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Abstract. Results of Lind on Lehmer’s problem include the value of
the Lehmer constant of the finite cyclic group Z/nZ, for n ≤ 5 and
all odd n. By complementary observations we determine the Lehmer
constant of Z/nZ, for all n except for multiples of 420.

1. Introduction

Let n be a positive integer. Given a polynomial with integer coefficients,

f ∈ Z[x], denote by mn(f) its logarithmic Mahler measure over Z/nZ,

defined by

mn(f) =
1

n

n−1
∑

k=0

log |f(e2πik/n)|.

By λn > 0 we denote the Lehmer constant of Z/nZ,

λn = min
f∈Z[x],

mn(f)>0

mn(f),

see [11]. We notice later that the minimum is indeed attained, and that it

is the same if deg f ≤ n−1 is assumed. Lind [11] has given an upper bound

for λn, see below, and he obtained the values

λ1 = log 2, λ2 =
1

2
log 3, λ4 =

1

4
log 3, and λn =

1

n
log 2 for all odd n.

We sharpen his result, complement it by a lower bound, and obtain the value

of λn for all n except for multiples of 420. The main result is formulated in

Section 2 and it is proved in Section 3.

2. Main result

For a positive integer n, let

{

ρ(n)
ρ′(n)

}

denote the smallest

{

prime number
positive integer

}

that does not divide n. We write pk ‖ n when pk is a principal divisor of n,
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that is, if p is a prime and k is a positive integer such that pk | n and

pk+1 ∤ n. Let

ρ′′(n) = min
(

min
p∤n

p, min
pk‖n

ppk

)

= min
(

ρ(n), min
pk‖n

ppk

)

.

Lind proved that λn ≤ 1
n

log ρ(n), for all n. Extending his result we

obtain the following theorem, our main result.

Theorem 1. The Lehmer constant of Z/nZ is of the form λn = 1
n

log Λn,

with an integer Λn ≥ 2 not dividing n and in the range

ρ′(n) ≤ Λn ≤ ρ′′(n).

For all n = 1, . . . , 419 (mod 420), we have Λn = ρ′(n) = ρ′′(n).

Example 1. Example new values are λ6 = 1
6
log 4, λ8 = 1

8
log 3, or more

generally,

λn =
1

n
log 3 if, and only if, n = 2k with 3 ∤ k,

λn =
1

n
log 4 if, and only if, n = 6k with odd k.

Remark 1. (i) Theorem 1 yields the exact value of λn when ρ′(n) = ρ(n) or

more generally, when ρ′(n) = ρ′′(n). Thus it also includes certain multiples

of 420. For example, let n = 6 · k · 420 with 11 ∤ k. Then ρ′(n) = ρ(n) = 11

and thus λn = 1
n

log 11.

(ii) By Theorem 1 the known upper bound λn ≤ 1
n

log ρ(n) is sharpened

strictly for all n = 6 (mod 12), where it yields the exact value for λn, and

also for certain multiples of 420. For example, let n = 11 · 13 · 420. Then

the theorem implies λn = 1
n

log Λn with Λn ∈ {8, 9, 16}, while ρ(n) = 17.

Open question: Determine λn = 1
n

log Λn for n = 420. By Theorem 1 we

have Λ420 ∈ {8, 9, 11}.

3. Proof of Theorem 1

We have, for f ∈ Z[x],

(1) mn(f) =
1

n
log|∆n(f)| with ∆n(f) =

n−1
∏

k=0

f(e2πik/n).

The number ∆n(f) is always an integer, and there is an elementary way to

see that. To this end we recall the determinantal relation of [13], readily

extended here to f of arbitrary degree. If deg f ≤ n− 1, write f(x) = a0 +

a1x+ · · ·+an−1x
n−1, with zero coefficients where necessary. If a polynomial

of higher degree is given, with coefficients a′
0, a

′
1, . . . , replace it first with

f as above by defining ak =
∑

l=k (mod n) a′
l. Let Ca denote the n × n
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integer circulant matrix with first row a = (a0, . . . , an−1). Then det Ca =
∏n−1

k=0 f(e2πik/n) and it implies

(2) ∆n(f) = det Ca.

Hence, ∆n(f) is indeed an integer. Observe that expressing mn(f) in terms

of the integer ∆n(f) justifies the definition of the Lehmer constant λn as a

minimum, not just an infimum. We will also use the expression of ∆n(f)

as a resultant, for example see [2, 5, 11]. Indeed since Res
(

xn − 1, f(x)
)

=
∏n−1

k=0 f(e2πik/n), we have

(3) ∆n(f) = Res
(

xn − 1, f(x)
)

.

The more commonly used expression Res
(

f(x), xn − 1
)

, with interchanged

arguments, works as well, as long as only absolute values are considered. In-

deed the sign of the determinant in (2) or of the resultant in (3) is irrelevant

for mn(f). We remark that the opposite sign is obtained for the polynomial

f∨(x) = −xn−1f(1/x), with coefficient sequence (−an−1,−an−2, . . . ,−a0),

the negative of the usual reciprocal polynomial.

Remark 2. (i) Lehmer and Pierce [10, 13] investigated the sequences
{

∆1(f),

∆2(f), . . .
}

, for f ∈ Z[x]. For example, f(x) = 2−x yields ∆n(f) = 2n−1,

the Mersenne numbers; we refer to [6, 7, 8, 9]. For Lehmer’s problem,

formulated in [10], we refer to [3, 14] and the spectacular solution for

odd coefficients in [2]. Lind’s Lehmer constants λn relate to the family
{

∆n(f) : f ∈ Z[x]
}

, for fixed n.

(ii) Our approach highlights and makes use of the fact that finding possible

(or minimal) values of the logarithmic Mahler measure over Z/nZ is equiva-

lent to finding possible (or minimal) values of integer circular determinants,

an open problem attributed to Taussky-Todd [12].

Call f ∈ Z[x] cyclotomic if all its zeros lie on the complex unit circle.

As a preliminary observation we determine, for all n, the exact value of a

cyclotomic variant of Lind’s Lehmer constants.

Lemma 1. For cyclotomic polynomials f ∈ Z[x], the minimal possible value

of mn(f) > 0 is determined by

(4) min
f∈Z[x] cyclotomic

mn(f)>0

mn(f) =
1

n
log ρ′′(n).

Proof. First, Kronecker’s theorem implies that any cyclotomic polynomial

f ∈ Z[x] is the product of some of Φ1, Φ2, . . . and a constant, if necessary;

here Φm ∈ Z[x] denotes the m-th cyclotomic polynomial, i.e., the monic

polynomial whose zeros are the primitive m-th roots of unity. Since always

(5) ∆n(f1f2) = ∆n(f1)∆n(f2)
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and consequently, mn(f1f2) ≤ mn(f1) + mn(f2), we thus obtain

(6) min
f∈Z[x] cyclotomic

mn(f)>0

mn(f) = min
m=1,2,...

mn(Φm)>0

mn(Φm).

Let ϕ(n) denote Euler’s totient of n. We point out that

∆n(Φm) = Res
(

xn − 1, Φm(x)
)

=







































0 if m | n,

1 if at least two distinct primes divide m/ gcd(m, n),

pϕ(q) if m/ gcd(m, n) is the power of a prime p ∤ n

—here we write gcd(m, n) = q,

pϕ(q)pk

if m/ gcd(m, n) is the power of a prime p | n

—here we factorize gcd(m, n) = pkq with pk ‖ n.

(7)

We remark that by our approach no negative sign is needed here, for any

m, n. This formula is obtained from [1, proof of Theorem 2], where it is

used for a short proof of the formula for Res
(

Φm1
(x), Φm2

(x)
)

; secondly,

since

(8) Res
(

xn − 1, Φm(x)
)

= Res
(

Φ1(x
n), Φm(x)

)

,

the formula (7) also follows from applying [4, Proposition 14]; a third, con-

venient and direct source is [5, Theorem 3].

Notice that (7) implies for any n, m, that particularly

(9) ∆n(Φm) = 0, 1, or ∆n(Φm) ≥ min
(

min
p∤n

p, min
pk‖n

ppk

)

= ρ′′(n).

Since (7) also yields

(10)
∆n(Φp) = p for p ∤ n, and

∆n(Φpk+1) = ppk

for pk ‖ n,

we conclude that the inequality in (9) is sharp, that is,

(11) min
m=1,2,...

∆n(Φm)≥2

∆n(Φm) = ρ′′(n).

Finally, since mn(Φm) = 1
n

log ∆n(Φm), the statement of the lemma follows

by combining (6) and (11). �

Lemma 2. Let n satisfy n 6= 6 (mod 12) and n 6= 0 (mod 420). Then

ρ(n) = ρ′(n), that is, the least non-divisor of n is a prime (and not a prime

power).

Remark 3. The example given in Remark 1(i) shows that the implication

of Lemma 2 cannot be reversed.
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Proof of Lemma 2. Suppose that n 6= 6 (mod 12) and ρ′(n) < ρ(n); we

verify that it implies 420 | n. First, if 6 ∤ n, then either ρ′(n) = ρ(n) = 2

or ρ′(n) = ρ(n) = 3. This contradicts the assumption ρ′(n) < ρ(n). Hence,

we have n = 6k, for some k. The case k odd is excluded by the assumption

n 6= 6 (mod 12), so we obtain k even. In other words, n = 12k′, for some k′.

If 5 ∤ k′, then we have ρ′(n) = ρ(n) = 5, in contradiction to the assumption

ρ′(n) < ρ(n). Therefore, we have n = 60k′′, for some k′′. Finally, if 7 ∤ k′′,

then ρ′(n) = ρ(n) = 7, again in contradiction to ρ′(n) < ρ(n). Thus we

conclude that n = 420k′′′, for some k′′′. �

Proof of Theorem 1.

Step I: First notice that indeed λn = 1
n

log Λn for an integer Λn ≥ 2; in

fact,

(12) Λn = min
f∈Z[x]

|∆n(f)|≥2

|∆n(f)|.

Therefore, Λn = |∆n(f0)|, for some f0 ∈ Z[x] with deg f0 = n − 1. Upon

replacing f0 with f∨
0 defined above, if necessary, we can assume that Λn =

∆n(f0).

Step II: We show that Λn ∤ n. Suppose that Λn divides n. Then there

exists a prime p dividing both Λn and n. Let pm ‖ Λn and pk ‖ n. Since

Λn | n we notice that m ≤ k. On the other hand, let Ca be the n×n integer

circulant matrix whose first row consists of the coefficients of f0, so that

(13) Λn = ∆n(f0) = det Ca.

Then we have pk ‖ n and pm ‖ det Ca, and a result by Newman [12, Theo-

rem 2] thus implies that m ≥ k + 1, so we obtain a contradiction.

Step III: The previous step yields that the positive integer Λn does not

divide n. By definition, ρ′(n) is the smallest number with this property. We

thus obtain the lower bound ρ′(n) ≤ Λn.

Step IV: The upper bound Λn ≤ ρ′′(n) is a consequence of Lemma 1.

Step V: Suppose that n = 6 (mod 12). Then 2 | n and 3 | n, while 4 ∤ n.

Hence, ρ′(n) = 4. On the other hand,

(14) min
pk‖n

ppk

= 221

= 4,

and thus ρ′′(n) = 4; notice that ρ(n) ≥ 5. Therefore in Theorem 1 the lower

and upper bound coincide, and we obtain Λn = ρ′(n) = ρ′′(n) = 4.

Step VI: Suppose that n 6= 6 (mod 12) and n 6= 0 (mod 420). By

Lemma 2 these conditions on n imply that ρ(n) = ρ′(n). Since always

ρ′(n) ≤ ρ′′(n) ≤ ρ(n), we conclude that ρ′(n) = ρ′′(n), Thus the lower and

upper bound in Theorem 1 coincide and we obtain Λn = ρ′(n) = ρ′′(n). �
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