e. for the case that Λ is a discrete lattice in R2n, this

result has been given in [18] and it reads as follows: Assume that G(g,Λ) is a
Gabor frame, with g ∈ M1(Rn) and a lattice Λ, then there exists δ > 0 such
that for any ρ ∈ GL(2n,R) with ‖ρ − I2n‖max < δ and any g′ ∈ M1(Rn) with
‖g′− g‖M1 < δ, the system G(g′, ρΛ) with dilated time-frequency lattice ρΛ is also
a Gabor frame. The proof of this result in [18] heavily relies on the assumption
that the time-frequency set Λ is a lattice and thus the arguments of [18] cannot be
transfered directly to irregular Gabor frames. Our goal is an extension to general
time-frequency sets, by providing the necessary tools applicable in this more general
case. For recent developments on irregular Gabor frames see the summaries in [1,
Section 1.1], [24, Section 1], [34, Section 5], or [19, 20, 36].

Theorem 1.3. For any discrete set Λ in R2n the set

FΛ = {(g, ρ) ∈M1(Rn)×GL(2n,R) : G(g, ρΛ) is a Gabor frame}

is open in M1(Rn)×GL(2n,R).

The proof of Theorem 1.3 will be given in Section 4.

Remark 1.4. We rephrase the key implications of Theorem 1.3 when g is fixed.
Suppose that G(g,Λ) is a Gabor frame, with g ∈ M1(Rn). Then Theorem 1.3
implies that for some neighborhood U of I2n in GL(2n,R), every family G(g, ρΛ)
with ρ ∈ U is also a Gabor frame.

Our next theorem is concerned with the density of the time-frequency set Λ. We
will show that a fundamental phenomenon in time-frequency analysis, the Balian-
Low Theorem for Gabor orthonormal systems and Riesz bases, indeed holds for
general Gabor frames, including the case of irregular time-frequency sets.

For a set X of points in Rn, define its lower Beurling density D−(X),

(1.2) D−(X) = lim inf
r→∞

1

rn
min
u∈Rn

#
(
X ∩ (u+ [0, r]n)

)
.

We define the upper Beurling density D+(X) in an equivalent way using lim sup
and sup instead of lim inf and inf.

It is known if G(g,Λ) is a frame, then Λ cannot be sparse, the lower Beurling
density of Λ in R2n must satisfy

D−(Λ) ≥ 1,

see [34]. Balian-Low theorems (BLTs) are results that draw the stronger conlusion

D−(Λ) > 1,

assuming that g is smooth and localized. Various variants of BLTs have been given
in the literature, for example see [3, 4, 5, 6, 17, 25, 26, 35], we refer to [11] and
[34, Section 3.7]. The original forms of BLTs were found for the case that Λ is a
lattice. The BLT for Gabor systems with more general time-frequency sets Λ in [31,
Theorem 11] works for the case of orthonormal bases.
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By our next result we obtain a BLT for Gabor frames, with general g ∈M1 and
without restriction on the time-frequency set Λ.

Theorem 1.5. For any Gabor frame G(g,Λ) with g ∈M1(Rn) one has D−(Λ) > 1.

Proof. We prove the theorem by contradiction. Assume that D−(Λ) = 1. Then
by Theorem 1.3 there exists ε > 0 such that the system G(g,Λ′) with expanded
time-frequency set Λ′ = (1 + ε)Λ is also a Gabor frame. It implies

D−(Λ′) = D−((1 + ε)Λ) =
1

(1 + ε)2n
D−(Λ) < 1.

By [8], an extension of [43], this is impossible and we obtain a contradiction. �

Remark 1.6. (i) The implication D−(Λ) > 1 of Theorem 1.5 is sharp, indeed the
inequality cannot be improved even if some specially selected non-zero g ∈M1(Rn)
is fixed. In fact, for any non-zero g ∈M1(Rn) and ε > 0, by [2, Corollary 5.6] there
exists a Gabor frame G(g,Λ) whose time-frequency set Λ satisfies D−(Λ) ≤ 1 + ε.

(ii) We denote the Gaussian function in n variables by

(1.3) ϕn(t) = 2
n
4 e−π‖t‖

2
2 , t ∈ Rn.

It is known in dimension one [41, 45, 46] that the density condition D−(Λ) > 1 on
the time-frequency set Λ ⊂ R2 is both necessary and sufficient for G(ϕ1,Λ) to be
a frame. For higher dimensions this description is not longer true in the general
case. A complete description in the case of rectangular lattices has been found
rencently [38, Theorem 4.3] and for more general lattices the problem is studied in
[30]. There are plenty of examples that show that it is not possible to extend the
sufficiency part to general g ∈ M1(Rn). By Theorem 1.5 we extend the necessity
part to general g ∈M1(Rn).

Theorem 1.5 implies a new version for Gabor systems with window in the stan-
dard class M1, of a recent non-existence result for time-frequency localized Riesz
bases, found in [32]. In that paper, Gröchenig and Malinnikova prove the non-
existence of Riesz bases when the functions used are well localized in time and
frequency, we refer to [32] for more details. Applying this to the case of irregular
Gabor frames we can deduce the non-existence of irregular Gabor Riesz bases with
that localization property. Belonging to M1 can be interpreted as a good time-
frequency localization, but it differs slightly from the type of localization used in
[32], and thus our next corollary is a new variant to this theme.

Corollary 1.7. There is no Gabor Riesz basis for L2(Rn), with atom g ∈M1(Rn).

Proof. The corollary follows from Theorem 1.5, since it is known that Gabor Riesz
bases have density exactly equal to D−(Λ) = 1, see [8, 43]. �

Sampling and interpolation in the Bargmann-Fock space. Our approach
also leads to a new result concerned with sampling in the Bargmann-Fock space.
The Bargmann-Fock space F(Cn) consists of entire functions in Cn with the norm

‖F‖2F =

∫
Cn
|F (z)|2e−π|z|

2

dz <∞.
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Recall that a discrete set Γ ⊂ Cn is a set of sampling for F(Cn), if the following
expression defines an equivalent norm on F(Cn):∑

zi∈Γ

|F (zi)|2e−π|zi|
2

.

The Beurling density of a set of points in the complex plane is defined by the obvious
modification of (1.2). It is known that the sets of sampling of F(Cn) have lower
density bigger than or equal to 1. For the development of this fundamental density
result, first obtained in one dimension, see [7, 41, 42, 44, 45, 46]. The generalization
to several variables is due to Lindholm [40, Theorem 1]. Lindholm also conjectured
that in fact a strict inequality, valid in one dimension, can be obtained also in
several dimensions. By our next result we confirm his suggestion.

Corollary 1.8. Any set of sampling Γ ⊂ Cn for the Bargmann-Fock space F(Cn)
satisfies D−(Γ) > 1.

Proof. The proof follows from Theorem 1.5 by the known relation between Gabor
frames and sets of sampling in the Bargmann-Fock space. The link between Gabor
systems and the Bargmann-Fock space is the Bargmann transform [23, Section 1.6],
[27, Section 3.4], for the details we refer to [30, Proposition 4] and [40, Section 1].
One of the key equivalences in this relation is the fact that Γ is a set of sampling
for F(Cn) if and only if the Gabor system G(g,Λ) is a frame, where g = ϕn is the
Gaussian function in n variables from (1.3) and

Λ = {(x, ω) ∈ R2n : x− iω ∈ Γ}.

The corollary is thus obtained by applying Theorem 1.5 with g = ϕn ∈M1(Rn). �

Remark 1.9. (i) In equivalence to the present knowledge on Gabor frames mentioned
in Remark 1.6(ii), a complete description of the sampling sets for the Fock space
is only known in one dimension (see [46]). For recent results in several dimensions
we refer as before to the papers [30, 38]. Corollary 1.8 is a necessary condition for
general sampling sets in several dimensions.
(ii) Corollary 1.8 also provides a new approach to a result in [32] on sampling and
interpolation in the Bargmann-Fock space F(Cn). Interpolation sets for the Fock
space are those sets Γ for which the interpolation problem

F (zi) = aie
π|zi|2/2 ∀zi ∈ Γ

has a solution F for every sequence (ai) ∈ l2. Interpolation sets of the Fock space
correspond to Riesz sets of time-frequency translates of the Gaussian function.
Consequently, sets that are both sampling and interpolation correspond to Riesz
bases for the Fock space. It is known that an interpolation set Γ satisfies D+(Γ) ≤ 1.
For this fundamental density result for interpolation see [7, 41, 42, 44, 45, 46], for
one dimension. The generalization to several variables is proved by Lindholm [40,
Theorem 2]. Thus Corollary 1.8 implies [32, Theorem 2]: There does not exist a set
Γ ⊂ Cn that is both a sampling set and an interpolation set for F(Cn) at the same
time.

Section 2 consists of preliminary results; Section 3 contains the proof of Theo-
rem 1.1; and Section 4 contains the proof of Theorem 1.3.
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2. Preliminary results

Let ϕ = ϕn denote the Gaussian function on Rn, defined in (1.3). Define the
short-time Fourier transform Vgf(λ) = 〈f, gλ〉, for λ = (x, ω) ∈ R2n, where gλ
denotes the time-frequency shift of g as defined in (1.1). The usual description of
modulation spaces used nowadays makes use of a mixed Lp,q norm applied to the
short-time Fourier transform Vϕf of a function f ,

(2.1) ‖f‖Mp,q =

(∫
Rn

(∫
Rn
|Vϕf(x, ω)|pdx

)q/p
dω

)1/q

, 1 ≤ p, q ≤ ∞ ,

with the usual modification if p =∞ or q =∞. We write Mp = Mp,p.
The next two lemmas are based on results of Sugimoto and Tomita [49], Cordero

and Nicola [10]. The first lemma states that the family of dilations Dρ, for ρ in any
compact subset of GL(n,R), is uniformly bounded on modulation spaces.

Lemma 2.1. Let 1 ≤ p, q ≤ ∞. Then for any compact subset U ⊂ GL(n,R), there
exists CU > 0 such that for all ρ ∈ U and f ∈Mp,q,

‖Dρf‖Mp,q ≤ CU‖f‖Mp,q .

Proof. By [10, Proposition 3.1] there exists a constant c > 0 such that for ρ ∈
GL(n,R) and f ∈Mp,q,

‖Dρf‖Mp,q ≤ c·Cρ‖f‖Mp,q ,

where

Cρ = |det ρ|−(1/p−1/q+1)
(
det(In + ρT ρ)

)1/2
.

We let CU = c ·maxρ∈U Cρ. �

The next lemma is concerned with varying the dilation parameter.

Lemma 2.2. (i) For 1 ≤ p, q ≤ ∞, the mapping

(h, ρ) 7→ Dρh,

Mp,q(Rn)×GL(n,R)→Mp,q(Rn),

is continuous at all (h0, ρ0) such that h0 belongs to the closure of M1(Rn) in
Mp,q(Rn) (which is all of Mp,q(Rn) when p, q <∞) and any ρ0 ∈ GL(n,R).

(ii) For p = ∞ (and all q), the mapping is also continuous at (h0, ρ0), for any
constant function h0 = const and any ρ0 ∈ GL(n,R).

Proof. (i) Since M1(Rn), being the minimal reasonable time-frequency invariant
Banach space [12], is continuously embedded into Mp,q, for all choices of p, q [27,
Corollary 12.1.10], and Dρg depends continuously on the dilation parameter ρ ac-
cording to [22, Corollary 3.4(iv)], the first claim is verified.

(ii) Since dilation acts trivially on any fixed constant function, the second claim
follows from the uniform boundedness described in Lemma 2.1. �

Remark 2.3. In part (ii) of Lemma 2.2 the conclusion cannot be continuity on all
of Mp,q(Rn) × GL(n,R). For example, in M∞,1(R) the mapping is discontinuous
at (h0, ρ0), for h0(t) = cos(t) and ρ0 = 1, since

‖cos(t)− cos(ρt)‖M∞,1 ≥ ‖cos(t)− cos(ρt)‖L∞ = 2, for ρ 6= 1 .
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The next lemma is a continuity result that we use later, combining dilation
and convolution in certain modulation spaces. The proof makes use of the Wiener
amalgam spaces W p,q, defined like modulation spaces but with the role of time and
frequency interchanged,

‖f‖Wp,q =

(∫
Rn

(∫
Rn
|Vϕf(x, ω)|pdω

)q/p
dx

)1/q

, 1 ≤ p, q ≤ ∞.

The Wiener amalgam spaces are the isomorphic image of the modulation spaces

under the Fourier transform. In particular, we have ‖f‖Mp,q = ‖f̂‖Wp,q , see [33].
We also notice (see [13, Theorem 3.2]) that Mp = Mp,p = W p,p is invariant under
the Fourier transform, 1 ≤ p ≤ ∞. Note that W p1,q1 ⊆W p2,q2 if and only if p1 ≤ p2

and q1 ≤ q2.
Results for modulation spaces often have a counterpart for Wiener amalgam

spaces, obtained by applying the Fourier transform. For example, the claims for-
mulated in Lemma 2.1 and Lemma 2.2 thus imply analogous results for Wiener
amalgam spaces W p,q. Also in the proof of the next lemma we make use of this
correspondence.

Lemma 2.4. The following mapping is continuous:

(f, g, ρ) 7→ f ∗Dρg,

M∞,1(Rn)×M1,∞(Rn)×GL(n,R)→M∞,1(Rn).

Proof. We prove the equivalent claim obtained by applying the Fourier transform,
that is, we show that the following mapping is continuous:

(2.2)
(f, g, ρ) 7→ f ·Dρg,

W∞,1(Rn)×W 1,∞(Rn)×GL(n,R)→W∞,1(Rn).

There are various convenient multiplication relations of Wiener amalgam spaces,
see [16, Theorem 2.11], we will use the fact that for any 1 ≤ p, q ≤ ∞, the following
mapping is continuous:

(2.3)
(f, g) 7→ f · g,

W p,1(Rn)×W 1,q(Rn)→W p,1(Rn).

We also use the equivalent of Lemma 2.1 by applying the Fourier transform, that
is, the uniform boundedness on compact sets of the mapping

(2.4)
(g, ρ) 7→ Dρg,

W 1,∞(Rn)×GL(n,R)→W 1,∞(Rn).

By combining (2.4) and continuity of (2.3) with p =∞, q =∞ we observe that the
mapping in (2.2) is uniformly bounded on compact sets. Therefore we only need to
prove the continuity on dense subsets. To this end we assume that f is compactly
supported, with supp f = Ω. Let U ⊂ GL(n,R) be an arbitrary compact set. Let
Ω′ =

⋃
ρ∈U ρ

−1Ω, and let

h ∈M1 = W 1,1 such that h|Ω′ = 1 .

Then (Dρh)|Ω = 1, for all ρ ∈ U , and we obtain

(2.5) f = f ·Dρh, for all ρ ∈ U.
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By the continuity of (2.3) with p = 1 and q = ∞, since h ∈ M1 is fixed, the
following mapping is continuous:

g 7→ h · g,
W 1,∞(Rn)→M1(Rn).

Hence, by using Lemma 2.2(i), the following mapping is continuous:

(g, ρ) 7→ Dρ(h · g),

W 1,∞(Rn)×GL(n,R)→M1(Rn).

Consequently, by the continuity of (2.3) with p = ∞ and q = 1, the following
mapping is continuous:

(2.6)
(f, g, ρ) 7→ f ·Dρ(h · g),

W∞,1 ×W 1,∞(Rn)×GL(n,R)→W∞,1(Rn).

Since (2.5) implies

f ·Dρg = f ·Dρ(h · g), for all ρ ∈ U,
we conclude from (2.6) that the continuity on dense subsets is verified. �

In order to verify functorial properties for the modulation spaces M∞,1 defined
over different domains the following technical lemma will be useful. The lemma
describes the Fourier domain analysis and synthesis of functions or distributions in
M∞,1(Rn). We denote by B(r, x) ⊂ Rn the ball of radius r > 0 and center x ∈ Rn.

Lemma 2.5. (i) For r > 0, there exists Cr > 0 such that for any sequence of

functions f1, f2, . . . ∈ L∞(Rn) with diam
(

supp(f̂k)
)
≤ r and

∑∞
k=1‖fk‖L∞ < ∞,

we have that the series f =
∑∞
k=1 fk converges in M∞,1(Rn) and

‖f‖M∞,1 ≤ Cr ·
∞∑
k=1

‖fk‖L∞ .

(ii) For r > 0, there exists C ′r > 0 such that for any f ∈ M∞,1(Rn), there exist

f1, f2, . . . ∈ L∞(Rn) with diam
(

supp(f̂k)
)
≤ r such that we have f =

∑∞
k=1 fk,

with (absolute) convergence in M∞,1(Rn), and
∞∑
k=1

‖fk‖L∞(Rn) ≤ C ′r · ‖f‖M∞,1 .

Proof. (i) For distributions u having Fourier transform û supported in a fixed com-
pact subset K ⊂ Rn, there exists CK > 0 such that

C−1
K ‖u‖Mp,q ≤ ‖u‖Mp,q ≤ CK‖u‖Mp,q .

Since M∞,1(Rn) is a Banach space and, due to the norm equivalence above, we
can write for u = fk: ‖fk‖M∞,1 � CK‖fk‖L∞ , for every k ∈ N, the estimate:
‖f‖M∞,1 ≤ CK

∑
k‖fk‖L∞ immediately follows.

(ii) Recall that the Fourier transform of M∞,1 equals the Wiener amalgam space
W∞,1, resp. W (FL∞, l1) in the notation of [15], consisting of functions locally
with Fourier transform in L∞ and globally in L1. For given r > 0 one can choose a

bounded uniformly partition of unity (ψm)m∈Zn = {Tmr/2ψ}m∈Zn , with ψ̂ ∈ L1 and
suppψ ⊆ B(r, 0), e.g. a tensor product of triangular functions. Hence ‖ψm‖FL1 =

‖ψ̂‖L1 , for all m.
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Since FL1 is a Banach algebra acting pointwise on FL∞, the equivalence theo-

rem ([15, Theorem 2]) tells us that the splitting f̂ =
∑
f̂ψm provides the required

decomposition (after enumerating Zn) with f̂m = f̂ψm and
∑
m ‖fm‖L∞ is an

equivalent norm on M∞,1. �

We use the tensor product notation f ⊗ g(x, y) = f(x)g(y). The restriction to

Rn of a function on Rn+n′ is denoted by Rf(x) = f(x, 0), x ∈ Rn.

Lemma 2.6. (i) The following mapping s continuous:

(f, g) 7→ f ⊗ g,
M∞,1(Rn)×M∞,1(Rn)→M∞,1(R2n).

(ii) The following mapping is continuous:

f 7→ Rf,

M∞,1(R2n)→M∞,1(Rn).

Proof. (i) The tensor product property follows from the identity (1 ≤ p, q ≤ ∞):

‖f ⊗ g‖Mp,q = ‖f‖Mp,q‖g‖Mp,q .

This identity can be obtained directly from the definition of the Mp,q-norm by
splitting the Gaussian window: ϕ2n = ϕn ⊗ ϕn.

(ii) Let f ∈ M∞,1(Rn+n′) and r > 0. First, using Lemma 2.5(ii) there exist

F1, F2, · · · ∈ L∞(Rn+n′) with diam
(

supp(F̂k)
)
≤ r, f =

∑
Fk, and

∞∑
k=1

‖Fk‖L∞(Rn+n′ ) <∞.

By Lemma 2.5(i) there exists Cr > 0 such that

‖f‖M∞,1(Rn+n′ ) ≤ Cr ·
∞∑
k=1

‖Fk‖L∞(Rn+n′ ).

Next, let fk = RFk, for k = 1, 2, . . . . Then for k = 1, 2, . . . , we have fk ∈ L∞(Rn)

and diam
(

supp(f̂k)
)
≤ r. In fact, since Fk is bandlimited, hence continuous, we

have ‖fk‖L∞(Rn) ≤ ‖Fk‖L∞(Rn+n′ ), for k = 1, 2, . . . . Thus, finally, by Lemma 2.5(ii)

there exists C ′r > 0 such that the restricted function RF =
∑∞
k=1RFk =

∑∞
k=1 fk

converges in M∞,1(Rn) and indeed

‖RF‖M∞,1(Rn) ≤ C ′r ·
∞∑
k=1

‖fk‖L∞(Rn)

≤ C ′r ·
∞∑
k=1

‖Fk‖L∞(Rn+n′ ) ≤ C
′
r · Cr · ‖F‖M∞,1(Rn+n′ ).

�

Remark 2.7. Since translations and dilations (by general invertible matrices) are
topological isomorphisms on M∞,1, we note that Lemma 2.6(ii) indeed holds for
the restriction to an arbitrary affine subspace of Rn. In particular, we can apply
the lemma to the diagonal restriction operator R∆ on R2n, defined by

R∆f(t) = f(t, t), t ∈ Rn.
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3. Proof of Theorem 1.1

The proof of the theorem is based of the following lemma.

Lemma 3.1. Let M = (M,�, 1) be a unital Banach algebra and let G = (G, ·, e) be
a topological group acting on M by the family of bounded linear operators (Kg)g∈G
on M , with Kgg′ = KgKg′ and K−1

g = Kg−1 . Suppose that

(i) the mapping (σ, g) 7→ Kgσ, M × G → M is continuous at the identity 1 ∈ M ,
and

(ii) the mapping (σ, τ, g) 7→ Kg−1(Kgσ �Kgτ), M ×M ×G→M is continuous at
e ∈ G.

Then the set F = {(σ, g) ∈M ×G : Kgσ is invertible} is open in M ×G.

Proof. First, since M is a Banach algebra, the set M0 = {σ ∈ M : σ invertible} is
open in M , and the inversion σ 7→ σ−1, M0 →M0, is continuous. Let

u(σ, g) = Kg−1(Kgσ �Kgσ
−1),

v(σ, g) = Kgσ �Kgσ
−1,

σ ∈M0, g ∈ G.

Assumption (ii) and continuity of inversion in M0 imply continuity at g = e of the
mapping

(σ, g) 7→ u(σ, g),

M0 ×G→M,

Since Ke = id, we have u(σ, e) = σ � σ−1 = 1, and thus (i) implies that the
mapping

(τ, g) 7→ Kgτ,

M ×G→M,

is continuous at τ = u(σ, e), for any σ ∈M0. Since Kgu(σ, g) = v(σ, g), we conclude
altogether that the mapping

(σ, g) 7→ v(σ, g),

M0 ×G→M,

is continuous at g = e. Moreover v(σ, e) = σ � σ−1 = 1 implies that there exists a
neighborhood U of (σ, e) in M0 ×G such that

‖Kgσ �Kgσ
−1 − 1‖ < 1, for (σ, g) ∈ U.

Hence, Kgσ �Kgσ
−1 is invertible, for (σ, g) ∈ U , and this implies the existence of

(Kgσ)−1 = Kgσ
−1 � (Kgσ �Kgσ

−1)−1, for (σ, g) ∈ U.
We have thus shown that the set F is open. �

We will apply Lemma (3.1) to the algebra M∞,1, endowed with the twisted
product. To this aim we recall the following definitions and results. For Θ ∈
GL(n,R), define

σ ]Θ τ(z) =

∫∫
Rn×Rn

σ(z′)τ(z′′)e2πi(z−z′′)TΘ(z−z′)dz′dz′′, z ∈ Rn.

By selecting J =
(

0 In
−In 0

)
for Θ (assuming dimension 2n) we obtain the usual

twisted product of Weyl symbols [23],

σ ] τ = σ ]J τ.
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Proposition 3.2. The following mapping is continuous:

(σ, τ,Θ) 7→ σ ]Θ τ,

M∞,1(Rn)×M∞,1(Rn)×GL(n,R)→M∞,1(Rn).

Proof. Consider the bicharacter B(x, y) = e2πiyT x, for x, y ∈ Rn. We point out that
B ∈M1,∞(R2n). Note that a dilation of B is the tensor product B(x+ y, x− y) =

b+(x)b−(y) of the second degree characters b±(x) = e±2πixT x. It is known that
the Fourier transform of a second degree character is a multiple of another second
degree character, and since by [10, Lemma 4.1] this class of functions belongs to
W 1,∞(Rn), we have b± ∈M1,∞(Rn). Hence we obtain B ∈M1,∞(R2n).

Next, we use the notation for the restriction operator R∆f(z) = f(z, z) above
and observe that

σ ]Θ τ(z) =

∫∫
R2n

σ(z′)τ(z′′)e2πi(z−z′′)TΘ(z−z′)dz′dz′′

= R∆

(
(σ ⊗ τ) ∗DHB

)
(z), for H = ( Θ 0

0 I ).

By Lemma 2.6(i) the mapping (σ, τ) 7→ σ ⊗ τ is continuous. Since the mapping
Θ 7→ H is continuous, we obtain by Lemma 2.4 that the mapping (σ, τ,Θ) 7→
(σ ⊗ τ) ∗DHB is continuous. By Lemma 2.6(ii) and Remark 2.7 we conclude that
the mapping (σ, τ,Θ) 7→ R

(
(σ ⊗ τ) ∗DHB

)
is continuous. �

Corollary 3.3. The following mapping is continuous:

(σ, τ, ρ) 7→ Dρ(Dρ−1σ ] Dρ−1τ),

M∞,1(Rn)×M∞,1(Rn)×GL(n,R)→M∞,1(Rn).

Proof. Since

Dρ(Dρ−1σ ] Dρ−1τ) = |det ρ|−2 · (σ ]Θ τ), for Θ = ρTJρ,

we observe that the corollary is a consequence of Proposition 3.2. �

Proof of Theorem 1.1. Sjöstrand proved that (M∞,1, ]) is a Banach algebra [28,
29, 47, 48]. By Lemma 2.2(ii) for M∞,1(Rn) and Corollary 3.3 we have that the
family of dilations (Dρ)ρ on (M∞,1, ]) satisfies the assumptions of Lemma 3.1,
which implies the theorem. �

4. Proof of Theorem 1.3

A set X of points in Rn is defined to be uniformly separated if there exists a > 0
such that |x − y| ≥ a, for all x, y ∈ X with x 6= y. A set X is called relatively
separated if it the finite union of uniformly separated subsets.

Lemma 4.1. For every relatively separated set of points X ⊂ Rn the following
mapping is continuous:

h 7→
∑
x∈X

Txh,

M1(Rn)→M∞,1(Rn).
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Proof. Since X is relatively separated, the functional δX : f 7→
∑
x∈X f(x) is an

element of M∞(Rn) = (M1(Rn))′, the dual space of M1(Rn). Next, the mapping

(f, g) 7→ f ∗ g,
M1(Rn)×M∞(Rn)→M∞,1(Rn),

is continuous, which follows from applying the Fourier transform to the correspond-
ing multiplication embedding of Wiener amalgam spaces in [16, Theorem 2.11],
cf. (2.3), or from the general convolution properties in [9, 14, 50], observing that∑
x∈X Txf = δX ∗ f . For the norm of the mapping in the lemma we thus have∥∥∥∑

x∈X
Txh

∥∥∥
M∞,1

≤ C ‖δX‖M∞‖h‖M1 ,

where C is a global constant that does not depend on X. �

Let G(g,Λ) be a Gabor system with g ∈ M1 and a time-frequency set of trans-
lations Λ in R2n. The Weyl symbol of the (pre-)frame operator Sg,Λ for G(g,Λ) is
of the form

σg,Λ =
∑
λ∈Λ

TλW (g),

where W (g) denotes the Wigner distribution of g, defined by

W (g)(x, ω) =

∫
Rn
g
(
x+

t

2

)
g
(
x− t

2

)
e−2πiωt dt.

We will notice that σg,Λ ∈M∞,1. In fact, while the mapping

(g, ρ) 7→ σg,ρΛ,

M1(Rn)×GL(2n,R)→M∞,1(R2n),

is not continuous (except for g = 0), we observe the following.

Lemma 4.2. Suppose that Λ is a relatively separated set of points in R2n. Then
the following mapping is continuous:

(g, ρ) 7→ Dρσg,ρΛ,

M1(Rn)×GL(2n,R)→M∞,1(R2n).

Proof. The Wigner distribution W (g) can be factorized into a tensor product, a
dilation, and a partial Fourier transform [27, Lemma 4.3.3]. The functorial conti-
nuity properties of M1 under these operators, shown in [12], allow us to conclude
that the following mapping is continuous:

g 7→W (g),

M1(Rn)→M1(R2n).

Therefore Lemma 2.2 implies that the following mapping is continuous:

g 7→ DρW (g),

M1(Rn)→M1(R2n).

Hence, by Lemma 4.1 we conclude that the following mapping is continuous:

g 7→
∑
λ∈Λ

TλDρW (g),

M1(Rn)→M∞,1(R2n).
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We conclude our argument using the identity

Dρσg,ρΛ = Dρ

∑
λ∈ρΛ

TλW (g) =
∑
λ∈Λ

TλDρW (g). �

Using all these ingredients we can come to the proof of the main theorems.

Proof of Theorem 1.3. Suppose thatG(g0,Λ) is a Gabor frame with g0 ∈M1, hence
a Bessel sequence. Consequently the set Λ in R2n must be relatively separated [8,
Theorem 3.1]; in fact, for g0 ∈ M1(Rn) the two properties are equivalent [34,
Theorem 12].

Let σg0,Λ ∈M∞,1(Rn) denote the Weyl symbol constructed above, of the Gabor
frame operator Sg0,Λ = Aσg0,Λ . Since G(g0,Λ) is a frame, the frame operator
Sg0,Λ is invertible. Thus by Theorem 1.1 there is a neighborhood W of σg0,Λ in
M∞,1(R2n) and a neighborhood V1 of I in GL(2n,R) such that

(4.1) ADρ−1σ is invertible, for all σ ∈W, ρ ∈ V1 .

Lemma 4.2 guarantees the existence of a neighborhood U of g0 in M1(Rn) and a
neighborhood V2 of I in GL(2n,R) such that

(4.2) Dρσg,ρΛ ∈W, for all g ∈ U, ρ ∈ V2 .

Hence, setting V = V1 ∩ V2, we have by (4.1) and (4.2) that

ADρ−1 (Dρσg,ρΛ) is invertible, for all g ∈ U, ρ ∈ V ,

that is,

Aσg,ρΛ is invertible, for all g ∈ U, ρ ∈ V .

Since Aσg,ρΛ = Sg,ρΛ is the Gabor frame operator for the Gabor system G(g, ρΛ),
we conclude that G(g, ρΛ) is a Gabor frame, for all (g, ρ) in the neighborhood U×V
of (g0, I) in M1(Rn)×GL(2n,R). �

5. Final comments

The results in this paper are formulated for Gabor frames G(g,Λ) using a single
window g ∈ M1(Rn) and general relatively separated sets Λ. In fact, they also
hold for multi-window Gabor frames G(g1,Λ1)∪ · · · ∪G(gm,Λm) with g1, . . . , gm ∈
M1(Rn). For example, the multi-window version of Theorem 1.5 reads, if such a
Gabor system is a frame, then D−(Λ1 ∪ · · · ∪Λn) > 1. Indeed the extension to the
multi-window case is immediate, based on the fact that the Weyl symbol for the
multi-window system is just σ = σ1 + · · · + σm, where σk is the Weyl symbol for
the Gabor system G(gk,Λk), for k = 1, . . . ,m.

Note that single- and multi-window Gabor frames (especially with windows in
Feichtinger’s algebra) are closely related to projective modules over noncommuta-
tive tori, as pointed out by results of Luef and Manin [37, 38, 39], cf. Remark 1.6(ii).
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29. K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006),

703–724.



DILATION OF THE WEYL SYMBOL AND BALIAN-LOW THEOREM 15
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