

University of Natural Resources and Life Science, Vienna
Department of Economics and Social Sciences
Institute for Sustainable Economic Development

Generic Optimization of a Wind Farm Layout using a

Genetic Algorithm

Master thesis

to fulfill the requirements for the academic degree of

Dipl.-Ing.

Sebastian Gatscha, B.Sc.

H0507053

Supervisors:

Univ.-Prof. Dr. DI Erwin Schmid

Dr. DI Johannes Schmidt

Vienna, December 2016

Ich erkläre eidesstattlich, dass ich die Arbeit selbständig angefertigt, keine

anderen als die angegebenen Hilfsmittel benutzt und alle aus ungedruckten

Quellen, gedruckter Literatur oder aus dem Internet im Wortlaut oder im

wesentlichen Inhalt übernommenen Formulierungen und Konzepte gemäß den

Richtlinien wissenschaftlicher Arbeiten zitiert, durch Fußnoten gekennzeichnet

bzw. mit genauer Quellenangabe kenntlich gemacht habe.

Copyright © 2016 by Sebastian Gatscha

All rights reserved

Abstract

The wind industry is expanding rapidly such that competition for favorable

wind farm locations is increasing. Optimized wind farm configurations to

increase expected power outputs will therefore gain in importance. Although

the available area of a wind farm is usually limited in its extent and shape,

previous research has mostly concentrated on a hypothetical rectangular area.

The aim of this thesis is to maximize the expected power output of any wind

farm by optimizing the placement of its wind turbines. A new terrain effect

model is applied using real geodata in order to take into account the effects of

topography and land cover. A genetic algorithm has been developed for the

optimization process and the Jensen Model has been used to measure the

influential wake effects between the wind turbines of a wind farm. The terrain

effect model is only valid for areas in Europe, because it requires a digital

elevation model and the land cover types from the Corine Land Cover

Database, which is only available for Europe. The elevation data is used to

model local wind and air conditions and merged with the land cover

information to model the surface roughness and wake spreading constant over

an area. The genetic algorithm allows for different possible parameter settings,

the effects of these on power output are examined on a small test data set. The

best setting of the algorithm is used to solve a widespread, more complex wind

farm layout problem and the results are compared to previous methods. The

best setting is also used in a terrain effect model to analyze a real wind farm

with irregular area. The code of the algorithm used for the thesis can be found

in the appendix and the latest version is available online

(https://github.com/YsoSirius/windfarmGA) and can thus be used free of

charge, modified or expanded as desired.

Zusammenfassung

Die rasante Expansion der Windindustrie erhöht den Wettbewerb um

Gunststandorte für Windparks mit hohen Windgeschwindigkeiten und leichtem

Zugang. Daher gewinnen optimierte Windparkkonfigurationen mit hohen

erwarteten Leistungsausgaben an Bedeutung. Obwohl die verfügbare Fläche

eines Windparks in ihrer Ausdehnung und Form begrenzt ist, hat sich die

bisherige Forschung hauptsächlich auf eine hypothetische rechteckige Fläche

konzentriert. Ziel dieser Masterarbeit ist es, die erwartete Leistung eines

beliebigen Windparks zu maximieren indem die Platzierungen der

Windturbinen optimiert werden. Ein neues Geländeeffektmodell wird mit

realen Geodaten angewendet, um die Auswirkungen von Topographie und

Landbedeckung auf die erwartete Leistung zu untersuchen. Für den

Optimierungsprozess wird ein genetischer Algorithmus verwendet. Das Jensen-

Modell wird verwendet, um die einflussreichen Wake-Effekte zwischen den

Windturbinen eines Windparks zu messen. Das Geländeeffektmodell ist nur für

Gebiete in Europa gültig, da es ein digitales Höhenmodell und die

Landbedeckungstypen der Corine Land Cover Database benötigt, die derzeit

nur für Europa verfügbar sind. Die Höhendaten werden für die Modellierung

von lokalen Wind- und Luftbedingungen verwendet und mit den

Landbedeckungsinformationen ergänzt, um die Oberflächenrauhigkeit und die

Wake-Ausbreitungskonstante heterogen über die betrachtete Fläche

darzustellen zu können. Da der genetische Algorithmus unterschiedliche

Einstellungen zulässt, werden die Auswirkungen dieser auf die erwartete

Leistung in einem ersten Schritt an einem kleinen Testdatensatz untersucht.

Die beste Einstellung des Algorithmus wird verwendet, um ein

weitverbreitetes, komplexeres Windpark-Layout-Problem zu lösen, wobei die

Ergebnisse mit früheren Methoden verglichen werden. Schließlich werden mit

der besten Einstellung die Geländeeffekte eines echten Windparks mit

unregelmäßiger Fläche analysiert. Der Code des Algorithmus, der für diese

Arbeit verwendet wurde ist im Appendix zu finden und die neueste Version ist

online verfügbar (https://github.com/YsoSirius/windfarmGA) und kann somit

kostenlos verwendet, modifiziert oder erweitert werden.

Table of Contents

1. INTRODUCTION 1

2. THEORETICAL BACKGROUND 4

2.1. Theory of Wind Energy 4

2.1.1. Wind Farm Power Production 4

2.1.2. Theoretical Limit of Wind Energy Extraction 5

2.1.3. Wake Effect Model by Jensen 5

2.1.4. Partial Wake Effect Modeling 6

2.1.5. Multiple Wake Effect Model by Katic 9

2.2. Theory of Genetic Algorithms 10

2.2.1. Methodology 10

2.2.2. Limitations to Genetic Algorithms 11

3. DATA & METHODS 12

3.1. Data 12

3.1.1. Obligatory Input Data 13

3.1.2. Optional Input Data 14

3.2. Methods 15

3.2.1. Polygon to Grid (GridFilter) 17

3.2.2. Initialize a Population (StartGA) 19

3.2.3. Evaluation of Fitness (fitness) 21

3.2.3.1. Calculate Energy Production (calculateEn) 23

3.2.3.2. Terrain Effect Model 24

3.2.3.2.1. Wind Speed Multiplier 24

3.2.3.2.2. Corrected Air Density (BaroHoehe) 26

3.2.3.2.3. Modified Surface Roughness Length zmod 31

3.2.3.2.4. Variable Wake Spreading Constant 35

3.2.4. Selection of Individuals (selection1) 38

3.2.4.1. Fixed Selection 39

3.2.4.2. Variable Selection 39

3.2.4.3. Elitism 40

3.2.5. Crossover of Genetic Information (crossover1) 41

3.2.5.1. Equal Crossover Partitioning 45

3.2.5.2. Random Crossover Partitioning 45

3.2.6. Mutation of Genetic Information (mutation) 47

3.2.6.1. Fixed Mutation Rate 47

3.2.6.2. Variable Mutation Rate 48

3.2.7. Adjust to n-desired Turbines (trimton) 49

3.2.7.1. Random Adjustment 50

3.2.7.2. Probabilistic Adjustment 50

3.2.8. Get Grid-ID`s from Genetic Information (getRects) 55

3.2.9. Termination Criteria 56

4. RESULTS 56

4.1. Case 1: Test Shape 60

4.1.1. Fixed Selection vs. Variable Selection 60

4.1.2. Equal Crossover vs. Random Crossover 68

4.1.3. Elitism Inclusion vs. Elitism Exclusion 71

4.1.4. Random Adjustment vs. Probabilistic Adjustment 74

4.2. Case 2: Reference Shape 78

4.2.1. Constant Wind Speed and Uniform Wind Direction 80

4.2.2. Constant Wind Speed and Variable Wind Direction 87

4.3. Case 3: Wind Farm "Tauern" 91

4.3.1. Terrain Effect Model Excluded 92

4.3.2. Terrain Effect Model Included 95

5. DISCUSSION & CONCLUSIONS 102

6. LIST OF REFERENCES 108

7. LIST OF FIGURES 111

8. LIST OF R-CODES 115

9. LIST OF TABLES 116

APPENDIX 117

1

1. Introduction

The use of wind energy has been growing globally for the past 20 years. In

2015, the globally installed wind power capacity reached about 433 000 MW

(Global Wind Energy Council, 2015). Increased deployment of wind turbines

was facilitated by decreasing costs and ongoing technical improvements, such

as the increase in turbine height and rotor radius (International Renewable

Energy Agency, 2012).

Figure 1: Global annual installed and cumulative installed wind capacity from 2000 - 2015

(Global Wind Energy Council, 2016, p. 14)

These improvements facilitated increasing energy performance of wind

turbines. However, as wind turbines are rarely placed individually, but rather as

a part of a wind farm with several wind turbines, it is important to consider the

negative effects of mutual influencing wind wakes on the overall output of the

wind farm (Kusiak & Song, 2009). When wind hits the blades of the turbine

2

rotor, energy is extracted from the wind, therefore reducing the wind speed

and influencing the wind turbulence profile behind the turbine. This

phenomenon is known as a wake effect (Samorani, 2013).

Therefore micrositing, the specific placement of turbines in a wind farm, plays a

crucial role in planning and constructing efficient wind farms and may become

even more essential in the future (Yang, et al., 2015). The wind farm layout

problem is considered to be Nondeterministic Polynomial Time (NP) Complete,

which means that the time required for an exact solution is super-polynomial in

the instance of the problem, at least as long no polynomial algorithm for NP

problems is found (Williams, 2014). Therefore, the use of heuristic search

techniques, like genetic algorithms, is often used in micrositing optimization

problems, as here computational time and optimality of the solution can be

well balanced (Chen, et al., 2013). Plenty of other heuristic methods were

applied to the wind farm layout problem, such as Simulated Annealing, Particle

Swarm Optimization, Ant Colony Search Algorithm or Global Greedy Algorithm,

but "(...) the share of genetic algorithms is more than 75% for wind farm layout

optimization" (Shakoor, et al., 2015). Although those heuristic methods have

shown reasonable results, recent work has been carried out on gradient-based

local search techniques, which outperform genetic algorithms in terms of

computational cost and quality (Guirguis, et al., 2016).

Previous research focused mainly on a hypothetical wind farm with rectangular

shape and often disregarded elevation or terrain effects. The aim of this thesis

is to maximize the expected power output of a wind farm by optimizing the

configuration of its wind turbine locations. A new terrain effect model is

applied using real geodata in order to take into account the effects of

topography and land cover on energy outputs..

3

The thesis addresses the behavior and the essence of genetic algorithm by

discussing and visually comparing different available settings and methods on a

simple test case. The best and most efficient setting is used for two further,

more complex optimization problems. First, a well-known wind farm layout

problem is optimized and second, the new terrain effect model is applied to a

layout problem. The impacts of the terrain model on the expected energy

outputs and the resulting layouts are examined.

One of the main driving ideas behind of this research is that the program code

is free to use and open to public access, thus, inviting people to further test,

expand and improve the behavior and performance of the proposed algorithm.

The following chapter 2 describes the theoretical fundamentals of wind energy

production and genetic algorithms. Chapter 3 then looks more closely at the

developed genetic algorithm and describes the required and optional input

data as well as the methods used for the optimization process. In order to

check the algorithm and to find out the best settings, various tests are

performed in Chapter 4 and their results are visualized and described. Finally,

in Chapter 5, these results are further discussed, conclusions are drawn and

possibilities for improvement proposed.

4

2. Theoretical Background

The following chapter outlines the theoretical background of the proposed

optimization algorithm. First, the mathematical models and conditions

describing the wind energy production of a wind farm are discussed. Second, a

brief description of genetic algorithms is presented, showing the general

procedure and some limitations of genetic algorithms.

2.1. Theory of Wind Energy

Wind is the natural flow of air, consisting of various gases in the atmosphere of

the earth. That wind movement is actually the kinetic energy of wind. In

classical mechanics, the kinetic energy contained in a mass point is relative to

its mass m and its velocity v, and is described by the following equation

(Kalmikov & Dykes, 2011):

 Equ. 1

The mass of air that is passing through the wind turbine, the rotor area A, in a

certain momentum is calculated with the velocity of the wind v, the time t and

the air density ρ through the following equation (Kalmikov & Dykes, 2011):

 Equ. 2

2.1.1. Wind Farm Power Production

Inserting equation 2 in the preceding equation 1 and differentiating with

respect to time gives the total wind power equation (Zahoransky, 2010):

 Equ. 3

5

To obtain all the power of the wind, the total energy would need to be

extracted and the wind velocity behind the turbine would then decrease to

zero, which is theoretically considered impossible, as the captured air must also

pass the turbine to keep the airflow circulating.

2.1.2. Theoretical Limit of Wind Energy Extraction

German physicist Albert Betz analyzed the correlation between the input and

output wind velocity of a wind turbine in 1919. He found a theoretical limit for

wind energy extraction, known as Betz's Law, for any given wind turbine at

16/27 or 59.3% of the kinetic energy in the wind inflow (Zahoransky, 2010). No

currently existing wind turbine can extract energy at that factor. State-of-the-

art wind turbines reach at most 75 - 80% of the Betz limit. Nevertheless, the

Betz coefficient is used as constant in the calculation of total wind power in the

proposed algorithm. The equation for total wind power for a single wind

turbine is consequently (Zahoransky, 2010):

 Equ. 4

2.1.3. Wake Effect Model by Jensen

To analyze the wake effects between the turbines, the analytical wake model

by Jensen is used. He considered a closed-form wake region expanding linearly

and the reduction of wind velocity decreasing linearly in the direction of the

wind flow (Renkema, 2007). Figure 2 shows the wake effect proposed by

Jensen.

6

Figure 2: Jensen's wake behind a turbine with V = 10 and K = 0.075 (Renkema, 2007, p. 6)

The diameter of the wake cone at a certain distance is calculated with the rotor

radius of the turbine R, the wake decay constant K and the distance in wind

direction between two turbines D according to the following equation (Kusiak

& Song, 2009):

 Equ. 5

If a wind turbine is inside the wake of another turbine, the wind velocity is

reduced. This reduction is calculated with the variables above and the thrust

coefficient of a turbine CT, in this model taken as a constant value of 0.88, given

the following equation (Kusiak & Song, 2009):

 -

 Equ. 6

As a wind turbine may not be fully within the spectrum of a wake region, my

model includes partial shadowing according to Wang (2010).

2.1.4. Partial Wake Effect Modeling

For any given wind turbine in a wind farm, 3 different scenarios are possible

which are described and illustrated on the next pages. Either a wind turbine

can be completely or only partially in the shadow of another turbine wake, or

7

the turbine is not affected at all by the wake, due to the distance between the

two turbines perpendicular to the wind direction being substantial enough.

The variables taken into account for the conditions and calculations are

described below:

 R is the radius of the wake cone at the position of the wind turbine

 r is the radius of the turbine rotor

 D is the distance between the wind turbines perpendicular to the wind

direction

 A is the shadowed area from the wake of the wind turbine rotor area

 yR is the opening angle of the wake circle segment, at the intersection of

the turbine rotor area.

 yr is the opening angle of the rotor circle segment, at the intersection of

the wake circle.

The materialization of partial shadowing is shown below with an illustration of

all the relevant variables.

Figure 3: Partial wake effect from birds-eye view (left) and in profile (right) (Wang, et al.,

2010, p. 67)

8

Scenario 1

Description

The turbine rotor area, framed in red, is fully inside

the wake of another wind turbine, colored in green.

The turbine area is considered fully shadowed.

Condition

Shadowed Area

Scenario 2

Description

The red turbine area is partially inside the green

wake area, so the turbine area is only partially

shadowed from the wake and therefore the wind

velocity reduction decreases, in comparison to a

fully shadowed turbine.

Condition

Shadowed Area

Scenario 3

Description
The red turbine is not inside the green wake, so

velocity reduction of the wind does not occur and

the turbine rotor area is considered not shadowed.

Condition

Shadowed Area

Table 1: The three possible shadowing scenarios of any given turbine

9

To calculate the wind velocity reduction according to partial shadowing, the

shadowed area is taken as a percentage of the whole turbine area and is

multiplied with the velocity reduction in the wake, shown in the following

equation (Wang, et al., 2010):

 Equ. 7

2.1.5. Multiple Wake Effect Model by Katic

If a turbine is inside the wakes of multiple wind turbines, Katic et al. (1987)

suggested the following equation to calculate the total wind velocity reduction:

 Equ. 8

The remaining wind velocity that is needed for the evaluation of power output

is then computed by subtracting the total velocity deficit from the given wind

velocity as shown below (Samorani, 2013):

 Equ. 9

For every wind farm, 2 power outputs are calculated using equation 4, firstly

with respect to wake effects and velocity reduction and secondly, without any

wake effects or velocity reductions (Katic, et al., 1987).

 Equ. 10

 Equ. 11

The ratio between these is then calculated and is known as the wind farm

efficiency rate (Katic, et al., 1987). The equation thus is:

 Equ. 12

10

2.2. Theory of Genetic Algorithms

A genetic algorithm is an evolutionary algorithm, more precisely a guided

random search technique, that is widely used when extensive search spaces are

evaluated, looking for optimal combinations for a given problem.

2.2.1. Methodology

It is inspired by Darwin's Theory of Evolution and consists mainly of the

following natural mechanisms to optimize a combinatory problem (Hirsch,

2012):

 Fitness

 Selection

 Crossover

 Mutation

A possible solution to a problem is encoded as a chromosome consisting of

several genes that contain the problem-relevant information. The whole set of

chromosomes, or individuals, is considered a population, and a population to a

particular iteration is referred to as generation. For every individual, a fitness

function evaluates an objective value that represents the efficiency of the

individual solving the given problem. From all the individuals a subset is

subsequently selected, whereof "good" or "fit" parents and an adequate

amount of "bad" parents must be available, to avoid the algorithm being stuck

in local optima. Parents create new offspring by means of a crossover method

which divides their genetic code into several pieces and then reassembles them

so that the offspring contain genetic information from their parents. A low

mutation rate randomly converts the genetic information to take into account

11

possible random changes. The general sequence of a genetic algorithm for a

given problem is as follows (Hirsch, 2012):

1. Create an initial population with a certain amount of individuals

2. Evaluate the fitness value of all individuals

3. Select parents based on their fitness value

4. Recombine their genetic code through crossover

5. Mutate a certain amount of genes to avoid premature convergence

6. Go to step 2 until a stop criterion is met

2.2.2. Limitations to Genetic Algorithms

Genetic algorithms represent a robust tool that can be applied to a variety of

optimization problems and additionally, their implementation efforts are

comparably low (Mehmeti, et al., 2014). Although genetic algorithms and

heuristic methods in general are widely used and achieve overall good results,

some major drawbacks should be outlined and discussed here.

Since binary-encoded genetic algorithms require a finite set of genes, the

search space is divided into a discrete set of possibilities, while the residual

search space is disregarded. The real global optima of a search space may

therefore be outside of the space that can be reached by such a genetic

algorithm. Combined methods that first use a genetic algorithm to find good

solutions and then try to improve these solutions with more accurate methods

by using a continuous variable formulation for the turbine coordinates might

be a way around this problem (Guirguis, et al., 2016).

Even if the real global optimum is a possible solution to the genetic algorithm,

there is no guarantee that it will be found - the genetic algorithm may only find

local optima (Wendy, 2015). In addition, the method is not able to demonstrate

how far the results differ from the global optimum.

12

The quality of a genetic algorithm also depends strongly on the correct choice

and definition of the necessary parameters. A perfectly configured genetic

algorithm for a specific problem may be an appropriate means of approaching

the solution with low application of resources. However, in the long-term

mixed and exact procedures may replace genetic algorithms for important

optimization problems (Mehmeti, et al., 2014).

3. Data & Methods

The input data used in the proposed method is generated by the software R

and the free, open-source software QGIS. QuantimGIS (QGIS) is used to create

the shapefiles where a wind farm layout should be optimized, while R is used to

create the remaining input variables, which are described in the following

section. The QGIS shape file is loaded into R using the package "rgdal" with the

following R command:

Shapefile <- readOGR(dsn= "C:/Shapefiles",layer= "NameOfShapefile")

R Output 1: Loading a shapefile into R using the function "readOGR" from the library "rgdal"

The new created variable "Shapefile" is then assigned to the input variable

(Polygon1) of the proposed algorithm.

3.1. Data

The required input variables created in R can be classified into obligatory input

data, that must be assigned in order for the algorithm to work and optional

input data, that may be assigned - if they are not defined, default values are

used. The input variables are shown below with a short description and are

further described in Chapter 3 with their corresponding R-function.

13

3.1.1. Obligatory Input Data

Input Variable Name Short description of obligatory input variable

Polygon1 The shape file representing the desired area

Rotor The desired rotor radius in meter

n The amount of desired wind turbines

vdirspe The data frame containing the wind speed data

Table 2: Obligatory Input Variables of the proposed method

14

3.1.2. Optional Input Data

Input Variable Name Short description of optional input variable

fcrR A factor of the rotor radius for grid spacing - Default is set to 3

Proportionality
The proportionality factor for grid calculation in percentage - Default is set

to 1

iteration
The amount of iterations or generations for the genetic algorithm - Default

is set to 100

referenceHeight The reference height of the wind speed data in meter - Default is set to 50

RotorHeight The hub height of the wind turbine in meter - Default is set to 100

SurfaceRoughness The surface roughness of the given area in meter - Default is set to 0.14

mutr A mutation rate in percentage - Default is set to 0.008

topograp
A Boolean term for consideration of terrain influence - Default is set to

"FALSE"

elitism
A Boolean term that indicates whether elitist selection is included - Default

is set to "TRUE"

nelit The amount of elitist individuals per generation - Default is set to 6

selstate

The selection method used; it can either be fixed ("FIX") at 50% of total

individuals or at a variable percentage ("VAR"), depending on the

development of fitness - Default is set to "FIX"

crossPart1

The crossover method used; the crossover points are either generated at

equal intervals ("EQU") or at random intervals ("RAN") - Default is set to

"EQU"

trimForce

A Boolean term used for the adjustment of the desired amount of turbines

after crossover and mutation. Either a probabilistic approach is taken

("TRUE") or the adjustment is randomly ("FALSE") - Default is set to "TRUE"

Table 3: Optional Input Variables of the proposed method

15

3.2. Methods

The following chapter discusses in detail the procedure of the proposed

optimization algorithm. I wrote the genetic algorithm completely in R-Studio,

which is a free Integrated Development Environment (IDE) for the

programming language R. In addition to the base packages of R, the following

freely available packages are included to solve and visualize the wind farm

layout problem:

 package calibrate

 package data.table

 package dplyr

 package ggplot2

 package googleVis

 package gtools

 package maptools

 package raster

 package RColorBrewer

 package rgdal

 package rgeos

 package RgoogleMaps

 package varhandle

The algorithm is intended to work as a generic model which in this case means

that it can be applied to any given shape file, representing the considered area

for the wind farm, containing a desired and fixed amount of turbines with

desired uniform hub height and rotor radius.

16

Wind can come from maximum 36 different wind sectors, each covering 10

degrees of a wind rose with total 360 degrees, as illustrated in the figures

below. The size of a single wind sector is correlated to the occurrence of wind

coming from this sector and therefore to its probability. The colors indicate the

incoming wind velocities.

Figure 4: Random wind rose with 36 different wind direction sectors and uniform wind

velocity (left) or varying wind velocities (right)

The proposed algorithm takes the mean wind velocity for every wind sector for

the calculation of wind energy output, as I consider it sufficient for the

optimization of a wind farm layout. For more realistic energy output

estimations, the algorithm should be extended so that the Weibull distribution

of wind speeds can be used instead.

17

3.2.1. Polygon to Grid (GridFilter)

The first step of the algorithm is to fit a grid in a given shape file. This shape file

must represent an area in Europe as the algorithm uses the European

Terrestrial Reference System ETRS89 / ETRS-LAEA, which is the EU-

recommended frame of reference for European geodata that accurately

represents areas.

The centroids of each grid element are possible locations for wind turbines. The

resolution of a single grid element depends on the turbine rotor radius and

must cover at least the whole rotor diameter, as well as some safe distance. It

is calculated by multiplying the rotor radius with a certain factor. This factor

"fcrR" can be given optionally to the algorithm but must at least be bigger than

2; otherwise a default of 3 is used. A hypothetical wind turbine with a rotor

radius of 20 meters would then be in the center of a 60 X 60 squared-meters

area.

A grid contains several squares and may not fit exactly over irregular areas.

Therefore, the variable "Proportionality" is introduced which indicates the

minimum percentage that a particular grid cell must overlay the given area to

be displayed as a grid element. The possible values range from 1 to 0.01.

The R function "GridFilter" solves this first task and was developed by José

Hidasi-Neto and released online. A detailed description of this feature can be

found on his blog (Hidasi-Neto, 2014). The following examples illustrate the

function with changing parameters on a random irregular area with ~1.8 km².

18

Figure 5: Resolution - Changing resolutions with turbine rotor radius of 50 meters, "fcrR"-

values of 2, 4 and 6 and a constant "Proportionality"-value of 1

Figure 6: Proportionality - The variable "Proportionality" is changed from 1 to 0.5 and 0.01

with constant turbine rotor radius of 50 meters and "fcrR"-value of 4

The orange area indicates the remaining area that is not taken into account in

the optimization and the blue centroids inside the green grid cells represent

the possible wind turbine locations. The result of this function is an indexed

data frame containing the centroids as X and Y coordinates. The calculated grid

of this function is stored as "SpatialPolygonsDataFrame" and as a global

variable ("dry.grid.filtered") for plotting purpose.

19

3.2.2. Initialize a Population (StartGA)

To ensure that he algorithm has reasonable starting conditions, this function

verifies that the number of grid elements corresponds at least to twice the

amount of desired turbines. When this test passes, this function randomly

generates an initial population, i.e. a certain amount of wind farms with the

desired number of wind turbines located at the previously obtained

coordinates. The initial population sizing is a prominent and well-researched

topic in evolutionary computing. Important findings are that the optimal

population size is proportional to the difficulty of the problem and that if the

initial population is good, the algorithm has higher chances of finding good

solutions (Diaz-Gomez & Hougen, 2007). "Seeding" of a genetic algorithm is an

often-used technique that relies on this concept, i.e. the initial population is

"seeded" with some good solutions, that must be available and known in

advance, which is not the case in the proposed method.

Since there is no general rule for the correct population sizing, and in order to

find the best parameters, a separate optimization process would have to be

performed, the proposed algorithm instead uses a simple method to dimension

the initial population.

 Equ. 13

The variable "nGrids" represents the amount of grid cells, "nTurbines" the

number of required turbines and "Iteration" is the total number of iterations.

The product of the total amount of grid cells multiplied by the number of

turbines gives an indicator for the complexity of the combinatory problem. The

more turbines must be placed on an increasing number of locations, the more

difficult it is to solve the problem. This product is then divided by the number

of required iterations.

20

I assume that the more iterations the genetic algorithm is able to proceed, the

lower the problem size and the higher the chance of finding good solutions will

be. The initial population size will therefore be small. With very few iterations,

the algorithm is not able to take full advantage of his converging abilities and

has to rely on a lot of randomness which will result in big problem sizes and low

probabilities of finding good solutions. The initial population size will then be

big. Although (Pelikan, et al., 2000) pointed out, that the required population

size and number of iterations are both positively correlated to the given

problem size, this algorithm uses the preassigned iteration value for the

problem size calculation and evaluates the initial population size depending on

the resulting problem size.

To illustrate the previous equation, consider a layout problem in which 20

turbines must be optimized on 50 possible grid cells; with 1 iteration, the initial

population size “nStart” would be 1000, with 100 iterations “nStart” would be

10 and with 1000 iterations “nStart” would be 1. As a population with only 1

individual would not be able to reproduce, a lower bound of 70 is used for

“nStart”, which should also ensure for enough diversity in the initial population.

The upper limit of “nStart” is 200 to ensure that an optimization process does

not require too much computational time. The magnitude of the initial

population is therefore very limited, and since the population size in the

present method is able to grow and shrink according to the crossover

parameters, the size of the initial population in this method may be

subordinate.

The resulting integer variable "nStart" specifies how many random wind farms

are created in the initial population. This function supplements the initial

individuals with a new binary variable, which indicates the existence of wind

21

turbines. The number 0 does not represent a wind turbine in the grid cells,

while a 1 represents a wind turbine.

The result of this function is a list with individuals, containing the Grid-ID's, the

coordinates and the new binary variables for n-desired wind turbines. The R-

Output below shows a first exemplary individual in the output list of this

function.

> StartGA(Grid,n,nStart)[1]

[[1]]

ID X Y bin

3 4600134 2758495 1

12 4600404 2758405 1

25 4599954 2758135 1

27 4600134 2758135 1

28 4600224 2758135 1

29 4600314 2758135 1

30 4600404 2758135 1

32 4600044 2758045 1

35 4600314 2758045 1

36 4600404 2758045 1

R Output 2: Exemplary output of the function StartGA for the first individual in the list

The output of the StartGA-function is only used in the first iteration of an

optimization process. After the first iteration, the algorithm uses the output of

the function getRects instead, which is described in chapter 3.2.8.

3.2.3. Evaluation of Fitness (fitness)

In order to obtain a fitness value for each individual, the resulting wake effects

must primarily be evaluated for all wind turbines of all wind farms under all

given wind directions. As a first step, the data frame containing the wind

information (vdirspe) is rearranged. This wind data frame must contain two

columns called "ws", giving the wind speed values in m/s and "wd", indicating

the wind direction in degrees and can contain the column "probab", showing

22

the probability of a certain wind speed and direction. If this column is not

given, I assume a uniform probability for all wind speeds. If several wind

directions in the input data correspond to a 10-degree wind sector, the

algorithm reduces the multiple directions to a single direction per wind sector

and transforms their wind speeds and probabilities. The data frame is then

ordered with ascending wind directions. This process is shown in the following

example and in the figure below with the raw input data on the left and the

adapted data on the right.

> data.in

 ws wd

1 10 300.00

2 14 0.00

3 10 5.00

4 10 180.00

 5 10 182.34

> data.in

 ws wd probab

2 12 0 40

4 10 180 40

1 10 300 20

R Output 3: Exemplary wind speed data frame before (left) and after the conversion (right)

In this example, each given wind direction receives a probability of 20% as no

probabilities are given and 5 directions are at hand in total. Rows 2 and 3 are

reduced to one row, as their wind directions 0° and 5° are inside a 10° wind

sector (0° to 10°). The probability of this sector is 40, the sum of the just

assigned probabilities of rows 2 and 3. The final wind speed for this sector is

calculated by multiplying the available wind speeds with their relative

probability within the wind sector and then summing them. In this case, the

equation is

 = 12. Following the same procedure for

rows 4 and 5 results in a new wind speed of 10 m/s with a probability of 40%. If

the resulting sum of probabilities does not amount to 100%, the algorithm

scales the probabilities appropriately. In order to calculate the wake effects and

expected energy production for a single wind farm with the converted wind

data, the algorithm uses the next function.

23

3.2.3.1. Calculate Energy Production (calculateEn)

This function calculates the expected energy output of an individual using

the mathematical model described in chapter 1.1, taking into account all

available wind sectors. Furthermore, some other methods are implemented

that try to model the problem more realistically.

As wind speed data is mostly obtained and referenced to a certain height

which can differ from the desired hub height of the wind turbine, I use the

wind profile power law to get an estimation of the wind speed at the desired

hub height. The wind speed at another height "ws" is calculated as follows

(Afanasyeva, et al., 2013):

 Equ. 14

The input variable "ws0" represents the input wind speed at the referenced

height ("referenceHeight") and "RotorHeight" is the given hub height of the

wind turbine. "SurfaceRoughness" is an indicator of terrain roughness and

has in this method a default value of 0.14, which is characteristic for flat

terrain. Although terrain characteristics, e.g. elevation, slope, roughness or

land use, have strong influences on the expected energy output and the best

layout of a wind farm, only few research papers and optimization models

were found with an extended terrain effect model (Zhang, 2013).

This algorithm can optionally include a terrain effect model which tries to

expand previous methods. To take terrain effects into account, the input

variable topograp must be set to "TRUE" (topograp="TRUE") - as the default

value is "FALSE".

24

3.2.3.2. Terrain Effect Model

The terrain effect model consists of 4 sub methods that try to model local

wind speeds, air densities, surface roughness, and wake decay values

according to the given terrain.

3.2.3.2.1. Wind Speed Multiplier

This method is based on the orography model of Saavedra-Moreno (2011).

Existing hills and valleys of the terrain influence local wind conditions. The

rule may not be coherent for all cases, but it is assumed that wind speeds at

the top of a hill will be higher than at the bottom of a hill. This rule is

incorporated in the Wind Speed Multiplier method.

To accomplish this task, first, a CIGAR-SRTM elevation raster with a

resolution of 90 meters is downloaded with the R function "getData" of the

library "raster", as shown below:

srtm <- getData('SRTM', lon=LonPol, lat=LatPol);

R Output 4: R-Function to get a SRTM - elevation dataset

The elevation data is downloaded as a 5 x 5 degree tile, where the

longitude and latitude coordinates ("LonPol" and "LatPol") of the uploaded

polygon are enclosed. The tile is then masked and cropped with the input

polygon, resulting in an elevation raster for the desired area only. The

height values of every raster cell are then divided by the mean height of the

total area. If a turbine site has a higher elevation than the average elevation

of the entire area, its wind speed multiplier will be greater than 1 and its

wind speed will be intensified. If a turbine is located at a lower altitude than

the mean elevation, the wind speed multiplier will be lower than 1 and

wind speed will be reduced.

Since the exact formula of the multiplier method is not mentioned in

Saavedra-Moreno's (2011) paper, I had to implement my own formula

25

which is currently based solely on the difference of the heights of all raster

cells to the average height of the entire surface. However, I would like to

point out that neither Saavedra-Moreno's (2011) nor my method of the

linear wind speed multiplier were empirically validated and are only

theoretical methods, which simplify real-world conditions strongly, for

example: ignoring tunneling effects of the terrain or neglecting nonlinear

relationships between altitude and wind speed.

The following illustration shows an example of the implemented concept

on a random area with a mean elevation of 578 meters.

Figure 7: Left: SRTM elevation raster of a random area in Austria - Right: Calculated

orographic influence raster with 10 random point examples

The northernmost point is at a slightly higher height (579m) than the

average height of the total area (578m). Its corresponding wind speed

multiplier is therefore greater than 1. All remaining points are below the

average terrain height and have multiplier values less than 1. The wind

speed multipliers of each turbine location are then multiplied by the

previously calculated speed of the current wind sector. Turbines at higher

26

altitudes contribute to higher expected energy outputs corresponding to

"good" or "fit" individuals, which are therefore more frequently selected.

The altitude of an area has a further influence on the expected energy

production that is evident in the wind power equation (Equ. 4). Wind power

is proportional to air density, which in turn is dependent on height. In

general, air density diminishes with increasing height and consequently the

expected energy output decreases similarly. A wind farm in the mountains

produces thus less energy compared to an identical wind farm at sea level.

Since the conditions are most likely not identical and positive effects of

wind farms at high elevations, such as greater wind speeds and better land

availability should not be neglected, the negative effect of lower air density

values should also be taken into account to model realistic conditions.

3.2.3.2.2. Corrected Air Density (BaroHoehe)

If the terrain effect model is not activated, 1.225 kg/m³ is taken as default

value, representing air density at sea level according to the International

Standard Atmosphere Model (Cavcar, 2005).

If it is enabled, the function “BaroHoehe” takes the height values of all wind

turbines as input and calculates their corresponding air pressure, air

density, temperature in Kelvin and temperature in degrees Celsius with the

international barometric height formula, which is valid for the troposphere

up to 11.000 meters. It also assumes that the temperature decreases with

6.5 Kelvin / 1000 meters (Hakenesch, 2016). The equations used for this

method are described below with the following parameters:

 – the height value

 – the air pressure at height h

 – the standardized air pressure at sea level (101325 Pascal)

27

 – the air density at height h

 – the specific gas constant for dry air (287.058 J/kgK)

 – the temperature in Kelvin at height h

 – the temperature in degrees Celsius at height h

 Equ. 15

 Equ. 16

 Equ. 17

 Equ. 18

The air density correction in this method solely considers the elevation

values and an estimation of the temperature, even though local conditions

such as humidity or dryness of the regarded area also have an impact on air

density. The method does not claim to be highly accurate and should only

be a rough representation of local air conditions which can subsequently be

included in the calculations.

As can be seen in the next illustration, with these formulas, air density falls

almost to 0.7 kg/m³ at an altitude of 4000 meters and starts to be less than

1 kg/m³ at about 1800 meters.

28

Figure 8: Relationship between elevation and air density according to the barometric

height formula

Figure 9: Left: Default air density values for a random area with mean elevation of 578

meters - Right: Corrected air density values according to barometric height formula

The corrected air density values drop in this example from 1.225 kg/m³ to

about 1.16 - 1.17 kg/m³ for the 10 turbine locations in the wind farm and

the expected energy output drops from ~12.830 kW with default air density

29

values to about 12.000 kW with corrected air density values. This slight loss

of about 6% may not seem high, but the wind farm is not located at very

high altitude and larger losses will occur at higher altitudes due to air

density reductions.

Another influential factor on local wind speed estimation is the roughness

of the surface area. As mentioned earlier, wind speed decreases with

decreasing height and increases with increasing height. This is mainly due

to the surface roughness which boosts wind turbulence closer to the

ground and therefore reduces the wind speed. Wind turbines are placed

inside the atmospheric boundary layer that is prevailing to about 600 - 2000

meters as illustrated below, depending on the local weather and the time

of the day (Schmelmer, 2013).

Figure 10: Atmospheric boundary layer with turbulence profiles (Liersch, 2012, p. 17)

The surface roughness length (z0) is an indicator of the surface roughness

and represents the height above the ground to which the wind speed due

to obstacles is theoretically 0 (Schmelmer, 2013). The roughness length

affects the curve of the wind speed in the figures below and therefore the

30

recovery of wind speed with increasing height. Areas with no obstacles as

water areas will have very low roughness lengths of 0.0002m and areas

with high obstacles such as big towns will have roughness lengths of 1.6m

(Solle, 2011).

Figure 11: Wind speeds at different surface roughness lengths (zo) (Solle, 2011, p. 17)

31

Roughness Length (z0) Brief surface type description

0.0002 Water surfaces

0.0024 Open terrain with a smooth surface, e.g. Concrete,

runways at airports, mown grass

0.03 Open agricultural terrain without fences and hedges,

possibly with sparsely scattered houses, very gentle hills

0.055 Agricultural land with some houses and 8 meter high

hedges with a distance of about 1250 meters

0.1 Agricultural land with some houses and 8 meter high

hedges with distance of about 500 meters

0.2 Agricultural site with many houses, bushes, plants or 8

meters high hedges with a distance of about 250 meters

0.4 Villages, small towns, agricultural buildings with many or

high hedges, forests and very rough and uneven terrain

0.8 Larger cities with tall buildings

1.6 Large cities, high buildings, skyscrapers

Table 4: Surface Roughness Lengths according to the European Wind Atlas (Schmelmer,

2013, p. 21)

3.2.3.2.3. Modified Surface Roughness Length zmod

If the terrain model is activated, a surface roughness value is calculated for

every turbine location, otherwise a default value of 0.14 is used which is a

typical value for onshore wind farms and represents areas with a few lower

obstacles. To estimate a more realistic roughness length the Corine Land

Cover raster 2006 from the European Environment Agency is used (EEA,

2016). The raster has a resolution of 100 meters and covers Europe, as can

be seen on the following R-plot of the raster.

32

It classifies the land cover in 44 categories, which are roughly divided into

Artificial Surfaces, Agricultural Areas, Forest and semi natural areas,

Wetlands and Water bodies.

The land cover information from this raster and the information in Table 4

are used to extend the raster with the surface roughness value (z0). For any

location in Europe, a land cover roughness value is subsequently available.

Several previous studies pointed out, that the roughness of a surface does

not depend only on the land cover, but also on the topographic conditions

of the wind farm. As wind conditions in complex terrain are still not well

understood, no method was found which implemented topographic effects

on the surface roughness.

The following method is a simple attempt to integrate topographic effects

on the surface roughness estimation. The additional roughness indicator is

calculated using the SRTM-elevation data and the "terrain" function from

the "raster" library. With this function an elevation roughness indicator is

Figure 12: Corine Land Cover Raster with a resolution of 100 m

33

calculated, which is defined as the difference between the maximum and

the minimum elevation value of a cell and its 8 surrounding cells. The two

roughness indicators are then combined to obtain a modified surface

roughness value according to the following equation:

 Equ. 19

 – is the land type roughness indicator from the Corine raster

 – is the elevation roughness indicator from the SRTM raster

 – is the resolution of the SRTM raster (90m)

 – is the modified surface roughness length

Unless the elevation roughness indicator is 0, the modified roughness value

will always be higher than the original Corine roughness value which in turn

will reduce the expected energy output. Flat terrain has low elevation

roughness indicators, as the differences of the maximum and minimum

elevation values are small and the land cover roughness will therefore be

only slightly increased. Complex terrain on the other hand has high

elevation roughness values which will increase the land cover roughness

more heavily.

The above formula was calibrated only in Excel using random values and

the reference data in Table 4 and was not empirically validated. Assuming

that the difference between the maximum and minimum height (i.e.)

of a particular raster cell to its 8 neighboring raster cells is 10m, then the

multiplicative term in brackets is 1.11 (1 + 10/90 = 1.11), with which the

land cover roughness is expanded. The formula therefore assumes a change

in the land cover roughness by 1.1% for each meter of the elevation

roughness. An elevation roughness of 500m would lead to an increase of

555.5%. Assuming the land cover roughness would be 0.03, the modified

34

roughness value would be only 0.18, which would probably be too low. A

value of about 1.6 would be necessary according to Table 4. The linear

relationship of this formula is certainly imprecise, and presumably

underestimates the influence of high elevation roughness while over-

emphasizing the influence of low elevation roughness. An exponential

correlation and the consideration of the desired turbine hub height might

represent the influences more accurately. Both asperity values are

demonstrated on the next illustrations on Figure 13 with the resulting

modified surface roughness on Figure 14.

Figure 13: Land cover and elevation roughness indicator

Figure 14: Modified surface roughness length

35

These figures show that the original and uniform Corine land cover

roughness increases from 0.03 at the 4 northernmost locations to about

0.04 while the modified values of the southern sites are only slightly

reduced and appear unchanged due to rounding.

3.2.3.2.4. Variable Wake Spreading Constant

The modified surface roughness has an influence on the wind profile law

and on the wake spreading constant K. If the terrain model is not activated,

a default value 0.075 is taken for K, which is a good reference for onshore

wind farms and flat terrain. If the terrain model is activated, a variable

wake spreading value K is calculated with the following equation

(Chowdhury, et al., 2011):

 Equ. 20

The new wake spreading value changes the radius of the wakes and the

velocity reductions.

After the desired evaluation of terrain effects, the algorithm jumps back to the

"calculateEn" function, where energy outputs are finally calculated. For each

given wind direction, the shape file and the turbine coordinates are aligned to

the north since the algorithm can only calculate wake effects under this

direction. The wind turbines that could potentially influence others are

evaluated with the functions "InfluPoints" and "VekWinkelCalc". The latter

function calls 2 other functions "WinkelCalc" and "PointToLine2" which

calculate the relevant distances and angles for the wake evaluations. These 4

functions are not fully described in this work, as their only task is to draw

triangles, calculate distances and angles, and then evaluate which turbines will

certainly not affect others because their angles or distances are too large. With

36

those resulting inputs, the wake effects are estimated and the energy output is

calculated.

Amongst others, the resulting energy outputs and efficiency rates for all given

wind directions are stored as a list. The amount of wind directions gives the

length of the list. An exemplary output of this function for one wind direction is

shown below.

> str(calculateEn_Output)

List of 1

 $:Classes ‘tbl_df’, ‘tbl’ and 'data.frame':17 obs. of

18 variables:

 ..$ Punkt_id : int [1:17] 1 2 3 4 5 5 6 7 7 8

 ..$ Ax : num [1:17] 0 0 4600280 4600280

 ..$ Ay : num [1:17] 0 0 2758554 2758554

 ..$ Bx : num [1:17] 4599954 4600044 4600257

 ..$ By : num [1:17] 2758495 2758495 2758354

 ..$ Laenge_B : num [1:17] 0 0 200 200 200

 ..$ Laenge_A : num [1:17] 0 0 23 23 23

 ..$ Windrichtung : num [1:17] 0 0 0 0 0 0 0 0 0 0

 ..$ Windmean : num [1:17] 9 9 9 9 9 9 9 9 9 9

 ..$ RotorR : num [1:17] 30 30 30 30 30 30 30 30

 ..$ WakeR : num [1:17] 0 0 45 45 45

 ..$ A_ov : num [1:17] 0 0 2499 2499 2499

 ..$ TotAbschProz : num [1:17] 0 0 88.4 88.4 188.4

 ..$ V_New : num [1:17] 9 9 6.69 6.69 4.45

 ..$ Rect_ID : num [1:17] 1 2 5 9 11 11 12 13 13

 ..$ Energy_Output_Red : num [1:17] 3487 3487 3487 3487 3487

 ..$ Energy_Output_Voll: num [1:17] 7334 7334 7334 7334 7334

 ..$ Parkwirkungsgrad : num [1:17] 47.5 47.5 47.5 47.5 47.5

 R Output 5: Exemplary output of the function calculateEn for one wind direction

After the energy outputs of all individuals in the current population have been

evaluated, the algorithm returns to the fitness function, where the information

of an individual is transformed to a single fitness value.

If there are several wind directions per individual, there are also several energy

outputs. To get a single energy output value considering all wind directions and

speeds, the expected energy outputs of all wind directions and speeds are

multiplied with the corresponding wind probability. The weighted energy

37

outputs are then summed up to a single energy output value. To get a single

efficiency rate for all wind directions, the same procedure is applied.

The following example illustrates this process. For an exemplary individual with

2 wind directions, the expected energy outputs are 3500 kW with an efficiency

rate of 45% for wind direction 0° degrees, which will occur to 30%, and 5000

kW with an efficiency rate of 70% for wind direction 290° degrees, which will

occur to 70%.

Windrichtung Energy_Output_Red Parkwirkungsgrad probabDir

 0 3500 45 30

 290 5000 70 70

R Output 6: Exemplary energy and efficiency outputs for 2 input wind directions

The energy outputs are multiplied by their share in total production. In this

example 3500 is multiplied by 0.3 and 5000 is multiplied by 0.7, resulting in

1050 and 3500 kW, as shown below.

Windrichtung Energy_Output_Red Parkwirkungsgrad probabDir Eneralldire

 0 3500 45 30 1050

 290 5000 70 70 3500

R Output 7: Exemplary weighted energy outputs of an individual

The weighted energy outputs are summed up to 4550 kW (1050+3500) and the

efficiency rates are likewise multiplied by their share in total production and

summed up, resulting in 62,5% as (45*0,3)+(70*0,7) = 62,5.

Such a weighted energy output is calculated for each individual and assigned as

their fitness score. In other genetic algorithms, the fitness of an individual is

often proportional to the fitness of the whole population. As the population

size is not constant in this method, a proportional approach would lead to

incomparable values. After experimenting with several fitness formulas, the

unmodified weighted energy output seemed to be a good choice.

38

To contrast two successive generations numerically, this algorithm calculates a

comparative fitness score with values of the current and previous generation as

follows:

 Equ. 21

The relevant input parameters are:

 – is the maximum fitness value of the current population

 – is the maximum fitness value of the previous population

 – is the mean fitness value of the current population

 – is the mean fitness value of the previous population

This equation is the result of several tests in the implementation process,

where I observed that the maximum fitness values often remained constant,

which would indicate stagnation. Another value had to be included to better

indicate an improvement or degradation of the evolutionary process. Since the

minimum fitness values can and should sometimes be low due to mutation

processes, they are ignored in this equation and instead the difference of the

average fitness values are taken and weighted with 20%.

This comparative generation fitness value is used in the variable selection

method and in the crossover function to determine the number of crossover

parts.

3.2.4. Selection of Individuals (selection1)

This function deletes the worst 4 individuals from the population, based on the

fitness values calculated in the previous chapter and selects a certain amount

of individuals but at maximum 100. The roulette-wheel selection method is

used to find out which individuals should be selected. The probability that an

individual is selected is proportional to its fitness value. Those selected

39

individuals then form pairs of parents and recombine their genetic information

through a crossover function.

The two possible input values "FIX" and "VAR" for the variable selstate

determine the percentage which is selected from the current population. It can

be either at a fixed or at a variable percentage. The variable percentage has an

upper bound of 75% and a lower bound of 20%. If the population consists of

less than 20 individuals, the selection percentage is set to 100% to keep all

individuals in the population, produce more offspring, and prevent the

population from extinction. Furthermore, in the case of less than 20 individuals,

the algorithm increases the crossover point rate by 0.07, which is described in

chapter 3.2.5.

3.2.4.1. Fixed Selection

If the selection method is fixed (selstate = "FIX"), a constant value of 50 % is

selected from the current population.

3.2.4.2. Variable Selection

If the selection method is variable (selstate = "VAR"), the percentage of

selected individuals changes and is dependent on the performance of the

current population, compared to the previous one. This comparative

performance indicator is calculated by Equ. 21.

The percentage starts at ~75% and decreases by about 0.8% when the fitness

values of the current population are better than the previous ones.

Consequently, fewer individuals will be selected for the next generation. If

the current population performs worse than the previous, the percentage

increases by about ~0.5%, and more individuals will be selected. The idea

behind this concept is that as long as the fitness values during the evolution

rise, the selection pressure on the population should rise likewise, to exploit

40

good / fit individuals and try to converge to an optimum in the search space.

If the fitness values drop, the selection pressure is reduced likewise and

more individuals will be selected for the next generation. This is known as

exploration or the spreading of individuals over the whole search space, to

increase the chance of finding the global optimum (Kruse & Held, 2013).

If the selection percentage is lower than 20%, the algorithm seems to have

converged to a small amount of individuals which will reduce the variance

and the population size. The crossover point rate will then be increased by

0.09 as a counter-balancing effect. This should increase the crossover parts

and thus in turn the variance and the population size.

3.2.4.3. Elitism

According to Scholl (2002) the implementation of an elitism selection will

lead to a global optimum if the amount of generations goes to infinity. The

idea of elitism is to save the best individuals separately and add them again

to the population after the mutation and crossover methods, so random

effects do not influence their genetic information.

The implemented elitism method in this algorithm differs from the original

idea. If the input variable elitism is "TRUE", which is the default, elitism is

activated, and the input variable nelit determines how many individuals

should be part of the elite section. The default for nelit is 6 individuals. This

elite section is not saved separately, but its fitness values are increased by a

factor of 10, mainly to simplify implementation. The probability that they will

be selected is therefore much higher than for the remaining individuals,

although the selection process will still be random. If elitism is "FALSE", this

method is not activated, the input variable nelit is not needed and the fitness

values will not be increased.

41

Regardless of whether or not elitism is taken into account, the algorithm is

extended with a kind of top-level guarantee. After the first 20 interactions,

the algorithm compares the current maximum energy value with all previous

maximum values. If 7 iterations in succession result in a worse maximum

value than the best solution so far, then in the following generation 2 of the

hitherto best individuals are integrated into the population. This top-level

guarantee was added belated based on test results, where the fitness values

crashed due to mutation or crossover effects and the algorithm sometimes

was not able to converge to his previous best result. It can be regarded as a

conditioned seeding method with previously found best individuals of the

current optimization process.

Every individual from the selected parents has genetic information that is

passed to the crossover function. The information encoded in an individual

consists of a binary variable for every grid element, 0 represents no turbine in

the grid cell and 1 represents a turbine in the grid cell. Separately the fitness

values of all parents are passed to the crossover function as well.

3.2.5. Crossover of Genetic Information (crossover1)

To recombine those genetic codes and create new individuals, n crossover-

points are generated, either at equal or random intervals, where the genetic

code is cut in pieces. The amount of distinct combinations is given by the

formula for permutations with repetition and order nk, where n is the sum of

individuals in a parental group and k is the amount of crossover parts. For

example, 25 = 32 recombinations are generated from 2 individuals forming a

parental group, each composed of a pentamerous genetic code.

42

In this algorithm, the crossover point rate determines the amount of crossover

parts. As the amount of crossover parts always has to be an integer, the

crossover point rate is truncated to the nearest integer towards 0. This integer

determines the amount of locations at which the genetic code is cut in pieces.

The amount of genetic code pieces or crossover parts will therefore always be

1 unit bigger than the amount of crossover points, which is illustrated below.

Figure 15: Illustration of four cases, where the genetic code is cut with increasing crossover

points and resulting crossover parts

The algorithm starts with a crossover point rate of 1.1 and therefore 2

crossover parts, but is able to change according to the evolution of fitness

values in Equ. 21. If the compared fitness values of the current population are

greater than the previous population, then the crossover point rate is increased

by 0.03 and decreased by 0.06, when the fitness values are smaller. These

defined parameters are based on several tests in the implementation process

in which they have proved to be useful. Besides that, the algorithm showed

best converging abilities with 2 crossover parts, which were also taken as

starting conditions. If the fitness values of a hypothetical optimization process

would increase 34 times in a row, the crossover point rate would increase by

1.02 (34*0.03=1.02), and the amount of crossover parts would increase by 1.

43

Respectively, the amount of crossover parts would decrease by 1, when the

fitness values would decrease 17 times in a row (17*0.06=1.02).

The minimum of crossover parts is 1, which means that the crossover method

is not able to generate new individuals. If for example 100 individuals form 50

parents, each composed of 2 individuals, and then cross their information with

1 crossover part, the amount of distinct permutations is 50*21 = 100. The

resulting 100 individuals are just copies of the 100 parental individuals. The

variable selection percentage will in this case be increased by about 15%.

As the amount of possible permutations increase exponentially with increasing

crossover parts and the proposed algorithm should produce good results in

short time, this method has an upper limit of 300 possible permutations in a

population. Considering again the case of 100 individuals, forming 50 parental

groups with 3 crossover parts, 50*23 or 400 permutations are possible, but only

300 will be selected. If from those 400 possible permutations 300 or 75% would

be randomly selected and further evaluated, the loss of information would be

significant. To address this problem, the fitness values of all individuals are

passed to this function. In the crossover method, the mean fitness value of

each parental group is first evaluated. Then each parental fitness value is

divided by the mean fitness value of all parental groups. The fitness indicator of

a parental group is then assigned to all permutations created from this parental

group. The illustration below shows the fitness values of 24 random individuals

with a mean fitness value of about 8400, indicated by the horizontal red line on

the left. The recalculated parental fitness values on the right plot are between

1.1 and 0.9 and the new mean is 1, indicated by the red line on the right.

44

Figure 16: Original and rearranged fitness value for crossover operation

If the possible permutations exceed 300, this function selects exactly 300

individuals based on their recalculated parental fitness values to ensure that

good individuals are very unlikely to be deleted.

The maximum of crossover parts is 5. For 50 parents with 5 crossover parts the

amount of permutations is 50*25 = 1600. Because of the high amount of

distinct permutations with 5 crossover parts, the selection percentage would

drop to 25% of the current population, so that only the fittest individuals

generate new permutations. However, the algorithm most certainly will not

reach 5 crossover parts under the actual parameters and will peak at a

maximum of 3 crossover parts. This is mostly because of the higher crossover

point rate reduction of 0.06 compared to the crossover point rate increment of

0.03 and secondly, because of the increase in variance and the possible loss of

information under 3 crossover parts. As the number of individuals grows

rapidly with 3 crossover parts and the permutations have an upper bound of

300, the algorithm will start losing information with more than 38 parents

(38*23=304). The loss of information with 3 crossover parts and more parents

will therefore grow and the evolution of fitness values will most certainly not

45

only rise, leading to more crossover point rate reductions. The condition under

3 crossover parts is with current parameters consequently not stable and likely

to fall back to 2 crossover parts due to the aforementioned arguments.

In the following two subchapters, the 2 possible crossover methods "EQU" and

"RAN" are discussed, that determine where the genetic code is cut in pieces.

3.2.5.1. Equal Crossover Partitioning

If the crossover points should be located at equal intervals, the input variable

crossPart1 has to be set to "EQU" (crossPart1="EQU"). The length of the

genetic code is divided by the number of crossover parts, resulting in the

number of genes per crossover part. For example, an individual with a

genetic code of 36 genes and 2 crossover points will lead to 3 crossover

parts, each having 12 genes, as shown in the R-Output below. The variable

"t1" is in this case 12.

> Indiv

[1] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0

>GenParts<-split(Indiv,as.numeric(gl(length(Indiv),t1,length(Indiv))))

$`1`

[1] 1 0 0 0 0 0 0 0 0 0 0 0

$`2`

[1] 0 0 0 1 1 0 0 0 1 1 0 1

$`3`

[1] 0 1 0 0 0 0 1 0 0 1 1 0

 R Output 8: Exemplary 2 point equal crossover with an individual consisting of 36 genes

3.2.5.2. Random Crossover Partitioning

If the crossover points should be located at random locations, the input

variable crossPart1 has to be set to "RAN" (crossPart1="RAN"). The following

Figure 17 illustrates the difference between the two partitioning methods.

The red and blue bars represent the genetic code of 2 parental individuals,

the strings of 0`s and 1`s representing the wind turbines in this algorithm.

The black lines in the genetic code of the parents represent the crossover

points, where the genetic code is split. As explained before, 2 crossover

46

points result in 3 crossover parts. For 2 parents with 3 crossover parts, the

amount of children is 8 (23 = 8) which are illustrated below.

Figure 17: Comparison of Equal and Random Crossover for 2 parental individuals with 3

crossover parts

While Equal Crossover always cuts the individuals at identical locations,

assuming that the number of crossover parts remains the same, Random

Crossover generates new random crossover point locations for every new

parental group. The actual method works only with one crossover method at a

time. A mixing strategy could be interesting, as I assume that with Equal

Crossover the populations will more rapidly converge to optima, while with

Random Crossover, the variance between the individuals and populations will

be higher and the evolution will not be as steady. The idea of exploration and

exploitation of the search space is again noticeable for both crossover

methods. This could be integrated in a mixed method. Ceteris paribus, Equal

47

Crossover will more likely exploit the search space because of invariable

conditions and Random Crossover can be more classified as an exploration

method, as differing crossover locations will more likely result in different

permutations and individuals.

The generated permutations of this function represent already the new

children of the next generation, whereby their genetic information is still left to

the mutation function.

3.2.6. Mutation of Genetic Information (mutation)

The mutation function randomly changes certain genes of the individuals to

avoid premature convergence to local optima (Williams, 2014). The mutation

probability or rate (mutr) of a gene should be considered quite small, often

ranging from 0.01 - 0.1. The default for the mutation rate in this algorithm is

0.008. It is comparatively low, mainly because the selection and crossover

methods have other random effects, which have already been addressed and

which are discussed in more detail in chapter 5.

3.2.6.1. Fixed Mutation Rate

In the implementation process, the algorithm was tested with a fixed

mutation rate of 0.01 and a uniform wind direction. This often did not lead

to optimal results even for small problems, as the populations seemed to be

stuck in local optima, near the global optimum. In most cases, only 1 or 2

turbines would have to be displaced to achieve the global optimum. The

mutation rate was too low in those cases to explore the relevant search

space, and a higher mutation rate of 0.1 often was already too high to

converge to any relevant optima. A fixed mutation rate only therefore did

not seem to be the right choice.

48

3.2.6.2. Variable Mutation Rate

The fixed mutation rate is supplemented with a variable mutation rate.

During the evolution, good individuals reproduce more, resulting in similar

and identical good results or individuals in a population. The more

generations pass by, the more individuals will represent the actual best

solution. The variable mutation rate comes into action when more than 3

individuals embody the current best solution and when those individuals are

identical. A new mutation rate is then randomly generated between 0.03

and 0.1, and multiplied by a factor that is proportional to the amount of

iterations and identical best solutions, which at minimum are 3.

 Equ. 22

 – is the variable mutation rate

 – is the random mutation rate between 0.03 and 0.1

 – is the number of current best and identical individuals

 – is the current iteration of the running optimization process

 – is the total amount of requested iterations

The observed variable mutation rates of pre-tests range somewhere

between 0.037 and 0.2, and are significantly higher than the fixed mutation

rate of 0.008. When several individuals represent the actual best solution,

the algorithm seems to have converged to an optimum. As the algorithm is

not able to see if this optimum really represents the best solution or the

global optimum, it increases the mutation rate strongly to increase the

variance between the individuals, explore the search space and probably

lose the actual best solution to increase the chance of finding other good

solutions and the global optimum.

49

The crossover and the mutation function change the number of turbines in the

wind farms. The proposed method is however designed to operate with a

constant number of turbines. This is mainly because the fitness value of an

individual is the expected energy output. If the number of turbines were not

regulated, the algorithm would continue to add new turbines to a wind farm,

which would lead to fitter individuals, since they would have higher expected

energy outputs, albeit at lower efficiency rates. The proposed algorithm could

be configured with some adaptations so that a variable amount of turbines

would be possible and useful. A possible adjustment would be to determine the

fitness value of an individual in proportion to its efficiency rather than its

energy yield or the algorithm could be expanded by a restrictive economical or

technical function in the case of multi-objective optimization.

The proposed method optimizes as single criterion the energy output of a wind

farm with a constant number of turbines. A function is therefore required

which addresses the problem of deviating numbers of wind turbines that can

arise due to the altering effects of crossover and mutation.

3.2.7. Adjust to n-desired Turbines (trimton)

The function trimton adjusts the number of wind turbines to the preassigned

number. It checks every individual and counts the total amount of 1's,

representing wind turbines in its genetic code. The total count of turbines

can be lower or higher than the required quantity of turbines. Depending on

the difference, this function either adds or removes wind turbines from the

current wind farm. There are 2 available methods to achieve this task, which

can be set with the input variable "trimForce".

50

3.2.7.1. Random Adjustment

If "trimForce" is set to "FALSE", the adjustment process is random, which is

the default. For every individual the sum of current wind turbines is

subtracted by the preassigned number of turbines. If this leads to a positive

integer, then too many wind turbines are within the current wind farm, and

the integer specifies the amount of excessive turbines that must be removed

from the existing turbines. If the result is a negative number, additional grid

cells that are not present in the current wind farm configuration are selected

in which a turbine is then placed. The absolute of the resulting negative

number indicates how many turbines have to be selected, so that the wind

farm then consists of the required number of turbines. With this adjustment

method, also good located turbines, that have few total wake impacts or are

part of a wind farm with high fitness value, may be deleted.

The other available adjustment method, described next, attempts to

overcome this problem.

3.2.7.2. Probabilistic Adjustment

This method is activated if the input variable "trimForce" is set to "TRUE".

The probabilistic adjustment uses the fitness and total wake information of

all individuals in the current population. All individual genes are grouped

together according to their grid cell ID. The mean fitness value and mean

total wake value of all evaluated grid cells are calculated. If a grid cell is not

used in the current population, it receives the 25% quartile wake effect and

the average fitness value of the whole population. With a fitness and a total

wake value for every grid cell, two new variables are calculated. They

represent the likelihood that a grid cell is deleted if there are too many

turbines in the wind farm, or that a grid cell is selected if the wind farm does

51

not have enough wind turbines. The two probability variables are calculated

as follows:

 Equ. 23

 Equ. 24

The input variables for those equations are listed and described below:

 – is the resulting deletion probability of the grid cells that are used

in the current individual. This variable is used for wind farms with

excessive wind turbines.

 – is the mean wake effect of a grid cell respective to all

individuals. This variable is evaluated only for grid cells that are used

in the current individual.

 – is the maximum wake effect of all grid cells which are used in

the current individual

 – is the mean fitness value of a grid cell respective to all

individuals. This variable is evaluated only for grid cells that are used

in the current individual.

 – is the maximum fitness value of all grid cells which are used in

the current individual

 – is the resulting selection probability of the grid cells which are

not used in the current individual, but in the rest of the population.

This variable is used for wind farms with insufficient wind turbines.

52

 – is the mean wake effect of a grid cell respective to all

individuals. This variable is evaluated only for grid cells that are not

used in the current individual.

 – is the maximum wake effect of all grid cells which are not

used in the current individual

 – is the mean fitness value of a grid cell respective to all

individuals. This variable is evaluated only for grid cells that are not

used in the current individual.

 – is the maximum fitness value of all grid cells which are not

used in the current individual

 – is a weighting parameter with a constant value of 3

The two probabilities are illustrated next in 4 different and abstract cases.

The exemplary wind farm for the calculations consists of 10 grid cells, where

random values are used for the "Mean Wake Effect" and "Mean Fitness

Value". All variables are illustrated in a traffic light scheme, with red

indicating "bad" and green indicating "good". Variable was set to 15 for

these illustrations.

53

Case 1

Description: All grid cells have the same fitness value, but different and increasing wake effects.

PS: The lower the expected wake effects of a grid cell, the higher the chance that this grid cell will be selected if

wind turbines are missing in the wind farm and, the higher the wake effect, the lower the probability of the grid

cell to be selected.

PD: The lower the wake effect of a grid cell, the lower the probability that this grid cell will be deleted if too

many turbines are in the wind farm. The higher the wake effect, the higher the chance to be deleted.

Case 2

Description: All grid cells have the same wake effect, but different and increasing fitness values.

PS: The lower the fitness value of a grid cell, the lower the chance that this grid cell will be selected if wind

turbines are missing in the wind farm.

PD: The lower the fitness value of a grid cell, the higher the probability that this grid cell will be deleted if too

many turbines are in the wind farm.

Figure 18: Adjusting trimton-probabilities PS and PD for cases 1 & 2

54

Case 3

Description: The grid cells have increasing wake effects and increasing fitness values. Although this relation is

very unlikely, it is used to illustrate two special issues. The parameter k will play a big role in this case, as it

increases the weight of the fitness values. If the fitness values vary very strong, the parameter k should be quite

small, if the fitness values are close together a higher parameter k is needed.

PS: The idea is that, some wake effects on a grid may be high, but may correspond to a wind farm constellation,

that achieves a high fitness value. If a grid cell achieves a high fitness value, but has high expected wake effects,

its probability to get selected, would still be considerably as can be seen for grid cell 10 in this case with k = 15.

PD: If a grid cell has a low wake effect and a low fitness value, the probability to be deleted will be high. This does

not count for the grid cell with the minimum wake effect. Although grid cell 1 has the lowest fitness value, the

probability to be deleted will be very low.

Case 4

Description: The grid cells have increasing wake effects and decreasing fitness values. This case is the most

probable.

PS: A grid cell with a low wake effect and a high fitness value will get a high probability to be selected. Contrary, a

grid cell with a high wake effect and a low fitness value will have a low probability of being selected.

PD: A grid cell with low wake effects and high fitness value will have a low probability of being deleted and vice

versa, a grid cell with high wake effects and low fitness values will have a high chance to be deleted.

Figure 19: Adjusting trimton-probabilities PS and PD for cases 3 & 4

55

After every individual is adjusted to the desired number of wind turbines, the

genetic information of all individuals is then passed to the function getRects.

3.2.8. Get Grid-ID`s from Genetic Information (getRects)

The result of the previous function is a matrix of 0's and 1's, which represents

the genetic information of all individuals. This matrix is recoded as a list of

different wind farms with the particular grid coordinates and grid-ID's.

> mut1[,1:3]

 [,1] [,2] [,3]

 [1,] 0 0 0

 [2,] 0 0 1

 [3,] 0 0 0

 [4,] 0 0 1

 [5,] 0 0 0

 [6,] 1 1 1

 [7,] 0 0 0

 [8,] 0 0 0

 [9,] 0 0 0

[10,] 0 0 0

[11,] 0 0 0

[12,] 1 1 1

[13,] 0 0 0

[14,] 1 1 0

[15,] 0 1 0

[16,] 0 0 0

[17,] 0 0 1

[18,] 1 1 0

[19,] 1 0 0

[20,] 0 0 0

[21,] 0 0 0

[22,] 0 0 0

[23,] 0 0 0

[24,] 0 0 0

[25,] 0 1 0

[26,] 0 0 0

[27,] 1 0 1

[28,] 0 0 1

[29,] 1 0 1

[30,] 1 1 0

[31,] 0 0 0

[32,] 1 0 1

[33,] 0 1 0

[34,] 0 1 0

[35,] 0 0 0

[36,] 1 1 1

> getRects(mut1[,1:3],Grid)

[[1]]

ID X Y

15 6 4600404 2758495

23 12 4600404 2758405

27 14 4600044 2758315

31 18 4600404 2758315

34 19 4599954 2758225

44 27 4600134 2758135

46 29 4600314 2758135

47 30 4600404 2758135

51 32 4600044 2758045

55 36 4600404 2758045

[[2]]

ID X Y

15 6 4600404 2758495

23 12 4600404 2758405

27 14 4600044 2758315

28 15 4600134 2758315

31 18 4600404 2758315

42 25 4599954 2758135

47 30 4600404 2758135

52 33 4600134 2758045

53 34 4600224 2758045

55 36 4600404 2758045

[[3]]

ID X Y

11 2 4600044 2758495

13 4 4600224 2758495

15 6 4600404 2758495

23 12 4600404 2758405

30 17 4600314 2758315

44 27 4600134 2758135

45 28 4600224 2758135

46 29 4600314 2758135

51 32 4600044 2758045

55 36 4600404 2758045
R Output 9: Left: First 3 exemplary individuals after trimton-function - Right: Output of

getRects-function for the exemplary 3 individuals

56

The columns of the matrix on the left represent the various individuals or wind

farms of the population. The rows represent the discrete genes or grid cells of

an individual. In this case, 36 grid cells are available whose centroids are each a

potential location for a turbine. Grid cells with the value 1 are extracted for

each individual and according to the row numbers; the stored values from the

indexed data frame from chapter 3.2.1 are assigned to a new list, resulting in

the output on the right side above. The colors signal the correspondence of

individual genes with the value 1 to the resulting grid ID's and coordinates.

This function marks the last step of the program cycle and is activated starting

with the second iteration. The algorithm then continues with evaluating the

fitness of the new generation.

3.2.9. Termination Criteria

The algorithm stops when the amount of generations exceeds the input

variable iteration or when a wind farm with an efficiency of 100% is found.

4. Results

To verify that the algorithm works, it is tested with a small rectangular area,

where the optimal solutions are easy to find. The different methods of the

algorithm are tested on this area to identify their pros and cons and to find the

best configuration scheme.

With this optimal input configuration scheme, the algorithm is applied to a

hypothetical case area that was widely used in the literature (Case 2: Reference

Shape). (Mosetti, et al., 1994) (Grady & Hussaini, 2005) (Ituarte-Villarreal & Espiritu, 2011) (Ituarte-

Villarreal & Espiritu, 2011) (Shakoor, et al., 2015)

57

Next, the terrain effects on an existing wind farm in Austria, an area in Styria

(Case 3: Wind Farm "Tauern"), are tested at a considerable altitude of

approximately 1800m.

The results of each case and the behavior of the algorithm are illustrated and

discussed in each corresponding subchapter. The output illustrations of all

cases consist of 8 similar plots (e.g. for Case 4.1.1 consider Figure 21 and Figure

22):

 Figure a) displays the best-found solution of a test case. The given area is

colored in blue and the corresponding grid is overlaid in black. The points

inside this grid represent the turbine locations of the best-found

solution. The colors and the values below these points indicate their total

wake effect in a traffic light scheme. Lower wake effects will result in

green points and contrary higher wake effects will be colored in red.

Below the best-found solution the minimum and average distance

between all turbines of this solution are noted.

 Figure b) shows a heat map of the entire grid and gives an indication of

how often a particular grid cell was selected during the entire

optimization process. The values are calculated with an Inverse Distance

Weighting method and plotted in a traffic light scheme in a similar

manner as in Figure a). The more often a grid cell has been selected, the

greener the cell becomes and the more rarely it has been chosen, the

redder it is shown.

 Figure c) indicates the development of the efficiencies of all generations.

The maximum efficiency rates are plotted in green, average rates in blue

and minimum rates in red. With the exception of the case that terrain

58

effects are neglected, the efficiency rates are always directly

proportional to the energy outputs and therefore to the fitness values of

the individuals.

 Figure d) gives an overview of the population sizes during all generations.

The amounts of individuals are counted after the fitness, selection and

crossover function, although they are identical for the fitness and

crossover function. Black points indicate the number of individuals after

the fitness function, red points the number after the selection function,

and green points the number after the crossover function. Thus, 3 points

per generation are visible.

 Figure e) shows for all generations the selection percentages in the

upper half and the number of used crossover parts in the lower part.

 Figure f) is a combination of Figure b) and the upper half of Figure e). The

efficiencies for all generations are displayed and green horizontal lines

are drawn for the generations where the selection percentage was

greater than 75%.

 Figure g) is a combination of Figure b) and the lower half of Figure e). The

efficiencies for all generations are displayed again and red horizontal

lines are drawn for the generations where the number of crossover parts

was greater than 2.

 Figure h) uses again the efficiency values of Figure b) and adds black

horizontal lines for the generations in which a variable mutation rate was

applied, instead of the fixed mutation rate.

59

All tests were conducted on a PC with the following specifications:

 Intel Core(TM) i7-2600 CPU @ 3.40 GHz

 8GB RAM

The following R code shows an example of calling the genAlgo function, which

starts an optimizing process with the given input values.

Result <- genAlgo(Polygon1=Polygon, n=15, SurfaceRoughness=0.3,

 Rotor=30,fcrR=15, RotorHeight=60, referenceHeight=60,

 iteration=100, Proportionality=0.2, mutr=0.08,

 vdirspe = data.in, topograp="TRUE", elitism="TRUE", nelit=7,

 selstate="FIX", crossPart1 = "EQU", trimForce="TRUE")

 R Output 10: Exemplary call to genAlgo

60

4.1. Case 1: Test Shape

4.1.1. Fixed Selection vs. Variable Selection

The following input values are used for all tests of Case 1. Exceptions are

mentioned at the beginning of each subchapter.

Input Variable Value Output of GridFilter

n 12

SurfaceRoughness 0.14

Rotor 30

fcrR

RotorHeight

referenceHeight

3

60

60

iteration 100

Proportionality 1

mutr 0.008

vdirspe data.in

topograp "FALSE"

elitism "TRUE"

nelit 6

selstate "FIX"

crossPart1 "EQU"

trimForce "FALSE"

The data frame (data.in) containing the wind speed information has the

following inputs and the resulting wind rose illustrated below on the right.

Input Wind data frame Windrose of data.in

> data.in

 ws wd probab

 12 0 25

 12 0 25

 12 0 25

 12 0 25

Figure 20: Input values for Case 1 - Test Shape

61

Fixed Selection

All input variables are as described on the previous page. This will mark the

default of the input configurations for Case 1.

Figure 21: Results of Default Input: a) The best-found solution of the algorithm b) Interpolated heat
map of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to energy yield)
d) Amount of individuals after every evolutionary method

a b

c

d

62

Figure 22: Results of Default Input: e) The selection percentage during the evolution f) High selection
influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate influence

e

f

g

h

63

The result found in figure a) represents the best possible solution and therefore

the global optimum of the genetic algorithm. The point color and the number

below a turbine location indicate the total wake effect of this turbine. Green

points indicate low wake effects, while red points indicate high wake effects.

The heat map in figure b) demonstrates how often a grid cell was selected

during the entire optimization process and is calculated with an inverse

distance weighting. The more often a grid cell is selected, the more the cell is

colored green and the more rarely it is chosen, the more the color becomes

red.

In figure c) wind farm efficiencies are plotted for all iterations. The maximum

efficiencies are plotted in green, average rates in blue and minimum rates in

red. In this test, the algorithm seems to converge at the initial stage until

iteration t=30, and although the maximum remains nearly constant during this

period, the average efficiencies increase almost constantly, similar to the

minimum rates, although with higher fluctuations. It is also apparent that the

algorithm has found the best possible solution in the 73 generation.

In figure d), the set of individuals in the populations is displayed. The amounts

are counted after the fitness, selection and crossover function, although they

are identical for the fitness and crossover function. A fixed selection rate of

50% and 2 crossover parts in the early states constantly decrease the

populations by the 4 deleted individuals in the selection function. Once the

amount of individuals is less than 20, all individuals are selected with a

selection percentage of 100% and the crossover point rate is increased. As soon

as the crossover point rate exceeds a value of 3, 3 crossover parts are used,

leading to increased permutations and population sizes. As a result, the

variance of the individual fitness values will also increase, which can lead to

better solutions, since the algorithm would have more building blocks to

64

construct a wind farm layout and would therefore have better exploration

properties. This can be observed at the iteration t=59 at which a better solution

was found shortly after the two-time use of 3 crossover parts.

The selection percentage and the amount of crossover parts for all iterations

are presented in figure e). Figure f) shows the development of efficiencies and

marks generations with green lines, in which the selection percentage is over

75%. Figure g) identifies iterations with more than 2 crossover parts with red

lines and figure h) indicates where the variable mutation rate was used with

black lines.

As noted above, the fitness of the populations or their efficacy increased while

the number of individuals decreased consistently up to the ~20 generation.

Then, as more than 3 duplicated individuals represented the actual best

solution, the mutation rate was increased for the first time at the iteration

t=19.

The amount of individuals was quite low during t=20 and t=60. As less than 20

individuals existed, the selection percentage was set to 100% and the crossover

point rate was increased. This did occur 11 times, as can be seen in figure e) &

f) and the crossover rate increased therefore in total by 0.33 (11*0.03). This

was sufficient, that the crossover point exceeded 3 in t=55 and the population

size increased rapidly. The algorithm used 3 crossover parts only 3 times in

total, but the influence on the variance of the individuals was intense. Although

the algorithm jumped back to 2 crossover parts at t=57 to t=67 and at t=69, the

variance stayed considerable almost until the end.

As the populations in this method were quite small, the computational time

needed was comparably low and took in total about half an hour.

65

Variable Selection

Exception: The variable selstate is set to "VAR".

Figure 23: Results of Variable Selection: a) The best-found solution of the algorithm b) Interpolated
heat map of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to energy
yield) d) Amount of individuals after every evolutionary method

a b

c

d

66

Figure 24: Results of Variable Selection: e) The selection percentage during the evolution f) High
selection influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate
influence

e

f

g

h

67

The variable selection method did not lead to the best possible solution even if

it came quite close and only 1 turbine would have to be moved 2 grid cells to

the south. The heat map indicates that with this method the preference for

good grid cells is not as strong as with the fixed selection. This can be

attributed to higher numbers of individuals in the initial populations, i.e. to

more slowly converging properties, and hence to more diverse and inferior

possibilities that had to be evaluated.

The converging abilities of this method appear to be weaker than in the fixed

selection method. On the one hand, the variance of the fitness values remained

high up to the ~80th generation, and on the other hand, the algorithm even fell

back several times on 1 crossover part. This has reduced the number of

individuals and thus the variance in the populations so that the algorithm could

only focus on a smaller number of currently best individuals.

The state with 1 crossover part leads to reduced population sizes, which are

evident especially during the iterations t=70 to t=87, whereby the selection

percentage had to be increased to 100% for 3 times as a result of too small

population sizes.

Although the found solution is near the optimum, it took about twice as much

computing time as the fixed selection method due to higher population sizes,

between t=1 and t =50. During these iterations, 200 individuals were evaluated

in the fitness function, which is by far the most time-consuming function of this

algorithm. For these reasons given, the variable selection method is classified

as weaker than the fixed selection with current settings. With more intelligent

selection parameters which, among other things, increase or decrease the

variable selection pressure relative to the fitness development or adapt the

initial selection rate relative to the problem size, this method could probably be

adapted reasonably.

68

4.1.2. Equal Crossover vs. Random Crossover

Equal Crossover

Equal Crossover (crossPart1 = "EQU") is the default of the input configuration

scheme. The outputs of the fixed selection method are used as reference.

Crossover Random

Exception: The variable crossPart1 is set to "RAN".

Figure 25: Results of Random Crossover: a) The best-found solution of the algorithm b)

Interpolated heat map of all used individuals c) Evolution of wind farm efficiencies (exactly
proportional to energy yield) d) Amount of individuals after every evolutionary method

a b

c

d

69

Figure 26: Results of Random Crossover: e) The selection percentage during the evolution f) High
selection influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation
rate influence

e

f

g

h

70

The solution found with the random crossover method is worse than both

previous methods and it was found close to the end of the optimization run, in

the 99th generation. Although the heat map indicates strong preferences for

certain grid cells, some of these often selected grid cells do not belong to the

optimal wind farm layout which can be seen in Figure 21 a).

The evolution of the maximum fitness values is not as constantly increasing as

the previous methods and remained more static, especially in the first 20th

generations. The mean and minimum values also seem to increase slower than

the equal crossover method.

The population sizes were overall quite small and the algorithm had to increase

the selection percentage 13 times to 100%. This lead to 3 crossover parts at

t=49, t=73 and 4 times during t=84 to t=89. The variance between the best and

worst individuals increased then strongly with minimum fitness values, that are

similar to the worst individual in the first generation and although the mean

fitness values dropped also for about 5%, the algorithm was able to find better

solutions after t=96.

Although this method was comparably fast and took about 20 minutes, it is

considered weaker than the previous methods and harder to interpret, as no

information of the length of all randomly divided crossover parts is available.

Similar to the previous method, the random crossover technique could be

implemented and used in a smart way. The algorithm could use random

crossover, when the populations seem to be stuck in local optima, where more

variance is required to explore the search space. With equal and constant

crossover parts, the method is more predictable, as it cuts the genetic code

always at the same locations and I assume that the converging abilities are

therefore stronger. If this behavior does not lead to any further improvement,

the crossover point locations could be randomly created or increased.

71

4.1.3. Elitism Inclusion vs. Elitism Exclusion

Elitism Included

Included elitism (elitism = "TRUE") is the default of the input configuration

scheme. The outputs of the fixed selection method are used as reference.

Elitism Excluded

Exception: The variable elitism is set to "FALSE"

Figure 27: Results of Excluded Elitism: a) The best found solution of the algorithm b) Interpolated
heat map of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to
energy yield) d) Amount of individuals after every evolutionary method

a b

c

d

72

Figure 28: Results of Excluded Elitism: e) The selection percentage during the evolution f) High
selection influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation
rate influence

e

f

g

h

73

The solution found without elitism is the worst solution of all test cases. 4

turbines would have to be displaced to achieve the best possible solution. The

heat map shows strong preference for certain grid cells, where half of these

cells do not belong to the optimal solution.

The maximum fitness values vary much more than with previous methods and

even after the first generation, the maximum value dropped for about 3%. In

the early stages, all other methods show an increase in maximum fitness

values. Although the selection percentage had to be increased 21 times, which

additionally increased the crossover point rate, it did not lead to an increase in

the crossover parts. The random crossover results in comparison had a

selection rate of 100% for 13 iterations only, and 3 crossover parts for 6

iterations. The fixed selection method required only 11 selection percentages

of 100 and had 3 crossover parts for 3 generations. The higher fluctuations in

the maximum fitness values of this method decreased the crossover point rate

more often, while low population sizes below 20 individuals increased the

crossover point rate. Because of these counterbalancing effects, the crossover

parts were not able to change and remained constant at 2.

The variable mutation method was used 8 times, which is similar to the variable

selection method. All other methods used the variable mutation method more

often, which can be interpreted as superior convergence ability.

The population sizes in this method were very small and the optimization

process took only 15 minutes. Although this method was the fastest, it was also

the weakest.

74

4.1.4. Random Adjustment vs. Probabilistic Adjustment

Random Adjustment

Random Adjustment (trimForce = "FALSE") is the default of the input

configuration scheme and therefore identical to the outputs of the fixed

selection method.

 Probabilistic Adjustment

The variable trimForce is set to "TRUE".

Figure 29: Results of Probabilistic Adjustment: a) The best-found solution of the algorithm b)

Interpolated heat map of all used individuals c) Evolution of wind farm efficiencies (exactly
proportional to energy yield) d) Amount of individuals after every evolutionary method

a b

c

d

75

Figure 30: Results of Probabilistic Adjustment: e) The selection percentage during the evolution f)
High selection influence on evolution g) Crossover influence of 3 crossover parts h) Variable
mutation rate influence

e

f

g

h

76

The result found by this method is the best possible solution and identical to

the result from the fixed selection method. The heat map shows that 7 of the

strongly preferred grid cells correspond to the best possible solution.

The maximum fitness values increased almost constantly and reached the

global optimum in the 73 generation, similar to the results with default inputs.

The average efficiency of this method, which is the only to reach almost 80% at

t=76, is thus significantly higher than in the other methods. The exploitation

qualities seem to be stronger with a probabilistic adjustment method

compared to the random one, especially after the first ~20 generations. This

can be seen in the standard deviations of the individual fitness values during

the whole evolution process.

Random Adjustment (4.1.1) Probabilistic Adjustment (4.1.4)

Figure 31: Standard deviations of populations with random adjustment on the left and
probabilistic adjustment method on the right. Black lines indicate a variable mutation rate

The values with random adjustment range between 400 and 1400 while the

probabilistic adjustment values range between 200 and 1200 and are

considerably lower.

The population sizes were quite small and the algorithm had to use a selection

percentage of 100% for 16 times in total. This resulted in 3 crossover parts for 3

times during the evolution at t=76, t=88 and t=94, which then lead to an

increase in the variance of the individuals and population sizes.

The strong exploitation properties are also evident by the frequently used

variable mutation rates. Since the algorithm only switches to a variable

77

mutation rate when 3 identical individuals represent the best solution, this

method seemed to provide many identical best solutions that were not

significantly affected by higher mutation rates. This can be seen in figure h),

where several consecutive variable mutation rates were applied. Although this

decreased the mean and the minimal fitness values, the maximum values

remained unchanged. Further, the amount of identical best solutions had to be

higher than 2, to trigger the variable mutation again.

As this method reached the best possible solution, has good exploiting and

exploring abilities and was about 5 minutes faster than the fixed selection

method, which also reached the best possible solution, this input configuration

scheme is with current parameters considered to be the best one available.

The results of the pretests for Case 1 are shown in the following table. The

values are displayed with a color traffic light system, with good values shown in

green and bad values in red.

Table 5: Color graded results from the pretests for Case 1

It can be seen, that the algorithm worked best with the default inputs including

the probabilistic adjustment method.

78

4.2. Case 2: Reference Shape

The optimization problem in Case 2 refers to a widely used wind farm layout

problem. The considered wind farm has a total area of 2km x 2km and is

divided into 100 squares with a resolution of 200m x 200m. The following input

values were used in the literature.

Wind speed velocity 12 m/s

Wind Direction Unidirectional uniform wind

Hub Height 60 m

Rotor Radius 40 m

Thrust Coefficient Ct 0.88

Surface Roughness 0.3 m

Air Density 1.2253 kg/m³

Table 6: Parameters and characteristics of previous studies (Shakoor, et al., 2015)

Some of the best resulting wind farms in literature are shown in the following

illustration.

Figure 32: Optimal layouts by earlier studies (Shakoor, et al., 2015)

79

Reference Number of Turbines Energy Output in kW Efficiency rate in %

Shakoor, et al. 32 16251 97.70

Grady, et al. 30 14310 92.015

Rahmani, et al. 26 12819 95.11

Mosetti, et al. 26 12352 91.645

Table 7: Results of optimal layouts by earlier studies (Shakoor, et al., 2015)

The efficiency rate for a wind turbine used by the previous studies was 40% in

comparison to the efficiency rate of the proposed method, which is 59.3%

(Betz-value). For this reason, the energy values are not directly comparable, but

also because some inconsistencies regarding the correct rotor radius were

found in the work of Grady & Hussaini (2005), Ituarte-Villarreal & Espiritu

(2011) and Shakoor (2015) as they obviously mistook a rotor diameter of 40m

with a rotor radius of 40m. Grady & Hussaini (2005) used a turbine rotor radius

of 20m in the formula for turbine power production as shown below:

Figure 33: Formula for turbine power production according to Shakoor (2015) and Grady
(2005)

If all values except the wind speed (uo) of equation (3) are multiplied together,

a value of 301.59W is obtained. Dividing this by 1000 yields 0.3kW, as in

equation (4). This coefficient is still only valid for a rotor radius of 20m. Several

other papers were found, including Saavedra-Moreno (2011) and Guirguis

(2016) that used equation (4) as power production formula. The rotor radius

used by previous studies had therefore to be 20m which would conform to the

resulting energy outputs in Table 7. The tests for Case 2 were however done

with a radius of 40m, resulting in higher energy outputs, lower efficiency rates

and different layouts, as this problem was noticed after the tests were done.

80

4.2.1. Constant Wind Speed and Uniform Wind Direction

Input Variable Value Output of GridFilter

n 30

SurfaceRoughness 0.3

Rotor 40

fcrR

RotorHeight

referenceHeight

5

60

60

iteration 100

Proportionality 0.99

mutr 0.008

vdirspe data.in

topograp "FALSE"

elitism "TRUE"

nelit 7

selstate "FIX"

crossPart1 "EQU"

trimForce "TRUE"

The data frame (data.in) containing the wind speed information has the

following inputs and the resulting wind rose illustrated below on the right.

Input Wind data frame Windrose of data.in

> data.in

 ws wd probab

 12 0 25

 12 0 25

 12 0 25

 12 0 25

Figure 34: Input values for Case 2 - Reference Shape and uniform wind direction

81

Figure 35: Results of Case 3.2.1.: a) The best-found solution of the algorithm b) Interpolated heat map
of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to energy yield) d)

Amount of individuals after every evolutionary method

a b

c

d

82

Figure 36: Results of Case 3.2.1.: e) The selection percentage during the evolution f) High selection

influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate influence

e

f

g

h

83

The best possible solution to this problem is shown in Figure 32 with the

layouts from Grady, Turner, Emami and Serrano.

Shakoor achieved a layout with higher energy yield by rotating the squared

area under consideration by 45 degrees, which can be seen in Figure 32. With

this new orientation of the area, Shakoor was able to place 2 edges of the

square facing north while the remaining layouts had only 1 edge of the square

facing north. He could therefore place 19 turbines on locations without any

influential wake effects, whereas the other layouts were restricted to a

maximum of 10 turbines without any influential wake effects. Since the area in

the proposed method is considered constant and cannot be rotated at will, the

results obtained cannot be compared with the results achieved by Shakoor.

The solution found by this method did not reach the best possible solution, but

it can be seen that the algorithm also tried to align 3 rows of 10 turbines. The

second and third rows were placed with shorter distances to the turbines in

front, as the higher rotor radius of 40m resulted in higher wake diameters.

The efficiency values of this run converged until about t=37, wherein the

crossover parts were first increased to 3, which in combination with a higher

mutation rate resulted for the next 10 generations in a strong increase of the

variance of the fitness values. The algorithm then converged again until t=53,

where the crossover parts were again increased to 3 for the following 8

generations. Interestingly, the average and minimum efficiency values

decreased for these 8 generations, while the maximum values rose almost

constantly. After the crossover part dropped to 1 in t=87, the variance of the

efficiency values and the population size decreased considerably, and the

algorithm then converged again to the end where it found the best solution.

As the variances after iteration 37 and especially after iteration 53 were quite

big, the algorithm was not able to generate more than 3 identical best solutions

84

to activate the variable mutation rate. It was only used 3 times at t=34, 35 &

38. If the algorithm was able to develop further, for instance 200 iterations,

then the variable mutation rate would probably have been activated more

often, which could have lead to superior solutions as the following best

solution after the same test with iteration = 300 shows:

Figure 37: Resulting best individual for case 4.2.1 after 300 iterations

The expected energy output after 300 iterations is 910 kW and the efficiency is

0.97% higher. It can also be seen that the algorithm was able to place 3

turbines in each column, which is identical to the best possible solution of this

problem, although the specific arrangement differs due to higher wake

diameters. The best solution after 100 iterations had one column with 4

turbines and therefore higher wake effects. The optimization run for the case

with 100 iterations took about one and a half hours, while the test with 300

iterations took about 5 hours.

85

The same test was also done with a rotor radius of 20m and 100 iterations to

be able to compare the results to previous studies. The best resulting individual

for this test can be seen on the following figure.

Figure 38: Resulting best individual for case 4.2.1 although with rotor radius of 20m

Figure 39: Evolutionary data for best individual of case 4.2.1 with rotor radius of 20m

86

If the energy output of this best individual is multiplied with an efficiency of

40% instead of 59.3% in the proposed method, the energy output decreases

from 21585.1 kW to 14599.9 kW. This output is still higher than Grady's result

although with a lower efficiency which is due to the differing power production

formula in Figure 33. The value 0.3 is only valid for an efficiency rate of 40%, a

rotor radius of 20m and an air density of 1.2, resulting in 0.30159

(0.4*0.5*1.2*202* / 1000 = 0.30159), which is then truncated to 0.3 and

multiplied with the third power of the wind velocity. The proposed method has

a default air density value of 1.225 resulting in a value of 0.30787 which is then

multiplied by the third power of the wind speed. If the energy output of this

best solution would be multiplied by 0.3 instead of 0.30787, the energy output

would further decrease from 14599.9 kW to 14187.5 kW. This energy output is

now comparable to the energy output of Grady in Table 7, which is the only

one with 30 turbines. The energy output and efficiency rate of the proposed

algorithm are about 0.8% lower compared to Grady's solution.

87

4.2.2. Constant Wind Speed and Variable Wind Direction

The wind farm is optimized with 4 equally distributed wind directions and

constant wind speeds of 12m/s as shown below. Additional, the same input

values of chapter 4.2.1 were used for this optimization run with 40m rotor

radius.

Input Wind data frame Windrose of data.in

> data.in

 ws wd probab

 12 0 25

 12 90 25

 12 180 25

 12 270 25

Figure 40: Input wind data for Case 2 - Reference Shape and multiple wind directions

88

Figure 41: Results of Case 3.2.1.: a) The best-found solution of the algorithm b) Interpolated heat map
of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to energy yield) d)

Amount of individuals after every evolutionary method

a
b

c

d

89

Figure 42: Results of Case 3.2.1.: e) The selection percentage during the evolution f) High selection

influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate influence

e

f

g

h

90

As layouts with a single wind direction are quite easy to understand and

probably also easier and faster to optimize by hand, correct interpretation and

optimization of layouts with several wind directions becomes more complex.

Since in this example wind has come uniformly from all four directions of the

sky, no grid cell with a turbine should have a directly adjacent grid cell with a

turbine. The best-found solution shows such a layout that is also more spread

over the whole area and not as regularly arranged as for a layout with single

wind direction. Nevertheless, with the given problem and the resulting layout,

it is not so easy to determine visually whether a better result would be possible

or not.

The efficiency values increased and converged until t=37, where the crossover

parts increased to 3 for 3 times in a row, which then increased the variance of

the fitness values and the population sizes. The variance remained high up to

the ~70th generation, where it began to decline again due to low population

numbers. The peak of this decrease is at t=90, where the maximum, mean and

minimum value were quite close together. Although the variation values

between t=80 and t=100 were quite low, the algorithm was able to find several

better individuals during this time.

The calculation time for this test was the highest with about 5 hours in total,

since 4 wind directions had to be evaluated for each wind farm compared to

one single wind direction in the other tests.

The previous tests and most of the research in literature took a rectangular

shape as area to be optimized, although the real space available on which a

wind farm is actually to be built, will most likely not be only rectangular. The

available area can be restricted, among other things by property rights, nature

protection or infrastructure. The algorithm is tested in the following chapter

with an irregular area, in which the terrain effect model is investigated.

91

4.3. Case 3: Wind Farm "Tauern"

Input Variable Value Output of GridFilter

n 14

SurfaceRoughness 0.3

Rotor 33

fcrR

RotorHeight

referenceHeight

6

60

60

iteration 100

Proportionality 1

mutr 0.008

vdirspe data.in

topograp "FALSE"

elitism "TRUE"

nelit 7

selstate "FIX"

crossPart1 "EQU"

trimForce "TRUE"

The data frame (data.in) containing the wind speed information has the

following inputs and the resulting wind rose illustrated below on the right.

Input Wind data frame Windrose of data.in

> data.in

 ws wd probab

 12 0 25

 12 0 25

 12 0 25

 12 0 25

Figure 43: Input values for Case 3 - Wind Farm "Tauern"

92

4.3.1. Terrain Effect Model Excluded

Figure 44: Results of Case 3.3.1.: a) The best-found solution of the algorithm b) Interpolated heat map
of all used individuals c) Evolution of wind farm efficiencies (exactly proportional to energy yield) d)

Amount of individuals after every evolutionary method

a b

c

d

93

Figure 45: Results of Case 3.3.1.: e) The selection percentage during the evolution f) High selection
influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate influence

e

f

g

h

94

The best-found individual can be regarded as an optimal solution, as 12 of the

14 wind turbines can be aligned next to each other without any wake

influences and only 2 turbines have to be placed in the wake of other turbines.

Those 2 wake influenced turbines are placed with a maximum possible distance

to the influencing turbines, which is good in terms of wind speed recovery.

Although the algorithm jumped back to 1 crossover part in the early stages

which lead to a decrease in the population size and in the spreading of the

individual fitness values, an optimal solution was already found at t=23. The

amounts of individuals in the populations were quite low during the whole

evolution process and the selection percentage had to be increased several

times, which did not lead to an increase in the crossover parts. Besides, 2

crossover parts were sufficient to solve this problem and although the variable

mutation rate was activated 14 times, it was not needed to reach the optimum

at t=23. This optimization run took about 15 minutes. The best-found individual

is displayed above an aerial image of the real wind farm, even though the wind

inputs for this optimization run were pure assumptions and do not represent

real conditions, making a direct comparison difficult.

Figure 46: Best-found solution of wind farm "Tauern" neglecting terrain effects

95

4.3.2. Terrain Effect Model Included

Figure 47: Results of Case 3.3.2.: a) The best-found solution of the algorithm b) Interpolated heat map
of all used individuals c) Evolution of wind farm efficiencies (not proportional to energy yield) d)

Amount of individuals after every evolutionary method

b

c

d

a

96

Figure 48: Results of Case 3.3.2.: e) The selection percentage during the evolution f) High selection
influence on evolution g) Crossover influence of 3 crossover parts h) Variable mutation rate influence

e

f

g

h

97

The best-found solution of this method can only be correctly interpreted, when

the terrain effects are known, but it is obvious that the energy output of the

method with terrain effects (25862.62 kW) is about 12% lower than without

terrain effects (29475.29 kW), although their efficiency rates are quite similar.

The layout of the best individual of this method shows again 12 uninfluenced

turbines and 2 wake-influenced turbines, but with a smaller distance to the

wake-inducing turbines. Without terrain effects, both influenced turbines were

6 grid cells or 1188 (6*6*33=1188) meters away. Considering the terrain

effects, one influenced turbine was 5 grid cells or 990m apart and the other

one 4 grid cells or 792m. One possible reason for this is visible on the following

illustration of the elevation and the resulting wind speed multipliers for this

area.

Figure 49: Elevation values and wind speed multipliers for the best individual of Case 3.3.2

The two wake-inducing wind turbines marked in the red circle are located near

a hillside and have therefore multiplier values above 1. Also all other turbine

locations have multiplier values greater than 1 and are positioned close to the

dark-green area which indicates higher elevation. The best-found solution of

the method without terrain effects, illustrated below, shows 2 turbine locations

with multiplier values below 1. It can clearly be seen that the terrain properties

were ignored and the turbines are not concentrated in dark green areas.

98

Figure 50: Wind speed multiplier values for Case 3.3.1

Although higher elevations have a positive effect on the expected energy

output due to the wind speed multiplier method, they also have a negative

effect as they decrease the air density as shown below.

Figure 51: Normal air density and corrected air density for best individual of Case 3.3.2

The default air density is shown on the left with a value of 1.225 for each

turbine, which refers to sea level. As this wind farm is situated at an elevation

of about 1700m, the corrected air density values drop to about 0.98 shown on

the right, which reduces the expected energy output of the wind farm by about

20%.

99

Figure 52: Top left) Corine Land Cover Surface Roughness - Top right) Elevation roughness

indicator - Bottom left) Modified surface roughness - Bottom right) Adapted wake decay

constant for best individual of Case 3.3.2

The two roughness values on the upper half of the graph are used to calculate

the modified surface roughness at the bottom left, which is then used to

calculate the wake decay constants at the lower right.

The higher the modified surface roughness, the higher is the adapted wake

decay rate. In the event that the wind reference height is lower than the

turbine hub height, the wind speed increases with increasing surface

roughness. If the reference height is higher than the hub height, the wind

speed decreases with increasing roughness.

Furthermore, the higher the adapted wake decay value, the higher the wake

diameter and the lower the wind speed deficit inside the wake. The turbines in

this best individual are located in grid cells with low modified surface

100

roughness values, resulting in low adapted wake decay rates. This means, that

the wakes will not spread so quickly but at the same time the wind speeds

inside the wakes will be lower. As the impact of the wake decay value on the

spread of a wake with increasing distance is considerably stronger to the wind

velocity recovery, the algorithm preferred grid cells with low roughness values

and therefore low wake decay values with minor wake diameters. The best

individual of this method is plotted on an aerial image of the real wind farm.

Figure 53: Best-found solution of wind farm "Tauern" including terrain effects

Although the input values, except the rotor radius, of this optimization run

were pure assumptions, the layout of the proposed method is comparable to

the real wind farm in terms of selected turbine locations, gaps between the

turbines and general arrangement. The algorithm could be further tested with

a slightly smaller grid resolution so that at least 14 grid cells were placed

horizontally and the algorithm could thus place all turbines side by side. For this

purpose, the number of wind directions should be increased since a wind farm

101

with an efficiency rate of 100% would stop the algorithm irrespective of

whether a better layout with 100% efficiency but with higher expected energy

output would exist.

When terrain effects are taken into account, the efficiency rates do not

correspond linearly to the expected energy outputs of a wind farm, since an

entire wind farm can be exposed to higher wake influences but can achieve

higher wind speeds with higher located wind turbines and can achieve thus

higher energy yields. This can be seen in the best-found solution regarding

efficiency for this method, shown below, which differs from the best-found

solution regarding energy output in Figure 47 a).

Figure 54: Best-found solution regarding efficiency of wind farm "Tauern" including terrain
effects

The energy output of the wind farm with highest efficiency rate of 98.73% is

25520 kW and therefore about 340 kW lower than the wind farm with highest

energy output of 25862 kW, achieved with a lower efficiency rate of 97.95%.

102

5. Discussion & Conclusions

The test runs show that the proposed algorithm works as expected and is able

to optimize a given wind farm layout problem. Some of the improvements to

previous methods and some of the major drawbacks of the proposed method

should be further discussed in this chapter.

It was intended to build a practical tool that could optimize wind farms under

real conditions and with real data. Therefore, the shape of the wind farm in the

proposed method can have any form and size as compared to many previous

studies limited to the optimization of a rectangular area. The algorithm would

also function with multi-polygons or with polygons that contain holes although

this has not been sufficiently tested. The following example shows however a

best-found solution for a multi-polygon area with random input values.

Figure 55: Exemplary best-found solution of multi-polygon area

Several restrictions on the area are therefore possible, which could take into

account e.g. nature conservation, property rights, infrastructure, development

and their corresponding minimum distances. If the considered wind farm is

situated somewhere in Europe then a terrain effect model is available, which

103

includes real geodata. The terrain model uses an elevation raster and a land

cover raster to adapt wind speeds to higher elevations, to adjust the air density

at a certain altitude, to calculate a surface roughness according to the land

cover type and elevation roughness and to adapt the wake decay parameter

according to the surface roughness. As described in chapter 4.3.2, the

consideration of terrain effects had a significant influence on the expected

energy production and layout of a wind farm. The wind speed multiplier

method attempts to estimate local wind conditions according to the orography

of the terrain, resulting in heterogeneous wind speeds across the surface.

Locations at higher altitudes will get higher wind speed estimations but

similarly lower air density values. The height thus influences the expected

energy output in both directions, although higher wind speeds and hence

heights will still be preferred, as their influence on wind power production is

exponential. The adapted surface roughness and wake decay value will change

the wake diameter and the wind velocity deficit. As the required input values

for the adapted values are extracted exactly at the location of a turbine, they

are not considered highly accurate. For a more realistic representation, a

roughness and a wake decay value should be evaluated over the entire

distance of the mutually influencing turbines, as this would also be the distance

over which the wake would spread and the wind velocity would be influenced.

The procedure of the proposed method includes many random effects, as the

crossover method divides the genetic information, representing available grid

cells, and creates possible permutations. It does this, without considering the

number of turbines in each crossover part, resulting in wind farms with

different total turbine counts. The mutation function also modifies several

random genes or grid cells, which may further influence the number of turbines

per wind farm. The trimton function adjusts the wind farms to the required

104

sum of turbines, with either a random or a probabilistic approach. If the

proposed method and, in particular, the calculation of the fitness values were

to be adapted so that the efficiency of the wind farm or the cost per unit of

energy would be optimized instead of the energy output, the function trimton

could have been omitted. If the overall profit of a wind farm is maximized with

an additional cost function for turbines, the algorithm could optimize the

number of turbines and the layout of the wind farm. This could reduce some of

the present random effects. Other random effects are inherent in the roulette-

wheel selection method, which randomly selects a certain number of

individuals from the population, although proportionally to their fitness score.

Even with activated elitism, which increases the fitness values of n-elitist

individuals by a certain factor, there is still no guarantee that the elitist

individuals will be selected. This uncertainty is increased when the number of

crossover parts is higher than 2, which increases the number of possible

permutations and thus the number of individuals in the populations. If, for

example, 3 crossover parts and 100 individuals or 50 parental groups are

present in the current population, a total of 400 (50*23 = 400) permutations

would be possible, with a maximum of 300 permutations permitted in the

crossover method. 100 excessive permutations must therefore be cleared,

which consequently will not be examined in the fitness function and represent

a loss of information. After the fitness function evaluated the remaining 300

individuals, the selection function selects a certain amount, depending on the

two available selection methods, but at maximum 100 individuals. This would

in this case mean a loss of 66.6% of the population. Independent of the chosen

selection method, the selection pressure and occurring random effects rise

with increasing crossover parts, although it is under the current settings very

unlikely that an optimization run would reach crossover parts above 3. The

105

present algorithm will divide the given area at maximum in 3 subareas which

are then recombined with the crossover method. If a single wind turbine in one

of these subareas would have to be displaced to achieve the global optimum,

then probably only a random mutation would have the potential to achieve

this. Alternatively, the determination of crossover point locations could be

done randomly, rather than at equal intervals, or the number of crossover

parts could be increased so that the resulting subareas would include fewer

turbines. This in turn would increase the amount of individuals, the selection

pressure and therefore the occurring random effects.

One of the major drawbacks of genetic algorithms is the correct configuration

and parameterization of all relevant methods and inputs, such as selection,

crossover and mutation. Some of the parameters in this method were defined

through particular formulas, while some were pure assumptions. Therefore, a

supervisory control mechanism, which could assess the complexity of the

problem and the development of the populations, would be a desirable

complement. In addition to the set of initial individuals, the mechanism should

also estimate the time needed for the current problem and automatically set

the number of iterations. Likewise, the reduction or increase in the crossover

point rate and the selection percentage could be calculated dynamically

according to the development of the population's fitness, although the

necessary formulas are still missing as for now only constant values are used.

The convergence of the populations to a certain optimum results in several

duplicates during evolution. In the development stage of this algorithm, I tried

to delete these duplicates in order to increase time efficiency. However, this

has proven to be an inefficient design decision, since the development of the

fitness values from then on appeared to be too stochastic. Convergence to a

certain optimum means that more and more individuals are similar or even

106

identical over time. Genetic code segments with high fitness values are then

strongly represented and can therefore reproduce more descendants. The

search space will be concentrated around these fittest individuals and will be

analyzed more precisely by crossover and mutation. The duplicates are

therefore necessary for the genetic algorithm, although they appear to be

inefficient, since the proposed method has to calculate duplicates repeatedly.

The occurring random effects and the fact, that the algorithm will produce

several identical best individuals over time lead to the variable mutation rate

method accompanied by a very low default mutation rate of 0.8%. Duplicated

fitness evaluations could be prevented by storing layouts with the

corresponding output values for further reference.

The time efficiency of the present method is hardly suitable for larger wind

farms with approximately 1000 turbines and several wind directions. The

algorithm would need days if not weeks for the problem on a regular computer

without any guarantee of finding the best possible solution. Even though the

best solution to the problem would be found, there may still be an even better

solution that was outside the search range of the genetic algorithm, since the

algorithm divides the search space into a smaller and finite set of possibilities.

The genetic algorithm could be combined with a subsequent local search

method that further optimizes the specific placement of the turbines. Since the

turbines of this genetic algorithm can only be placed in the centroid of a grid

cell, the resulting best solutions can be considered as good starting solutions

for further and more exact optimizations. A subsequent local search method,

which can place turbines anywhere in the grid cell and on the considered area,

would make the layout arrangement more flexible, which would lead to more

irregular layouts and probably higher energy outputs.

107

Further possible improvement of the proposed method includes a wind speed-

dependent power curve for turbines. The thrust coefficient (CT) of the proposed

method is also a constant of 0.88 although it is similarly dependent on the wind

speed and should therefore be adapted. To derive a correct estimation of local

wind speeds, the algorithm could be further improved so that a raster of wind

conditions could be given as input. A raster either with the average wind speed

or with the form and scale parameters of the Weibull distribution function per

grid cell could be useful. The energy output calculated with the mean wind

speed as in the present study results in a lower energy output than when a

Weibull distribution of the wind velocities would be used. The energy output

with a Weibull distribution would also be more accurate and should therefore

be implemented. As Chen, et al. (2013) pointed out, a wind farm with different

hub heights can lead to better results and decreased costs per generated

power unit. Differing rotor radii could also have a positive effect on the energy

results, but I have not found an approach that has implemented this idea.

Currently, the implementation of the algorithm is not optimized. To some

extent, the method of vectorization has been applied to improve speed, but

there is still a lot of potential through program code optimizations – and by

parallel computing. A better implementation of the algorithm in combination

with better computational hardware, a monitoring and parameter-evaluating

mechanism to exploit and explore the search space depending on the

development or stagnation of the fitness values could improve the results due

to higher population sizes and consequently the evaluation of a larger solution

set.

108

6. List of References

Afanasyeva, S. et al., 2013. Optimization of wind farm design taking into
account uncertainty in input parameters. Finland: Lappeenranta
University of Technology.

Cavcar, M., 2005. In: The International Standard Atmosphere (ISA). Eskisehir:
Anadolu University, p. 2.

Chen, Y., Li, H. & Song, Q., 2013. Wind farm layout optimization using genetic
algorithm with different hub height wind turbines. Kingsville: Texas A&M
University.

Chowdhury, S., Zhang, J., Messac, A. & Castillo, L., 2011. In: E. Ltd., ed.
Unrestricted wind farm layout optimization (UWFLO): Investigating key
factors influencing the maximum power generation. s.l.:s.n., p. 19.

Diaz-Gomez, P. A. & Hougen, D. F., 2007. Initial Population for Genetic
Algorithms: A Metric Approach. Norman, Oklahoma, USA: University of
Oklahoma.

EEA, 2016. Corine Land Cover 2006 raster data. [Online]
Available at: http://www.eea.europa.eu/data-and-maps/data/clc-2006-
raster-3
[Accessed 12 2016].

Global Wind Energy Council, 2015. Annual Market Update. Brussel: Global
Wind Energy Council.

Global Wind Energy Council, 2016. Global Wind Statistics 2015. [Online]
Available at: http://www.gwec.net/wp-content/uploads/vip/GWEC-
PRstats-2015_LR.pdf
[Accessed 20 12 2016].

Grady, S. & Hussaini, M., 2005. In: Placement of wind turbines using genetic
algorithms. s.l.:s.n.

Guirguis, D., Romero, D. A. & Amon, C. H., 2016. In: U. o. Toronto, ed. Toward
efficient optimization of wind farm layouts: Utilizing exact gradient
information. Canada: s.n.

Hakenesch, P., 2016. In: Aerodynamik des Flugzeugs. s.l.:s.n., pp. 7-10.
Hidasi-Neto, J., 2014. GridFilter Function: Intersect Shape with a Grid and

Exclude Cells Based on Area Coverage. [Online]
Available at: http://rfunctions.blogspot.co.at/2014/12/gridfilter-
intersect-grid-with-shape.html
[Accessed 2016].

Hirsch, P., 2012. In: Naturanaloge Optimierungsverfahren und Modellierung.
Wien: Universität für Bodenkultur, pp. 74 -76.

109

International Renewable Energy Agency, 2012. Wind Power. In: Renewable
Energy Technologies: Cost Analysis Series. Bonn: IRENA, pp. 4 - 6.

Ituarte-Villarreal, C. M. & Espiritu, J. F., 2011. In: T. U. o. T. a. E. Paso, ed. Wind
turbine placement in a wind farm using a viral based optimization. El
Paso: s.n.

Kalmikov, A. & Dykes, K., 2011. In: Wind Power Fundamentals. Massachusetts:
MIT Wind Energy Group, pp. 12 - 13.

Katic, I., Hojstrup, J. & Jensen, N. O., 1987. In: A Simple Model for Cluster
Efficiency. Rome: A. Raguzzi, pp. 407 - 408.

Kruse, R. & Held, P., 2013. Evolutionäre Algorithmen - Kodierung, Fitness,
Selektion. In: I. f. W. u. Sprachverarbeitung, ed. Magdeburg: Otto-von-
Guericke-Universität Magdeburg.

Kusiak & Song, 2009. In: Design of wind farm layout for maximum wind energy
capture. Iowa City: University of Iowa, p. 687.

Liersch, D.-I. J., 2012. In: K. W. E. GmbH, ed. Technik von Windkraftanlagen.
Berlin: s.n., p. 17.

Mehmeti, Q. et al., 2014. In: T. U. Dortmund, ed. Genetische Algorithmen:
Wirtschaftsmathematisches Projekt zur Numerik im WS 2013/14.
Dortmund: s.n.

Mosetti, G., Poloni, C. & Diviacco, B., 1994. In: J. o. W. E. a. I. Aredoynamics, ed.
Optimization of wind turbine positioning in large windfarms by means of
a genetic algorithm. s.l.:s.n.

Pelikan, M., Goldberg, D. E. & Cantu-Paz, E., 2000. Bayesian Optimization
Algorithm, Population Sizing, and Time to Convergence. Las Vegas: U.S.
Department of Energy.

Renkema, D. J., 2007. In: Validation of wind turbine wake models. Delft: Delft
University of Technology, pp. 6 - 7.

Saavedra-Moreno, B. et al., 2011. In: Seeding evolutionary algorithms with
heuristics for optimal wind turbines. Madrid: Universidad de Alcalá, pp.
2840-2841.

Samorani, M., 2013. In: The Wind Farm Layout Optimization Problem. Berlin:
Springer, pp. 23 - 27.

Schmelmer, R., 2013. In: H. f. A. Wissenschaften, ed. Wirtschaftlichkeitsanalyse
einer vertikalen Kleinwindkraftanlage. Landshut: s.n., p. 20.

Scholl, P., 2002. Genetische Algorithmen – Erweiterungen und Analyse. s.l.:s.n.
Shakoor, R., Hassan, M. Y., Raheem, A. & Rasheed, N., 2015. In: I. J. o. S. a.

Technology, ed. The Modelling of Wind Farm Layout Optimization for the
Reduction of Wake Losses. Adyar: s.n.

110

Shakoor, R., Hassan, M. Y., Raheem, A. & Wu, Y.-K., 2015. In: E. Ltd., ed. Wake
effect modeling: A review of wind farm layout optimization using Jensen's
model. s.l.:s.n., p. 1058.

Solle, C., 2011. In: C. z. Kiel, ed. Organisationsformen der
Windenergieerzeugung durch Landwirte – Eine betriebswirtschaftliche
Analyse. Kiel: s.n., p. 17.

Wang, L., Singh, C. & Kusiak, A., 2010. Application of Computational
Intelligence. In: Wind Power Systems. Berlin Heidelberg: Springer, pp. 64-
75.

Wendy, W., 2015. In: T. Wien, ed. Genetic Algorithms: A Tutorial. Wien: s.n., pp.
1 - 4.

Williams, G. M., 2014. In: Wind Farm Layout Optimization Problem by Modified
Genetic Algorithm. Oklahoma : Oklahoma State University, p. 2.

Williams, G. M., 2014. In: Wind Farm Layout Optimization Problem by Modified
Genetic Algorithm. Oklahoma: Oklahoma State University, p. 6.

Yang, Zhang, Sun & Zhang, 2015. Optimal Wind Turbines Micrositing in Onshore
Wind Farms Using Fuzzy Genetic Algorithm. Shenyang: Hindawi
Publishing Corporation.

Zahoransky, 2010. Energietechnik: Systeme zur Energieumwandlung.
Kompaktwissen für Studium und Beruf. Wiesbaden: Vieweg und Teubner.

Zhang, P. Y., 2013. In: Topics in Wind Farm Layout Optimization: Analytical
Wake Models, Noise Propagation and Energy Production. Toronto:
University of Toronto, pp. 5-6.

111

7. List of Figures

Figure 1: Global annual installed and cumulative installed wind capacity from
2000 - 2015 (Global Wind Energy Council, 2016, p. 14) 1

Figure 2: Jensen's wake behind a turbine with V = 10 and K = 0.075 (Renkema,
2007, p. 6) ... 6

Figure 3: Partial wake effect from birds-eye view (left) and in profile (right)
(Wang, et al., 2010, p. 67) ... 7

Figure 4: Random wind rose with 36 different wind direction sectors and
uniform wind velocity (left) or varying wind velocities (right).................... 16

Figure 5: Resolution - Changing resolutions with turbine rotor radius of 50
meters, "fcrR"-values of 2, 4 and 6 and a constant "Proportionality"-value
of 1 .. 18

Figure 6: Proportionality - The variable "Proportionality" is changed from 1 to
0.5 and 0.01 with constant turbine rotor radius of 50 meters and "fcrR"-
value of 4 ... 18

Figure 7: Left: SRTM elevation raster of a random area in Austria - Right:
Calculated orographic influence raster with 10 random point examples ... 25

Figure 8: Relationship between elevation and air density according to the
barometric height formula .. 28

Figure 9: Left: Default air density values for a random area with mean elevation
of 578 meters - Right: Corrected air density values according to barometric
height formula ... 28

Figure 10: Atmospheric boundary layer with turbulence profiles (Liersch, 2012)
 .. 29

Figure 11: Wind speeds at different surface roughness lengths (zo) (Solle, 2011)
 .. 30

Figure 12: Corine Land Cover Raster with a resolution of 100 m 32

Figure 13: Land cover and elevation roughness indicator 34

Figure 14: Modified surface roughness length ... 34

Figure 15: Illustration of four cases, where the genetic code is cut with
increasing crossover points and resulting crossover parts 42

Figure 16: Original and rearranged fitness value for crossover operation 44

Figure 17: Comparison of Equal and Random Crossover for 2 parental
individuals with 3 crossover parts ... 46

Figure 18: Adjusting trimton-probabilities PS and PD for cases 1 & 2 53

Figure 19: Adjusting trimton-probabilities PS and PD for cases 3 & 4 54

Figure 18: Input values for Case 1 - Test Shape .. 60

Figure 19: Results of Default Input: a) The best-found solution of the algorithm
b) Interpolated heat map of all used individuals c) Evolution of wind farm

112

efficiencies (exactly proportional to energy yield) d) Amount of individuals
after every evolutionary method ... 61

Figure 20: Results of Default Input: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 62

Figure 21: Results of Variable Selection: a) The best-found solution of the
algorithm b) Interpolated heat map of all used individuals c) Evolution of
wind farm efficiencies (exactly proportional to energy yield) d) Amount of
individuals after every evolutionary method ... 65

Figure 22: Results of Variable Selection: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 66

Figure 23: Results of Random Crossover: a) The best-found solution of the
algorithm b) Interpolated heat map of all used individuals c) Evolution of
wind farm efficiencies (exactly proportional to energy yield) d) Amount of
individuals after every evolutionary method ... 68

Figure 24: Results of Random Crossover: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 69

Figure 25: Results of Excluded Elitism: a) The best found solution of the
algorithm b) Interpolated heat map of all used individuals c) Evolution of
wind farm efficiencies (exactly proportional to energy yield) d) Amount of
individuals after every evolutionary method ... 71

Figure 26: Results of Excluded Elitism: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 72

Figure 27: Results of Probabilistic Adjustment: a) The best-found solution of the
algorithm b) Interpolated heat map of all used individuals c) Evolution of
wind farm efficiencies (exactly proportional to energy yield) d) Amount of
individuals after every evolutionary method ... 74

Figure 28: Results of Probabilistic Adjustment: e) The selection percentage
during the evolution f) High selection influence on evolution g) Crossover
influence of 3 crossover parts h) Variable mutation rate influence 75

Figure 29: Standard deviations of populations with random adjustment on the
left and probabilistic adjustment method on the right. Black lines indicate a
variable mutation rate ... 76

Figure 30: Optimal layouts by earlier studies (Shakoor, et al., 2015) 78

Figure 31: Formula for turbine power production according to Shakoor (2015)
and Grady (2005) ... 79

113

Figure 32: Input values for Case 2 - Reference Shape and uniform wind
direction .. 80

Figure 33: Results of Case 3.2.1.: a) The best-found solution of the algorithm b)
Interpolated heat map of all used individuals c) Evolution of wind farm
efficiencies (exactly proportional to energy yield) d) Amount of individuals
after every evolutionary method ... 81

Figure 34: Results of Case 3.2.1.: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 82

Figure 35: Resulting best individual for case 3.2.1 after 300 iterations 84

Figure 36: Resulting best individual for case 3.2.1 although with rotor radius of
20m ... 85

Figure 37: Evolutionary data for best individual of case 3.2.1 with rotor radius
of 20m ... 85

Figure 38: Input wind data for Case 2 - Reference Shape and multiple wind
directions .. 87

Figure 39: Results of Case 3.2.1.: a) The best-found solution of the algorithm b)
Interpolated heat map of all used individuals c) Evolution of wind farm
efficiencies (exactly proportional to energy yield) d) Amount of individuals
after every evolutionary method ... 88

Figure 40: Results of Case 3.2.1.: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 89

Figure 41: Input values for Case 3 - Wind Farm "Tauern" 91

Figure 42: Results of Case 3.3.1.: a) The best-found solution of the algorithm b)
Interpolated heat map of all used individuals c) Evolution of wind farm
efficiencies (exactly proportional to energy yield) d) Amount of individuals
after every evolutionary method ... 92

Figure 43: Results of Case 3.3.1.: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 93

Figure 44: Best-found solution of wind farm "Tauern" neglecting terrain effects
 .. 94

Figure 45: Results of Case 3.3.2.: a) The best-found solution of the algorithm b)
Interpolated heat map of all used individuals c) Evolution of wind farm
efficiencies (not proportional to energy yield) d) Amount of individuals
after every evolutionary method ... 95

Figure 46: Results of Case 3.3.2.: e) The selection percentage during the
evolution f) High selection influence on evolution g) Crossover influence of
3 crossover parts h) Variable mutation rate influence 96

114

Figure 47: Elevation values and wind speed multipliers for the best individual of
Case 3.3.2 .. 97

Figure 48: Wind speed multiplier values for Case 3.3.1 98

Figure 49: Normal air density and corrected air density for best individual of
Case 3.3.2 .. 98

Figure 50: Top left) Corine Land Cover Surface Roughness - Top right) Elevation
roughness indicator - Bottom left) Modified surface roughness - Bottom
right) Adapted wake decay constant for best individual of Case 3.3.2....... 99

Figure 51: Best-found solution of wind farm "Tauern" including terrain effects
 .. 100

Figure 52: Best-found solution regarding efficiency of wind farm "Tauern"
including terrain effects ... 101

Figure 53: Exemplary best-found solution of multi-polygon area 102

115

8. List of R-Codes

R Output 1: Loading a shapefile into R using the function "readOGR" from the
library "rgdal" .. 12

R Output 2: Exemplary output of the function StartGA for the first individual in
the list ... 21

R Output 3: Exemplary wind speed data frame before (left) and after the
conversion (right) .. 22

R Output 4: R-Function to get a SRTM - elevation dataset 24

R Output 5: Exemplary output of the function calculateEn for one wind
direction .. 36

R Output 6: Exemplary energy and efficiency outputs for 2 input wind
directions .. 37

R Output 7: Exemplary weighted energy outputs of an individual 37

R Output 8: Exemplary 2 point equal crossover with an individual consisting of
36 genes .. 45

R Output 9: Left: First 3 exemplary individuals after trimton-function - Right:
Output of getRects-function for the exemplary 3 individuals 55

R Output 10: Exemplary call to genAlgo ... 59

116

9. List of Tables

Table 1: The three possible shadowing scenarios of any given turbine 8

Table 2: Obligatory Input Variables of the proposed method 13

Table 3: Optional Input Variables of the proposed method 14

Table 4: Surface Roughness Lengths according to the European Wind Atlas
(Schmelmer, 2013) .. 31

Table 7: Color graded results from the pretests for Case 1 77

Table 8: Parameters and characteristics of previous studies (Shakoor, et al.,
2015) ... 78

Table 9: Results of optimal layouts by earlier studies (Shakoor, et al., 2015) ... 79

117

Appendix

############### R - CODE ###################################

############### Required Inputs #############

ProjLAEA <- "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000

 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

To include terrain effects, the paths for the Corine Land Cover raster

and legend must be changed on the following pages: 131, 137 and 139.

################ Input a Polygon

Use your own Shapefile

dns = "C:/.../Directory_of_Shapefile"

AreaConsidered <- readOGR(dsn=dns, layer="NameOfShapeFile"); plot(AreaConsidered)

AreaConsidered <- spTransform(AreaConsidered, CRSobj = crs(ProjLAEA));

Or create a random Polygon

Pol <- Polygon(rbind(c(0, 0), c(0, 2000), c(2000, 2000), c(2000, 0)))

Pols <- Polygons(list(Pol),1)

AreaConsidered <- SpatialPolygons(list(Pols)); rm(Pol,Pols)

proj4string(AreaConsidered) <- CRS(ProjLAEA)

plot(AreaConsidered,axes=T)

################ Initialize a random Wind data set

data.in <- structure(list(ws = c(12,12,12,12),

 wd = c(0,0,0,0)), .Names = c ("ws", "wd"),

 row.names = c(NA, 4L), class = "data.frame")

############### Genetic Algorithm functions #############

############### Calculate the euclidian distance

euc.dist <- function(x,y,...) { round(sqrt(sum((x - y) ^ 2)),4) }

############### Calculate distances of a triangle

PointToLine2 <- function(x,y,k, ...) {

 if (x[1]-y[1] == 0 | x[2]-y[2]==0) {

 distc <- euc.dist(x,y)

 yellow <- rbind(c(y,x,x,distc,distc,0));

 colnames(yellow) <- c("Ax","Ay","Bx","By","Cx","Cy","Laenge_C",

 "Laenge_B","Laenge_A");

 invisible(yellow);

 }

 if (is.matrix(y) == FALSE) {y <- as.matrix(rbind(y))};

 if (is.matrix(x) == FALSE) {x<- as.matrix(rbind(x))};

 if (k == "N"|k =="S") {C1 <- as.matrix(cbind(y[1,1],x[1,2]));}

 c <- euc.dist(x,y);

 a <- euc.dist(x,C1);

 b <- euc.dist(C1,y);

 dist1 <- c(c,b,a)

 blue <- rbind(c(y,x,C1,dist1));

 colnames(blue) <- c("Ax","Ay","Bx","By","Cx","Cy","Laenge_C",

 "Laenge_B","Laenge_A");

 invisible (blue)

}

############### Calculate angles of a triangle

WinkelCalc <- function(Aa,Bb,Cc, ...) {

 if (length(Aa)!=2|class(Aa)!="numeric" |

 length(Bb)!=2|class(Bb)!="numeric" |

 length(Cc)!=2|class(Cc)!="numeric"){

 warning("Input is not numeric or doesnt contain two values")

118

 }

 AB <- Bb-Aa; AC <- Cc-Aa;

 BA <- Aa-Bb; BC <- Cc-Bb;

 CA <- Aa-Cc; CB <- Bb-Cc;

 alpha <- acos(sum(AB*AC) / (sqrt(sum(AB * AB)) * sqrt(sum(AC * AC))))*(180/pi);

 betha <- acos(sum(BA*BC)/(sqrt(sum(BA*BA))*sqrt(sum(BC*BC))))*(180/pi);

 gamma <- acos(sum(CA*CB) / (sqrt(sum(CA * CA)) * sqrt(sum(CB * CB))))*(180/pi)

 if (trunc(alpha+betha+gamma) >= 179 | ceiling(alpha+betha+gamma) <= 180) {

 winkel <- rbind(alpha,betha,gamma)

 invisible(winkel)

 }

}

############### Calculate all distances and angles for one turbine

VekWinkelCalc <- function(t,o,p, wkl, distanz, polYgon,...) {

 p = "N"

 datalist = list(); datalist1 = list();

 WKA_akt <- c(x = t[o,1], y = t[o,2]);

 xynew1 <- subset.matrix(x = t, subset = (t[o,1] != t[,1])&(t[o,2] < t[,2]));

 xyvorne1 <- subset.matrix(x = t, subset = (t[o,1] == t[,1])&(t[o,2] < t[,2]));

 len2 = length(xynew1[,1])

 len1 = length(xyvorne1[,1])

 if ((len2 + len1 != 0)) {

 if (len2!=0) {

 for (i in 1:len2){

 P2LFu <- PointToLine2(WKA_akt, xynew1[i,], p);

 winkel <- t(WinkelCalc(xynew1[i,],WKA_akt, P2LFu[5:6]));

 data <- t(as.matrix(c(as.numeric(P2LFu), as.numeric(winkel))));

 colN <- t(as.matrix(c(colnames(P2LFu),colnames(winkel))));

 datalist[[i]] <- data;

 datalun <- data.frame(matrix(unlist(datalist), nrow=(length(datalist)),

 byrow = TRUE));

 colnames(datalun) <- colN;

 datalun <- subset.data.frame(datalun,subset = datalun$alpha<wkl &

 datalun$Laenge_B<distanz);

 }

 if (nrow(datalun)==0){remove(datalun)}

 };

 if (len1!=0) {

 for (k in 1:len1){

 P2LFu1 <- PointToLine2(WKA_akt, xyvorne1[k,], p);

 P2LFu2 <- cbind(P2LFu1, alpha=0,betha=0,gamma=0);

 colN1 <- t(as.matrix(c(colnames(P2LFu2))));

 datalist1[[k]] <- P2LFu2

 datalun1 <-data.frame(matrix(unlist(datalist1), nrow=(length(datalist1)),

 byrow = TRUE));

 colnames(datalun1) <- colN1;

 datalun1 <- subset.data.frame(datalun1,subset = datalun1$Laenge_B<distanz)

 }

 if (nrow(datalun1) == 0) {remove(datalun1)}

 }

 if (exists("datalun") && exists("datalun1")) {

 DataLun3 <- rbind(datalun, datalun1);

 }

 if (exists("datalun") && !exists("datalun1")) {

 DataLun3 <- datalun;

 }

 if (exists("datalun1") && !exists("datalun")) {

 DataLun3 <- datalun1;

 }

 if (!exists("datalun") && !exists("datalun1")) {

 dfm3 <- data.frame(matrix(data = c(0,0,t[o,1],t[o,2],

 (rep(0,8))),nrow = 1, ncol = 12));

119

 colnames(dfm3) <- c("Ax","Ay","Bx","By","Cx","Cy","Laenge_C",

 "Laenge_B","Laenge_A","alpha","betha","gamma");

 DataLun3 <- dfm3;

 }

 } else {

 dfm4 <- data.frame(matrix(data = c(0,0,t[o,1],t[o,2],(rep(0,8))),

 nrow = 1, ncol = 12));

 colnames(dfm4) <- c("Ax","Ay","Bx","By","Cx","Cy","Laenge_C",

 "Laenge_B","Laenge_A","alpha","betha","gamma");

 DataLun3 <- dfm4;

 }

 DataLun3

 return(DataLun3);

}

############### Find all the potential influencing turbines

InfluPoints <- function(t, wnkl, dist,polYgon,dirct,...){

 pointList <- list();

 for (i in 1:(length(t[,1]))) {

 ee11 <- VekWinkelCalc(t, i, dirct, wnkl, dist, polYgon);

 if (nrow(ee11) != 0){

 ee11[,13] <- as.character(dirct); colnames(ee11)[13] <- "Windrichtung";

 ee11[14] <- i; colnames(ee11)[14] <- "Punkt_id"

 pointList[[i]] <- ee11;

 } else {

 abd <- data.frame(matrix(data = ee11[13,],nrow = 1, ncol = 12));

 abd[13] <- dirct[i]; colnames(abd) <- c(colnames(ee11), "Windrichtung")

 abd[14] <- i; colnames(abd)[14] <- "Punkt_id";

 pointList[[i]] <- abd;

 }

 }

 invisible(pointList)

}

############### Calculate air density, pressure and temperature according to height

BaroHoehe <- function(data, height, po=101325, ro=1.225) {

 if ((ncol(data))==1) {

 ph = po * exp(-data * 0.0001252); names(ph) <- "ph"

 rh = ro * exp(-data * 0.0001252); names(rh) <- "rh"

 Th <- 288.15 - ((6.5 * data)/1000); names(Th) <- "tempK"

 } else {

 ph = po * exp(-data[,height] * 0.0001252);

 rh = ro * exp(-data[,height] * 0.0001252);

 Th <- 288.15 - ((6.5 * data[,height])/1000);

 }

 if (class(data)!= "data.frame") {

 data <- as.data.frame(data)

 }

 Celsius = Th - 273.15; names(Celsius) <- "tempC"

 data$ph <- ph

 data$rh <- rh

 data$tempK <- Th

 data$tempC <- Celsius

 colnames(data) <- names(data)

 return(data)

}

############### Plot a Windrose

plot.windrose <- function(data,spd,dir,spdres = 2,dirres = 30,spdmin = 1,

 spdmax = 30, spdseq = NULL,palette = "YlGnBu",
 countmax = NA,debug = 0){

 require(ggplot2); require(RColorBrewer)

 if (is.numeric(spd) & is.numeric(dir)){

 data <- data.frame(spd = spd,

 dir = dir)

120

 spd = "spd"

 dir = "dir"

 } else if (exists("data")){

 }

 n.in <- NROW(data)

 dnu <- (is.na(data[[spd]]) | is.na(data[[dir]]))

 data[[spd]][dnu] <- NA

 data[[dir]][dnu] <- NA

 if (missing(spdseq)){

 spdseq <- seq(spdmin,spdmax,spdres)

 } else {

 if (debug >0){

 cat("Using custom speed bins \n")

 }

 }

 n.spd.seq <- length(spdseq)

 n.colors.in.range <- n.spd.seq - 1

 spd.colors <- colorRampPalette(brewer.pal(min(max(3,n.colors.in.range),

 min(9,n.colors.in.range)),

 palette))(n.colors.in.range)

 if (max(data[[spd]],na.rm = TRUE) > spdmax){

 spd.breaks <- c(spdseq,max(data[[spd]],na.rm = TRUE))

 spd.labels <- c(paste(c(spdseq[1:n.spd.seq-1]),

 '-',c(spdseq[2:n.spd.seq])),

 paste(spdmax,"-",max(data[[spd]],na.rm = TRUE)))

 spd.colors <- c(spd.colors, "grey50")

 } else{

 spd.breaks <- spdseq

 spd.labels <- paste(c(spdseq[1:n.spd.seq-1]),

 '-',c(spdseq[2:n.spd.seq]))

 }

 data$spd.binned <- cut(x = data[[spd]],

 breaks = spd.breaks,

 labels = spd.labels,

 ordered_result = TRUE)

 dir.breaks <- c(-dirres/2,seq(dirres/2, 360-dirres/2, by = dirres),

 360+dirres/2)

 dir.labels <- c(paste(360-dirres/2,"-",dirres/2),

 paste(seq(dirres/2, 360-3*dirres/2, by = dirres),

 "-",seq(3*dirres/2, 360-dirres/2, by = dirres)),

 paste(360-dirres/2,"-",dirres/2))

 dir.binned <- cut(data[[dir]],breaks = dir.breaks,ordered_result = TRUE)

 levels(dir.binned) <- dir.labels

 data$dir.binned <- dir.binned

 p.windrose <- ggplot(data = data, aes(x = dir.binned, fill = spd.binned)) +

 geom_bar() + scale_x_discrete(drop = FALSE, labels = waiver()) +

 coord_polar(start = -((dirres/2)/360) * 2*pi) +

 scale_fill_manual(name = "Wind Speed (m/s)", values = spd.colors,

 drop = FALSE) + theme(axis.title.x = element_blank())

 if (!is.na(countmax)){ p.windrose <- p.windrose + ylim(c(0,countmax))}

 print(p.windrose)

 return(p.windrose)

}

############### Calculate the expected energy output of a windfarm

calculateEn <- function(sel, referenceHeight, RotorHeight,SurfaceRoughness,

windraster,wnkl,distanz,polygon1,resol,RotorR,dirSpeed,srtm_crop,

 topograp,cclRaster){

 require(data.table); require(maptools); library(calibrate)

 PlotCalc="FALSE"

 sel1 = sel[,2:3];

 cT <- 0.88;

121

 air_rh <- 1.225;

 k = 0.075;

 windpo <- raster::extract(x= windraster, y = as.matrix((sel1)),

 buffer=resol*1, small=T,fun= mean,na.rm=T);

 if (topograp == "TRUE") {

 orogr1 <- calc(srtm_crop, function(x) {x/(cellStats(srtm_crop,mean,na.rm=T))})

 orogrnum <- raster::extract(x= orogr1, y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun= mean,na.rm=T);

 windpo <- windpo * orogrnum

 heightWind <- raster::extract(x= srtm_crop, y = as.matrix((sel1)), small=T,fun=

 max,na.rm=T);

 if (PlotCalc=="TRUE"){

 par(mfrow=c(1,1))

 plot(srtm_crop, main="SRTM Elevation Data");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(heightWind,0),cex=0.8);

 plot(polygon1,add=T)

 plot(orogr1, main="Wind Speed Multipliers");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(windpo,3),cex=0.8);

 plot(polygon1,add=T)

 }

 HeighttoBaro <- matrix(heightWind);

 colnames(HeighttoBaro) <- "HeighttoBaro"

 air_dt <- BaroHoehe(matrix(HeighttoBaro),HeighttoBaro)

 air_rh <- as.numeric(air_dt$rh);

 if (PlotCalc=="TRUE"){

 par(mfrow=c(1,1))

 plot(srtm_crop, main="Normal Air Density",col=topo.colors(10));

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = rep(1.225,nrow(sel1)),cex=0.8);

 plot(polygon1,add=T)

 plot(srtm_crop, main="Corrected Air Density",col=topo.colors(10));

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(air_dt$rh,2),cex=0.8);plot(polygon1,add=T)

 }

 SurfaceRoughness0 <- raster::extract(x= cclRaster, y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun= mean,

 na.rm=T);

 SurfaceRoughness1 <- raster::extract(x=terrain(srtm_crop,"roughness"),

 y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun=

 mean,na.rm=T);

 SurfaceRoughness <-SurfaceRoughness*

 (1+(SurfaceRoughness1/max(res(srtm_crop))));

 elrouind <- terrain(srtm_crop,"roughness")

 elrouindn <- resample(elrouind,cclRaster,method="ngb")

 modSurf <- overlay(x = cclRaster,y = elrouindn,

 fun=function(x,y){return(x*(1+y/max(res(srtm_crop))))})

 if (PlotCalc=="TRUE"){

 par(mfrow=c(1,1)); cexa=0.9

 plot(cclRaster, main="Corine Land Cover Roughness");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(SurfaceRoughness0,2),cex=cexa);

 plot(polygon1,add=T)

 plot(x=terrain(srtm_crop,"roughness",neighbors = 4),

 main="Elevation Roughness Indicator");

 points(sel1$X,sel1$Y,pch=20); textxy(sel1$X,sel1$Y,

 labs = round((SurfaceRoughness1),2),cex=cexa); plot(polygon1,add=T)

 plot(modSurf, main="Modified Surface Roughness");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round((SurfaceRoughness),2),cex=cexa);

122

 plot(polygon1,add=T)

 }

 k = 0.5/(log(RotorHeight/SurfaceRoughness))

 if (PlotCalc=="TRUE"){

 par(mfrow=c(1,1)); cexa=0.9

 plot(x=terrain(srtm_crop,"roughness",neighbors = 4),

 main="Adapted Wake Decay Constant - K");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round((k),3),cex=cexa);

 plot(polygon1,add=T)

 }

 }

 alllist <- vector("list",nrow(dirSpeed))

 for (index in 1:nrow(dirSpeed)) {

 xyBgldMa <- as.matrix((sel1));

 pointWind <- windpo * dirSpeed$ws[index]

 pointWind <- pointWind*((RotorHeight/referenceHeight)^SurfaceRoughness);

 pointWind[is.na(pointWind)] <- 0;

 angle <- -dirSpeed$wd[index];

 if (PlotCalc == "TRUE"){

 par(mfrow=c(1,2))

 plot(polygon1, main="Shape at angle 0");

 points(xyBgldMa[,1],xyBgldMa[,2],pch=20)

 textxy(xyBgldMa[,1],xyBgldMa[,2], labs = dimnames(xyBgldMa)[[1]],cex=0.8)

 Polygon3 = elide(polygon1, rotate=angle, center=apply(bbox(polygon1), 1,

 mean));

 plot(Polygon3, main=c("Shape at angle:", (-1*angle)))

 mtext(paste("Direction: ", index, "\nfrom total: ", nrow(dirSpeed)),

 side = 1)

 }

 xyBgldMa <- SpatialPoints(coordinates(xyBgldMa))

 xyBgldMa <- elide(xyBgldMa, rotate=angle, center=apply(bbox(polygon1), 1,

 mean));

 xyBgldMa <- coordinates(xyBgldMa)

 if (PlotCalc == "TRUE"){

 points(xyBgldMa, col="red",pch=20)

 }

 DatFram <- data.table(cbind(pointWind,xyBgldMa));

 colnames(DatFram)=c("Windmittel","X","Y");

 BgleInf <- InfluPoints(xyBgldMa, wnkl, distanz, Polygon, dirct = angle)

 windlist = vector("list",length(sel1[,1]))

 dfAll <- do.call("rbind",BgleInf) ;

 maxpo <- max(dfAll$Punkt_id)

 for (i in 1:maxpo){

 windlist[[i]] <- dplyr::filter(dplyr::select(dplyr::tbl_df(dfAll),

 Punkt_id,Ax,Ay,Bx,By,Laenge_B,

 Laenge_A,alpha,Windrichtung),

 Punkt_id==i)

 windlist[[i]]$Windmean <- DatFram[[1]][i];

 }

 windlist <- do.call("rbind", windlist);

 windlist$RotorR <- as.numeric(RotorR);

 lnro = nrow(windlist); windlist$WakeR <- 0; windlist$Rotorflaeche <- 0

 for (i in 1:lnro){

 RotD <- as.numeric(windlist[i,]$RotorR)

 if (windlist[i,]$Laenge_B != 0) {

 if (topograp=="TRUE"){

 windlist[i,]$WakeR = (((RotD * 2) + (2*k[windlist[i,]$Punkt_id]*

 (as.numeric(windlist[i,]$Laenge_B))))/2)[1]

 } else {

 windlist[i,]$WakeR = (((RotD * 2) +

 (2*k*(as.numeric(windlist[i,]$Laenge_B))))/2)[1]

123

 }

 } else {

 windlist[i,]$WakeR = 0

 }

 windlist[i,]$Rotorflaeche = (RotD^2) *pi

 };

 windlist$A_ov <- 0; windlist$AbschatInProz <- 0

 for (o in 1:lnro){

 Rotorf <- as.numeric(windlist[o,]$RotorR)

 leA <- windlist[o,]$Laenge_A

 wakr <- windlist[o,]$WakeR;

 if (windlist[o,]$Laenge_B == 0) {

 windlist[o,]$A_ov <- 0;

 } else {

 if ((wakr - Rotorf) >= leA && leA >= 0) {

 windlist[o,]$A_ov <- as.numeric(windlist[o,]$RotorR^2)*pi;

 }

 if (round((wakr + Rotorf),2) <= round(leA,2)) {

 windlist[o,]$A_ov <- 0

 }

 if ((wakr - Rotorf) <= leA && leA <= (wakr+Rotorf)) {

 windlist[o,]$A_ov <- (Rotorf^2 * round(acos((Rotorf^2 - wakr^2 + leA^2) /

 (2*leA * Rotorf)),4)) +

 (wakr^2 * round(acos((wakr^2 - Rotorf^2 + leA^2) /

 (2*leA * wakr)),4)) -

 ((1/2)*sqrt(round((Rotorf + wakr + leA),6) *

 round((-Rotorf + wakr + leA),6) *

 round((Rotorf - wakr + leA),6) * round((Rotorf +

 wakr - leA),6)))

 }

 }

 if (windlist[o,]$A_ov != 0) {

 windlist[o,]$AbschatInProz <- round(((as.numeric(windlist[o,]$A_ov)/

 windlist[o,]$Rotorflaeche)*100), 2);

 } else {

 windlist[o,]$AbschatInProz <- 0;

 }

 }

 windlist$V_red <- 0

 for (p in 1:lnro) {

 RotrR <- windlist[p,]$RotorR

 a <- 1- sqrt(1-cT)

 s <- (windlist[p,]$Laenge_B/RotrR);

 if (topograp=="TRUE"){

 b <- (1 + (k[windlist[p,]$Punkt_id]*s))^2;

 } else {

 b <- (1 + (k*s))^2;

 }

 aov <- (windlist[p,]$A_ov / windlist[p,]$Rotorflaeche);

 windlist[p,]$V_red <- (aov *(a / b))

 ve <- windlist[p,]$Windmean * windlist[p,]$V_red;

 windlist[p,]$V_red <- ve

 }

 maPi = max(windlist$Punkt_id)

 windlist$V_i <- 0; windlist$TotAbschProz <- 0; windlist$V_New <- 0;

 windlist$Rect_ID <- 0

 for (z in 1:maPi) {

 windlist[windlist$Punkt_id==z,]$V_i <-

 sqrt(sum(windlist[windlist$Punkt_id==z,]$V_red^2))

 windlist[windlist$Punkt_id==z,]$TotAbschProz <-

 sum(windlist[windlist$Punkt_id==z,]$AbschatInProz)

 windlist[windlist$Punkt_id==z,]$V_New <-

124

 windlist[windlist$Punkt_id==z,]$Windmean -

 windlist[windlist$Punkt_id==z,]$V_i

 windlist[windlist$Punkt_id==z,]$Rect_ID <- sel[z,1]

 }

 windlist2 <- dplyr::select(windlist,-alpha,-AbschatInProz,-Rotorflaeche,-

 V_red,-V_i)

 windlist1 <- split(windlist2, duplicated(windlist2$Punkt_id))$'FALSE'

 EneOutRed <- sum(0.593 * (1/2) * air_rh * (windlist1$V_New ^ 3) *

 ((as.numeric(windlist1$RotorR)^2)*pi),na.rm=T)/1000;

 EneOutFul <- sum(0.593 * (1/2) * air_rh * (windlist1$Windmean^3)*

 ((as.numeric(windlist1$RotorR)^2)*pi),na.rm=T)/1000;

 Effic <- (EneOutRed*100)/EneOutFul;

 windlist2$Energy_Output_Red <- EneOutRed;

 windlist2$Energy_Output_Voll <- EneOutFul;

 windlist2$Parkwirkungsgrad <- Effic;

 windlist2$Windrichtung <- as.numeric(windlist2$Windrichtung) * (-1)

 alllist[[index]] <- windlist2

 }

 invisible(alllist)

}

############### Calculate a Grid

GridFilter <- function(shape, resol = 500, prop = 1,plotGrid="FALSE"){

 require(rgeos);

 if (prop < 0.01){prop = 0.01}

 grid <- raster::raster(extent(shape))

 res(grid) <- c(resol,resol)

 proj4string(grid)<-proj4string(shape)

 gridpolygon <- rasterToPolygons(grid)

 drylandproj<- spTransform(shape, CRS("+proj=laea"))

 gridpolproj<-spTransform(gridpolygon, CRS("+proj=laea"))

 gridpolproj$layer <- c(1:length(gridpolproj$layer))

 areagrid <- rgeos::gArea(gridpolproj, byid=T)

 dry.grid <- rgeos::intersect(drylandproj, gridpolproj)

 areadrygrid <- rgeos::gArea(dry.grid, byid=T)

 info <- cbind(dry.grid$layer, areagrid[dry.grid$layer], areadrygrid)

 dry.grid$layer<-info[,3]/info[,2]

 dry.grid <- spTransform(dry.grid, CRS(proj4string(shape)))

 if(!any(dry.grid$layer >= prop)) {

 print("Maybe the resolution is too high")

 stop("Try a smaller one.")

 }

 dry.grid.filtered <<- dry.grid[dry.grid$layer >= prop,];

 areaquares <- round(sum(sapply(dry.grid.filtered@polygons,

 function(x) sapply(x@Polygons, function(y)

 y@area)))/1000000,3)

 par(mar=c(5,5,5,4))

 if (plotGrid == "TRUE"){

 plot(shape, col="orange",

 main = paste("Resolution:", resol, "m and prop: ",prop,

 "\n Total Area:", round(sum(areadrygrid)/1000000,3),

 "km² \n Number Grids:", length(dry.grid.filtered),

 "\n Sum Grid size:", areaquares, "km²"))

 plot(dry.grid.filtered, col="lightgreen",add=TRUE)

 }

 x <- lapply(dry.grid.filtered@polygons, function(x) sapply(x@Polygons,

 function(y) y@coords[,1]))

 y <- lapply(dry.grid.filtered@polygons, function(x) sapply(x@Polygons,

 function(y) y@coords[,2]))

 rect_Nu <- gCentroid(dry.grid.filtered,byid = T); plot(rect_Nu,add=T)

 centpo <- coordinates(rect_Nu); centpo <- as.data.frame(centpo)

 centpo$ID <- 1:nrow(centpo); names(centpo) <- c("X","Y","ID")

 centpo <- dplyr::select(centpo, ID,X,Y)

125

 points(centpo$X,centpo$Y, col="blue", pch=20)

 text(centpo$X,centpo$Y,labels=centpo$ID, pos=2)

 invisible(centpo)

}

############### Start an Initial Population

StartGA <- function(Grid, n,nStart=100) {

 if (length(Grid$ID) <= n) {

 cat(paste("Amount Grid-cells: ", length(Grid$ID),"\n Amount of turbines: ", n))

 stop("The amount of grid-cells is smaller or equal to the number of turbines

 requested. Resolution / number of turbines or Rotorradius.")

 }

 if (length(Grid$ID) < (2*n)) {

 cat(paste("Amount Grid-cells: ", length(Grid$ID),"\n Amount of turbines: ", n))

 stop("The amount of grid-cells should at least be double the size of turbines

 requested. Resolution / number of turbines or Rotorradius.")

 cat("Press [enter] to continue")

 line <- readline()

 }

 subsetSel = list(); ids=list();

 for (i in 1:nStart){

 Grid$bin <- 0

 ids[i][[1]] <- sort(sample(x = Grid$ID, size = n, replace = F))

 Grid[Grid$ID %in% ids[i][[1]],]$bin = 1

 subsetSel[i][[1]] <- Grid[Grid$bin == 1,]

 }

 return(subsetSel)

}

############### Calculate a fitness value for a population

fitness <- function(selection, referenceHeight,

 RotorHeight,SurfaceRoughness,Polygon,resol1,rot,dirspeed,

 srtm_crop, topograp,cclRaster,...){

 dirspeed$wd <- round(dirspeed$wd,0)

 dirspeed$wd <- round(dirspeed$wd/100,1)*100;

 if (any(names(dirspeed) == "probab") == FALSE) {

 dirspeed$probab <- 100/nrow(dirspeed)

 }

 dirspeed$probab <- round(dirspeed$probab,0)

 if (sum(dirspeed$probab) != 100) {

 dirspeed$probab <- dirspeed$probab*(100/sum(dirspeed$probab))

 }

 if (any(duplicated(dirspeed$wd)==TRUE)) {

 for (i in 1:nrow(dirspeed[duplicated(dirspeed$wd)==F,])){

 temp <- dirspeed[dirspeed$wd == dirspeed[duplicated(

 dirspeed$wd)==F,][i,'wd'],];

 temp$ws <-with(temp, sum(ws * (probab/sum(probab))));

 temp$probab <- with(temp, sum(probab * (probab/sum(probab))));

 dirspeed[dirspeed$wd == dirspeed[duplicated(

 dirspeed$wd)==F,][i,'wd'],]$ws <- round(temp$ws,2)[1]

 dirspeed[dirspeed$wd == dirspeed[duplicated(

 dirspeed$wd)==F,][i,'wd'],]$probab <- round(temp$probab,2)[1]

 }

 }

 dirspeed <- dirspeed[!duplicated(dirspeed$wd)==TRUE,];

 dirspeed <- dirspeed[with(dirspeed, order(wd)),]

 if (sum(dirspeed$probab) != 100) {

 dirspeed$probab <- dirspeed$probab*(100/sum(dirspeed$probab))

 }

 probabDir <- dirspeed$probab;

 pp <- sum(probabDir)/100; probabDir <- probabDir/pp; sum(probabDir)

 windraster <-rasterize(Polygon, raster(extent(Polygon), ncol=180,

 nrow=180),field=1)

 e = vector("list",length(selection));euniqu=vector("list",length(selection)) ;

126

 for (i in 1:length(selection)){

 e[[i]] <- calculateEn(selection[[i]], referenceHeight,

 RotorHeight,SurfaceRoughness,

 windraster = windraster, wnkl = 20, distanz=100000,

 polygon1 = Polygon, resol=resol1, RotorR = rot,

 dirSpeed = dirspeed, srtm_crop,topograp,cclRaster)

 ee <- lapply(e[[i]], function(x){split(x, duplicated(x$Punkt_id))$'FALSE'})

 ee <- lapply(ee, function(x){dplyr::select(x,-Ax,-Ay,-Laenge_B,-Laenge_A,-

 Windmean,-WakeR,-A_ov, -Punkt_id)})

 enOut <- lapply(ee, function(x){ x[1,c(3,8,10)]});

 enOut <- do.call("rbind", enOut)

 enOut$probabDir <- probabDir

 enOut$Eneralldire <- enOut$Energy_Output_Red * (enOut$probabDir/100);

 enOut$EnergyOverall <- sum(enOut$Eneralldire);

 enOut$Efficalldire <- sum(enOut$Parkwirkungsgrad * (enOut$probabDir/100))

 AbschGesamt <- lapply(ee, function(x){ data.frame(x$TotAbschProz)});

 AbschGesamt <- do.call("cbind",AbschGesamt)

 AbschGesamt$RowSum <- rowSums(AbschGesamt);

 AbschGesamt <- AbschGesamt$RowSum

 xundyOrig <- selection[[i]][,2:3]; xundyOrig

 xundyOrig$EfficAllDir <- enOut$Efficalldire[1];

 xundyOrig$EnergyOverall <- enOut$EnergyOverall[1];

 xundyOrig$AbschGesamt <- AbschGesamt

 xundyOrig$Run <- i

 dt <- ee[[1]]; dt <- dplyr::select(dt,RotorR, Rect_ID);dt;

 dt <- cbind(xundyOrig,dt)

 euniqu[[i]] <- dt

 }

 maxparkeff <- do.call("rbind", (lapply(euniqu, function(x) { x <-

 dplyr::select(x[1,],EnergyOverall)})))

 maxparkeff$Parkfitness <- maxparkeff$EnergyOverall

 maxparkeff <- dplyr::select(maxparkeff, Parkfitness)

 for (i in 1:length(euniqu)) {

 euniqu[i][[1]]$Parkfitness <- maxparkeff[i,]

 };

 return(euniqu)

}

############### Selection method

selection1 <- function(fit, Grid,teil,elitism,nelit,selstate){

 new <- do.call("rbind", fit)

 new1 <- dplyr::select(split(new, duplicated(new$Run))$'FALSE', Run,

 Parkfitness,EnergyOverall)

 new1 <- dplyr::arrange(new1,desc(Parkfitness))

 if (elitism == "TRUE"){

 print(paste(

 "Elitarism activated. Best ", nelit, " fitness values are increased"))

 new1[1:nelit,]$Parkfitness <- new1[1:nelit,]$Parkfitness*10

 }

 selv <- nrow(new1)-3; new1 <- new1[-seq(length(new1[[1]]),selv,-1),];nrow(new1)

 selstate <- toupper(selstate)

 if (selstate == "FIX") {

 if (teil==1){teil=1}else{teil=2}

 print(paste("Selection Percentage:", round(100/teil,2), "%"))

 nPar <- ceiling(nrow(new1)/teil);nPar

 print(paste("FIXED Selection: How many parental individuals are selected:",

 nPar, "from", nrow(new1),"with", ((1/teil)*100), "%"))

 }

 if (selstate == "VAR") {

 nPar <- ceiling(nrow(new1)/teil);nPar

 print(paste("VARIABLE Selection: How many parental individuals are selected:",

 nPar, "from", nrow(new1),"with", ((1/teil)*100), "%"))

 }

127

 if (nPar > 100){

 nPar = 100

 }

 childsRunID <- sort(sample(new1[[1]], nPar, prob= new1$Parkfitness, replace=F));

 childsRunIDCopy <- childsRunID

 chile = length(childsRunID); child = vector("list",chile);

 for (z in 1:chile){

 child[[z]] <- dplyr::select(fit[[childsRunID[z]]], Run, Rect_ID,Parkfitness)

 }

 childbin <- vector("list",chile);

 for (i in 1: chile){

 childbin[[i]] <- Grid

 childbin[[i]]$Run <- child[[i]]$Run[[1]]

 childbin[[i]]$bin <- 0

 childbin[[i]]$Fitness <- child[[i]]$Parkfitness[[1]]

 for (e in 1:length(child[[i]][[1]])) {

 rectid <- child[[i]][e,2][[1]]

 childbin[[i]][childbin[[i]]$ID==rectid,]$bin = 1

 }

 }

 parents <- vector("list",(length(childsRunID)/2));

 for (i in 1:(length(childsRunID)/2)) {

 new <- dplyr::arrange(new1[new1$Run %in% childsRunID,]); new

 parents[[i]] <- sample(x = sort(childsRunID), 2, replace = F); parents[[i]]

 childsRunID <- childsRunID[!(childsRunID %in% parents[[i]])]; childsRunID

 }

 parall <- unlist(parents)

 childbindf <- do.call("rbind",childbin); paralli <-

 vector("list",length(parall));

 for (i in 1:length(parall)){

 paralli[[i]] <- dplyr::select(childbindf[which(childbindf$Run %in%

 parall[i]),], ID,Run,bin,Fitness)

 }

 parentsall <- data.frame(paralli)

 parents_Fitness <- parentsall[1,c(1,seq(4, length(parentsall),4))]

 parentsall <- parentsall[,c(1,seq(3, length(parentsall),4))];parentsall

 parents_new <- list(parentsall,parents_Fitness)

 return(parents_new)

}

############### Checking Crossover Inputs

readinteger <- function(){

 print("Select appropriate Method. Either 'EQU' for equal crossover

 parts or 'RAN' for random parts.")

 crPaInter <- readline(prompt = "Type 'R' for random and 'E' for equal parts.")

 if(crPaInter=="R"){crossPart = "RAN"}

 if(crPaInter=="E"){crossPart = "EQU"}

 if (crossPart!= "EQU" & crossPart !="RAN") {

 return(readinteger())

 }

 return(crossPart)

}

############### Gene Split Function used by the Crossover-Method

splitAt <- function(x, pos) unname(split(x,

 cumsum(seq_along(x) %in% pos)))

############### Crossover Method

crossover1 <-function(se6,u, uplimit,crossPart,...) {

 print(paste("Crossover Point Rate: ",u+1))

 se6fit <- se6[[2]][1,-1];

 se6 <- se6[[1]]

 se6 = se6[,-1];

 parid <- sample(1:length(se6));

 z = seq(1, length(parid),2);

128

 all <- vector("list", length(z));

 crossPart = toupper(crossPart)

 sene2fit <- vector(mode = "list",length = length(z))

 for (e in 1:length(z)) {

 r = z[[e]];

 sene <- se6[,parid[r]];

 sene1 <- se6[,parid[r+1]];

 senefit <- se6fit[,parid[r]];senefit; sene1fit <- se6fit[,parid[r+1]];

 sene2fit[[e]] <- senefit+sene1fit/2;

 if (crossPart == "EQU"){

 crosEquPartN <- trunc(u+1)

 t1 <- ceiling(length(sene)/crosEquPartN);

 a <- split(sene,as.numeric(gl(length(sene),t1,length(sene))));

 b <- split(sene1,as.numeric(gl(length(sene1),t1,length(sene1))));

 }

 if (crossPart == "RAN"){

 u1 <- sort(sample(2:(length(sene)-1), u, replace=F));

 a <- splitAt(sene,u1);

 b <- splitAt(sene1,u1);

 }

 x1 <- rbind(a,b);

 perm <- gtools::permutations(n=2,r=ncol(x1),v=1:nrow(x1),repeats.allowed=T);

 permut <- list()

 for (pp in 1:nrow(perm)){

 gclist <-list()

 for (gnp in 1:length(perm[pp,])){

 parent01 <- perm[pp,gnp];

 if (parent01 ==1){

 gc <- a[[gnp]];

 } else {

 gc <- b[[gnp]]

 }

 gclist[[gnp]] <- gc

 }

 permut[[pp]] <- unlist(gclist);

 }

 permut <- do.call("cbind",permut);

 all[[e]] <- permut

 }

 nuCh <- ncol(all[[1]]);

 sene2fit_n <- do.call("cbind",sene2fit);

 sene2fit_n <- (sene2fit_n/mean(sene2fit_n))

 fitChi <- rep(x = sene2fit_n,each=nuCh)

 nI <- do.call("cbind", all);

 if (length(fitChi) != ncol(nI)){

 print(paste("Crossover - Anzahl nicht gleich. Fehler."))

 break()

 }

 print(paste("How many parental pairs are at hand: ",length(z)))

 print(paste("How many permutations are possible: ", length(z)*(2^(trunc(u)+1))))

 partaksur = ncol(nI)

 if (partaksur >= uplimit){

 partaksur = uplimit

 print(paste("Population max limit reached: ", uplimit))

 }

 partak <- sort(sample(1:length(nI[1,]),partaksur,prob = fitChi));

 print(paste("How many permutations are selected: ", length(partak)))

 nI <- nI[,partak]

 return(nI)}

############### Mutate the genes of every Individual

mutation <- function(a,p) {

 for (i in 1:length(a)) {

129

 rnd <- runif(n = 1,min = 0,max = 1)

 if (rnd < p) {

 if (a[i] == "0") {a[i] = 1} else {a[i] =1}

 }

 }

 return(a)

}

############### Adjust thenumber of turbines per windfarm

trimton <- function(mut, nturb, allparks, nGrids, trimForce){

 uniRect <- sort(unique(allparks$Rect_ID))

 nGrids1 <- 1:nGrids

 lepa <- length(mut[1,])

 mut1 = list();

 for (i in 1:lepa) {

 mut1[[i]] = mut[,i]

 e = mut[,i]==1

 ele = length(e[e==T]);

 zviel = ele - nturb;

 welche <- which(e==TRUE);

 uniRectRest <- sort(uniRect[uniRect %in% welche]);

 uniRectRest1 <- sort(nGrids1[!nGrids1 %in% welche]);

 trimForce <- toupper(trimForce)

 indivprop <- dplyr::select(allparks, Rect_ID, Parkfitness, AbschGesamt);

 indivprop <- indivprop %>% group_by(Rect_ID) %>% summarise_each(funs(mean));

 k = 3

 propwelche <- data.frame(cbind(RectID=welche,

 Prop=rep(mean(indivprop$AbschGesamt),length(welche))));

 propexi <- indivprop[indivprop$Rect_ID %in% welche,];

 propexi <- as.data.frame(propexi)

 npt <- (1+((max(propexi$AbschGesam)-

 propexi$AbschGesam)/(1+max(propexi$AbschGesam))))

 npt0 <- (1+((max(propexi$Parkfitness)-

 propexi$Parkfitness)/(1+max(propexi$Parkfitness))))

 NewProb <- 1/(npt/(npt0^k))

 propwelche[welche %in% indivprop$Rect_ID,]$Prop <- NewProb;

 propwelcheN <- data.frame(cbind(RectID=nGrids1,

 Prop=rep(min(indivprop$AbschGesamt),length(nGrids1))));

 propexiN <- indivprop[indivprop$Rect_ID %in% nGrids1,];

 propexiN <- as.data.frame(propexiN)

 npt1 <- (1+((max(propexiN$AbschGesam)-

 propexiN$AbschGesam)/(1+max(propexiN$AbschGesam))))

 npt2 <- (1+((max(propexiN$Parkfitness)-

 propexiN$Parkfitness)/(1+max(propexiN$Parkfitness))))^k

 NewProb1 <- (npt1/npt2)

 propwelcheN[propwelcheN$RectID %in% indivprop$Rect_ID,]$Prop <- NewProb1;

 if (!all(propwelcheN$RectID %in% indivprop$Rect_ID==TRUE)){

 qu <- min(NewProb1)

 propwelcheN[!propwelcheN$RectID %in% indivprop$Rect_ID,]$Prop <- qu

 }

 propwelcheN <- propwelcheN[!propwelcheN$RectID %in% welche,];

 prob1 = propwelche$Prop;

 prob2 = propwelcheN$Prop;

 if (zviel != 0) {

 if (zviel > 0) {

 if (trimForce == "TRUE"){

 smpra <- sort(sample(welche, zviel,replace=F,prob = prob1));

 prob1[which(welche==smpra[1])]

 } else {

 smpra <- sort(sample(welche, zviel,replace=F));

 }

 mut1[[i]][smpra] = 0

 } else {

130

 if (trimForce == "TRUE"){

 smpra <- sort(sample(propwelcheN$RectID, (-zviel),

 replace=F, prob = prob2));

 } else {

 smpra <- sort(sample(propwelcheN$RectID, (-zviel),replace=F));

 }

 mut1[[i]][smpra] = 1;

 }

 }

 }

 mut1 <- do.call("cbind", mut1)

 return(mut1)

}

############### Get the Grid-IDs from the binary code to start a new generation

getRects <- function(trimtonOut, Grid){

 childli = list();

 len1= dim(trimtonOut)[2]

 for (i in 1:len1) {

 childli[[i]] <- trimtonOut[,i]

 }

 rectidli = list();

 for (u in 1:len1){

 rectidli[[u]] <- which(childli[[u]]==1, arr.ind = T)

 }

 childnew = list()

 for (z in 1:len1) {

 childnew[[z]] <- Grid[rectidli[[z]],];

 }

 return(childnew)

}

############### This is the main function to start an optimization

genAlgo <- function(Polygon1, Rotor, n, fcrR=3,referenceHeight=50,

 RotorHeight=100, SurfaceRoughness=0.14,

 Proportionality=1, iteration=100, mutr=0.001,

 vdirspe, topograp="FALSE",elitism="TRUE", nelit=6,

 selstate="FIX",crossPart1="EQU",trimForce="TRUE"){

 library(rgdal); library(raster); library(dplyr);

 library (data.table);library(gtools); library(varhandle)

 oldpar <- par(no.readonly = T)

 plot.new(); par(ask=F);

 resol2 <- fcrR*Rotor

 CrossUpLimit = 300

 inputData <- list(Input_Data=rbind("Rotorradius"=Rotor,

 "Number of turbines"=n,"Grid Shape Factor"= fcrR,

 "Iterations"=iteration,

 "Mutation Rate"=mutr, "Percentage of Polygon"=

 Proportionality, "Topographie"=topograp,

 "Elitarism"=elitism, "Selection Method"=selstate,

 "Trim Force Method Used"=trimForce,

 "Crossover Method Used"=crossPart1,

 "Reference Height"= referenceHeight,

 "Rotor Height"=RotorHeight,

 "Resolution" = resol2));

 inputWind <- list(Windspeed_Data=vdirspe)

 ProjLAEA = "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80

 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

 if (as.character(crs(Polygon1)) != ProjLAEA) {

 Polygon1 <- spTransform(Polygon1, CRSobj = ProjLAEA)

 }

 if (crossPart1!= "EQU" & crossPart1 !="RAN") {

 crossPart1 <- readinteger()

 }

 Grid <- GridFilter(shape = Polygon1,resol = resol2,prop = Proportionality);

131

 AmountGrids <- nrow(Grid)

 nStart = (AmountGrids*n)/iteration;

 if (nStart < 70) {nStart = 70};

 if (nStart > 200) {nStart = 200}

 nStart<- ceiling(nStart);

 startsel <- StartGA(Grid,n,nStart);

 maxParkwirkungsg = 0; allparkcoeff <- vector("list",iteration);

 bestPaEn <- vector("list",iteration); bestPaEf <- vector("list",iteration);

 fuzzycontr <- vector("list",iteration);

 fitnessValues <- vector("list",iteration);

 nindiv <- vector("list",iteration); clouddata <- vector("list",iteration);

 selcross <- vector("list",iteration); beorwor <- vector("list",iteration);

 mut_rate <- vector("list",iteration); allCoords <- vector("list",iteration);

 if (topograp == "FALSE"){

 print("Topography is not taken into account.")

 } else if (topograp == "TRUE"){

 print("Topography is taken into account.")

 par(mfrow=c(3,1))

 Polygon1 <- spTransform(Polygon1, CRSobj =

 crs("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"));

 extpol <- round(Polygon1@bbox,0)[,2]

 srtm <- getData('SRTM', lon=extpol[1], lat=extpol[2]);

 srtm_crop <- crop(srtm, Polygon1);

 srtm_crop <- mask(srtm_crop, Polygon1)

 Polygon1 <- spTransform(Polygon1, CRSobj = crs(ProjLAEA));

 srtm_crop <- projectRaster(srtm_crop, crs = crs(ProjLAEA));

 plot(srtm_crop, main="Elevation from SRTM");

 assign(x = "srtm_cropUni",value = srtm_crop, envir = .GlobalEnv)

 plot(Polygon1,add=T); plot(dry.grid.filtered,add=T)

 ###

 ## Path to CORINE LAND COVER-Raster/legend. Must be inserted to

 ## be able to run the terrain effect model.

 ## The legend must be adapted priorly; A new column "Rauhigkeit_z"

 ## must be created which specifies the land rougness of each land cover.

 ## NOTE: Land classes with "NODATA" or "UNCLASSIFIED .." need numeric

 ## "Rauhigkeit_z"-values, otherwise R will interpret them as factors.

 ccl <- raster(" C:/................./g100_06.tif ")

 rauhigkeitz <- read.csv("C:/................./clc_legend.csv",

 header = T,sep = ";");

 cclPoly <- crop(ccl,Polygon1)

 cclPoly1 <- mask(cclPoly,Polygon1)

 cclRaster <- reclassify(cclPoly1, matrix(c(rauhigkeitz$GRID_CODE,

 rauhigkeitz$Rauhigkeit_z),ncol = 2))

 assign(x = "cclRasterUni",value = cclRaster, envir = .GlobalEnv)

 plot(cclRaster, main="Surface Roughness from Corine Land Cover")

 }

 rbPal <- colorRampPalette(c('red','green'))

 i=1

 while (i <= iteration) {

 if (i==1) {

 fit <- fitness(selection = startsel,referenceHeight,

 RotorHeight,SurfaceRoughness, Polygon = Polygon1,

 resol1 = resol2,rot=Rotor, dirspeed = vdirspe,

 srtm_crop,topograp,cclRaster)

 } else {

 getRectV <- getRects(mut1, Grid)

 fit <- fitness(selection = getRectV,referenceHeight,

 RotorHeight,SurfaceRoughness, Polygon = Polygon1,

132

 resol1 = resol2,rot = Rotor, dirspeed = vdirspe,

 srtm_crop,topograp,cclRaster)

 }

 allparks <- do.call("rbind",fit);

 allparksUni <- split(allparks, duplicated(allparks$Run))$'FALSE';

 maxparkfitness <- round(max(allparksUni$Parkfitness),4);

 meanparkfitness <- round(mean(allparksUni$Parkfitness),3);

 minparkfitness <- round(min(allparksUni$Parkfitness),3);

 MaxEnergyRedu <- round(max(allparksUni$EnergyOverall),2);

 MeanEnergyRedu <- round(mean(allparksUni$EnergyOverall),2);

 MinEnergyRedu <- round(min(allparksUni$EnergyOverall),2);

 allCoords[[i]] <- allparks

 maxParkwirkungsg <- round(max(allparksUni$EfficAllDir),2);

 meanParkwirkungsg <- round(mean(allparksUni$EfficAllDir),2);

 minParkwirkungsg <- round(min(allparksUni$EfficAllDir),2);

 allparkcoeff[[i]] <- cbind(maxparkfitness,meanparkfitness,minparkfitness,

 MaxEnergyRedu,MeanEnergyRedu,MinEnergyRedu,

 maxParkwirkungsg,meanParkwirkungsg,minParkwirkungsg)

 clouddata[[i]] <- dplyr::select(allparksUni,

 EfficAllDir,EnergyOverall,Parkfitness);

 cat(c("\n\n", i, ": Round with coefficients ", allparkcoeff[[i]], "\n"));

 xd <- allparks[allparks$EnergyOverall==

 max(allparks$EnergyOverall),]$EnergyOverall[1];

 ind <- allparks$EnergyOverall == xd;

 bestPaEn[[i]] <- allparks[ind,][1:n,]

 xd1 <- allparks[allparks$EfficAllDir==

 max(allparks$EfficAllDir),]$EfficAllDir[1];

 ind1 <- allparks$EfficAllDir == xd1;

 bestPaEf[[i]] <- allparks[ind1,][1:n,]

 afvs <- allparks[allparks$EnergyOverall==max(allparks$EnergyOverall),];

 cat(paste("How many individuals exist: ", length(fit)), "\n");

 cat(paste("How many parks are in local Optimum: ",

 (length(afvs[,1])/n)), "\n")

 nindivfit <- length(fit)

 lebre <- length(unique(bestPaEn[[i]]$AbschGesamt))

 if (lebre <= 2){

 Col <- "green"; Col1 <- "green"

 } else {

 Col <- rbPal(lebre)[as.numeric(cut(-bestPaEn[[i]]$AbschGesamt,

 breaks = lebre))];

 Col1 <- rbPal(lebre)[as.numeric(cut(-bestPaEf[[i]]$AbschGesamt,

 breaks = lebre))]

 }

 x = round(bestPaEn[[i]]$EnergyOverall[[1]],2);

 y = round(bestPaEn[[i]]$EfficAllDir[[1]],2);

 e = bestPaEn[[i]]$EfficAllDir;

 x1 = round(bestPaEf[[i]]$EnergyOverall[[1]],2);

 y1 = round(bestPaEf[[i]]$EfficAllDir[[1]],2);

 e1 = bestPaEf[[i]]$EfficAllDir

 allparksNewplot <- dplyr::select(allparks,AbschGesamt,Rect_ID,Parkfitness);

 allparksNewplot <- allparksNewplot %>%

 group_by(Rect_ID) %>%

 summarise_each(funs(mean));

 if(any(allparksNewplot$Rect_ID %in% Grid$ID == F)){

 print(paste("Index of Grid not correct. Bigger than maximum Grid? "))

 break()

 }

 par(mfrow=c(1,2))

 plot(Polygon1, main=paste(i, "Round \n Best Energy Output: ", x,

 "\n Wirkungsgrad: ", y),

 sub =paste("\n Number of turbines: ", length(e)));

 plot(dry.grid.filtered, add=T)

133

 points(bestPaEn[[i]]$X,bestPaEn[[i]]$Y,col=Col,pch=20,cex=1.5);

 plot(Polygon1, main=paste(i, "Round \n Best Efficiency Output: ", x1,

 "\n Wirkungsgrad: ", y1),

 sub =paste("\n Number of turbines: ", length(e1)));

 plot(dry.grid.filtered, add=T)

 points(bestPaEf[[i]]$X,bestPaEf[[i]]$Y,col=Col1,pch=20,cex=1.5)

 if (i > 20) {

 besPE <- do.call("rbind",lapply(bestPaEn[1:i], function(x)

 max(x$EnergyOverall)))

 maxBisher <- max(besPE); WhichMaxBs <- which(besPE==max(besPE))

 if (length(WhichMaxBs) >= 2) {

 BestForNo <- bestPaEn[sample(WhichMaxBs,2)]

 BestForNo[[1]]$Run <- length(fit)+1

 BestForNo[[2]]$Run <- length(fit)+2

 } else {

 BestForNo <- bestPaEn[WhichMaxBs]

 BestForNo <- append(BestForNo, BestForNo)

 BestForNo[[1]]$Run <- length(fit)+1

 BestForNo[[2]]$Run <- length(fit)+2

 }

 last7 <- besPE[i:(i-5)]

 if (!any(last7==maxBisher)){

 cat(paste(

 "Park with highest Fitness level to date is replaced in the list.",

 "\n\n"))

 fit <- append(fit, BestForNo)

 }

 }

 if (i==1) {

 t0 <- split(allparks, duplicated(allparks$Run))$'FALSE'

 t0 <- t0$Parkfitness; fitnessValues[[i]] <- t0

 rangeFitnessVt0 <- range(t0);

 maxt0 <- max(t0);

 meant0 <- mean(t0);

 allcoef0 <- c(rangeFitnessVt0, meant0);

 fuzzycontr[[i]] <- rbind(allcoef0);

 colnames(fuzzycontr[[i]]) <- c("Min","Max","Mean")

 teil=2

 if (selstate=="VAR"){

 teil=1.35

 }

 u = 1.1

 beorwor[[i]] <- cbind(0,0)

 }

 if (i>=2 && i <= iteration) {

 t0 <- split(allparks, duplicated(allparks$Run))$'FALSE';

 t0 <- t0$Parkfitness;

 fitnessValues[[i]] <- t0;

 rangeFitnessVt0 <- range(t0);

 maxt0 <- max(t0);

 meant0 <- mean(t0);

 mint0 <- min(t0);

 t1 <- fitnessValues[[i-1]];

 rangeFitnessVt1 <- range(t1);

 maxt1 <- max(t1);

 meant1 <- mean(t1);

 mint1 <- min(t1)

 maxDif <- maxt0 - maxt1;

 meanDif <- meant0 - meant1;

 minDif = mint0 - mint1

 WeightDif <- c(0.80,0.2,0.0)

 maxunt <- (maxDif*WeightDif[1])+(meanDif*WeightDif[2])+(minDif*WeightDif[3])

134

 allcoef1 <- c(rangeFitnessVt0, meant0);

 allcoef2 <- c(rangeFitnessVt1, meant1);

 fuzzycontr[[i]] <- rbind(allcoef1,allcoef2);

 colnames(fuzzycontr[[i]]) <- c("Min","Max","Mean")

 if(maxunt<0) {

 pri="deteriorated";teil=teil-0.02; u=u-0.06} else if (maxunt==0) {

 pri="not changed"; teil=teil; u=u} else {

 pri="improved"; teil=teil+0.017; u=u+0.03}

 if (teil > 5){teil=5; u=u+0.09;

 print("Min 20% Selected");

 print(paste("CPR is increased! CPR:",u,

 "SelPerc: ",teil))}

 if (trunc(u) < 0){u = 0.5;teil=teil-0.4;

 print(paste("Min 1 CrossPoints. Selection decreased. CPR:",u,

 "SelPerc: ",teil))}

 if (u >= 4){u=4;teil=4;

 print(paste("Max 5 CrossPoints. Select fittest 25%.: ",teil))}

 if (teil <= 4/3){teil = 4/3;

 print(paste("Max 75% selected. SelPerc: ",teil))}

 if (length(fit) <= 20) {teil=1;u=u+0.07;

 print(paste(

 "Less than 20 individuals. Select all and increase Crossover-

 point rate: ", u,"SelPerc", teil))}

 if (teil > 5){teil=5;}

 u = round(u,2); teil=round(teil,3);

 print(paste("Fitness of this generation (",i,

 "), compared with the previous, has",pri,"by",

 round(maxunt,4)))

 meanunt <- meant0-meant1;

 beorwor[[i]] <- cbind(maxunt, meanunt)

 }

 if (selstate=="FIX"){

 if (teil==1){teil=1} else {teil=2}

 }

 if (crossPart1=="EQU"){

 u=round(u,2)

 }

 selcross[[i]] <- cbind(cross=trunc(u+1),teil)

 selec6best <- selection1(fit, Grid,teil, elitism, nelit, selstate);

 selec6best_bin <- selec6best[[1]]

 print(paste("Selection - Amount of Individuals: ",

 length(selec6best_bin[1,-1])))

 nindivsel<- length(selec6best_bin[1,-1]);

 crossOut <- crossover1(selec6best, u, uplimit = CrossUpLimit,

 crossPart=crossPart1) ;

 print(paste("Crossover - Amount of Individuals: ",length(crossOut[1,])));

 nindivcros<- length(crossOut[1,]);

 loOp <- (length(afvs[,1])/n)

 if (loOp > 2) {

 mutrn <- round(runif(1, 0.03, 0.1),2);

 t1 <- (loOp*1.25)/42

 mutrn <- mutrn * (1+(t1)); mutrn

 mutrn <- round(mutrn +((i)/(20*iteration)),5);

 mut <- mutation(a = crossOut, p = mutrn);

 mut_rat <- mutrn

 cat(paste("1. Mutation Rate is", mutrn, "\n\n"))

 } else {

 mut <- mutation(a = crossOut, p = mutr);

 mut_rat <- mutr

 }

 mut_rate[[i]] <- mut_rat

 print(paste("Mutation - Amount of Individuals: ",length(mut[1,])));

135

 nindivmut <- length(mut[1,]);

 mut1 <- trimton(mut = mut, nturb = n, allparks = allparks,

 nGrids = AmountGrids,trimForce=trimForce)

 print(paste("TrimToN - Amount of Individuals: ",length(mut1[1,])))

 nindiv[[i]] <- cbind(nindivfit,nindivsel,nindivcros,nindivmut)

 if (maxParkwirkungsg == 100) {

 i = iteration + 1

 } else {

 i = i+1

 }

 }

 mut_rate <- mut_rate[lapply(mut_rate,length)!=0];

 beorwor <- beorwor[lapply(beorwor,length)!=0] ;

 selcross <- selcross[lapply(selcross,length)!=0] ;

 clouddata <- clouddata[lapply(clouddata,length)!=0];

 allparkcoeff <- allparkcoeff[lapply(allparkcoeff,length)!=0]

 bestPaEn <- bestPaEn[lapply(bestPaEn,length)!=0] ;

 bestPaEf <- bestPaEf[lapply(bestPaEf,length)!=0] ;

 fuzzycontr <- fuzzycontr[lapply(fuzzycontr,length)!=0];

 fitnessValues <- fitnessValues[lapply(fitnessValues,length)!=0];

 nindiv <- nindiv[lapply(nindiv,length)!=0]

 allCoords <- allCoords[lapply(allCoords,length)!=0] ;

 alldata <- cbind(allparkcoeff,bestPaEn,bestPaEf,fuzzycontr,

 fitnessValues,nindiv,clouddata,selcross,beorwor,

 inputData,inputWind,mut_rate,allCoords)

 par(oldpar);

 return(alldata)

}

############### Plotting functions for the result #############

############### Plot the evolution of the GA

plotEvolution <- function(resultMa,ask=T, spar=0.5){

 par(mfrow=c(1,1))

 result1 <- as.data.frame(do.call("rbind", resultMa[,1]))

 plot(result1$minParkwirkungsg, xaxt='n', main="Park Efficiency per Generation",

 xlab="Generation",ylab="Park Efficiency in %", cex=1.2,col="red", pch=20,

 ylim= c(min(result1$minParkwirkungsg),max(result1$maxParkwirkungsg)))

 axis(1,at = 1:nrow(result1),tick=T)

 grid(col = "black")

 points(result1$meanParkwirkungsg,ylab="MeanxParkwirkungsg", cex=1.2,col="blue",

 pch=20)

 points(result1$maxParkwirkungsg,ylab="maxParkwirkungsg", cex=1.2,col="green",

 pch=20)

 x <- 1:length(result1$MaxEnergyRedu)

 lmin <- smooth.spline(x,result1$minParkwirkungsg, spar=spar);

 lines(lmin, col='red', lwd=1.2)

 lmea <- smooth.spline(x,result1$meanParkwirkungsg, spar=spar);

 lines(lmea, col='blue', lwd=1.2)

 lmax <- smooth.spline(x,result1$maxParkwirkungsg, spar=spar);

 lines(lmax, col='green', lwd=1.2)

 op <- par(ask=ask)

 on.exit(par(op))

 plot(result1$MeanEnergyRedu,xaxt='n',

 main="Energy Yield per Generation",xlab="Generation",

 ylab="Energy in kW", cex=1.2,col ="blue", pch=20, ylim=

 c(min(result1$MinEnergyRedu),max(result1$MaxEnergyRedu)))

 axis(1,at = 1:nrow(result1),tick=T)

 grid(col = "black")

 points(result1$MaxEnergyRedu,ylab="maxParkwirkungsg", cex=1.2,col="green",

 pch=20)

136

 emean <- smooth.spline(x,result1$MeanEnergyRedu, spar=spar); lines(emean,

 col='blue', lwd=1.2)

 emax <- smooth.spline(x,result1$MaxEnergyRedu, spar=spar); lines(emax,

 col='green', lwd=1.2)

}

############### Plot the best X efficiency/energy results

plotResult <- function(resultMa,Polygon1,best=5,plotEn=1,topographie="FALSE"){

require(data.table);require(raster)

 op <- par(ask=FALSE); on.exit(par(op)); par(mfrow=c(1,1))

 ProjLAEA = "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000

 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

 if (as.character(crs(Polygon1)) != ProjLAEA) {

 Polygon1 <- spTransform(Polygon1, CRSobj = ProjLAEA)

 }

 rbPal1 <- colorRampPalette(c('green','red'))

 resultSafe <- resultMa

 if (plotEn == 1) {

 a <- sapply(resultMa[,2], "[", "EnergyOverall")

 b <- data.frame(sapply(a, function(x) x[1]))

 order1 <- order(b, decreasing = F)

 resultMa <- resultMa[,2][order1]

 ledup <- length(resultMa)

 rectid <- (lapply(resultMa, function(x) x$Rect_ID));

 rectidt <- !duplicated(rectid)

 resultMa <- resultMa[rectidt]

 ndif <- length(resultMa)

 cat(paste("N different optimal configurations:", ndif,

 "\nAmount duplicates:", (ledup-ndif)))

 if (ndif < best) {

 cat(paste("\nNot enough unique Optimas.

 Show first best Half of different configurations."))

 best = trunc(ndif/2)

 }

 resultMa <- resultMa[(length(resultMa)-best+1):(length(resultMa))]

 for (i in (1:length(resultMa))){

 EnergyBest <- data.frame(resultMa[[i]])

 br = length(levels(factor(EnergyBest$AbschGesamt)))

 if (br > 1) {

 Col <- rbPal1(br)[as.numeric(cut(as.numeric(EnergyBest$AbschGesamt),

 breaks = br))]

 } else {

 Col = "green"

 }

 EnergyBest$EnergyOverall <- round(EnergyBest$EnergyOverall, 2)

 EnergyBest$EfficAllDir <- round(EnergyBest$EfficAllDir, 2)

 plot(Polygon1, col="lightblue",

 main=paste("Best Energy:", (best+1)-i,

 "\n","Energy Output", EnergyBest$EnergyOverall[[1]],"kW",

"\n", "Efficiency:",EnergyBest$EfficAllDir[[1]]));

 plot(dry.grid.filtered,add=T)

 mtext("Total wake effect in %", side = 2)

 points(EnergyBest$X,EnergyBest$Y,cex=2,pch=20,col=Col)

 text(EnergyBest$X, EnergyBest$Y, round(EnergyBest$AbschGesamt,0), cex=0.8,

 pos=1, col="black")

 distpo <- dist(x = cbind(EnergyBest$X,EnergyBest$Y),method = "euclidian")

 mtext(paste("minimal Distance", round(min(distpo),2)), side = 1,line=0)

 mtext(paste("mean Distance", round(mean(distpo),2)), side = 1,line=1)

 }

 }

 if(topographie=="TRUE" && plotEn == 1){

 resol= as.integer(resultSafe[1,]$inputData['Resolution',])

 RotorHeight <- as.integer(resultSafe[1,]$inputData['RotorHeight',])

137

 polygon1=Polygon1

 sel1=EnergyBest[,1:2]

 windpo <- 1

 Polygon1 <- spTransform(Polygon1, CRSobj = crs("+proj=longlat +datum=WGS84

 +ellps=WGS84 +towgs84=0,0,0"));

 extpol <- round(Polygon1@bbox,0)[,2]

 srtm <- getData('SRTM', lon=extpol[1], lat=extpol[2]);

 srtm_crop <- crop(srtm, Polygon1);

 srtm_crop <- mask(srtm_crop, Polygon1)

 Polygon1 <- spTransform(Polygon1, CRSobj = crs(ProjLAEA));

 srtm_crop <- projectRaster(srtm_crop, crs = crs(ProjLAEA));

 ccl <- raster("C:/................./g100_06.tif ")

 rauhigkeitz <- read.csv("C:/................./clc_legend.csv",

 header = T,sep = ";");

 cclPoly <- crop(ccl,Polygon1); cclPoly1 <- mask(cclPoly,Polygon1)

 cclRaster <- reclassify(cclPoly1,

 matrix(c(rauhigkeitz$GRID_CODE,rauhigkeitz$Rauhigkeit_z),ncol=2))

 orogr1 <- calc(srtm_crop, function(x) {x/(cellStats(srtm_crop,mean,na.rm=T))})

 orogrnum <- raster::extract(x= orogr1, y = as.matrix((sel1)), buffer=resol*2,

 small=T,fun= mean,na.rm=T);orogrnum

 windpo <- windpo * orogrnum

 heightWind <- raster::extract(x= srtm_crop, y = as.matrix((sel1)), small=T,fun=

 max,na.rm=T);heightWind

 par(mfrow=c(1,1))

 plot(srtm_crop, main="SRTM Elevation Data");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(heightWind,0),cex=0.8);plot(polygon1,add=T)

 plot(orogr1, main="Wind Speed Multipliers");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(windpo,3),cex=0.8);plot(polygon1,add=T)

 HeighttoBaro <- matrix(heightWind); colnames(HeighttoBaro) <- "HeighttoBaro"

 air_dt <- BaroHoehe(matrix(HeighttoBaro),HeighttoBaro)

 par(mfrow=c(1,1))

 plot(srtm_crop,

 main="Normal Air Density",

 col=topo.colors(10));points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = rep(1.225,nrow(sel1)),cex=0.8);plot(polygon1,add=T)

 plot(srtm_crop, main="Corrected Air Density",

 col=topo.colors(10));points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(air_dt$rh,2),cex=0.8);plot(polygon1,add=T)

 SurfaceRoughness0 <- raster::extract(x= cclRaster, y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun= mean,

 na.rm=T);

 SurfaceRoughness1 <- raster::extract(x=terrain(srtm_crop,"roughness"),

 y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun= mean,

 na.rm=T);

 SurfaceRoughness <-SurfaceRoughness0*

 (1+(SurfaceRoughness1/max(res(srtm_crop))));

 elrouind <- terrain(srtm_crop,"roughness")

 elrouindn <- resample(elrouind,cclRaster,method="ngb")

 modSurf <- overlay(x = cclRaster,y = elrouindn, fun=

 function(x,y){return(x*(1+(y/max(res(srtm_crop)))))})

 par(mfrow=c(1,1)); cexa=0.9

 plot(cclRaster,

 main="Corine Land Cover Roughness");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(SurfaceRoughness0,2),

 cex=cexa);plot(polygon1,add=T)

 plot(x=terrain(srtm_crop,"roughness",neighbors = 4),

 main="Elevation Roughness Indicator");

 points(sel1$X,sel1$Y,pch=20);

138

 textxy(sel1$X,sel1$Y,labs = round((SurfaceRoughness1) ,2), cex=cexa);

 plot(polygon1,add=T)

 plot(modSurf, main="Modified Surface Roughness");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round((SurfaceRoughness),2),

 cex=cexa);plot(polygon1,add=T)

 k_raster <- calc(modSurf, function(x) {x= 0.5/(log(RotorHeight/x))})

 k = 0.5/(log(RotorHeight/SurfaceRoughness))

 par(mfrow=c(1,1)); cexa=0.9

 plot(k_raster, main="Adapted Wake Decay Constant - K");

 points(sel1$X,sel1$Y,pch=20); textxy(sel1$X,sel1$Y,labs = round((k),3),

 cex=cexa);

 plot(polygon1,add=T)

 }

 if (plotEn == 2){

 a <- sapply(resultMa[,3], "[", "EfficAllDir")

 b <- data.frame(sapply(a, function(x) x[1]))

 order2 <- order(b, decreasing = F)

 resultMa <- resultMa[,3][order2]

 ledup <- length(resultMa)

 rectid <- lapply(resultMa, function(x) x$Rect_ID)

 rectidt <- !duplicated(rectid)

 resultMa <- resultMa[rectidt]

 ndif <- length(resultMa)

 cat(paste("N different optimal configurations:", ndif, "\nAmount duplicates:",

 (ledup-ndif)))

 if (ndif < best) {

 cat(paste("\nNot enough unique Optimas. Show first best Half of different

 configurations."))

 best = trunc(ndif/2)

 }

 resultMa <- resultMa[(length(resultMa)-best+1):(length(resultMa))]

 for (i in (1:length(resultMa))){

 EfficiencyBest <- data.frame(resultMa[[i]])

 br = length(levels(factor(EfficiencyBest$AbschGesamt)))

 if (br > 1) {

 Col1 <- rbPal1(br)[as.numeric(cut(EfficiencyBest$AbschGesamt,breaks = br))]

 } else {

 Col1 = "green"

 }

 EfficiencyBest$EnergyOverall <- round(EfficiencyBest$EnergyOverall, 2)

 EfficiencyBest$EfficAllDir <- round(EfficiencyBest$EfficAllDir, 2)

 plot(Polygon1, col="lightblue", main=paste("Best Efficiency:", (best+1)-i,

 "\n","Energy Output", EfficiencyBest$EnergyOverall[[1]], "kW", "\n",

 "Efficiency", EfficiencyBest$EfficAllDir[[1]]));

 plot(dry.grid.filtered,add=T)

 mtext("Total wake effect in %", side = 2)

 points(EfficiencyBest$X,EfficiencyBest$Y,col=Col1,cex=2,pch=20)

 text(EfficiencyBest$X, EfficiencyBest$Y, round(EfficiencyBest$AbschGesamt,0),

 cex=0.8, pos=1)

 distpo <- dist(x = cbind(EfficiencyBest$X,EfficiencyBest$Y),

 method = "euclidian")

 mtext(paste("minimal Distance", round(min(distpo),2)), side = 1,line=0)

 mtext(paste("mean Distance", round(mean(distpo),2)), side = 1,line=1)

 }

 }

 if(topographie=="TRUE" && plotEn == 2){

 resol= as.integer(resultSafe[1,]$inputData['Resolution',])

 polygon1=Polygon1

 sel1=EfficiencyBest[,1:2]

 windpo <- 1

 if (1==1){

 Polygon1 <- spTransform(Polygon1, CRSobj = crs("+proj=longlat +datum=WGS84

 +ellps=WGS84 +towgs84=0,0,0"));

139

 extpol <- round(Polygon1@bbox,0)[,2]

 srtm <- getData('SRTM', lon=extpol[1], lat=extpol[2]);

 srtm_crop <- crop(srtm, Polygon1);

 srtm_crop <- mask(srtm_crop, Polygon1)

 Polygon1 <- spTransform(Polygon1, CRSobj = crs(ProjLAEA));

 srtm_crop <- projectRaster(srtm_crop, crs = crs(ProjLAEA));

 ccl <- raster("C:/................./g100_06.tif")

 rauhigkeitz <- read.csv("C:/................./clc_legend.csv",

 header = T, sep = ";");

 cclPoly <- crop(ccl,Polygon1); cclPoly1 <- mask(cclPoly,Polygon1)

 cclRaster <- reclassify(cclPoly1,

 matrix(c(rauhigkeitz$GRID_CODE,rauhigkeitz$Rauhigkeit_z),ncol = 2))

 orogr1 <- calc(srtm_crop, function(x)

 {x/(cellStats(srtm_crop,mean,na.rm=T))})

 orogrnum <- raster::extract(x= orogr1, y = as.matrix((sel1)), buffer=resol*2,

 small=T,fun= mean,na.rm=T);orogrnum

 windpo <- windpo * orogrnum

 heightWind <- raster::extract(x= srtm_crop, y = as.matrix((sel1)),

 small=T,fun= max,na.rm=T);heightWind

 par(mfrow=c(1,1))

 plot(srtm_crop, main="SRTM Elevation Data");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(heightWind,0),cex=0.8);plot(polygon1,add=T)

 plot(orogr1, main="Wind Speed Multipliers");points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(windpo,3),cex=0.8);plot(polygon1,add=T)

 HeighttoBaro <- matrix(heightWind); colnames(HeighttoBaro) <- "HeighttoBaro"

 air_dt <- BaroHoehe(matrix(HeighttoBaro),HeighttoBaro)

 par(mfrow=c(1,1))

 plot(srtm_crop, main="Normal Air Density",

 col=topo.colors(10));points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs =

 rep(1.225,nrow(sel1)),cex=0.8);plot(polygon1,add=T)

 plot(srtm_crop, main="Corrected Air Density",

 col=topo.colors(10));points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(air_dt$rh,2),cex=0.8);plot(polygon1,add=T)

 SurfaceRoughness0 <- raster::extract(x= cclRaster, y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun=

 mean,na.rm=T);

 SurfaceRoughness1 <- raster::extract(x=terrain(srtm_crop,"roughness"),

 y = as.matrix((sel1)),

 buffer=resol*2, small=T,fun=

 mean,na.rm=T);

 SurfaceRoughness <-SurfaceRoughness0*

 (1+(SurfaceRoughness1/max(res(srtm_crop))));

 elrouind <- terrain(srtm_crop,"roughness")

 elrouindn <- resample(elrouind,cclRaster,method="ngb")

 modSurf <- overlay(x = cclRaster,y = elrouindn, fun=function(x,y)

 {return(x*(1+(y/max(res(srtm_crop)))))})

 par(mfrow=c(1,1)); cexa=0.9

 plot(cclRaster, main="Corine Land Cover Roughness");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round(SurfaceRoughness0,2),cex=cexa);

 plot(polygon1,add=T)

 plot(x=terrain(srtm_crop,"roughness",neighbors = 4),

 main="Elevation Roughness Indicator");

 points(sel1$X,sel1$Y,pch=20); textxy(sel1$X,sel1$Y,labs =

 round((SurfaceRoughness1),2),cex=cexa);plot(polygon1,add=T)

 plot(modSurf, main="Modified Surface Roughness");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round((SurfaceRoughness),2),

140

 cex=cexa);plot(polygon1,add=T)

 k_raster <- calc(modSurf, function(x) {x= 0.5/(log(RotorHeight/x))})

 k = 0.5/(log(RotorHeight/SurfaceRoughness))

 par(mfrow=c(1,1)); cexa=0.9

 plot(k_raster, main="Adapted Wake Decay Constant - K");

 points(sel1$X,sel1$Y,pch=20);

 textxy(sel1$X,sel1$Y,labs = round((k),3),

 cex=cexa);

 plot(polygon1,add=T)

 }

 }

}

############### Plot result with Google maps background

GooglePLot <- function(resultMa,Polygon1,best=1,plotEn=1){ require(rgeos);

require(RgoogleMaps)

 op <- par(ask=F)

 on.exit(par(op))

 par(mfrow=c(1,1))

 if (plotEn == 1) { en = "EnergyOverall" }

 if (plotEn == 2) { en = "Parkfitness" }

 resultMa <- resultMa[,2][order(as.character(sapply(resultMa[,2],

 "[", en)),decreasing = T)]

 resultMa <- resultMa[best]

 Solution <- do.call("rbind", resultMa)

 ProjPoly = proj4string(Polygon1);

 ProjLAEA = "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000

 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

 ProjLonLat <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0"

 if (proj4string(Polygon1)!=(ProjLonLat)){

 print("Polygon ist nicht in LatLon. Projiziere.GooglePlot")

 Polygon1 <- spTransform(Polygon1, CRSobj = crs(ProjLonLat))

 }

 PointSol <- data.frame(dplyr::select(Solution,X,Y));

 names(PointSol) <- c("lon","lat")

 PointSol1 <- SpatialPoints(coordinates(PointSol), proj4string = crs(ProjLAEA))

 PointSol1 <- spTransform(PointSol1, CRSobj = crs(ProjLonLat))

 PointSol1 <- as.data.frame(PointSol1)

 map <- GetMap(center = c(extent(gCentroid(Polygon1))[4],

 extent(gCentroid(Polygon1))[1]), zoom = 11,

 size= c(640,640))

 PlotOnStaticMap(MyMap = map, lat = PointSol1$lat, lon = PointSol1$lon,

 zoom = 11, size= c(640,640),

 cex = 1.1, pch = 19, col = "red", FUN = points, add = F)

 PlotPolysOnStaticMap(MyMap = map, polys = SpatialPolygons(Polygon1@polygons,

proj4string=Polygon1@proj4string),

 border = NULL, lwd = 0.25, add=T)

 invisible(PointSol1)

}

############### Plot result in Google Chrome with real base map

GoogleChromePLot <- function(resultMa,Polygon1,best=1,plotEn=1) {

require(googleVis)

 a <- GooglePLot(resultMa,Polygon1,best,plotEn)

 a$latlon <- paste(a$lat, a$lon, sep=":")

 map.gb <- gvisMap(a, locationvar="latlon", options = list(showTip=T, showLine=T,

 enableScrollWheel=TRUE,mapType="hybrid",

 useMapTypeControl=T, width=1400, height=800, icons=paste0("{",

 "'default': {'normal': 'http://icons.iconarchive.com/",

 "icons/icons-land/vista-map-markers/48/",

 "Map-Marker-Ball-Azure-icon.png',\n",

 "'selected': 'http://icons.iconarchive.com/",

 "icons/icons-land/vista-map-markers/48/",

141

 "Map-Marker-Ball-Right-Azure-icon.png'", "}}"))

)

 plot(map.gb)

}

############### Plot all fitness values of the GA

plotcloud <- function(result,pl="FALSE"){

 opar <- par(no.readonly = T)

 clouddata <- result[,7]

 EffCloud <- lapply(clouddata, function(x) x = x[[1]]);EffCloud

 EneCloud <- lapply(clouddata, function(x) x = x[[2]]);EneCloud

 FitCloud <- lapply(clouddata, function(x) x = x[[3]]);FitCloud

 EffCldInd <- list();EneCldInd <- list();FitCldInd <- list();

 for (i in 1:length(clouddata)){

 l <- length(clouddata[[i]]$EfficAllDir); l

 EffCldInd[[i]] <- t(as.matrix(rbind(rep(i,l),EffCloud[[i]])));EffCldInd

 EneCldInd[[i]] <- t(as.matrix(rbind(rep(i,l),EneCloud[[i]])));EffCldInd

 FitCldInd[[i]] <- t(as.matrix(rbind(rep(i,l),FitCloud[[i]])));EffCldInd

 }

 EffCldInd <- do.call("rbind",EffCldInd)

 EffCldIndmax <- data.frame(EffCldInd)

 EffCldIndmax <- group_by(EffCldIndmax,X1) %>%

 summarise(max=max(X2),mean=mean(X2),min=min(X2),sd=sd(X2))

 EneCldInd <- do.call("rbind",EneCldInd)

 EneCldIndmax <- data.frame(EneCldInd)

 EneCldIndmax <- group_by(EneCldIndmax,X1) %>%

 summarise(max=max(X2),mean=mean(X2),min=min(X2),sd=sd(X2))

 FitCldInd <- do.call("rbind",FitCldInd)

 FitCldIndmax <- data.frame(FitCldInd)

 FitCldIndmax <- group_by(FitCldIndmax,X1) %>%

 summarise(max=max(X2),mean=mean(X2),min=min(X2),sd=sd(X2))

 if (pl=="TRUE"){

 par(mfrow=c(2,3))

 plot(FitCldInd, main="Fitness",xlab="Generation",ylab="Fitnessvalue",

 pch=20,col="red",cex=1.3);

 lf <- smooth.spline(x=FitCldInd[,1],y=FitCldInd[,2], spar=0.1);

 lines(lf, col='red', lwd=1.2)

 points(x=FitCldIndmax$X1,y=FitCldIndmax$max,type="l",col="red")

 points(x=FitCldIndmax$X1,y=FitCldIndmax$min,type="l",col="red")

 plot(EffCldInd, main="Efficiency",xlab="Generation",

 ylab="Efficiency in %",pch=20,col="orange",cex=1.3);

 le <- smooth.spline(x=EffCldInd[,1],y=EffCldInd[,2], spar=0.1);

 lines(le, col='orange', lwd=1.2)

 points(x=EffCldIndmax$X1,y=EffCldIndmax$max,type="l",col="orange")

 points(x=EffCldIndmax$X1,y=EffCldIndmax$min,type="l",col="orange")

 plot(EneCldInd, main="Energy",xlab="Generation",ylab="Energy in kW",

pch=20,col="blue",cex=1.3);

 len <- smooth.spline(x=EneCldInd[,1],y=EneCldInd[,2], spar=0.1);

 lines(len, col='blue', lwd=1.2)

 points(x=EneCldIndmax$X1,y=EneCldIndmax$max,type="l",col="blue")

 points(x=EneCldIndmax$X1,y=EneCldIndmax$min,type="l",col="blue")

 plot(x=FitCldIndmax$X1,y=FitCldIndmax$sd, main="Standard Deviation Fitness",

 xlab="Generation", ylab="Standard Deviation of Population",

 col="red",type="b")

 plot(x=EffCldIndmax$X1,y=EffCldIndmax$sd, main="Standard Deviation Efficiency",

 xlab="Generation", ylab="Standard Deviation of Population",

 col="orange",type="b")

 plot(x=EneCldIndmax$X1,y=EneCldIndmax$sd, main="Standard Deviation Energy",

 xlab="Generation", ylab="Standard Deviation of Population",

 col="blue",type="b")

 }

 clouddatafull <- cbind(Fitn=FitCldIndmax,Eff=EffCldIndmax,Ene=EneCldIndmax)

 par(opar)

142

 invisible(clouddatafull)

}

############### Plot the development of the GA

plotparkfitness <- function(result,spar=0.5){

 rslt <- as.data.frame(do.call("rbind", result[,'allparkcoeff']))

 mutres <- as.data.frame(do.call("rbind", result[,'mut_rate']))

 nindiv1 <- as.data.frame(do.call("cbind", result[,'nindiv']))

 nindiv1 <- nindiv1[-seq(4,length(nindiv1),4)]

 opar <- par(no.readonly = T)

 selcross <- unlist(result[,'selcross'])

 selteil <- selcross[seq(2,length(selcross),2)]

 crossteil <- selcross[seq(1,length(selcross),2)]

 layout(matrix(c(1,1,1,1,2,3,4,5),2,4, byrow = TRUE));

 rbPal <- colorRampPalette(c('red','green'));

 Col <- rbPal(4)[as.numeric(cut(as.numeric(rslt$maxparkfitness),breaks = 4))]

 plot(rslt$minparkfitness, xaxt='n', main="Parkfitness per Generation",

 ylab="Parkfitness in %", cex=1.2,col="red", pch=20,

 ylim= c(min(rslt$minparkfitness),max(rslt$maxparkfitness)));

 axis(1,at = 1:nrow(rslt),tick=T)

 points(rslt$meanparkfitness,ylab="MeanParkF", cex=1.2,col="blue", pch=20);

 points(rslt$maxparkfitness,ylab="maxParkF", cex=1.2,col="green", pch=20)

 x <- 1:length(rslt$maxparkfitness)

 lmin <- smooth.spline(x,rslt$minparkfitness, spar=spar);

 lines(lmin, col='red', lwd=1.2);

 lmea <- smooth.spline(x,rslt$meanparkfitness, spar=spar);

 lines(lmea, col='blue', lwd=1.2);

 lmax <- smooth.spline(x,rslt$maxparkfitness, spar=spar);

 lines(lmax, col='green', lwd=1.2)

 grid(col = "gray")

 par(mar=c(5,5,3,2))

 farbe <- rep(seq(1,3,1),length(nindiv1)/3);farbe;

 ndindiplot <- as.integer(nindiv1)

 plot(ndindiplot,type="b",col=farbe,cex=2,pch=20, main="N-Individuen",

 axes = FALSE, ylab="N",ylim=c(0,max(ndindiplot)+100))

 axis(side = 2,tick = TRUE);

 axis(side = 1,tick = TRUE,at =seq(1,length(ndindiplot),3),

 labels =(1:(length(ndindiplot)/3)))

 legend("topleft",title="Amount of Individuals in: ",lty = c(1,1,1),

 cex=0.5,inset = c(0.01,0.01),

 box.lty=0,box.lwd=0,c("Fitness","Selection","Crossover"),

 col=farbe[1:3],xjust = 0)

 plot(1*100/selteil,ylim=c(20,110),type="b",cex=2,col="green",

 pch=20,main="Selection percentage",ylab="Percentage",xlab="Generation")

 grid(col = "gray")

 selrpl <- 1*100/selteil;timeticksel <- which(selrpl>75);

 selrplval <- selrpl[selrpl>75]

 textxy(timeticksel,selrplval,labs = timeticksel,cex = 0.7)

 plot(crossteil,col=crossteil,main="n Crossoverparts",xlab="Generation",

 ylab="Crossover Points",ylim=c(1,8),cex=1,pch=15); grid(col = "gray")

 timetickcro <- which(crossteil>median(crossteil));

 crorplval <- crossteil[crossteil>median(crossteil)]

 textxy(timetickcro,crorplval,labs = timetickcro,cex = 0.5)

 plot(as.numeric(t(mutres)),type="b",main="Mutation Rate",xlab="Generation",

 ylab="Crossover Points",cex=1,pch=15)

 mutrpl <- as.numeric(t(mutres)); timetick <- which(mutrpl>median(mutrpl));

 mutrplval <- mutrpl[mutrpl>median(mutrpl)]

 textxy(timetick,mutrplval,labs = timetick,cex = 0.7)

 grid(col = "gray")

 op1 <- par(ask=T)

 on.exit(par(op1))

 par(mfrow=c(1,1))

 plot(ndindiplot,type="b",col=farbe,cex=2,pch=20, main="N-Individuen",

143

 axes = FALSE, ylab="N",ylim=c(0,max(ndindiplot)+100))

 axis(side = 2,tick = TRUE);

 axis(side = 1,tick = TRUE,at =seq(1,length(ndindiplot),3),

 labels =(1:(length(ndindiplot)/3)))

 legend("topleft",title="Amount of Individuals in: ",pch = c(20,20,20),cex=1,

 inset = c(0.01,0.01), box.lty=0,box.lwd=0,

 c("Fitness","Selection","Crossover"), text.col=farbe[1:3], col=farbe[1:3],

 xjust = 0)

 op2 <- par(ask=T)

 on.exit(par(op2))

 par(mfrow=c(2,1))

 plot(1*100/selteil,ylim=c(20,110),type="b",cex=2,col="green",pch=20,

 main="Selection percentage",ylab="Percentage",xlab="Generation")

 grid(col = "gray")

 selrpl <- 1*100/selteil;timeticksel <- which(selrpl>75);

 selrplval <- selrpl[selrpl>75]

 textxy(timeticksel,selrplval,labs = timeticksel,cex = 0.5)

 plot(crossteil,col=crossteil,main="n Crossoverparts",xlab="Generation",

 ylab="Crossover Points",ylim=c(1,8),cex=1,pch=15); grid(col = "gray")

 timetickcro <- which(crossteil>median(crossteil));

 crorplval <- crossteil[crossteil>median(crossteil)]

 textxy(timetickcro,crorplval,labs = timetickcro,cex = 0.5)

 op3 <- par(ask=T)

 on.exit(par(op3))

 par(mfrow=c(1,1))

 rbPal <- colorRampPalette(c('red','green'));

 Col <- rbPal(4)[as.numeric(cut(as.numeric(rslt$maxparkfitness),breaks = 4))]

 plot(rslt$minParkwirkungsg, xaxt='n', main="Mutation Influence", ylab=" in %",

 cex=1.2,col="red", pch=20, ylim= c(min(rslt$minParkwirkungsg),

 max(rslt$maxParkwirkungsg)));

 axis(1,at = 1:nrow(rslt),tick=T)

 points(rslt$meanParkwirkungsg,ylab="MeanParkEff", cex=1.2,col="blue", pch=20);

 points(rslt$maxParkwirkungsg,ylab="maxParkEff", cex=1.2,col="green", pch=20)

 x <- 1:length(rslt$maxparkfitness);

 lmin <- smooth.spline(x,rslt$minParkwirkungsg, spar=spar);

 lines(lmin, col='red', lwd=1.2);

 lmea <- smooth.spline(x,rslt$meanParkwirkungsg, spar=spar);

 lines(lmea, col='blue', lwd=1.2)

 lmax <- smooth.spline(x,rslt$maxParkwirkungsg, spar=spar);

 lines(lmax, col='green', lwd=1.2);

 grid(col = "gray")

 if (length(timetick)!=0){

 abline(v = timetick,col="black");

 mtext(mutrplval,side = 3,at = timetick,cex = 0.8)

 }

 op4 <- par(ask=T)

 on.exit(par(op4))

 par(mfrow=c(1,1))

 rbPal <- colorRampPalette(c('red','green'));

 Col <- rbPal(4)[as.numeric(cut(as.numeric(rslt$maxparkfitness),breaks = 4))]

 plot(rslt$minParkwirkungsg, xaxt='n', main="Selection Influence", ylab=" in %",

 cex=1.2,col="red", pch=20, ylim= c(min(rslt$minParkwirkungsg),

 max(rslt$maxParkwirkungsg)));

 axis(1,at = 1:nrow(rslt),tick=T)

 points(rslt$meanParkwirkungsg,ylab="MeanParkEff", cex=1.2,col="blue", pch=20);

 points(rslt$maxParkwirkungsg,ylab="maxParkEff", cex=1.2,col="green", pch=20)

 x <- 1:length(rslt$maxparkfitness);

 lmin <- smooth.spline(x,rslt$minParkwirkungsg, spar=spar);

 lines(lmin, col='red', lwd=1.2);

 lmea <- smooth.spline(x,rslt$meanParkwirkungsg, spar=spar);

 lines(lmea, col='blue', lwd=1.2)

 lmax <- smooth.spline(x,rslt$maxParkwirkungsg, spar=spar);

144

 lines(lmax, col='green', lwd=1.2); grid(col = "gray")

 if (length(timeticksel)!=0){

 abline(v = timeticksel,col="green");

 mtext(selrplval,side = 3,at = timeticksel,col="green",cex = 0.8)

 }

 op5 <- par(ask=T)

 on.exit(par(op5))

 par(mfrow=c(1,1))

 rbPal <- colorRampPalette(c('red','green'));

 Col <- rbPal(4)[as.numeric(cut(as.numeric(rslt$maxparkfitness),breaks = 4))]

 plot(rslt$minParkwirkungsg, xaxt='n', main="Crossover Influence", ylab=" in %",

 cex=1.2,col="red", pch=20, ylim= c(min(rslt$minParkwirkungsg),

 max(rslt$maxParkwirkungsg)));

 axis(1,at = 1:nrow(rslt),tick=T)

 points(rslt$meanParkwirkungsg,ylab="MeanParkEff", cex=1.2,col="blue", pch=20);

 points(rslt$maxParkwirkungsg,ylab="maxParkEff", cex=1.2,col="green", pch=20)

 x <- 1:length(rslt$maxparkfitness);

 lmin <- smooth.spline(x,rslt$minParkwirkungsg, spar=spar);

 lines(lmin, col='red', lwd=1.2);

 lmea <- smooth.spline(x,rslt$meanParkwirkungsg, spar=spar);

 lines(lmea, col='blue', lwd=1.2)

 lmax <- smooth.spline(x,rslt$maxParkwirkungsg, spar=spar);

 lines(lmax, col='green', lwd=1.2); grid(col = "gray")

 if (length(timetickcro)!=0){

 abline(v = timetickcro,col="red");

 mtext(crorplval,side = 3,at = timetickcro,col="red",cex = 0.8)

 }

 sddata <- plotcloud(result);

 fitsd <- dplyr::select(sddata,contains("fit"));

 effsd <- dplyr::select(sddata,contains("eff"));

 enesd <- dplyr::select(sddata,contains("ene"));

 op6 <- par(ask=T)

 on.exit(par(op6))

 par(mfrow=c(4,1))

 plot(rslt$minparkfitness, xaxt='n', main="Parkfitness per Generation",

 ylab="Parkfitness in %", cex=1.2,col="red", pch=20,

 ylim= c(min(rslt$minparkfitness),max(rslt$maxparkfitness)))

 axis(1,at = 1:nrow(rslt),tick=T)

 grid(col = "black")

 points(rslt$meanparkfitness,ylab="MeanParkF", cex=1.2,col="blue", pch=20)

 points(rslt$maxparkfitness,ylab="maxParkF", cex=1.2,col="green", pch=20)

 x <- 1:length(rslt$maxparkfitness)

 lmin <- smooth.spline(x,rslt$minparkfitness, spar=spar);

 lines(lmin, col='red', lwd=1.2)

 lmea <- smooth.spline(x,rslt$meanparkfitness, spar=spar);

 lines(lmea, col='blue', lwd=1.2)

 lmax <- smooth.spline(x,rslt$maxparkfitness, spar=spar);

 lines(lmax, col='green', lwd=1.2)

 plot(1*100/selteil,ylim=c(20,110),type="b",lwd=2,col="green",pch=20,

 main="Selection percentage",ylab="Percentage",xlab="Generation");

 grid(lty = 2)

 plot(crossteil,col=crossteil,pch=20,cex=2,main="n Crossoverparts",

 xlab="Generation",ylab="Crossover Points",ylim=c(1,6));grid(lty = 2)

 plot(enesd$Ene.sd, type="b",col="blue",pch=20,lwd=2,main="Standard Deviation");

 grid(lty = 2)

 par(new = TRUE)

 plot(effsd$Eff.sd, type="b",col="orange",lwd=2,axes = FALSE, bty = "n",

 xlab = "", ylab = "",pch=20)

 par(new = TRUE)

 plot(fitsd$Fitn.sd, type="b",col="red",lwd=2,axes = FALSE, bty = "n",

 xlab = "", ylab = "",pch=20)

 timeticksd <- which(mutrpl>median(mutrpl));

145

 sdrplval <- fitsd$Fitn.sd[timeticksd]

 if (length(timeticksd) != 0){

 textxy(timeticksd,sdrplval,labs = timeticksd,cex = 0.5)

 abline(v = timeticksd)

 mtext(mutrplval,side = 3,at = timetick,cex = 0.8)

 }

 op7 <- par(ask=T)

 on.exit(par(op7))

 par(mfrow=c(1,1))

 plot(fitsd$Fitn.sd, type="b",col="red",lwd=2,axes = TRUE, bty = "n", xlab = "",

 ylab = "",pch=20, main="Mutation Rate influence on Standard Deviation")

 if (length(timeticksd) != 0){

 textxy(timeticksd,sdrplval,labs = timeticksd,cex = 0.7)

 abline(v = timeticksd)

 mtext(mutrplval,side = 3,at = timetick,cex = 0.8)

 }

 par(opar)

}

############### Plot the compared fitness values

plotfitnessevolution <- function(result,spar=0.1){

 opar <- par(no.readonly = T)

 x <- result[,4];x

 x <- x[-c(1)];x

 x1 <- do.call("rbind",x);x1

 par(mar= c(4,5,4,2))

 result <- as.data.frame(do.call("rbind", result[,1]))

 layout(mat = matrix(c(1,2,3,4,4,4), nrow = 2, ncol = 3, byrow = TRUE))

 minge <- x1[seq(1,length(x1[,1]),2),1];minge

 minge2 <- x1[seq(2,length(x1[,2]),2),1];minge2

 ming3 <- minge-minge2; ming3

 ming3 <- c(0,ming3)

 ming3 <- as.data.frame(ming3)

 ming3$farbe <- 0

 ming3$farbe[ming3$ming3 < 0] <- "red" ;

 ming3$farbe[ming3$ming3 > 0] <- "green";

 ming3$farbe[ming3$ming3 == 0] <- "orange"

 plot(ming3$ming3,type="b",col=ming3$farbe,pch=20,

 cex=2,xlab="Generation",ylab="Beter or Worse");

 title(main="Minimal Fitness Values",

 sub = "compared to previous generation",col.main="red"); abline(0,0)

 grid(col = "black")

 meange <- x1[seq(1,length(x1[,1]),2),3];meange

 meange2 <- x1[seq(2,length(x1[,2]),2),3];meange2

 meag3 <- meange-meange2; meag3

 meag3 <- c(0,meag3)

 meag3 <- as.data.frame(meag3)

 meag3$farbe <- 0

 meag3$farbe[meag3$meag3 < 0] <- "red" ;

 meag3$farbe[meag3$meag3 > 0] <- "green";

 meag3$farbe[meag3$meag3 == 0] <- "orange"

 plot(meag3$meag3,type="b",col=meag3$farbe,pch=20,cex=2,

 xlab="Generation",ylab="Beter or Worse");

 title(main="Mean Fitness Values",

 sub = "compared to previous generation",col.main="orange"); abline(0,0)

 grid(col = "black")

 maxge <- x1[seq(1,length(x1[,1]),2),2];maxge

 maxge2 <- x1[seq(2,length(x1[,2]),2),2];maxge2

 mg3 <- maxge-maxge2;mg3;

 mg3 <- c(0,mg3)

 mg3 <- as.data.frame(mg3)

 mg3$farbe <- 0

 mg3$farbe[mg3$mg3 < 0] <- "red" ;

146

 mg3$farbe[mg3$mg3 > 0] <- "green";

 mg3$farbe[mg3$mg3 == 0] <- "orange"

 plot(mg3$mg3,type="b",col=mg3$farbe,pch=20, cex=2,xlab="Generation",

 ylab="Beter or Worse");

 title(main="Maximal Fitness Values",

 sub = "compared to previous generation",col.main="darkgreen"); abline(0,0)

 grid(col = "black")

 rbPal <- colorRampPalette(c('red','green'))

 Col <- rbPal(4)[as.numeric(cut(as.numeric(result$maxparkfitness),breaks = 4))]

 plot(result$minparkfitness, xaxt='n', main="Parkfitness per Generation",

 ylab="Parkfitness in %", xlab="Generation",cex=2,col="red", pch=20,

 ylim= c(min(result$minparkfitness),max(result$maxparkfitness)))

 axis(1,at = 1:nrow(result),tick=T)

 grid(col = "black")

 points(result$meanparkfitness,ylab="MeanParkF", cex=2,col="blue", pch=20)

 points(result$maxparkfitness,ylab="maxParkF", cex=2,col="green", pch=20)

 x <- 1:length(result$maxparkfitness)

 lmin <- smooth.spline(x,result$minparkfitness, spar=spar);

 lines(lmin, col='red', lwd=1.6)

 lmea <- smooth.spline(x,result$meanparkfitness, spar=spar);

 lines(lmea, col='blue', lwd=1.6)

 lmax <- smooth.spline(x,result$maxparkfitness, spar=spar);

 lines(lmax, col='green', lwd=1.6)

 par(opar)

}

############### Plot a Heatmap of the selected Grid Cells

heatMap <- function(result,si=2, Polygon1){

 bpe <- do.call("rbind",result[,'allCoords']);

 bpe <- bpe[c(1,2)]

 sizing = as.integer(result[,'inputData'][[1]][,1]['Resolution'])/si

 dupco <- geoR::dup.coords(bpe,simplify = TRUE);

 bpe$Ids <- as.integer(rownames(bpe));

 dupco <- lapply(dupco, function(x) as.integer(x));

 dupcosum <- lapply(dupco, function(x) length(x));

 bpenew <- vector("list",length(dupco))

 for (i in 1:length(dupco)){

 bpenew[[i]] <- bpe[bpe$Ids==dupco[[i]][1],];

 bpenew[[i]]$Sum <- dupcosum[[i]][1]

 }

 bpenew <- do.call("rbind",bpenew);

 bpenew <- bpenew[-3]

 polo <- sp::SpatialPoints(sp::coordinates(cbind(bpenew$X,bpenew$Y)))

 exMar <- 50

 x.range <- range(bpenew$X); y.range <- range(bpenew$Y)

 grd <- expand.grid(x=seq(from=x.range[1]-exMar, to=x.range[2]+exMar, by=sizing),

 y=seq(from=y.range[1]-exMar, to=y.range[2]+exMar, by=sizing))

 sp::coordinates(grd) <- ~ x+y; sp::gridded(grd) <- TRUE

 idwout <- as.data.frame(gstat::idw(formula = bpenew$Sum~1,

 locations = polo,newdata=grd))

 plot1<-ggplot2::ggplot(data=idwout,mapping=ggplot2::aes(x=x,y=y))+

 c(ggplot2::geom_tile(data=idwout,ggplot2::aes(fill=var1.pred)))+

 ggplot2::geom_point(data=bpenew,mapping=ggplot2::aes(x=X,y=Y),

 show.legend = TRUE,size=sqrt(sqrt(bpenew$Sum)),alpha=0.6)

 plot1+ggplot2::scale_fill_gradient(low="red",high="green")+ggplot2::coord_equal()

}

############### Function-Calls to start an optimization and Plot the results

#############

p <- plot.windrose(spd = data.in$ws,dir = data.in$wd, dirres=10, spdmax=20)

Res_Poly <- genAlgo(AreaConsidered, n=12, SurfaceRoughness=0.3,Rotor=30,fcrR=3,

RotorHeight=60,referenceHeight=60,iteration=5,

147

Proportionality=1,mutr=0.08,vdirspe = data.in,

topograp="FALSE", elitism="TRUE",nelit=7, selstate="FIX",

crossPart1 = "EQU", trimForce="TRUE")

result = Res_Poly

Polygon = AreaConsidered

plotResult(resultMa = result, Polygon1 = Polygon, best = 1,

plotEn =1,topographie = "FALSE");

heatMap(result,si=5,Polygon1 = Polygon)

plotEvolution(result,T,0.3)

plotparkfitness(result,0.1)

plotfitnessevolution(result)

plotcloud(result,"TRUE")

GoogleChromePLot(result,Polygon,1,1)

